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A Unified Approach to Superresolution
and Multichannel Blind Deconvolution
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Abstract—This paper presents a new approach to the blind
deconvolution and superresolution problem of multiple degraded
low-resolution frames of the original scene. We do not assume any
prior information about the shape of degradation blurs. The pro-
posed approach consists of building a regularized energy function
and minimizing it with respect to the original image and blurs,
where regularization is carried out in both the image and blur
domains. The image regularization based on variational principles
maintains stable performance under severe noise corruption.
The blur regularization guarantees consistency of the solution
by exploiting differences among the acquired low-resolution
images. Several experiments on synthetic and real data illustrate
the robustness and utilization of the proposed technique in real
applications.

Index Terms—Image restoration, multichannel blind deconvo-
lution, regularized energy minimization, resolution enhancement,
superresolution.

1. INTRODUCTION

MAGING devices have limited achievable resolution due to

many theoretical and practical restrictions. An original scene
with a continuous intensity function o[z, y] warps at the camera
lens because of the scene motion and/or change of the camera
position. In addition, several external effects blur images: at-
mospheric turbulence, camera lens, relative camera-scene mo-
tion, etc. We will call these effects volatile blurs to emphasize
their unpredictable and transitory behavior, yet we will assume
that we can model them as convolution with an unknown point
spread function (PSF) v[xz,y]. This is a reasonable assumption
if the original scene is flat and perpendicular to the optical axis.
Finally, the CCD discretizes the images and produces digitized
noisy image g[i, j] (frame). We refer to gz, j] as a low-resolu-
tion (LR) image, since the spatial resolution is too low to capture
all the details of the original scene. In conclusion, the acquisi-
tion model becomes

gli, 1 = D((v * W(0))[z,y]) + nli, j] (1)
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where n[i, j] is additive noise and W denotes the geometric de-
formation (warping). D(-) = S(g-) is the decimation operator
that models the function of the CCD sensors. It consists of con-
volution with the sensor PSF g[i, j] followed by the sampling
operator S, which we define as multiplication by a sum of delta
functions placed on a evenly spaced grid. The above model for
one single observation g[i, j] is extremely ill-posed. Instead of
taking a single image we can take K (K > 1) images of the
original scene and this way partially overcome the equivocation
of the problem. Hence, we write

grlis j1 = D((vk * Wi(0))[2,y]) + n[i, j] @
where k = 1,..., K, and D remains the same in all the acqui-
sitions. In the perspective of this multiframe model, the orig-
inal scene o[x,y] is a single input and the acquired LR im-
ages gi[¢, j] are multiple outputs. The model is, therefore, called
a single-input-multiple-output (SIMO) formation model. The
upper part of Fig. 1 summarizes the multiframe LR acquisition
process. To our knowledge, this is the most accurate, state-of-
the-art model, as it takes all possible degradations into account.
Several other authors, such as in [1]-[4], adopt this model, as
well.

Superresolution (SR) is the process of combining a sequence
of LR images in order to produce a higher resolution image
or sequence. It is unrealistic to assume that the superresolved
image can recover the original scene o[z,y] exactly. A rea-
sonable goal of SR is a discrete version of o[z, y] that has a
higher spatial resolution than the resolution of the LR images
and that is free of the volatile blurs (deconvolved). In the paper,
we will refer to this superresolved image as a high resolution
(HR) image f[i, j]. The standard SR approach consists of sub-
pixel registration, overlaying the LR images on an HR grid, and
interpolating the missing values. The subpixel shift between im-
ages thus constitutes the essential assumption. We will demon-
strate that assuming volatile blurs in the model explicitly brings
about a more general and robust technique, with the subpixel
shift being a special case thereof.

The acquisition model in (2) embraces three distinct cases
frequently encountered in literature. First, if we want to resolve
the geometric degradation Wy, we face a registration problem.
Second, if the decimation operator D and the geometric
transform W)}, are not considered, we face a multichannel (or
multiframe) blind deconvolution (MBD) problem. Third, if the
volatile blur vy is not considered or assumed known, and W,
is suppressed up to a subpixel translation, we obtain a classical
SR formulation. In practice, it is crucial to consider all three
cases at once. We are then confronted with a problem of blind
superresolution (BSR), which is the subject of this investiga-
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Fig. 1. (Top) Low-resolution acquisition and (bottom) reconstruction flow.

tion. The approach presented in this manuscript is one of the
first attempts to solve BSR with only little prior knowledge.

Proper registration techniques can suppress large and com-
plex geometric distortions (usually just up to a small between-
image shift). There have been hundreds of methods proposed;
see, e.g., [5] for a survey. In the rest of this paper, we will as-
sume that the LR images are roughly registered and that Wys
reduce to small translations.

The MBD problem has recently attracted considerable atten-
tion. First blind deconvolution attempts were based on single-
channel formulations, such as in [6]-[9]. Kundur et al. [10], [11]
provide a good overview. The problem is extremely ill-posed
in the single-channel framework and cannot be resolved in a
fully blind form. These methods do not exploit the potential of
the multichannel framework, because in the single-channel case
missing information about the original image in one channel
is not supplemented by information in the other channels. Re-
search on intrinsically multichannel methods has begun fairly
recently; refer to [12]-[16] for a survey and other references.
Such MBD methods overpass the limitations of previous tech-
niques and can recover the blurring functions from the degraded
images alone. We further developed the MBD theory in [17]
by proposing a blind deconvolution method for images, which
might be mutually shifted by unknown vectors. To make this
brief survey complete, we should not forget to mention a very
challenging problem of shift-variant blind deconvolution, that
was considered in [18] and [19].
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A countless number of papers address the standard SR
problem. A good survey can be found for example in [20] and
[21]. Maximum likelihood, maximum a posteriori (MAP), the
set theoretic approach using projection on convex sets, and
fast Fourier techniques can all provide a solution to the SR
problem. Earlier approaches assumed that subpixel shifts are
estimated by other means. More advanced techniques, such
as in [1], [2], and [4], include the shift estimation into the SR
process. Other approaches focus on fast implementation [3],
space-time SR [22] or SR of compressed video [2]. Most of
the SR techniques assume a priori known blurs. However, in
many cases, such as blurring due to camera motion, the blur
can have a wild shape that is difficult to predict; see examples
of real motion blurs in [23]. Authors in [24]-[26] proposed
BSR that can handle parametric PSFs, i.e., PSFs modeled with
one parameter. This restriction is unfortunately very limiting
for most real applications. In [27], we extended our MBD
method to BSR in an intuitive way but one can prove that this
approach does not estimate PSFs accurately. The same intuitive
approach was also proposed in [28]. To our knowledge, first
attempts for theoretically correct BSR with an arbitrary PSF
appeared in [29] and [30]. The interesting idea proposed therein
is the conversion of the SR problem from SIMO to multiple
input multiple output using so-called polyphase components.
We will adopt the same idea here as well. Other preliminary
results of the BSR problem with focus on fast calculation are
given in [31], where the authors propose a modification of the
Richardson-Lucy algorithm.

Current multiframe blind deconvolution techniques require
no or very little prior information about the blurs, they are suf-
ficiently robust to noise and provide satisfying results in most
real applications. However, they can hardly cope with the deci-
mation operator, which violates the standard convolution model.
On the contrary, state-of-the-art SR techniques achieve remark-
able results of resolution enhancement in the case of no blur.
They accurately estimate the subpixel shift between images but
lack any apparatus for calculating the blurs.

We propose a unifying method that simultaneously estimates
the volatile blurs and HR image without any prior knowledge
of the blurs and the original image. We accomplish this by for-
mulating the problem as a minimization of a regularized en-
ergy function, where the regularization is carried out in both
the image and blur domains. The image regularization is based
on variational integrals, and a consequent anisotropic diffusion
with good edge-preserving capabilities. A typical example of
such regularization is total variation first proposed in [32]. How-
ever, the main contribution of this work lies in the development
of the blur regularization term. We show that the blurs can be
recovered from the LR images up to small ambiguity. One can
consider this as a generalization of the results proposed for blur
estimation in the case of MBD problems. This fundamental ob-
servation enables us to build a simple regularization term for
the blurs even in the case of the SR problem. To tackle the mini-
mization task, we use an alternating minimization approach (see
Fig. 1), consisting of two simple linear equations.

The rest of the paper is organized as follows. Section II out-
lines the degradation model. In Section III, we present a pro-
cedure for volatile blur estimation. This effortlessly transforms
into a regularization term of the BSR algorithm as described
in Section IV. Finally, Section V illustrates applicability of the
proposed method to real situations.



2324

II. MATHEMATICAL MODEL

To simplify the notation, we will assume only images and
PSFs with square supports. An extension to rectangular images
is straightforward. Let f[z,y] be an arbitrary discrete image of
size F' X F, then f denotes an image column vector of size
F? x 1and C4{f} denotes a matrix that performs convolution
of f with an image of size A x A. The convolution matrix can
have a different output size. Adopting the Matlab naming con-
vention, we distinguish two cases: “full” convolution C 4{ f} of
size (F + A —1)? x A? and “valid” convolution CY% { f} of size
(F — A+1)? x A2 In both cases, the convolution matrix is a
Toeplitz-block-Toeplitz matrix. We will not specify dimensions
of convolution matrices if it is obvious from the size of the right
argument.

Let us assume we have K different LR frames { g } (each of
size G X ) that represent degraded (blurred and noisy) versions
of the original scene. Our goal is to estimate the HR represen-
tation of the original scene, which we denoted as the HR image
f ofsize F x F. The LR frames are linked with the HR image
through a series of degradations similar to those between o[z, ]
and gy, in (2). First f is geometrically warped (W), then it is
convolved with a volatile PSF (V) and finally it is decimated
(D). The formation of the LR images in vector-matrix notation
is then described as

gr = DV W, f + ng 3)
where ny, is additive noise present in every channel. The decima-
tion matrix D = SU simulates the behavior of digital sensors
by first performing convolution with the U x U sensor PSF (U)
and then downsampling (S). The Gaussian function is widely
accepted as an appropriate sensor PSF and it is also used here. Its
justification is experimentally verified in [33]. A physical inter-
pretation of the sensor blur is that the sensor is of finite size and it
integrates impinging light over its surface. The sensitivity of the
sensor is highest in the middle and decreases towards its borders
with a Gaussian-like decay. Further, we assume that the sub-
sampling factor (or SR factor, depending on the point of view),
denoted by ¢, is the same in both z and y directions. It is impor-
tant to underline that ¢ is a user-defined parameter. In principle,
W, can be a very complex geometric transform that must be
estimated by image registration or motion detection techniques.
We have to keep in mind that subpixel accuracy in gys is nec-
essary for SR to work. Standard image registration techniques
can hardly achieve this and they leave a small misalignment be-
hind. Therefore, we will assume that complex geometric trans-
forms are removed in the preprocessing step and W, reduces to
a small translation. Hence, VW = Hj, where H;, performs
convolution with the shifted version of the volatile PSF v;,, and
the acquisition model becomes
The BSR problem then adopts the following form: We know the
LR images {gx} and we want to estimate the HR image f for
the given S and the sensor blur U. To avoid boundary effects,
we assume that each observation gj, captures only a part of f.
Hence, H;, and U are “valid” convolution matrices C%{h;}
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and C%_ 5 {u}, respectively. In general, the PSFs hy, are of
different size. However, we postulate that they all fit into a H x
H support.

In the case of ¢ = 1, the downsampling S is not present
and we face a slightly modified MBD problem that has been
solved elsewhere [12], [17]. Here, we are interested in the case
of e > 1, when the downsampling occurs. Can we estimate
the blurs as in the case € = 1?7 The presence of S prevents us
from using the cited results directly. However, we will show that
conclusions obtained for MBD apply here in a slightly modified
form, as well.

III. RECONSTRUCTION OF VOLATILE BLURS

Estimation of blurs in the MBD case (no downsampling) at-
tracted considerable attention in the past. A wide variety of
methods were proposed, such as in [12] and [13], that provide
a satisfactory solution. For these methods to work correctly,
certain channel disparity is necessary. The disparity is defined
as weak co-primeness of the channel blurs, which states that
the blurs have no common factor except a scalar constant. In
other words, if the channel blurs can be expressed as a con-
volution of two subkernels, then there is no subkernel that is
common to all blurs. An exact definition of weakly co-prime
blurs can be found in [13]. Many practical cases satisfy the
channel co-primeness, since the necessary channel disparity is
mostly guaranteed by the nature of the acquisition scheme and
random processes therein. We refer the reader to [12] for a rele-
vant discussion. This channel disparity is also necessary for the
BSR case.

Let us first recall how to estimate blurs in the MBD case
and then we will generalize the results for integer downsam-
pling factors. For the time being, we will omit noise 7, until
Section IV, where we will address it appropriately.

A. MBD Case

The decimation matrix D is not present in (4) and only convo-
lution binds the input with the outputs. The acquisition model is
of the SIMO type with one input channel f and K output chan-
nels gi. Under the assumption of channel co-primeness, we can
see that any two correct blurs h; and h; satisfy

There are K (K — 1)/2 such relations and they can be arranged
into one system. Let us define

mBD = (2] Zi )"
0 ... 0 G -G ... 0
Zi:=|: " : (6)
0 ... 0 Gk 0 _G,
1 blocks 1 3

K—i+1 blocks
fori = 1,...,K — 1, where G; := C%{g;}. The complete

system of relations (5) then takes the form

Nuvpph =0 @)

T .
; hi] . In most real situations, the correct
blur size (we have assumed square size H x H) is not known

where h = [h{, ...,
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in advance, and, therefore, we can generate the above equation
for different blur dimensions H; X H,. The nullity (null-space
dimension) of Nypp is exactly 1 for the correctly estimated
blur size. By applying SVD (singular value decomposition),
we recover precisely the blurs except for a scalar factor. One
can eliminate this magnitude ambiguity by stipulating that
Y2y he[z,y] = 1, which is a common brightness preserving
assumption. For the underestimated blur size, the above equa-
tion has no solution; If the blur size is overestimated, then
nullity(/\/MBD) = (Hl —H+ ].)(H2 —H+ 1)

B. BSR Case

Before we proceed, it is necessary to define precisely the
sampling matrix S. Let S{ denote a 1-D sampling matrix, where
e is the integer subsampling factor. Each row of the sampling
matrix is a unit vector whose nonzero element is at such position
that, if the matrix multiplies an arbitrary vector b, the result of
the product is every eth element of b. If the vector length is M
then the size of the sampling matrix is (M/e) x M.If M isnot
divisible by e, we can pad the vector with an appropriate number
of zeros to make it divisible. A 2-D sampling matrix is defined by

Sc:=87®Sj (®)

where @ denotes the matrix direct product (Kronecker product
operator). Note that the transposed matrix (S°)” behaves as an
upsampling operator that interlaces the original samples with
(e — 1) zeros.

A naive approach, as proposed in [27] and [28], is to modify
(7) for the MBD case by applying downsampling, Ngsp =
NMupp|Ix ® S°U], and formulating the problem as

m&n “NBSRh“2 (9)

where I is the K X K identity matrix. One can easily verify
that the condition in (5) is not satisfied for the BSR case as the
presence of downsampling operators violates the commutative
property of convolution. Even more disturbing is the fact that
minimizers of (9) do not have to correspond to the correct blurs.
We are going to show that if one uses a slightly different ap-
proach, reconstruction of the volatile PSFs hy, is possible even
in the BSR case. However, we will see that some ambiguity in
the solution of A, is inevitable.

First, we need to rearrange the acquisition model (4) and con-
struct from the LR images g; a convolution matrix G with a
predetermined nullity. Then, we take the null space of G and
construct a matrix A/, which will contain the correct PSFs Ay, in
its null space.

Let £ x E be the size of “nullifying” filters 7, . (The meaning
of this name will be clear later). Define G := [Gq,...,Gk],
where Gy, := CY%{gx} are “valid” convolution matrices. As-
suming no noise, we can express G in terms of f, u, and hy, as

¢ = S°FUH (10)

where

H = [Cep{hi}(59)". ..., Con{hu }(S)"]

U:=C.gyp-1{u} and F := CgE+H+U—2{f}'

(11)
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The convolution matrix ¢/ has more rows than columns, and,
therefore, it is of full column rank (see proof in [12] for gen-
eral convolution matrices). We assume that S°F has full column
rank as well. This is almost certainly true for real images if F
has at least 2 times more rows than columns. Thus, Null(G) =
Null(H) and the difference between the number of columns and
rows of H bounds from below the null space dimension, i.e.,

nullity(G) > KE? — (eE + H — 1), (12)
Setting N := KE? — (eE + H — 1)? and N := Null(G), we
visualize the null space as

nj
N =

n; N
(13)

ng 1 ng N

where ny,, is the vector representation of the nullifying filter
Nenofsize EX K, k=1,...,Kandn =1,...,N. The filters
Nkn are made of values of G’s null space and that is where their
name comes from. Let 7, denote upsampled 7, by factor €,
i.e., kn := (S)TNkn. Then, we define

Cui{mn1} Cui{ix}
N = : : (14)
Cu{mn} Culiikrn}
and conclude that
Nh=0 (15)

where h? = [hy, ..., hx]. We have arrived to an equation that
is of the same form as (7) in the MBD case. Here, we have the
solution to the blur estimation problem for the BSR case. How-
ever, since S¢ is involved, ambiguity of the solution is higher.
Without proofs (for the sake of simplicity) we provide the fol-
lowing statements. For the correct blur size, nullity(N) = &?.
For the underestimated blur size, (15) has no solution. For the
overestimated blur size Hy x Hy, nullity(NV) = e2(H, — H +
¢)(Hy — H + ¢). The conclusion may seem to be pessimistic.
For example, for ¢ = 2 the nullity is at least 16, and for e = 3
the nullity is already 81.

To shed more light on the above discussion about the nullity
we have visualized the null space of NV in Fig. 2. We convolved
an image with six different 8 x 8 PSFs (the first PSF is in the top
of Fig. 2), downsampled the blurred images with factor 2, and
then constructed V' from the images following the above deriva-
tion. We know that in this case 16 independent vectors span the
null space of NV and their arbitrary linear combination is a so-
lution to (15). One such configuration of 16 independent vec-
tors, where only the first PSF is extracted from each, is shown
in the bottom of Fig. 2 arranged in a 4 x 4 table. One can see
that the recovered PSFs contain parts of the original PSF and
we have got four distinct parts each shifted to four different po-
sitions. Section IV will show that N plays an important role in
the restoration algorithm as a consistency term and its ambiguity
is not a serious drawback.

It is interesting to note that a similar derivation is possible
for rational SR factors ¢ = p/q. We downsample the LR im-
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Fig. 2. Visualization of A/’s null space for £ = 2. (Top) Original 8 x 8 PSF
and (bottom) one example of 16 PSFs that span the null space of A. Proper
linear combination of these 16 PSFs gives the original PSF.

ages with the factor g, thereby creating ¢? K images and apply
thereon the above procedure for the SR factor p.

Another consequence of the above derivation is the minimum
necessary number of LR images for the blur reconstruction to
work. The condition of the G nullity in (12) implies that the
minimum number is K > 2. For example, for e = 3/2,3 LR
images are sufficient; for ¢ = 2, we need at least 5 LR images
to perform blur reconstruction. An intuitive explanation is that
2 input images are necessary for the SR problem to get a fully
determined system of equations and additional input images are
for the PSF estimation.

IV. BLIND SUPERRESOLUTION

In order to solve the BSR problem, i.e., determine the HR
image f and volatile PSFs hj, we adopt an approach of mini-
mizing a regularized energy function. This way, the method will
be less vulnerable to noise and better posed. The energy consists
of three terms al%d takes the form

E(f,h) =) [[DH.f — gi||” + aQ(f) + SR(h).
k=1

(16)

The first term measures the fidelity to the data and emanates
from our acquisition model (4). The remaining two are regu-
larization terms with positive weighting constants « and [ that
attract the minimum of £ to an admissible set of solutions. The
form of £ very much resembles the energy proposed in [17] for
MBD. Indeed, this should not come as a surprise since MBD
and SR are related problems in our formulation.
Regularization Q(f) is a smoothing term of the form
Q(f) = f'Lf (17)
where L is a high-pass filter. A common strategy is to use con-
volution with the Laplacian for L, which in the continuous case
corresponds to Q(f) = [ |V f|?. Recently, variational integrals
Q(f) = [ ¢(|V f]) were proposed, where ¢ is a strictly convex,
nondecreasing function that grows at most linearly. Examples
of ¢(s) are s (total variation), v/1 4+ s? — 1 (hypersurface min-
imal function), log(cosh(s)), or nonconvex functions, such as
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log(1+s?), s?/(1+ s?) and arctan(s?) (Mumford—Shah func-
tional). The advantage of the variational approach is that it be-
haves as anisotropic diffusion. While in smooth areas it has the
same isotropic behavior as the Laplacian, it also preserves edges
in images. The disadvantage is that it is highly nonlinear. To
overcome this difficulty one must use, e.g., the half-quadratic
algorithm [34]. For the purpose of our discussion, it suffices to
state that after discretization we arrive again at (17), where this
time L is a positive semidefinite block tridiagonal matrix con-
structed of values depending on the gradient of f. The rationale
behind the choice of Q(f) is to constrain the local spatial be-
havior of images; it resembles a Markov random field. Some
global constraints may be more desirable but are difficult (often
impossible) to define, since we develop a general method that
should work with any class of images.

The PSF regularization term R(h) directly follows from the
conclusions of the previous section. Since the matrix A in (14)
contains the correct PSFs Ay in its null space, we define the
regularization term as a least-squares fit

R(h) = |Nh|? = KT NTN . (18)

If one replaces N with Ngsgr, we have the naive approach. The
product N\ is a positive semidefinite matrix. More precisely,
R is a consistency term that binds volatile PSFs and prevents
them from moving freely and, unlike the fidelity term [the first
term in (16)], it is based solely on the observed LR images. A
good practice is to include with a small weight a smoothing term
h”Lh in R(h). This is especially useful in the case of less noisy
data in order to overcome the higher nullity of V.
The complete energy then takes the form
K
E(f.h) = Z IDHf — gi||?
k=1
+ofTLE + B1|Nh|? + ShTLh.  (19)

Energy FE as a function of both variables f and h, is not convex
due to convolution in the first term. On the other hand, the en-
ergy function is convex with respect to f if h is fixed and it
is convex with respect to h if f is fixed. The minimization se-
quence (f,h™) can, thus, be built by alternating between two
minimization subproblems. This procedure is called alternating
minimizations (AM) and the advantage lies in its simplicity. For
each subproblem a unique minimum exists that can be easily
calculated. Derivatives w.r.t. f and h must be zero at the minima,
which, in this case, leads to solving a set of simple linear equa-
tions. In conclusion, starting with some initial hY the two itera-

tive steps are OF
Step1) " =argmin E(f,h™)= — =0
£ of
K
& <Z H/D"DH,, + aL> f
k=1
K
=> H{D"g (20)
k=1
E
Step2) h™*! =arg m}in E(f™,h) = g—h =0
& (Ix @ FI'DTDF] + SiINTN + 3,L)h
= [Ix @ F'D"]g (21)
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ation step. The AM approach is a variation on the steepest-de-
scent algorithm. The search space is a concatenation of the blur
subspace and the image subspace. The algorithm first descends
in the image subspace and after reaching the minimum, i.e.,
OE/0f = 0, it advances in the blur subspace in the direction
OF /0h orthogonal to the previous one, and this scheme repeats.
Due to the coupling of the variables by convolution, we cannot
guarantee in theory that the global minimum is reached but thor-
ough testing indicates good convergence properties of the algo-
rithm for many real problems.

Convergence may further improve if we add feasible regions
for the HR image and PSFs specified as lower and upper bounds
constraints. To solve step 1, we use the method of conjugate
gradients (function cgs in standard Matlab) and then adjust the
solution f™ to contain values in the admissible range, typi-
cally, the range of values of g. It is common to assume that
PSF is positive and preserves image brightness, i.e., hx > 0
and }_, . hi[z,y] = 1. We can, therefore, restrict the intensity
values of PSFs between 0 and 1. In order to enforce the bounds
in step 2, we solve (21) as a constrained minimization problem
(function fimincon in Matlab Optimization Toolbox v.3) rather
than using the projection as in step 1. Constrained minimization
problems are more computationally demanding but we can af-
ford it in this case since the size of h is much smaller than the
size of f.

The weighting constants « and 3; depend on the level of
noise. If noise increases, a and (5 should increase, and [,
should decrease. One can use parameter estimation techniques,
such as cross-validation [24] or expectation maximization [35],
to determine the correct weights. However, in our experiments,
we set the values manually according to a visual assessment.
If the iterative algorithm begins to amplify noise, we have
underestimated the noise level. On the contrary, if the algorithm
begins to segment the image, we have overestimated the noise
level.

where F := Cy{f}, g := [g7,..., gﬂ]T and m is the iter-

V. EXPERIMENTS

This section consists of two parts. In the first one, a set of
experiments on synthetic data evaluate performance of the BSR
algorithm with respect to the SR factor and compare the recon-
struction quality with other methods mentioned below under dif-
ferent levels of noise. The second part demonstrates the appli-
cability of the proposed method to real data.

In all the experiments the sensor blur is fixed and set to a
Gaussian function of standard deviation & = 0.34 (relative to
the scale of LR images). One should underline that the proposed
BSR method is fairly robust to the choice of the Gaussian vari-
ance, since it can compensate for insufficient variance by auto-
matically including the missing factor of Gaussian functions in
the volatile blurs.

Another potential pitfall that we have to take into consider-
ation is a feasible range of SR factors. Theoretically there are
no limitations on the upper bound of the SR factor. However,
practical reasons impose limits. As the SR factor ¢ increases,
we need more LR images (K > £2). The increasing number of
LR images negatively affects the stability of BSR, since in real
scenarios perturbations of the acquisition model occur, which
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disrupts the minimization scheme. SR factors beyond 2.5 are,
thus, rare in real applications. A more elaborated discussion on
fundamental limits of SR algorithms is given in [36]. In addi-
tion, rational SR factors p/q, where p and ¢ are incommensu-
rable and large regardless of the effective value of ¢, also make
the BSR algorithm unstable. It is the numerator p that deter-
mines the internal SR factor used in the algorithm. Hence, we
limit ourselves to € between 1 and 2.5, such as 3/2, 5/3, 2, etc.,
which is sufficient in most practical applications.

A. Simulated Data

First, let us demonstrate the BSR performance with a simple
experiment. An 175 x 175 image in Fig. 3(a) blurred with six
masks in Fig. 3(b) and downsampled with factor 2 gives six LR
images. Using the LR images as an input, we estimated the orig-
inal HR image with the proposed BSR algorithm fore = 1.5 and
2. Fig. 4 summarizes obtained results in their original size. One
can see, that for e = 1.5 [Fig. 4(b)], the reconstruction is good
but some details, such as the shirt texture, are still fuzzy. For the
SR factor 2, the reconstructed image in Fig. 4(c) is almost per-
fect as most of the high-frequency information of the original
image is correctly recovered.

Next, we evaluate noise robustness of the proposed BSR
and compare it with other two methods: interpolation tech-
nique and state-of-the-art SR method. The former technique
consists of the MBD method proposed in [17] followed by
standard bilinear interpolation resampling. The MBD method
first removes volatile blurs and then the interpolation of the
deconvolved image achieves the desired spatial resolution.
The latter method, which we will call herein a “standard SR
algorithm,” is a MAP formulation of the SR problem proposed,
e.g., in [1] and [2]. This method uses a MAP framework for the
joint estimation of image registration parameters (in our case
only translation) and the HR image, assuming only the sensor
blur (U) and no volatile blurs. For an image prior, we use edge
preserving Huber Markov random fields [33].

In the case of BSR, Section III shows that two distinct ap-
proaches exist for the blur estimation. Either we use the naive
approach in (9) that directly utilizes the MBD formulation, or we
apply the intrinsically SR approach given in (15). Depending on
the approach, we use either A'gsr or AV in the blur consistency
term R(h) in the AM algorithm.

Altogether we have, thus, four distinct methods for com-
parison: standard SR approach, MBD with interpolation, BSR
with naive blur regularization and BSR with intrinsic blur
regularization. The experimental setup was the following.
First, we generated six random motion blurs of size 4 x 4.
Then we generated six LR images from the original HR
image in Fig. 3(a) using the blurs and the downsampling
factor of 2, and added white Gaussian noise with different
SNR from 50 to 1 dB. The signal-to-noise ratio is defined as
SNR = 10log (o]% / oz), where o and o, are the image and
noise standard deviations, respectively. We repeated the whole
procedure ten times for different realizations of noise. For each
set of six LR images, the four methods were applied one by
one. Parameters of each method were chosen to minimize the
mean square error of the HR estimate. Fig. 5 summarizes the
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(a)

Fig. 3. Simulated data: (a) original 175 X 175 image; (b) six 4 X 4 volatile PSFs used to blur the original image.

(a) (b)
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1234

(b)

Fig. 4. BSR of simulated data: (a) one of six LR images with the downsampling factor 2; (b) BSR for ¢ = 1.5; (c) BSR for ¢ = 2. The shirt texture is not yet
visible for the SR factor 1.5 but becomes well reconstructed for the SR factor 2. On the other hand, face features probably lack very small details, and there is no

visible improvement between 1.5 and 2.

obtained results in terms of peak signal to noise ratio defined
as PSNR(f) = 10log(span(f)?/||f — £]|2/F?), where f is the
estimate of the original HR image f, and span(f) denotes the
span of gray-level values in the original image, typically 255.
The standard SR method gives the poorest performance, since
it lacks any apparatus for removing volatile blurs. MBD with
interpolation removes blurs in the LR domain, which accounts
for better performance. However, the best performance is ap-
parent for the proposed BSR method, which accomplishes SR
and blind deconvolution in the HR domain. The shape of the
blur consistency term R(h) plays its role, as well. In the case
of the naive consistency term (Npgsgr), estimated blurs are less
accurate. This leads to tiny artifacts in the HR image and a small
performance drop. On the other hand, the blur consistency term
with AV provides the most accurate estimations and outperforms
all the other methods. For low SNR, all the tested methods tend
to give similar results in the PSNR perspective and advantages
of the proposed BSR method are less evident. Thus, for very
noisy images (below 20 dB), it is sufficient to perform MBD
with simple interpolation than to apply advanced SR methods,
since MBD is definitely faster and the results look similar due to
noise. The level of noise depends on the amount of light during

34
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Fig. 5. Performance of the BSR algorithm and the other two methods under
different levels of noise: () BSR using A in the blur consistency term R(h);
(O) BSR using Msk; (X ) MBD with bilinear interpolation; (A) standard SR
method. Note that the proposed BSR outperforms any other method but as the
noise level increases its supremacy becomes less evident.

acquisition and also on the quality of sensors. In our experi-
ence, most regular digital cameras have SNR around 50 dB, but
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Fig. 6. Reconstruction of images acquired with a camcorder (¢ = 2.5): (a) eight LR frames created from a short video sequence captured with the camcorder
and displayed in their original size; (b) bilinear interpolation of one LR frame; (c) BSR estimate of the HR frame; (d) original HR frame.

(b)

Fig. 7. Reconstruction of images acquired with a digital camera (¢ = 2): (a) eight LR acquired shot with the digital camera and displayed in their original size;
(b) bilinear interpolation of one LR image; (c) BSR estimate of the HR image; (d) image taken by the same camera but with optical zoom. The BSR algorithm

achieves reconstruction comparable to the image with optical zoom.

with decreasing light, it can drop down to 30 dB. Webcameras
have in general lower SNR around 30 dB, even in moderate light
conditions.

B. Real Data

The next three experimental settings come from a license
plate recognition task and they demonstrate the true power of
the BSR algorithm. We used data from two different acquisi-
tion devices: camcorder and digital camera. The camcorder was
Sony Digital Handycam and the digital camera was 5-Mpixel
Olympus C5050Z equipped with 3 x optical zoom. In order to

work with color images, we extended the proposed BSR method
by utilizing color TV [37] instead of standard TV in image reg-
ularization and by assuming the same blurring in all three color
channels.

In the first scenario, we used a short video sequence pro-
vided by Dr. Z. Geradts from the Netherlands Forensic Insti-
tute (available at forensic.to/superresolution.htm). The video se-
quence was acquired with the camcorder and was artificially
downsampled with factor 10. We extracted 16 frames from the
downsampled video, of which eight are in Fig. 6(a), and applied
the proposed BSR algorithm with the SR factor of 2.5. Fig. 6(b)
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(e)

Fig. 8. License-plate recognition (¢ = 2): (a) one of eight LR images acquired with a digital camera (zero-order interpolation); (b) MBD followed by bilinear
interpolation; (c) PSFs estimated by the proposed BSR; (d) standard SR algorithm; (e) proposed BSR algorithm; (f) closeups of the images (a) and (b) on top and
(d) and (e) on bottom. Note that only the BSR result (e) reconstructs the car brand name in such a way that we can deduce that it was a “Mazda” car.

(b)

.

Fig. 9. Performance of the BSR algorithm with respect to the number of LR images (¢ = 1.5). (a) One of eight LR images of size 40 x 70, zero-order interpola-
tion. (b) Image acquired with optical zoom 1.5 X, which plays the role of “ground truth.” The proposed BSR algorithm using (c) 3, (d) 4, and (e) 8 LR images.

shows the first LR frame bilinearly interpolated to have the size
of HR images. The HR frame estimated by BSR is in Fig. 6(c),
and the original undecimated HR frame is in Fig. 6(d). The ob-
tained result remarkably well recovers letters and numbers on
the license plates.

In the second scenario, we used the digital camera and
took eight photos of a stalled car, registered the photos with
cross-correlation and cropped each to a 100 x 50 rectangle. All
eight cuttings printed in their original size (no interpolation),
including one image enlarged with bilinear interpolation, are in
Fig. 7(a) and (b). We set the desired SR factor to 2 and applied
BSR. In order to better assess the obtained results, we took one
additional image with optical zoom set close to 2 x. This image
served as the ground truth; see Fig. 7(d). The proposed BSR
method returned a well reconstructed HR image [Fig. 7(c)],
which surpasses the image acquired with the optical zoom.

The third experimental setting consisted of a car moving to-
wards a hand-held digital camera. We took four consecutive
color images with the camera, and using both green channels
(color image in digital cameras are made of two green chan-
nels and one red and one blue channel), we generated alto-
gether eight LR images. The images were roughly registered
with cross-correlation and cropped each to a 90 x 50 rectangle.
One such image is in Fig. 8(a). We set the SR factor to 2 and
applied different reconstruction techniques. The MBD with in-
terpolation method [Fig. 8(b)] reconstructed the banner satis-
factory, yet the license plate is not legible, since it contains tiny
details that are beyond the resolution of LR images. The stan-
dard SR approach in Fig. 8(d) gives moderate results. The pro-
posed BSR method in Fig. 8(e) outperforms all the other tech-
niques and provides a sharp HR image. The PSFs estimated by
BSR are in Fig. 8(c). Note that every second PSF is a shifted
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version of the previous one, which was expected, since green
channels in digital cameras are shifted diagonally by 1 pixel in
each direction. For better visual comparison closeups of one of
the input LR image and three reconstructed HR images appear
in Fig. 8(f).

When dealing with real data, one cannot expect that the per-
formance will increase without limits as the number of available
LR images increases. At a certain point possible discrepancies
between the measured data and our mathematical model take
over, and the estimated HR image does not improve any more
or it can even worsen. We conducted several experiments on real
data (short shutter speed and motionless objects) with different
SR factors and number of LR images K. See the results of one
such experiment in Fig. 9 for ¢ = 1.5 and the number of LR
images ranging from 3 to 8. A small improvement is apparent
between using 3 and 4 LR images; compare Fig. 9(c) and (d).
However, the result obtained with all eight images in Fig. 9(e)
shows a very little improvement. We deduce that for each SR
factor exists an optimal number of LR images that is close to
the minimum necessary number. Therefore, in practice, we rec-
ommend to use the minimum or close to minimum number of
LR images for the given SR factor.

VI. CONCLUSION

We have shown that the SR problem permits a stable solu-
tion, even in the case of unknown blurs. The fundamental idea
is to split radiometric deformations into sensor and volatile parts
and assume that only the sensor part is known. We can then con-
struct a convex functional using the observed LR images and ob-
serve that the volatile part minimizes this functional. Due to the
presence of resolution decimation, the functional is not strictly
convex and reaches its minimum on a subspace that depends on
the integer SR factor. We have also extended our conclusions to
rational factors. To achieve robust solution, we have adopted the
regularized energy minimization approach. The proposed BSR
method goes far beyond the standard SR techniques. The in-
troduction of volatile blurs makes the method particularly ap-
pealing to real situations. While reconstructing the blurs, we
estimate not only subpixel shifts but also any possible blurs
imposed by the acquisition process. To our knowledge, this is
one of the first methods that performs deconvolution and reso-
lution enhancement simultaneously.
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