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Abstract. Simulation of the underground water flow in real 3D domains requires also modeling
of the flow in 2D fractures and their 1D intersections. For each dimension we consider the
continuity equation and Darcy’s law as a model of the stationary saturated flow. The water
flux between individual dimensions is assumed to be proportional to the pressure difference.
The classical discretization schemes requires the alignment of computational meshes between
dimensions. We present a mixed-hybrid formulation of the problem and two approximations of
the communication terms that relax the alignment condition. We perform convergence analysis
of these approximations.

1 Introduction
For the sake of clarity we present ideas on the simple 2D-1D case. Let us consider a 2D

domain Ω2 ⊂ R2 splitted into two subdomains by a 1D fracture Ω1 ⊂ Ω2. We denote Ω̃2 =
Ω2\Ω1 and Ω̃1 = Ω1. To avoid technical difficulties we assume that Ω2 have polygonal boundary
and Ω1 is a straight line. The flow on the domain Ωd (d = 1, 2) is described by the velocity ud

and the pressure pd. These state variables has to satisfy Darcy’s law

ud = −Kd∇pd on Ω̃d (1)

and the continuity equation
divud = Fd on Ω̃d, (2)

where Kd is (tensor of) the hydraulic conductivity, F2 = f2 and F1 = f1 + q are water sources,
while q denotes the outflow from 2D domain. We consider a non-separating crack, which means
that the pressure is continuous across the crack and the sum of outflow from the walls of the
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fracture is equal to the fracture inflow, namely

p+
2 = p−2 on Ω1,

[u2]Ω1 := (u+
2 · n+ + u−2 · n−) = q.

Since the pressure is continuous we can prescribe

q = σ(p2|Ω1 − p1),

where σ is an interchange coefficient, we take σ = 1. The system is completed by the boundary
conditions

pd = pD on ΓDd ,

ud · n = uN on ΓNd .

where ΓDd is Dirichlet and ΓNd Neumann part of the boundary ∂Ωd.

2 Mixed-hybrid formulation on aligned meshes
Let {Ωi

d}, i ∈ Id be a decomposition of domain Ωd into disjoint subdomains that satisfy the
alignment condition

Ω1 ⊂ Γ2, Γd :=
⋃
i∈Id

∂Ωi
d \ ∂Ωd, (3)

where Γd is union of interior faces. We multiply the equations (1), (2) by suitable test functions
and integrate over the individual subdomains. We integrate by parts in (1) and we treat traces
of the pressure as an independent variable (for details see [3]). Finally we obtain mixed-hybrid
formulation of the problem specified in the previous section.

Definition 1. We say that (u, p) is MH-solution of the problem if the composed velocity u
and the composed pressure p belong to the spaces

u = (u2,u1) ∈ V = V2 × V1 =
∏
i∈I2

H(div,Ωi
2)×

∏
i∈I1

H(div,Ωi
1) (4)

p = (p2, p1, p2, p1) ∈ P = P2 × P1 × P 2 × P 1, (5)

Pd = L2(Ωd), P d = H1/2(Γd ∪ ΓNd ).

and they satisfy abstract saddle point problem

a(u,w) + b(w, p) = 〈G(pD),w〉 ∀w = (ϕ2,ϕ1) ∈ V, (6)

b(u, q)− c(p, q) = 〈F (f, uN), q〉 ∀q = (q2, q1, q2, q1) ∈ P, (7)

where

a(v,w) =
∑
d=1,2

∑
i∈Id

∫
Ωi

d

vdK−1
d wd

b(v, q) =
∑
d=1,2

∑
i∈Id

∫
Ωi

d

−divvdqd +

∫
Γd

[vd]qd +

∫
ΓN

d

(vd · n)qd

c(p, q) =

∫
Ω1

(p1 − p2)(q1 − q2).
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Note that in definition of bilinear form c(p, q), we need trace p2 on Ω1, which is available
because of the condition (3).

The existence and uniqueness of the MH-solution is a direct corollary of Theorem 1.2 in [1].
Furthermore, one can use Raviart-Thomas elements to construct approximation spaces and use
again theory from [1] to get an O(h) estimate:∥∥u− uh

∥∥
V

+
∥∥p− ph∥∥P ≤ Ch

(∥∥u∥∥
H1 +

∥∥p∥∥
H1

)
. (8)

Note that according to the regularity theory for the linear elliptic equations one can expect
p ∈ W 2,p and u ∈ W 1,p for all 1 < p <∞, provided data from L∞ and certain beter regularity
of the boundary conditions.

3 Mixed-hybrid formulation on non-compatible meshes
In practical applications, we frequently use statistically generated fractures. In this situation,

it could be nearly impossible to produce a regular mesh satisfying the alignment condition
(3). In order to relax this condition, we have to construct an approximation of the trace of the
pressure on the fracture Ω1. Let {Ωi

2}, i ∈ I2 be a regular triangular decomposition of Ω2 with
diameter of elements bounded by h and let

Ωi
1 = Ωi

2 ∩ Ω1,

be elements of the induced decomposition of Ω1. On these decompositions we consider spaces
V h and P h similar to (4) and (5). Splitting further the triangles intersecting Ω1, we obtain an
aligned decomposition of Ω2 on which we can build spaces V and P . Finally, we denote Ω12

the union of Ω2-subdomains intersecting Ω1

Ω12 =
⋃
i∈I1

Ωi
2, where I1 = {i ∈ I2|Ωi

1 6= ∅}.

Let Π be a continuous linear operator from Ph to the functions piecewise continuous on
subdomains Ωi

2, i ∈ I1. Then we can define an approximation T of the trace operator for the
functions p ∈ Ph by the formula T (p) = TrΩ1(Π(p)), locally on each triangle Ωi

2, i ∈ I1. In
particular, we can use an average approximation

Π0|Ωi
2
(p) =

1

|Ωi
2|

∫
Ωi

2

p2 dx, ∀i ∈ I1

or a piecewise linear approximation Π1 such that∫
S

Π1|Ωi
2
(p) =

∫
S

p2

for every side S of the triangle Ωi
2, i ∈ I1.

The operator T can be used to extend the trace component p2 of the space Ph on the fracture
Ω1. Consequently, we can treat the space Ph as a subspace of P with a norm∥∥f∥∥

P
=
∥∥f∥∥

Ph
+
∥∥Tf∥∥

H1/2(Ω1)
. (9)

In view of this convention, one can use Definition 1 with spaces Vh ⊂ V and Ph ⊂ P to in-
troduce a semi-discrete solution (uh, ph). Then again, Theorem 1.2 in [1] implies the existence
and uniqueness of the solution.
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Now we want to compare the MH-solution (u, p) ∈ V × P to the semi-discrete solution
(uh, ph) ∈ Vh × Ph. Following the proof of Proposition 2.11 in [1], we can show∥∥u− uh

∥∥
V

+
∥∥p− ph∥∥P ≤ C

(
inf

vh∈Vh

∥∥u− vh
∥∥
V

+ inf
qh∈Ph

∥∥p− qh∥∥P ). (10)

Taking vh = u − u∗, where u∗ is a divergence free extension of [u]Ω1 to Ω21, we can bound
the first term by O(h) times L2-norm of [u]Ω1 . Further, we take qh equal to the projection of p
on the space Ph, then according to (9) we get

∥∥p− qh∥∥P =
∥∥p− Tp∥∥

H1/2(Ω1)
≤ C

(∑
i∈I1

∥∥p− Πp
∥∥2

H1(Ωi
2)

) 1
2
.

If Π preserves polynomials up to the order k, the standard approximation estimates (see [2]
Theorem 16.2) leads to ∥∥p− Πp

∥∥
1,Ωi

2
≤ C|Ωi

2|
1
2
− 1

qhk|p|k,q,Ωi
2
.

Since we assume regular triangulation, we have |Ωi
2| ≤ ChN and |I1| ≤ Ch1−N , where N = 2

is dimension of Ω2. Then we conclude∥∥p− Tp∥∥
H1/2(Ω1)

≤ ChN( 1
2
− 1

q
)+k
(∑
i∈I1

|p|2k+1,q,Ωi
2

) 1
2 ≤ Chα|p|k+1,q,Ω2

where
α = N

(1

2
− 1

q

)
+ k + (1−N)

q − 2

2q
= k +

1

2
− 1

q
. (11)

4 Conclusion
We have proposed two approximations of the original MH-problem on the non-aligned

meshes. The first is based on the operator Π0, which preserves only polynomials of zero or-
der. Hence, α < 1/2 for all q and we obtain a suboptimal convergence compared to (8). In
the later case, the approximation is based on the operator Π1, which preserves polynomials of
the first order. We get α = 1 for q = 2 and an optimal convergence rate O(h). In both cases,
we have to assume certain regularity of the exact solution. Although we did our analysis only
in 2D case with simple geometry, the abstract formulation and the results hold also for more
complicated geometries and 3D-2D communication.

REFERENCES
[1] F. Brezzi, M. Fortin, Mixed and Hybrid Finite Element Methods. Springer Verlag,

Berlin/Heidelberg, 1991

[2] P.G. Ciarlet, J.L. Lions, Handbook of Numerical Analysis : Finite element method (Part 1).
North-Holland, Amsterdam, 1991
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