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1. INTRODUCTION

State estimation is an important subtask of a range decision making problems. Kalman filtering
(KF) (Jazwinski, 1970) is the first-option method for its addressing. However, still there is
no well-established methodology of selecting innovation covariances. Also, it is difficult to
combine KF with hard restrictions on state ranges. Both these drawbacks can be avoided by
assuming that the model innovations are uniform.

In this contribution, state-space model with uniformly distributed innovations is introduced and
the Bayesian state estimation proposed, (Peterka, 1981). This extends parameter estimation
of the controlled autoregressive model treated in (Kárný and Pavelková, 2005 - submitted).
Similarly as in the latter case, the off-line evaluation of the maximum a posteriori probability
(MAP) estimate of unknowns in the linear state-space model with uniform innovations reduces
to linear programming (LP). The solution provides either estimates of the noise boundary and
parameters or of the noise boundary and states.

The on-line estimation is obtained by applying LP on the sliding window, i.e., by considering
only the fixed amount, say 0 < ∂, of the newest last data and states items.

By swapping between state and parameter estimations, joint parameter and state estimation
is obtained. The use of Taylor expansion for approximation of products of unknowns solves
also the joint parameter and state estimation. Simulation studies help to get an insight on the
potential and restrictions of these heuristic method. This contribution shares the experimentally
gained experience with both these solutions of the joint state and parameter estimation.

2. MODEL DESCRIPTION

We consider the standard linear state-space model

xt = Axt−1 + But + xet, yt = Cxt + Dut + yet, (1)



known in connection with from Kalman filtering theory. In it, x, u, y are unobserved state,
known input and observed output of the system, respectively. They are real column vec-
tors. The subscript t ∈ {0, 1, 2, . . .} labels discrete time. The involved time-invariant matrices
A, B, C, D have appropriate dimensions. The model parameters A, B, C,D are collected into
parameters Θ.

Unlike in the KF case, the distributions of vector innovations xet and yet are assumed to be
uniform

f ( xet) = U (0, xr) , f ( yet) = U (0, yr) . (2)

U (µ, xr) denotes uniform probability density function (pdf) on the box with the center µ and
half-width of the support interval xr.

Equations (1) together with the assumptions (2) define the linear uniform state-space model
(LU).

3. OFF-LINE ESTIMATION

Here, the joint posterior pdf of states and parameters is derived. Then, its maximization is
converted into a standard formulation of linear programming (LP).

3.1 Posterior pdf

We assume that the generator of the inputs u1:t ≡ [u′
1, . . . , u

′
t]
′ meets natural conditions of

control (Peterka, 1981). They formalize assumption that information about unknown quantities
for generating ut can only be extracted from the observed data d1:t−1, where dt = (yt, ut).
Then, for a given initial state x0, half-widths xr, yr and parameters Θ, the joint pdf of data and
the state trajectory x1:t of the LU model is

f
(
d1:t, x1:t

∣∣x0,
xr, yr, Θ

)
∝

n∏
i=1

xr−t
i

m∏
j=1

yr−t
j χ(S). (3)

χ(S) is the indicator of the support S; ∝ denotes equality up to a constant factor. The convex
set S is given by inequalities,

− xr ≤ xτ − Axτ−1 −Buτ ≤ xr (4)
− yr ≤ yτ − Cxτ −Duτ ≤ yr,

where τ = 1, 2, . . . , t. Bayesian estimation of x0,
xr, yr requires to complement the conditional

pdf (3) by a prior pdf f (x0,
xr, yr|Θ). For known Θ, it can be chosen as uniform pdf on support

S0 defined by inequalities

S0 = {x0 ≤ x0 ≤ x0, 0 < xr ≤ xr, 0 < yr ≤ yr} . (5)

The bounds x0, x0 etc. determine support of the prior pdf.

For unknown Θ, the uniform prior pdf f (x0,
xr, yr, Θ) is chosen on the set (5) extended by

conditions Θ ≤ Θ ≤ Θ.

For fixed observations, d1:t, and uniform prior (5), the expression (3) – on support S ∩ S0 – is
proportional to posterior pdf.



3.2 MAP estimation via LP

Without loss of generality, we assume that elements of xr and yr are (significantly) smaller
than 1. Under this assumption, the negative logarithm of the posterior pdf can be approximated
by sum of elements of xr and yr on the convex, linearly restricted set S ∩S0. If the inequalities
(4) are linear in the unknowns, the MAP estimation is equivalent to the problem of linear
programming (LP) and can be solved by any of the available algorithms. This condition is
satisfied if either (i) parameters Θ, or (ii) states x1:t, are known. Note that convexity of the set
S ∩ S0 is determined by choice of the prior bounds (5). LP will fail if these are chosen too
restrictive.

In this Section, we derive solutions to both cases mentioned above, i.e. (i) estimation of states
x1:t, and xr, yr, given Θ, and (ii) estimation of parameters Θ and xr, yr, given the state x1:t.
Solutions are presented in the standard form of linear programming used by Matlab function
linprog, i.e.

Find a vector X such that J ≡ C′X → min

while AX ≤ B, X ≤ X ≤ X, (6)

where known matrices and vectors A, B, C, X, X will be derived for each case.

3.3 Estimation of the state and the noise bounds

In the case of known parameters Θ, the unknowns are the state x1:t and the noise bounds xr, yr.
Hence, the vector X of (6) is defined as follows:

X =

 xt:0

xr
yr

 . (7)

Where xt:0 ≡ [x′
t, x

′
t−1, . . . , u

′
0]

′ The matrices A, B, C, X, X will be defined using the follow-
ing conventions:

M(α,β) is a matrix with α rows and β columns.

I(α) is the square identity matrix of the order α

0(α,β) is zero matrix of given dimensions.

K ≡ [−1 1]′ is a repeatedly used vector.

1(α), 0(α) are column vectors of ones, and zeros, respectively, both of length α.

Kronecker product G(α,β) ⊗H ≡

 G11H . . . G1βH
...

...
Gα1H . . . GαβH

.

OperatorRcol(M) extends a matrix M(α,β) by the zero matrix 0(α,col) from the right,Rcol(M) ≡
[M,0(α,col)].

Operator Lcol(M) extends a matrix M(α,β) by the zero matrix 0(α,col) from the left, Lcol(M) ≡
[0(α,col), M ].



col(M) stacks the rows of the matrix M into a column vector.

Using these definitions, the set (4) can be written in the form of (6) as follows:

C ′ ≡ [0′
((t+1)̊x,1),1

′
(̊x+ẙ)], (8)

A =

[
A11 A12
A21 A22

]
, B =

[
B1′ B2′ ]′

, with

A11 = Rx̊(I(t) ⊗K ⊗ I(̊x))− Lx̊(I(t) ⊗K ⊗ A), (9)
A12 = −1(2t) ⊗Rẙ(I(̊x)),

A21 = Rx̊(I(t) ⊗K ⊗ C),

A22 = −1(2t) ⊗ Lx̊(I(ẙ)),

B1 =
[
I(t) ⊗K ⊗B

]
ut:1,

B2 = −
[
I(t) ⊗K ⊗D

]
ut:1 +

[
I(t) ⊗K ⊗ I(ẙ)

]
yt:1.

Similarly, the set S0 (5) is represented by the following assignments:

X =


−∞× 1(2t̊x,1)

x0

0(̊x,1)

0(ẙ,1)

, X =


∞× 1(2t̊x,1)

x0
xr
yr

. (10)

3.4 Estimation of the parameters and the noise bounds

In the case of known state trajectory x1:t, the unknowns are parameters A, B, C, D and half-
widths xr, yr. This case may arise in situations with directly measurable state. Moreover,
these results will be needed for joint estimation of state and unknown parameters which will be
addressed in the next Section. The unknowns form the vector X of the standard LP form (6) as
follows:

X ≡ [col(A)′, col(B)′, col(C)′, col(D)′, xr′, yr′]
′
. (11)

Using the introduced conventions, the following assignments transform the set S (4) into the
standard form (6):

C ≡ [0′
(̊xx̊+x̊ů+x̊ẙ+ůẙ,1),1

′
(̊x+ẙ,1)]

′,

A ≡
[
A11 A12 A13
A21 A22 A23

]
, B =

[
B1′ B2′ ]′

,

A11 ≡

 I(̊x) ⊗K ⊗ x′
t−1 I(̊x) ⊗K ⊗ u′

t
...

...
I(̊x) ⊗K ⊗ x′

0 I(̊x) ⊗K ⊗ u′
1

 , (12)

A12 ≡ 0(2t̊x,̊xẙ+ẙů), A13 ≡ −1(2t) ⊗Rẙ(I(̊x)),

A21 ≡ 0(2t̊y,̊x2+x̊ů), A23 ≡ −1(2t) ⊗ Lx̊(I(ẙ)) ,

A22 ≡

 I(ẙ) ⊗K ⊗ x′
t I(ẙ) ⊗K ⊗ u′

t
...

...
I(ẙ) ⊗K ⊗ x′

1 I(ẙ) ⊗K ⊗ u′
1

 ,

B1 = xt:1 ⊗K, B2 =
[
I(t) ⊗K ⊗ I(ẙ)

]
yt:1.



4. ON-LINE ESTIMATION

Standard Bayesian filtering and smoothing with a fixed lag ∂ ≥ 0 integrates out from the pos-
terior pdf the superfluous state xt−∂−1 in each time step, t. However, with increasing t, this op-
eration yields increasingly complex support of the posterior pdf and soon becomes intractable.
The unknown-but-bounded approaches (Milanese and Belforte, 1982; Polyak et al., 2004) face
this problem by a recursive construction of simple (typically outer) approximation of the sup-
port. In order to avoid these approximations, we propose to use a sliding window of length ∂
and apply LP in order to find MAP estimate of the states xt:t−∂ ≡ [x′

t, . . . , x
′
t−∂]

′ on the inter-
section of sets S and S0 considered for τ = t−∂, . . . , t. This approximates the limited-memory
filter of Jazwinski (Jazwinski, 1970) and provides an attractive alternative to forgetting. In this
context, we relax the assumptions of previous Section, i.e. the necessary knowledge of either
the state, or parameters Θ. However, this relaxation violates the assumptions of LP and further
approximations are needed to restore tractability. In this Section, we outline two possible ap-
proaches (i) heuristically motivated technique based on swapping of techniques from Sections
3.3 and 3.4, and (ii) linearization of the inequalities around the last point estimates.

4.1 Swapping-based joint estimation

The idea of this approach is to estimate the state xt:t−∂ using technique from Section 3.3, with
parameters Θ fixed at their last point estimates. The resulting estimates of states, x̂t:t−∂ are
subsequently used in technique from Section 3.4 to obtain new estimates of the parameters
Θ. Initial values of the estimates can be found in off-line mode using Note - it is practically
important that the estimates of the noise bounds can be very inaccurate.

4.2 Expansion-based joint estimation

Linearization of non-linear equations at point estimates is common idea, used in various exten-
sions of KF. It could be applied to inequalities (4) using approximations of the following kind:

Axτ ≈ Âtxτ + Ax̂τ |t − Âtx̂τ |t, τ ∈ {t− ∂, t + 1− ∂ . . . , t}. (13)

where Ât, x̂τ |t are newest available estimates of parameters and states, respectively. Using
equivalent expansion for Cxτ , the resulting inequalities can be transformed in the standard
form of LP (6). The exact assignments are omitted for brevity. The resulting algorithms has
two principal distinctions from extended KF. First the algorithm updates estimates of the whole
window of length ∂ hence, more sophisticated approaches (such as moving average of point
estimates) can be used to improve quality of the points of expansion Ât, x̂τ |t in (13). Second
the realistic hard bounds on the estimated quantities reduce the ambiguity of the model (arising
from estimating a product of two unknowns). From these distinctions we conjecture that the
estimation is better conditioned and more robust than extended KF.

5. ILLUSTRATIVE EXAMPLE

Consider a single-input single-output LU system (1) with two-dimensional state. The model
parameters are

A =

[
1 0.5

−0.5 0

]
, B =

[
1
3

]
, C = 1′

(2), D = 0(1,1), (14)
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Fig. 1: Estimated state and estimate error

and noise half-widths (2)
xr = 0.3× 1(2),

yr = 0.3. (15)

The system was driven by white zero-mean uniform noise with half-width 0.5 and 120 data
samples were recorded.

The on-line swapping-based joint parameter and state estimation (Section 4.1) and expansion-
based joint parameter and state estimation (Section 4.2) were used with window length ∂ = 5,
and prior distribution (5) restricted by the following bounds: (i) on individual entries of Θ,
the bounds were set 30% above and below the actual simulated value, with the exception of
A2,2 = 0 which was set to A2,2 = 0.3, and A2,2 = −0.3; (ii) upper bounds on half-widths are
set to xr = yr = 1, and are automatically extended when LP fails, see note in Section 3.2; and
(iii) bounds ±5 on all entries of the window, xt−∂:t

The results of the swapping-based estimation are displayed on Figures 1–3. Trajectories of
the simulated and estimated states and the estimation error are on Fig. 1. The simulated and
predicted output and prediction error are on Fig. 2. The estimates of the matrix A and of the
estimates of half-width xr, yr are on Fig. 3.

The presented experiments serve for illustration only. Our current experience can be summa-
rized as follows:

• individual state or parameter estimation (Section 3) works well,

• quality of the joint swaped-based estimation depends strongly on the quality of initial
estimates

• joint expansion-based estimation give good result for output prediction

• finite window serves as forgetting hence no convergence of parameters is to be expected

• window length influences the estimation quality

• the quality of state estimates may outperform the quality of parameter estimates (or vice
versa) when estimated jointly
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Fig. 2: Predicted output and prediction error
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Fig. 3: Parameter A estimation and noise boundary estimation



6. CONCLUSIONS

The proposed approach opens a way for on-line parameter and state estimation for a class of
non-uniform distributions with restricted support as well as for Bayesian filtering of non-linear
systems.

The main current contributions include feasible care about hard bounds of estimated quantities;
joint estimation of parameters, state, and noise bounds; parameter tracking via windowing the
joint estimation.

The current effort aims to improve the quality of the expansion based joint expansion.
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