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Abstrakt: In practical applications of the control theory, there is lack of approximation
techniques applicable to intractable dynamic-programming equations describing the opti-
mality controller. In the paper, we consider use of the technique coming from chemistry
and called high dimensional model representation (HDMR). Its main advantages are finite
order of expansion and rapid convergence for “well-defined” systems. The system model
is “well-defined” if higher-order variable correlations are weak, permitting the model to
be captured by the first few low-order terms of expansion. In fact, this is the only assump-
tion for a meaningful application of HDMR. Provided it is satisfied, HDMR could play
a role similar to neural networks. However it has clear mathematical background, which
increases chance for success and offers novel opportunities for applications and theoretical
research.
Use of the HDMR expansion to Bellman function – a solution of the the dynamic pro-
gramming – is tempting. It separates original high dimensional input–output mapping into
sum of low-order (possibly non-linear) mappings acting on orthogonal subspaces. The
presented example indicates the way how the HDMR can be tailored to the control design
and serves for inspection whether the basic HDMR assumption is applicable.
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1. INTRODUCTION

The key question in many scientific problems is to find the map between sets of high dimen-
sional input and output system variables. That is the place where so called “curse of dimension-
ality” arises. Full space analysis without any a priori assumption has an exponentially growing
computational complexity. Thus, some smart approximation is necessary.

High dimensional model representations (HDMR) (Rabitz and Alis, 1999) is a set of general
approximative tools stimulated by applications in chemistry. In its background there stands the
simple observation: only low-order correlations amongst the input variables have a significant
impact upon the outputs. Such a presumption permits expressing single multidimensional map-
ping as a sum of many low dimensional mappings. The general form of the resulting expansion
is:

f(x1, x2, . . . , xn) ≡ f(x) ≡ f0 +
n∑

i=1

fi(xi) +
n∑

i=1

i−1∑
j=1

fij(xi, xj) + ... + f12..n(x1, x2, ..., xn)



Here f0 denotes effect of zero-order correlations, i.e., it is a constant value over the domain
of f(x); f1(x1) describes an independent effect of x1; f12(x1, x2) represents the joint effect
of variables x1 and x2 and so on. Considering full nth order expansion we get only different,
but still exact representation of the original mapping. Experience shows that even a low or-
der HDMR expansion provides often a sufficient description of f(x) in real problems. This
motivates the usage of the second order expansion throughout this paper:

f(x) ≈ f̃(x) ≡ f0 +
n∑

i=1

fi(xi) +
n∑

i=1

i−1∑
j=1

fij(xi, xj)

Such a function approximation (representation) provides two main advantages. The first is data
reduction. The exponentially growing amount of function values is represented via polynomi-
ally growing tables holding each function component (term in the general expansion). This
property helps us to cope with high dimensional problems of real world. The second advantage
is reduction of computational complexity. As we see below, HDMR is generated by a family
of (linear) projections Pijk.... Consequntly, it allows splitting of any linear problem into easier
low-dimensional subproblems.

Both these properties are promising in the context of control theory, where we face huge data
spaces and unmanageable computational requirements. Unfortunately, the basic optimality con-
dition arising from dynamic programming is highly non-linear. It is the well-known Bellman
equation (Bellman, 1967), roughly written in this form:

Vt(d(t−1)) = min
at

{E [z(yt, at) + Vt+1 (d(t)) |at, d(t− 1)]} , dt ≡ (yt, at), d(t) ≡ (d1, . . . , dt),

where E[·|·] denotes conditional expectation. The strategy generating actions at satisfying this
relation for all t minimizes the expectation of the overall loss Z(yT , aT , ..., y1, a1) ≡∑T

t=1 z(yt, at). Its non-linearity is caused by the operator of minimization, which strongly re-
duces the possibility of using the HDMR.

That is why we formulate our problem in terms of fully probabilistic control design (Kárný et al.,
2005). Its optimality condition is also non-linear, but it allows us to make linear approximations
easily. Resulting equations are linear integral equations for upper and lower bound of the ex-
act solution. Then HDMR projectors are well-fitting not only for memory savings: important
synergies arise also from the problem simplification.

Illustrative example is included at the end of this paper.

2. MATHEMATICAL BACKGROUND OF HDMR

The HDMR expansions are based on exploiting the correlated effect of the input variables.
Let us assume that our input-output mapping is represented by a real scalar function f(x) ≡
f(x1, x2, ..., xn) defined on the unit hypercube Kn = [0, 1]n. On the same domain, we consider
non-negative weight function w(x) and define inner product of functions f and g as follows:

〈f, g〉 ≡
∫

Kn
f(x)g(x)w(x)dx

Let X be vector space of functions with finite norm ‖.‖ inducted by this product and f ∈ X .



For convenience, we introduce a slightly generalized form of the inner product:

〈f, g〉M ≡
∫

Kn−|M|
f(x1, ..., xn)g(x1, ..., xn)w(x1, ..., xn)

∏
i6∈M

dxi

It returns |M |-dimensional scalar function of all xi for indices i ∈ M ⊆ {1..n}. Using 0 ≡ ∅,
we get 〈f, g〉 ≡ 〈f, g〉0.

Our aim is to find decomposition components f0, fi(xi) and fij(xi, xj) minimizing the approx-
imation error ‖f(x)− f̃(x)‖. Its components are generated by projector operators defined in the
following manner:

P0[f ] ≡ f0 =
〈f, 1〉0
〈1, 1〉0

Pi[f ] ≡ fi(xi) =
〈f, 1〉i
〈1, 1〉i

− f0

Pij[f ] ≡ fij(xi, xj) =
〈f, 1〉i,j
〈1, 1〉i,j

− fi(xi)− fj(xj)− f0

Construction of higher order HDMR decompositions is a simple generalization of this proce-
dure.

The subsequent property of zero order component f0 is crucial. For any real constant h it holds:

〈f(x)− f0, h〉 = 0

It easily implies ‖f(x)−f0−h‖2 = 〈f(x)−f0−h, f(x)−f0−h〉 = 〈f(x)−f0, f(x)−f0〉−
− 2〈f(x)− f0, h〉 + 〈h, h〉 = ‖f(x)− f0‖2 + ‖h‖2 ≥ ‖f(x)− f0‖2. In other words, f0 is the
best constant approximation of the original function f(x). Similar identities are fulfilled also
by higher order components and their meaning is analogous. Each HDMR component is the
best approximation of fr(x) in the relevant class of functions with the same domain (here fr(x)
denotes residuum of f(x) after substraction of all lower order HDMR components).

There is one important class of HDMR decompositions which is very comfortable to use. It
is the case of separable weight function w(x) ≡ ∏n

i=1 wi(xi). Then, all HDMR projectors are
mutually orthogonal and the function space X could be written as a direct sum of their ranges.

We can reconsider our weight function and moreover require its normalization, w(x) becomes
probability density distribution over Kn whenever 〈1, 1〉 =

∫
Kn w(x)dx = 1. Now our well-

known term
〈f, 1〉i
〈1, 1〉i

corresponds to the mean value of f(x) over the conditional probability

w(x1, .., xi−1, xi+1, .., xn | xi). Reinterpretation of other terms is similar.

3. FULLY PROBABILISTIC DESIGN

This control design is based on two connected ideas. The first is to express loss function fully in
probabilistic terms, i.e., to define desired probability densities of user actions at and observable
output values yt. Both are called ideal probability density function or briefly ideal pdf.

Next we search for the nearest admissible randomized strategy which is again some pdf. On that
account we need to measure the distance of two pdfs. So called Kullback-Leibler divergence
(Kullback and Leibler, 1951) is widely used in this context.



Let f, g be a pair of pdfs acting on a common set. Then, the Kullback-Leibler divergence
D(f ||g) is defined by the formula

D(f ||g) ≡
∫

f(x) ln

(
f(x)

g(x)

)
dx

Basic properties of KL divergence are the following ones:

1. D(f ||g) ≥ 0

2. D(f ||g) = 0 iff f = g (a.e.)

3. D(f ||g) = ∞ iff on a set of a positive dominating measuref > 0 and g = 0

4. D(f ||g) 6= D(g||f)

The joint pdf f(yt, at, ..., y1, a1) is fully describing all observable values for any t ∈ {1..T}
where T is horizon of optimization. We assume that this pdf can be factorized by a repetitive
use of the well-known chain rule:

f(yt, at, ..., y1, a1) =
T∏

t=1

f(yt|at, d(t− 1))f(at|d(t− 1))

Where the first factors {f(yt|at, d(t− 1))}t describe possible reactions of the system on the
decision at under the experience d(t − 1) ≡ (yt−1, at−1, ..., y1, a1). These pdfs form so called
outer model of the system. Similarly, the pdfs {f(at|d(t− 1))}t represent an outer model of the
randomized decision strategy to be chosen. Next we factorize the desired ideal pdf consisting
of ”ideal system” pdf and ”ideal input” pdf:

bIf(yt, at, d(t− 1)) =
T∏

t=1

bIf(yt|at, d(t− 1)) bIf(at|d(t− 1))

Now, the fully probabilistic design can be formulated. The optimal admissible, possibly ran-
domized, decision strategy is defined as a minimizer of D

(
f || bIf

)
. In (Kárný et al., 2005;

Kárný and Guy, 2006) we can found explicit formula for optimal strategy:

f(at|d(t− 1)) = bIf(at|d(t− 1))
exp[−ωγ(at, d(t− 1))]

γ(d(t− 1))
,

where γ(d(T )) ≡ 1 and γ(d(t− 1)) is just pdf normalization factor:

γ(d(t− 1)) ≡
∫

exp[−ωγ(at, d(t− 1))] bIf(at|d(t− 1)) dat

Function ωγ(at, d(t− 1)) is determined by the following integral equation:

ωγ(at, d(t− 1)) = ω(at, d(t− 1))−
∫

f(yt|at, d(t− 1)) log(γ(yt, at, d(t− 1))) dyt (1)

where ω(at, d(t− 1)) is known function defined this way:

ω(at, d(t− 1)) ≡
∫

f(yt|at, d(t− 1)) log

(
f(yt|at, d(t− 1))
bIf(yt|at, d(t− 1))

)
d yt

We try to approximate equation (1) using second order HDMR projections. Optimal strategy
f(at|d(t− 1)) then arise from the knowledge of ωγ easily.



4. APPROXIMATION OF BASIC FPD EQUATION

We must firstly linearize equation (1) to apply HDMR projectors efficiently. The use of the
well-known Jensen inequality is promising. For convex function exp, probabilistic measure
µ(x) and any integrable function h(x) it reads:∫

exp[h(x)]dµ(x) ≥ exp
[∫

h(x)dµ(x)
]

(2)

4.1 Upper bound of ωγ

There are two possible applications of the Jensen inequality. The first give us lower bound for
log(γ(d(t))):

log
[∫

exp[−ωγ(at+1, d(t))] bIf(at+1|d(t))dat+1

]
≥ −

∫
ωγ(at+1, d(t)) bIf(at+1|d(t))dat+1

and so the original exact equation (1) transform this way:

ωγ(at, d(t− 1)) ≤ ω(at, d(t− 1)) +
∫

ωγ(at+1, d(t)) bIf(at+1|d(t))f(yt|at, d(t− 1)) dat+1 dyt

This is the right time to redefine ωγ as we need to fix its domain. We postulate the existence of
sufficient statistic σ and define ω̂γ(σ(at+1, d(t))) = ωγ(at+1, d(t)) where for all t ∈ {1..T} and
all possible actions at+1 and realizations d(t) it holds v = σ(at+1, d(t)) ∈ V . Than V is the
domain of ω̂γ . As the statistic is sufficient, all other functions dependant on at+1 or d(t) can be
represented by functions of v ∈ V , e.g. f(yt|at, d(t − 1))) = f̂(yt|σ(at, d(t − 1))) ≡ f̂(yt|v).
Now we rewrite the last inequality in more comfortable notation (omitting sign ’̂ ’):

ωγ(u) ≤ ω(u) +
∫

k(u, v) ωγ(v) dv, u = σ(at, d(t− 1))

The probability densities bIf(at+1|yt, u) and f(yt|u) are hidden in the kernel function k(u, v).
It must also describe the dynamics of controlled system, i.e., k(u, v) is nonzero only for com-
patible pairs of u = σ(at, d(t − 1)) and v = σ(at+1, d(t)). The construction of such kernel
function can be quite complicated, but it is always feasible. Considering only the equality part
of above formula we conclude:

ω̄γ(u) = ω(u) +
∫

k(u, v) ω̄γ(v) dv (3)

It is a linear integral equation for ω̄γ and its solution fulfills ω̄γ ≥ ωγ . On the finite control
horizon there is not any problem with the existence and uniqueness of solution (it could by
analytically derived from boundary condition similarly to backward evaluation of the original
equation (1)).

4.2 Lower bound of ωγ

Multiplying equation (1) by -1 and applying exponential function on both sides we get:

exp(−ωγ(at, d(t−1))) = exp(−ω(at, d(t−1))) exp
[∫

log(γ(yt, at, d(t− 1)))f(yt|at, d(t− 1))dyt

]



The result is arranged for straight application of the Jensen inequality (2). After the introduction
of the same sufficient statistics as in previous case and using identical kernel function k(u, v)
we get the following equation:

exp(−ωγ(u)) ≤ exp(−ω(u))
∫

k(u, v) exp(−ωγ(v)) dv

Rewriting it using definitions Ωγ ≡ exp(−ωγ) and K(u, v) ≡ exp(−ω(u)) k(u, v) we obtain:

Ωγ(u) ≤
∫

K(u, v) Ωγ(v) dv

Now considering again only the equality part we get upper bound for Ωγ(u):

Ω̄γ(u) =
∫

K(u, v) Ω̄γ(v) dv (4)

It is again linear integral equation and in fact its solution gives us the lower bound of ωγ:

ωγ ≡ −log(Ω̄γ) ≤ −log(Ωγ) ≡ ωγ

Now we try to find numerical approximation of solution of both integral equations (3) and (4)
which are formally almost equal.

5. HDMR BASED SOLVING OF LINEAR INTEGRAL EQUATIONS

Here we consider general integral equation of the second kind for unknown real scalar function

φ(x) defined for all x ∈ X, dim(X) = n, X =
n∏

j=1

Xi, and f(x), κ(x, y) are also real scalar

functions dom(f) = X, dom(κ) = X ×X:

φ(x) = f(x) +
∫

X
κ(x, y) φ(y) dy (5)

The classical technique of successive approximation is well developed for integral equations
of this kind. Even though we do not use it, mainly for colossal memory demands of our data.
We try HDMR based approximation. The idea is straightforward: split this equation through
HDMR projections and solve it separately on each component. Firstly we must decompose the
data, still up to the second order.

φ(x) ≈ φ̃(x) ≡ φ0 +
n∑

i=1

φi(xi) +
n∑

i=1

i−1∑
j=1

φij(xi, xj)

f(x) ≈ f̃(x) ≡ f0 +
n∑

i=1

fi(xi) +
n∑

i=1

i−1∑
j=1

fij(xi, xj)

The function κ(x, y) is decomposed only in the first variable, i.e. for all y ∈ X we decompose
κy(x) ≡ κ(x, y) and then for each component we return to the expanded notation:

κ(x, y) ≈ κ̃(x, y) ≡ κ0(y) +
n∑

i=1

κi(xi, y) +
n∑

i=1

i−1∑
j=1

κij(xi, xj, y)



Now introduce set Λn which contains all possible indexes of HDMR projectors up to second
order, In = {1..n}:

Λn =

(
In

0

)
∪
(

In

1

)
∪
(

In

2

)

Then for each λ, ν ∈ Λn we define ensuing marginalization of each kernel function component:

Mλ
ν (yλ) ≡

∫
κν(xν , y)

∏
i/∈λ

dyi,

where yλ is usable shortcut with following meaning: f(y{i,j}) stands for f(yi, yj) and f(y{0}) ≡
f(∅) denotes real constant. Other cases are similar. One more particular example will help to
understand this notation properly:

M2,4
1 (y2, y4) ≡ M

{2,4}
{1} (y{2,4}) =

∫
κ1(x1, y1, ..., yn)

∏
i6∈{2,4}

dyi

Substituting φ̃(x),f̃(x) and κ̃(x, y) into the original integral equation (5) we get system of linear
equations indexed by λ ∈ Λn:

φλ(xλ)=fλ(xλ)+φ0 M0
λ(xλ)+

n∑
i=1

∫
Xi

φi(yi)M
i
λ(xλ, yi)+

i−1∑
j=1

∫
Xj

φij(yi, yj)M
ij
λ (xλ, yi, yj)dyj

dyi

Where the dimension of each equation correspond to the size of xλ ∈ Λn. For λ = {0} it
reduces to just one equation. For λ = {i} is xλ vector corresponding to the sample points in
subspace Xi and this equation can be rewritten into classical matrix notation. For λ consisting
of two elements is situation more complicated but the key observation is still valid: for each
unknown scalar variable on the left side we have exactly one linear algebraic equation. Thus
we have complete system of linear equations and we can determine all φλ(xλ). In other words
we determine the HDMR aproximation of φ(x) which is the exact solution of general integral
equation (5).

6. ILLUSTRATIVE EXAMPLE

In last section we developed HDMR based technique for solution of linear integral equations
to solve equations (3) and (4) for exact solution bounds ω̄γ(u) and ωγ(u). Here we show one
example of proposed method.

Our problem is one of the simplest control problems, the problem of Unknown coin tossing.
We play hazard game with (two-sided) coin. Only one side is the winning one as usual in such
games. What is more, this coin is unfair and we do not know the pay-off probability of any side.
We do not even know if the result of tossing depends somehow on the coin starting orientation.
Our only, but crucial knowledge is that the pay-off probabilities are fixed, i.e. we still play with
the same coin. The very last note to the rules: we are lazy players, as usual, and therefore we
prefer not to turn coin between subsequent game turns. If the coin fall on tail, for instance, we
will let it be and toss again - if the expected gain of coin turning is low.

Using previous notation have T > 0 as a number of game turns, yt, at ∈ {0, 1} for all t ∈
{1..T} where yt represent observed value (side of coin) and at our action (selected coin side



before tossing). As the coin is still the same, we can easily define sufficient statistics. For any
combination of k, l ∈ {0, 1} let nt

k/l ≡
∑t

i=1 δyi,kδai,l, then

σ(at, yt−1, at−1, ..., y1, a1) = (at, n
t
0/0, n

t
0/1, n

t
1/0, n

t
1/1)

It implies form of solution domain V = {0, 1} × {0..T}4 with one important constraint: for
any k, l ∈ {0, 1} we see n0

k/l ≡ 0, than in each game turn must occur exactly one of these four
possibilities, therefore nt

0/0 + nt
0/1 + nt

1/0 + nt
1/1 = t ≤ T . This is our motivation for usage of

general non-separable weight in HDMR decomposition. It will be the characteristic function of
set realizing this constraint.

By the technique of Bayesian estimation (Kárný et al., 2005) we get the pdf of system model:

f(yt|v) ≡ f(yt|at, d(t− 1)) =
nt

yt/at
+ 1

nt
0/at

+ nt
1/at

+ 2

Now we must express our aims in terms of ideal pdfs. Both are defined over two point discrete
set, therefore each of them is characterized by one scalar constant. Ideal system model express
our aim of achieving just one, winning side of coin (let us say it is the side ”0”). This pdf is
parameterized by ε ∈ (0, 1):

bIf(yt | at, d(t− 1)) ≡ bIf(yt) = ε δyt,1 + (1− ε) δyt,0

Our ε is small but nonzero, as support of bIf must coincide with set of observable values. Ideal
user input express our ”laziness” which is parameterized by τ ∈ (−1, 1):

bIf(at | d(t− 1)) ≡ bIf(at | yt−1) =
1− τ

2
+ τ δat,yt−1

For τ ≥ 0 it penalize coin turning, τ = 0 means we are coin-turning indifferent and τ ≤ 0
express even our positive fixation on coin-turning.

Take look at equations (3) and (4) we now miss only the formula for kernel function k(u, v). It
could be written this way: for u ≡ (ā, n̄0/0, n̄0/1, n̄1/0, n̄1/1) and v ≡ (a, n0/0, n0/1, n1/0, n1/1)

k(u, v) =
∑

y∈{0,1}

∏
i,j∈{0,1}

δn̄ij ,nij+δy,i δa,j

bIf(a | y)f(y | u)

The rest of work consist mainly from kernel function marginalization and composition of fol-
lowing linear system, which could be easily solved as common problem of numerical mathe-
matics.

7. CONCLUSIONS

We made just few experiments with values T = 10, ε = 0.1 and τ = 0.5. The choice of such
a low horizon is determined by need of the exact solution to compare with. Lower and upper
bounds of ωγ seem to be rather good, their maximal difference is only about 30%. Other results
are strange for a first sight, optimal strategy tends to give worse results than its approximation.
Now we can not conclude anything more as this idea is fresh and needs more examination.
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Kárný, M., Böhm, J., Guy, T. V., Jirsa, L., Nagy, I., Nedoma, P. and Tesař, L. (2005), Optimized Bayesian
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