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Chapter 1

Introduction

The choice of a suitable model is essential for both control and decision making when dealing with complex
systems. One way to face complexity is the principle of adaptivity, i.e. using models which evolve during
their use. The demand for adaptivity of the model leads to the recursive estimation of its parameters,
i.e. permanent updating of its parameter estimates by the new data. In other words, statistics describing
estimates are corrected by newly acquired data. The model should be chosen from a sufficiently rich family
of models to capture all properties of the modelled system. Naturally, computational cost associated with
estimation of parameters of the model grows with complexity of the model. If the modelled system is non-
linear, its model should be non-linear too. In this paper, we study finite probabilistic mixture of linear
models. The finite mixtures provide a universal approximation of almost any probabilistic density function
[1] and thus can be successfully used in modelling of complex systems. Invoking the principle of adaptivity,
we seek an efficient recursive estimation of the mixture model parameters.

The resulting model can be then used both for control and decision making tasks. Universal algorithms
for mixture-based control [2] were derived, but quality of the resulting control strategy strongly depends on
the quality of the estimated model. Practical experience indicates that this is a weak element of adaptive
control and that an improvement of the estimation part improves the overall control quality. Hence, we try
to develop better estimation algorithms for the mixture model. The control algorithms [2] as well as efficient
structure estimation algorithms were derived using the Bayesian theory [3]. The unknown model parameters
are treated as random variables and all subsequent task are defined in terms of posterior distributions of the
parameters rather then thier point estimates.

The recursive Bayesian estimation evaluates the posterior distribution on parameters at time t as an
update of the the posterior distribution at time t − 1 using the Bayes’ rule and the data acquired at time
t. The recursion starts at t = 1 with update of the prior distribution which must be chosen before the
estimation starts. The posterior distribution obtained by the Bayes’ rule may not be, however, analytically
tractable and thus unsuitable for the next update.

In practice, mostly such prior distribution is used so that the posterior distribution in each estimation
step has the same functional form as the prior distribution. Hence, just the sufficient statistics determining
the posterior density are updated. Such a prior distribution is then known as conjugate with the observation
model. For example, conjugate prior distribution is available for all models from the exponential family. If
the conjugate prior does not exists the exact recursive estimation can not be achieved. In such a case, we
seek approximate recursive estimation. This is the case of the probabilistic mixture model. Using the exact
Bayesian update, the complexity of posterior density grows exponentially with number of the data samples.
The quasi-Bayes algorithm [4] [2] or a modification of the EM algorithm [1] are examples of approximate
algorithms facing this problem.

This paper introduces a new approximate estimation method, which can be viewed as a generalization
of quasi-Bayes algorithm. The basis of both approaches is finding the approximate posterior density in
particular (well manipulable) class of densities.

The new algorithm finds the optimal projection of the correct Bayesian density into the selected class
of densities. The projection is optimal in the sense of Kulback Leibler distance [5]. It should be mentioned
that the Kullback Leibler distance is not symmetric. Algorithm presented in this paper minimizes the
Kulback Leibler distance with the argument order, which conforms with Bayesian principles [6]. An algorithm
minimizing the Kullback Leibler distance with arguments in different order can be found in [7].

5
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Chapter 2

Notions and notations

x∗ denotes the range of x, x ∈ x∗.

x̊ denotes the number of entries in the vector x.

≡ means the equality by definition.

xt is a quantity (vector) x at the discrete time labelled by t ∈ t∗ ≡ {1, . . . , t̊}.

xi;t is an i-th entry of the vector xt. The semicolon in the subscript indicates that the symbol following it
is the time index.

xk l;t is a subvector of the vector xt. xk l;t = (xk;t, · · · , xl;t).

x(k l) ≡ xk, . . . , xl.

x(t) ≡ x(1 t).

x(t) is an empty sequence and reflects just the prior information if t < 1.

d is data array, dt is data record at time t (vector with entries (d1;t, · · · , dd̊t;t
) ).

Θ unknown parameter, finite-dimensional vector

f, π are the letters reserved for probability density functions(pdf).

f(dt|d(t− 1), Θ) means model of the system.

fc(dt|d(t− 1), Θc) is component of the mixture.

π0(Θ) denotes prior density of the unknown parameter Θ.

πt(Θ|d(t)) ≡ πt(Θ|Gt) means (approximate) posterior density of the parameter Θ determined by the
sufficient statistic Gt.

∝ is the proportion sign, h ∝ g means that function h equals to the function g up to the normalization. I.e.
h∫
h

= g∫
g
.

∂ is the model order.

D( || ) means the Kullback-Leibler distance[5]. This ”distance” is familiarly used in Bayesian analysis as
the measure how good the second pdf approximates the first pdf. For conciseness, the Kullback-Leibler
distance is referred to as the KL distance. D

(
f

∣∣∣
∣∣∣ g

)
=

∫
f ln

(
f
g

)

Γ(x) means gamma function, Γ(x) =
∫ +∞
0

tx−1 exp(−t)dt.

ψ0 (x) is digamma function, ψ0 (x) = ∂ ln Γ(x)
∂x .

δ denotes identity matrix. I.e. δij = 1 iff i = j, otherwise δij = 0.

⊗ denotes the Kronecker product of two matrices

7
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Agreement 1 (Multimatrix, multivector) Multimatrix of type m,n

M =




M11 · · · M1n

...
. . .

...
Mm1 · · · Mmn




is a mathematical object, where Mij is either matrix or multimatrix. Hence matrix is a multimatrix. Multi-
matrix need not be a matrix. Definition of Multivector is analogical.

Agreement 2 (Multimatrix indexing) For M being a multimatrix of type m,n the following notation
is used:

Mij is ij-th entry of M .

M•j is multimatrix




M1j

...
Mmj


.

Mi• is multimatrix (Mi1, · · · ,Min).

M•• means the same as M .We use this notation when we want to stress that M is a multimatrix (matrix).

Agreement 3 (Other Matrix notations) Let’s M be a matrix of type m,n and c some scalar. Let’s
define the following operations:

M ± c is matrix of type m, n, (M ± c)ij = Mij ± c.

exp(M) is matrix of type m,n, (exp(M))ij = exp (Mij).

max M is scalar with maximal value of M .

vecM is column vector of length m ∗ n containing all columns of M .

|M | is determinant of matrix M .



Chapter 3

Basic elements and tools

3.1 Recursive parameter estimation

The task of recursive parameter estimation is to determine the posterior density πt(Θ|d(t)) based on the
knowledge of

• last posterior density πt−1(Θ|d(t− 1))

• new data record dt

• model of the system f
(
dt|d(t− 1), Θ

)
parameterized by unknown parameter Θ .

The algorithm starts from prior pdf π0(Θ) ≡ π0(Θ|d(0)). We assume existence of the sufficient statistic Gt

for posterior pdfs, i.e.
πt(Θ|d(t)) ≡ πt(Θ|Gt).

Next, consider that the actual data record dt doesn’t depend on all historical data d(t− 1) but only on
a subset φt−1 = (dt−1, dt−2, · · · , dt−∂). Hence,

f
(
dt|d(t− 1), Θ

) ≡ f
(
dt|φt−1, Θ

)
.

The standard Bayesian approach determines πt(Θ|Gt) as

πt(Θ|Gt) ∝ f
(
dt|φt−1, Θ

)
πt−1(Θ|Gt−1). (3.1)

3.1.1 Recursive parameter estimation with conjugate pdf

The considered approach (3.1) can be effectively used in the case when π0(Θ) is conjugate pdf to the system
model f

(
dt|φt−1, Θ

)
. In such a case, πt(Θ|Gt) has the same functional form as π0(Θ). Hence, we can get

πt(Θ|Gt) ≡ π(Θ|Gt), ∀t.

When updating from π(Θ|Gt−1) to π(Θ|Gt) it suffices to update the sufficient statistics: (Gt−1, dt) −→ Gt.

3.1.2 Recursive parameter estimation without conjugate pdf

If the pdf conjugate to the system model doesn’t exist, the dimension of sufficient statistic grows with
number of data samples. Then, of course, complexity of πt grows as well. In such a case we can proceed in
the following way:

• we choose prior pdf in an arbitrary well manipulable functional form,

• we seek an approximate posterior pdf’s of the same functional form,

• we set, in each step of estimation, the statistic determining the approximate posterior pdf in such a
way that it is ”closest” to the ”correct Bayesian” pdf.

9
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We need to specify what we mean by: ”correct Bayesian” and ”closest” . Let’s have the approxi-
mate posterior pdf π(Θ|Gt−1), which depends on the statistic Gt−1. If we handle the approximate pos-
terior pdf π(Θ|Gt−1) as the correct posterior pdf, the ”correct Bayesian” posterior pdf in the next step
π̂(Θ|Gt−1, dt, φt−1) is (according to (3.1)) obtained as

π̂(Θ|Gt−1, dt, φt−1) =
f
(
dt|φt−1, Θ

)
π(Θ|Gt−1)∫

f
(
dt|φt−1, Θ

)
π(Θ|Gt−1)dΘ

.

The term ”closest” means closest in sense of the KL distance. It means that we want to find Gt so that

D
(
π̂(Θ|Gt−1, dt, φt−1)

∣∣∣
∣∣∣ π(Θ|Gt)

)
(3.2)

is minimized.

Remarks 1

1. Applicability of the presented algorithm strictly depends on the complexity of the KL distance. Except
of trivial cases, it is usable only if the KL distance can be evaluated analytically.

2. The algorithm uses the approximate posterior pdf obtained in step t−1 as the true posterior pdf in step
t. This leads to error accumulation.

3.2 Dynamic probabilistic mixture

In this paper, we consider the parameterized model of the system in the form of a finite probabilistic mixture:

f(dt|φt−1, Θ) ≡
∑
c∈c∗

αcfc(dt|φc;t−1, Θc), c∗ = {1, . . . , c̊}, c̊ < ∞, where (3.3)

fc(dt|φc;t−1,Θc) ≡ c-th component given by component parameters Θc and the state
φc;t−1 ≡ subset of φt−1

αc ≡ the probabilistic component weight
Θ ≡ mixture parameter formed by the component weights and parameters

Θ ∈ Θ∗ ≡
{
{Θc ∈ Θ∗c}c∈c∗ , α ≡ [α1, . . . , αc̊] ∈ α∗ ≡

{
αc ≥ 0,

∑
c∈c∗

αc = 1

}}
.

Before fixing and refining nomenclature related to the mixture, we split the individual components into
so called factors that provide flexibility of the parametric description.

Using the chain rule, the pdfs fc(dt|φc;t−1,Θc) can be written as a product of pdfs of individual entries
of dt. Before applying the chain rule, entries of dt can be permuted and some permutations may lead to
parameterizations with less parameters. This motivates inclusion of permutations into the model description

d → dc with dic = djic , where (3.4)

jic is i-th entry of the permuted indices [1, . . . , d̊]. The assignment (3.4) is applied component-wise and
together with the chain rule give

fc(dt|φc;t−1, Θc) =
∏

i∈i∗
fic(dic;t|d(i+1) d̊c;t, φc;t−1, Θic) ≡

∏

i∈i∗
fic(dic;t|ψic;t, Θic). (3.5)

The additional subscript i of the parameter Θic indicates that only some entries of Θc may occur in i-th pdf
(factor) in (3.5). Similarly, the regression vector ψic;t is generally a sub-vector of the vector

[d(i+1) d̊c;t, φ
′
c;t−1, 1]′. (3.6)

Agreement 4 (Nomenclature related to mixtures)

Pdfs: The pdf fc(dt|φc;t−1, Θc) in (3.3) is called parameterized component of a mixture and

αc is the weight of the c-th parameterized component.

The pdf fic(dic;t|ψic;t, Θic) in (3.5) is called parameterized factor.
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Data: The vector dt containing data measured at time t is called data record.

The vector φc;t−1 is the observable state of the parameterized component.

The parameterized factor is determined by regression vector ψic;t defined as a sub-selection of the vector
[di+1 d̊c;t, φ

′
c;t−1, 1]′ (3.6).

The coupling Ψic;t ≡ [dic;t, ψ
′
ic;t]

′ is called data vector of the factor.

Remarks 2

1. We added the number 1 to the definition of the regression vector, because it helps us to effectively
express the constant shifts in mean values of factors.

2. The adopted dynamic mixture model is not sufficiently general. The component weights should also
depend on the state vector. The choice is driven by our inability to estimate this “natural” and more
realistic model. See discussion in [8]

3.3 Form of the prior and the posterior pdf

According to the general hints in section 3.1.2 we need to choose the prior pdf in a form that is well
manipulable, i.e. analytically tractable.

Agreement 5 (Considered forms of pdfs on Θ∗) The prior π(Θ) ≡ π(Θ|d(0)) and the posterior
π(Θ|d(t)) ≡ π(Θ|Gt) are considered to be of the common form:

π(Θ|Gt) = Diα(κt)
∏

i∈i∗,c∈c∗
πic(Θic|Sic;t), t ∈ {0} ∪ t∗ , where (3.7)

Gt ≡ (κ•;t,S••;t),

Diα(κt) is Dirichlet distribution, Diα(κ•) ≡
∏

c∈c∗ ακc−1
c

B(κ)
, B(κ) ≡

∏
c∈c∗ Γ(κc)

Γ(
∑

c∈c∗ κc)
,

each pdf πic(Θic|Sic;t) is conjugate to the factor fic(dic;t|ψic;t, Θic).

Parameters Θic, i ∈ i∗ ≡ {1, . . . , d̊}, c ∈ c∗, of the individual parameterized factors are mutually conditionally
independent, and also, independent of the component weights α. The component weights have Dirichlet
distribution Diα(κ) with support on the probabilistic simplex α∗.

Dirichlet distribution Diα(κt) is recalled and analyzed in Chapter C.4 in detail.

3.4 Notations related to mixtures

In the sequel, we use the following elements: i ∈ i∗ ≡ {1, . . . , d̊}, c ∈ c∗

Factor prediction Iic;t =
∫

fic(dic;t|ψic;t, Θic)πic(Θic|Sic;t−1)dΘic

Component prediction βc;t =
d̊∏

i=1

Iic;t (3.8)

Estimate of component weight α̂c;t =
κc;t∑

c∈c∗ κc;t
(3.9)

QB weight of data wc;t =
α̂c;t−1βc;t∑c̊

c=1 α̂c;t−1βc;t

(3.10)

”Correct” estimate of factor parameters πic(Θic|SU
ic;t) =

fic(dic;t|ψic;t,Θic)πic(Θic|Sic;t−1)
Iic;t

(3.11)

Remarks 3

1. The assumption of conjugacy of πic(Θic|Sic;t−1) to the factor fic(dic;t|ψic;t, Θic) implies that
fic(dic;t|ψic;t,Θic)πic(Θic|Sic;t−1)

Iic;t
has the same functional form as πic(Θic|Sic;t−1), and thus we need to

evaluate only the statistic SU
ic;t.
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2. As values of Iic;t can be very close to zero, it is numerically advantageous to evaluate the weights w•;t
using Lic;t = ln Iic;t . Lic;t can be computed directly without evaluating Iic;t .

Algorithm 1 w•;t = EVAL WEIGHT(L••;t, κ•;t−1)

1. For each component c evaluate Hc;t = ln κc;t−1 +
∑

i Lic;t

2. H̄•;t = H•;t −max H•;t

3. w•;t =
exp(H̄•;t)∑
c
exp(H̄•;t)

Remarks 4 wc;t evaluated in this algorithm is the same as defined in (3.10):

wc;t =
exp (Hc;t −maxH•;t)∑
(exp (Hc;t −maxH•;t)) =

exp (Hc;t) exp (maxH•;t)
exp (maxH•;t)

∑
exp (Hc;t)

=

=
κc;t−1βc;t∑
κc;t−1βc;t

=

κc;t−1βc;t∑
κc;t−1∑

κc;t−1βc;t∑
κc;t−1

=
α̂c;t−1βc;t∑
α̂c;t−1βc;t

.



Chapter 4

Problem formulation and general
solution

In this Section, we apply the approximation from section 3.1.2 to the introduced mixture model (3.3). We

seek the statistic Gt that minimizes D

π̂(Θ|Gt−1,

≡Ψt︷ ︸︸ ︷
dt, φt−1 )

∣∣∣
∣∣∣ π(Θ|Gt)


, where

π̂(Θ|Gt−1,Ψt) =
f(dt|φt−1, Θ)π(Θ|Gt−1)∫
f(dt|φt−1,Θ)π(Θ|Gt−1)dΘ

π(Θ|Gt−1) = Diα(κt−1)
d̊,̊c∏

i=1,c=1

πic(Θic|Sic;t−1)

f(dt|φt−1, Θ) =
c̊∑

c=1

αc

d̊∏

i=1

fic(dic;t|ψic;t, Θic).

In this case, the statistic Gt consist of vector κt (of c̊ elements) and multimatrix S••;t of type (d̊, c̊).

The next proposition summarizes the form of π̂(Θ|Gt−1, Ψt).

Proposition 1

π̂(Θ|Gt−1,Ψt) =
c̊∑

c=1

wc;tDiα(κt−1 + δ•c)
d̊,̊c∏

j,r=1
r 6=c

πjr(Θjr|Sjr;t−1)
d̊∏

j=1

πjc(Θjc|SU
jc;t). (4.1)

Proof:

f(dt|φt−1,Θ)π(Θ|Gt−1) =
c̊∑

c=1

αc

d̊∏

i=1

fic(dic;t|ψic;t, Θic)Diα(κt−1)
d̊,̊c∏

j=1,r=1

πjr(Θjr|Sjr;t−1) =

=
c̊∑

c=1

αcDiα(κt−1)βc;t

d̊,̊c∏
j,r=1
r 6=c

πjr(Θjr|Sjr;t−1)
d̊∏

j=1

πjc(Θjc|SU
jc;t)

=
c̊∑

c=1

α̂c;t−1βc;t Diα(κt−1 + δ•c)
d̊,̊c∏

j,r=1
r 6=c

πjr(Θjr|Sjr;t−1)
d̊∏

j=1

πjc(Θjc|SU
jc;t)

︸ ︷︷ ︸
This part is pdf, hence it integrates to 1

It’s clear that the normalizing integral
∫

f(dt|φt−1, Θ)π(Θ|Gt−1)dΘ =
c̊∑

c=1
α̂c;t−1βc;t, hence

π̂(Θ|Gt−1, Ψt) =
c̊∑

c=1

α̂c;t−1βc;t∑c̊
c̃=1 α̂c̃;t−1βc̃;t︸ ︷︷ ︸

= wc;t

Diα(κt−1 + δ•c)
d̊,̊c∏

j,r=1
r 6=c

πjr(Θjr|Sjr;t−1)
d̊∏

j=1

πjc(Θjc|SU
jc;t)

13
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Proposition 2 (Minimization of KL distance) For Gt ≡ {S••;t, κt} minimizing

D
(
π̂(Θ|Gt−1, Ψt)

∣∣∣
∣∣∣ π(Θ|Gt)

)
,

it holds:

κt ∈ Argmin
κt

[
c̊∑

c=1

wc;tD
(
Diα(κt−1 + δ•,c)

∣∣∣
∣∣∣ Diα(κt)

)]
(4.2)

Sic;t ∈ Argmin
Sic;t

[
(1− wc;t)D

(
πic(Θic|Sic;t−1)

∣∣∣
∣∣∣ πic(Θic|Sic;t)

)
+ wc;tD

(
πic(Θic|SU

ic;t)
∣∣∣
∣∣∣ πic(Θic|Sic;t)

)]
.

Proof:
Instead of working with KL distance, we will evaluate the so called Carridge distanceK

(
π̂(Θ|Gt−1, Ψt)

∣∣∣
∣∣∣ π(Θ|Gt)

)
.

Details about this ”distance”, it’s properties and it’s relation to KL distance are discussed in section A.2.

K




c̊∑
c=1

wc;tDiα(κt−1 + δ•c)
d̊,̊c∏

j,r=1
r 6=c

πjr(Θjr|Sjr;t−1)
d̊∏

j=1

πjc(Θjc|SU
jc;t)

∣∣∣
∣∣∣ Diα(κt)

d̊,̊c∏

i=1,c=1

πic(Θic|Sic;t)




prop. 8︷︸︸︷
=

=
c̊∑

c=1

wc;tK


Diα(κt−1 + δ•c)

d̊,̊c∏
j,r=1
r 6=c

πjr(Θjr|Sjr;t−1)
d̊∏

j=1

πjc(Θjc|SU
jc;t)

∣∣∣
∣∣∣ Diα(κt)

d̊,̊c∏

i=1,c=1

πic(Θic|Sic;t)




prop. 9︷︸︸︷
=

=
c̊∑

c=1

wc;t


K

(
Diα(κt−1 + δ•c)

∣∣∣
∣∣∣ Diα(κt)

)
+

d̊,̊c∑
j,r=1
j 6=r

K
(
πjr(Θjr|Sjr;t−1)

∣∣∣
∣∣∣ πjr(Θjr|Sjr;t)

)
+

+
d̊∑

j=1

K
(
πjc(Θjc|SU

jc;t−1)
∣∣∣
∣∣∣ πjc(Θjc|Sjc;t)

)



Let’s now temporarily denote

Kjc = K
(
πjc(Θjc|Sjc;t−1)

∣∣∣
∣∣∣ πjc(Θjc|Sjc;t)

)

KU
jc = K

(
πjc(Θjc|SU

jc;t−1)
∣∣∣
∣∣∣ πjc(Θjc|Sjc;t)

)

The problem becomes the form

c̊∑
c=1

wc;tK
(
Diα(κt−1 + δ•c)

∣∣∣
∣∣∣ Diα(κt)

)
+

c̊∑
c=1

wc;t

d̊,̊c∑
j,r=1
j 6=r

Kjr +
d̊,̊c∑

j,c=1

wc;tKU
jc

prop. 12︷︸︸︷
=

=
c̊∑

c=1

wc;tK
(
Diα(κt−1 + δ•c)

∣∣∣
∣∣∣ Diα(κt)

)
+

d̊,̊c∑

j,c=1

[
wc;tKU

jc + (1− wc;t)Kjc

]

Now it is clear that minimization of this expression can be done in parts.

κt ∈ Argmin
κt

[
c̊∑

c=1

wc;tK
(
Diα(κt−1 + δ•,c)

∣∣∣
∣∣∣ Diα(κt)

)]

Sic;t ∈ Argmin
Slc;t

[
(1− wc;t)Kcj + wc;tKU

cj

]
=

= Arg min
Slc;t

[
(1− wc;t)K

(
πlc(Θlc|Slc;t−1)

∣∣∣
∣∣∣ πlc(Θlc|Slc;t)

)
+ wc;tK

(
πlc(Θlc|SU

lc;t)
∣∣∣
∣∣∣ πlc(Θlc|Slc;t)

)]

The proposition 7 says that the argument minimizing Carridge distance also minimizes KL distance.

Remarks 5 The previous proposition split the overall problem into two subproblems. The subproblem (4.2)
can be solved in general, as presented in section 4.2. Solution of the second subproblem depends on the choice
of the system model. Solution for the Normal models is presented in chapter 5.
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4.1 General algorithm

Following the proposition 2 we sketch the general algorithm of one mixture estimation step. We naturally
suppose that Ψic;t can be obtained from d(t) .

Algorithm 2

Inputs - κ•;t−1, S••;t−1, Ψ••;t
Outputs - κ•;t, S••;t
1. For each factor ic evaluate Lic;t = ln Iic;t

2. w•;t = EVAL WEIGHT(L••;t, κ•;t−1) (Algorithm 1)

3. κt ∈ Argminκt>0

[∑c̊
c=1 wc;tD

(
Diα(κt−1 + δ•c)

∣∣∣
∣∣∣ Diα(κt)

)]

4. For each factor ic evaluate SU
ic;t so that πic(Θic|SU

ic;t) = πic(Θic|Sic;t−1)fic(dic;t|ψic;t,Θic)
Iic

5. For each factor ic evaluate
Sic;t ∈ ArgminSic;t

[
(1− wc;t)D

(
πic(Θic|Sic;t−1)

∣∣∣
∣∣∣ πic(Θic|Sic;t)

)
+ wc;tD

(
πic(Θic|SU

ic;t)
∣∣∣
∣∣∣ πic(Θic|Sic;t)

)]

Steps 1,4,5 depends on the specific choice of the system model, step 2 is solved, and step 3 is discussed
in the next section.

4.2 Minimization with respect to κt

The following proposition converts the problem of KL distance minimization of κ-part to minimization of
an algebraic expression.

Proposition 3 (Minimization with respect to κt)
For κt minimizing

c̊∑
c=1

wc;tD
(
Diα(κt−1 + δ•c)

∣∣∣
∣∣∣ Diα(κt)

)

it holds

κ•;t ∈ Argmin

{
c̊∑

c=1

[
ln (Γ (κc;t))− κc;tξc;t

]
− ln

(
Γ

(
c̊∑

c=1

κc;t

))}

where

ξc;t =

(
ψ0 (κc;t−1) +

wc,t

κc;t−1
− ψ0

(
c̊∑

c=1

κc;t−1 + 1

))
.

Proof: According to proposition 29, which evaluates KL distance of two dirichlet pdfs, it is clear, that we can
minimize

c̊∑
c=1

wc;tZ(κt−1, κt, c) ≡
c̊∑

c=1

wc;tZc;t , where

Z(κt−1, κt, c) =
c̊∑

j=1

[ln (Γ (κj;t))− κj;tψ0 (κj;t−1 + δcj)]−

ln(Γ(

c̊∑
c=1

κc;t)−
c̊∑

j=1

κj;tψ0

(
c̊∑

c=1

κc;t−1 + 1

)
 .

c̊∑
c=1

wc;tZc;t =
c̊∑

j=1

c̊∑
c=1

wc;t

[
ln (Γ (κj;t))− κj;t

(
ψ0 (κj;t−1) +

δc,j

κj;t−1

)]
−

−

ln

(
Γ

(
c̊∑

c=1

κc;t

))
−

c̊∑

j

κj;tψ0

(
c̊∑

c=1

κc;t−1 + 1

)
 =
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=
c̊∑

j=1

[ln (Γ (κj;t))− κj;tψ0 (κj;t−1)]−
c̊∑

j

κj;t

c̊∑
c

δc,j
wc,t

κj;t−1
−

−

ln

(
Γ

(
c̊∑

c=1

κc;t

))
−

c̊∑

j

κj;tψ0

(
c̊∑

c=1

κc;t−1 + 1

)
 =

=
c̊∑

j=1




ln (Γ (κj;t))− κj;t

(
ψ0 (κj;t−1) +

wj,t

κj;t−1
− ψ0

(
c̊∑

c=1

κc;t−1 + 1

))

︸ ︷︷ ︸
ξj;t



− ln

(
Γ

(
c̊∑

c=1

κc;t

))

Proposition 3 yields the following algorithm.

Algorithm 3 κ•;t = NEW KAPPA(w•;t, κ•;t−1)

1. For each component c evaluate ξc;t = ψ0 (κc;t−1) + wc,t

κc;t−1
− ψ0

(∑c̊
c=1 κc;t−1 + 1

)

2. κ•;t ∈ Arg min
{∑c̊

j=1

[
ln (Γ (κj;t))− κj;tξj;t

]
− ln

(
Γ

(∑c̊
c κc;t

))}

Remarks 6

1. Minimization of the term (4.2) can be simply approximated by changing D
(
Diα(κ1)

∣∣∣
∣∣∣ Diα(κ2)

)

into square of the Euclidean norm ||κ1 − κ2||2. The problem is then transformed into minimiza-
tion of min

x

∑
c

wc||x − xc||2 which has explicit solution: x =
∑
c

wcxc. Applied to our case it yields

κt = κt−1 + wt, which is identical to the solution obtained using the quasi-Bayes algorithm [4].

2. The minimization problem in step 2 must be solved numerically or by suitable approximation. For
detailed solution of this problem see [9].

We have completed all steps which can be done on this general level. In the next parts of the paper, we are
dealing with the special case of the factors.



Chapter 5

Application to normal factors

In this chapter, we assume the parameterized factor to be dynamic Gaussian pdf with parameters Θic ≡
(θic, ric), where θic is so called vector of regression coefficients and ric is noise variance of the factor.

fic(dic;t|ψic;t,Θic) = Ndic;t(θ
′
icψic;t, ric) =

1√
2πric

exp
(
− (dic;t − θ′icψic;t)2

2ric

)

We don’t need to introduce a shift in the mean value, because the regression vector can contain number
1. See Remarks 2. The shifting constant is then placed to the corresponding place of the vector of regression
coefficients.

The prior conjugate to this model is the Gauss inverse Wishart pdf with parameters Sic;t = (νic;t, Vic;t),
where νic;t is scalar count of degrees of freedom and Vic;t is so called extended information matrix (symmetric,
positive definite, of type (Ψ̊ic;t, Ψ̊ic;t) ).

πic(Θic|Sic;t) = GiWθic,ric(Vic;t, νic;t) ∝ r
−0.5(νic;t+ψ̊ic;t+2)
ic exp

{
− 1

2ric
tr (Vic;t[−1, θ′ic]

′[−1, θ′ic])
}

The details and important properties of this pdf are outlined in the appendix C. Note that the matrix
Vic can be equivalently manipulated through its L′DL decomposition (i.e. with lower triangular matrix
Lic and diagonal matrix Dic which fulfills the relation Vic = L′icDicLic). Next, the matrices Lic and Dic

can be equivalently expressed via matrix Cic, vector θ̂ic and scalar bdDic. The relations between individual
representations can be found in section C.2.2.

Because all three representations described above are equivalent, we will not formally distinguish between
them. If Vic is a statistic of GiW factor, under the terms Lic, Dic, θ̂ic, Cic,

bdDic we automatically mean the
parts of corresponding representation of the matrix Vic.

Now, we specify the steps 1,4,5 in the general algorithm 2 for Normal factors.

5.1 Evaluating Iic;t

Iic is defined as

Iic;t =
∫

fic(dic;t|ψic;t, Θic)πic(Θic|Sic;t−1)dΘic =
∫
Ndic;t(θ

′
icψic;t, ric)GiWθic,ric(Vic;t−1, νic;t−1)dθicdric.

According to the proposition 24, Iic;t is for normal factors evaluated as:

Iic;t =
Γ(0.5(νic;t−1 + 1))

[ bdDic;t−1(1 + ζic;t)
]−0.5

√
πΓ(0.5νic;t−1)

(
1 +

ê2
ic;t

bdDic;t−1(1+ζic;t)

)0.5(νic;t−1+1)
(5.1)

where

êic;t ≡ dic;t − θ̂′ic;t−1ψic;t ≡ prediction error
ζic;t ≡ ψ′ic;tCic;t−1ψic;t

Remarks 7 According to remarks 3, we need to evaluate Lic;t = ln Iic;t. It can be done efficiently via the
product form of (5.1). The following algorithm summarizes this task. Recall that Ψic;t = [dic;t, ψic;t].

17
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Algorithm 4 (evaluation of Lic;t) Lic;t = FACNORM(Cic;t−1, θ̂ic;t−1,
bdDic;t−1, νic;t−1, Ψic;t)

1. Evaluate ζic;t = ψ′ic;tCic;t−1ψic;t

2. Evaluate êic;t ≡ dic;t − θ̂′ic;t−1ψic;t

3. Evaluate

Lic;t = ln Iic;t = ln Γ (0.5(νic;t−1 + 1))− ln Γ (0.5νic;t−1)− 0.5 ln
(
bdDic;t−1

)
− 0.5 ln (1 + ζic;t)−

−0.5(νic;t−1 + 1) ln

(
1 +

ê2
ic;t

bdDic;t−1(1 + ζic;t)

)
− 0.5 ln (π)

Remarks 8 Function ln Γ can be evaluated without computing Γ first [10].

5.2 Evaluating SU
ic;t

According to the proposition 23, SU
ic;t ≡ [V U

ic , νU
ic ] can be evaluated in the following way:

V U
ic;t = Vic;t−1 + Ψic;tΨ′ic;t (5.2)

νU
ic;t = νic;t−1 + 1

Using the proposition 28, the relation (5.2) can be in the following way rewritten into the C, θ̂, bdD repre-
sentation:

CU
ic;t = Cic;t−1 − 1

1 + ζic;t
zic;tz

′
ic;t , θ̂U

ic;t = θ̂ic;t−1 +
êic;t

1 + ζic;t
zic;t

bdDU
ic;t = bdDic;t−1 +

ê2
ic;t

1 + ζic;t
zic;t = Cic;t−1ψic;t

5.3 Minimizing the KL distance

According to the proposition 2, we need to minimize

(1− wc;t)D
(
πic(Θic|Sic;t−1)

∣∣∣
∣∣∣ πic(Θic|Sic;t)

)
+ wc;tD

(
πic(Θic|SU

ic;t)
∣∣∣
∣∣∣ πic(Θic|Sic;t)

)

for each factor i within the component c. The minimization can be done factor-vise (see alg. 2), thus we
can simplify the notation by considering one particular factor.

Sic;t−1 ≡ (Vic;t−1, νic;t−1) → (V, ν)
Sic;t ≡ (Vic;t, νic;t) → (V ♠, ν♠)
SU

ic;t ≡ (V U
ic;t−1, ν

U
ic;t−1) → (V U , νU )

wc;t → w
ψic;t, Ψic;t, dt → ψ, Ψ, d

Thus, we minimize

min
V ♠,ν♠

{
(1− w)D

(
GiWθ,r(V, ν)

∣∣∣
∣∣∣ GiWθ,r(V ♠, ν♠)

)
+ wD

(
GiWθ,r(V U , νU )

∣∣∣
∣∣∣ GiWθ,r(V ♠, ν♠)

) }
. (5.3)

Proposition 4 For V ♠ ≡ (C♠, θ̂♠, bdD♠), ν♠ minimizing (5.3) it holds:

(ν♠, bdD♠) = arg min
ν♠, bdD♠





(1− w)M
(
ν, bdD, ν♠, bdD♠

)
+ wM

(
νU , bdDU , ν♠, bdD♠

)

︸ ︷︷ ︸
MO(w,ν, bdD,νU , bdDU ,ν♠, bdD♠)





(5.4)

(θ̂♠, C♠) = arg min
θ̂♠,C♠





(1− w)G
(
θ̂, C, ν, bdD, θ̂♠, C♠

)
+ wG

(
θ̂U , CU , νU , bdDU , θ̂♠, C♠

)

︸ ︷︷ ︸
GO(θ̂,C,ν, bdD,θ̂U ,CU ,νU , bdDU ,θ̂♠,C♠)





(5.5)
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where

M
(
ν, bdD, ν♠, bdD♠

)
= ln

(
Γ

(
0.5ν♠

))
+ 0.5ν♠ ln

( bdD
bdD♠

)
− 0.5ν♠ψ0 (0.5ν) + 0.5

ν bdD♠
bdD

G
(
θ̂, C, ν, bdD, θ̂♠, C♠

)
= −0.5 ln

∣∣∣CC♠
−1

∣∣∣ + 0.5tr
[
CC♠

−1
]

+ 0.5
ν
bdD

(
θ̂ − θ̂♠

)′
C♠

−1
(
θ̂ − θ̂♠

)

Proof: We use the proposition 22, which evaluates the KL distance of two GiW pdfs. The term const means all
elements not depending on optimized variables (with superscript ♠ ).

D
(
GiWθ,r(V, ν)

∣∣∣
∣∣∣ GiWθ,r(V ♠, ν♠)

)
= const + ln

(
Γ

(
0.5ν♠

))− 0.5 ln
∣∣∣CC♠

−1
∣∣∣ + 0.5ν♠ ln

( bdD
bdD♠

)

−0.5ν♠ψ0 (0.5ν) + 0.5tr
[
CC♠

−1
]

+

+0.5
ν
bdD

[(
θ̂ − θ̂♠

)′
C♠

−1
(
θ̂ − θ̂♠

)
+ bdD♠

]
.

Now we give together the elements containing ν♠ a bdD♠.

D = const +
{

ln
(
Γ

(
0.5ν♠

))
+ 0.5ν♠ ln

( bdD
bdD♠

)
− 0.5ν♠ψ0 (0.5ν) + 0.5

ν bdD♠
bdD

}
+

+
{
−0.5 ln

∣∣∣CC♠
−1

∣∣∣ + 0.5tr
[
CC♠

−1
]

+ 0.5
ν
bdD

(
θ̂ − θ̂♠

)′
C♠

−1
(
θ̂ − θ̂♠

)}
=

= const + M(ν, bdD, ν♠, bdD♠) + G(θ̂, C, ν, bdD, θ̂♠, C♠)

Remarks 9

1. The proposition 4 changes the problem of minimizing weighted sum of KL distance to two independent
algebraic subproblems. First of them is minimization on two dimensional space (ν♠, bdD♠), the second
is more complex. Both subproblems are solved in next sections.

2. If we approximate D
(
GiWθ,r(V, ν)

∣∣∣
∣∣∣ GiWθ,r(V ♠, ν♠)

)
with ||V − V ♠||2 + ||ν − ν♠||2, we can quickly

achieve the result V ♠ = V + wΨΨ′, ν♠ = ν + w, which is exactly the same as the quasi-Bayes update
[4].

5.3.1 Searching for bdD♠ and ν♠

Proposition 5 For ν♠, bdD♠ minimizing (5.3) it holds:

ν♠
bdD♠ = (1− w)

ν
bdD

+ w
νU

bdDU

ψ0

(
0.5ν♠

)− ln
(
0.5ν♠

)
= Υ, where (5.6)

Υ ≡ (1− w)
(
ψ0 (0.5ν)− ln

(
bdD

))
+ w

(
ψ0

(
0.5νU

)− ln
(
bdDU

))
−

− ln
(

0.5(1− w)
ν
bdD

+ 0.5w
νU

bdDU

)
(5.7)

Proof: We want to find minimum the of the function MO
(
w, ν, bdD, νU , bdDU , ν♠, bdD♠)

from (5.4). We will
use the differential approach. The general proposition on minimizing 2-variable functions [10] says:

If the function f(x, y) fulfills

∂f

∂x
(x0, y0) = 0 (5.8)

∂f

∂y
(x0, y0) = 0 (5.9)
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∂2f

∂x2
(x0, y0) > 0 (5.10)

∂2f

∂y2
(x0, y0) > 0 (5.11)

∣∣∣∣∣
∂2f

∂x∂y (x0, y0) ∂2f
∂x2 (x0, y0)

∂2f
∂y2 (x0, y0) ∂2f

∂x∂y (x0, y0)

∣∣∣∣∣ < 0 (5.12)

then it has the local minimum in the point (x0, y0).

First, we will solve the equations (5.8),(5.9).

0 = (1− w)
∂M(ν, bdD, ν♠, bdD♠)

∂ν♠
+ w

∂M(νU , bdDU , ν♠, bdD♠)
∂ν♠

(5.13)

0 = (1− w)
∂M(ν, bdD, ν♠, bdD♠)

∂ bdD♠ + w
∂M(νU , bdDU , ν♠, bdD♠)

∂ bdD♠ (5.14)

Using the relation (B.2), the equation (5.14) becomes the form

0 = (1− w)0.5
(

ν
bdD

− ν♠
bdD♠

)
+ w0.5

(
νU

bdDU
− ν♠

bdD♠

)
(5.15)

ν♠
bdD♠ = (1− w)

ν
bdD

+ w
νU

bdDU

denote︷︸︸︷
= XS (5.16)

Using the relation (B.3) the equation (5.13) yields

0 = (1− w)0.5
(

ψ0

(
0.5ν♠

)− ψ0 (0.5ν) + ln
( bdD
bdD♠

))
+ w0.5

(
ψ0

(
0.5ν♠

)− ψ0

(
0.5νU

)
+ ln

( bdDU

bdD♠

))

ψ0

(
0.5ν♠

)− ln
(
bdD♠

)
= (1− w)

(
ψ0 (0.5ν)− ln

(
bdD

))
+ w

(
ψ0

(
0.5νU

)− ln
(
bdDU

))

using (5.16) we get:

bdD♠ =
0.5ν♠

0.5XS

ln
(
bdD♠

)
= ln

(
0.5ν♠

)− ln
(
0.5XS

)

So that

ψ0

(
0.5ν♠

)− ln
(
0.5ν♠

)
= (1− w)

(
ψ0 (0.5ν)− ln

(
bdD

))
+ w

(
ψ0

(
0.5νU

)− ln
(
bdDU

))
− ln

(
0.5XS

)
︸ ︷︷ ︸

Υ

The proposition 15, proves that Υ < 0. It, together with the proposition 10 implies that the equation (5.6) has
always unique positive solution.

Now we have to check the conditions (5.10) and (5.11).

∂2MO

∂ bdD♠2

(B.4)︷︸︸︷
= (1− w)

0.5ν♠

bdD♠2 + w
0.5ν♠

bdD♠2 =
0.5ν♠

bdD♠2 > 0

∂2MO

∂ν♠2

(B.5)︷︸︸︷
= (1− w)0.25ψ1

(
0.5ν♠

)
+ w0.25ψ1

(
0.5ν♠

)
= 0.25ψ1

(
0.5ν♠

)
> 0

The second condition holds, because the trigamma function is for positive arguments positive (see proposition
11).
Now we need to evaluate the determinant (5.12)

∂2MO

∂ν♠∂ bdD♠

(B.6)︷︸︸︷
= −(1− w)

0.5
bdD♠ − w

0.5
bdD♠ = − 0.5

bdD♠∣∣∣∣∣
∂2f

∂x∂y (x0, y0) ∂2f
∂x2 (x0, y0)

∂2f
∂y2 (x0, y0) ∂2f

∂x∂y (x0, y0)

∣∣∣∣∣ =
0.25
bdD♠2 −

0.5ν♠

bdD♠2 0.25ψ1

(
0.5ν♠

)
=

=
0.25
bdD♠2

[
1− 0.5 ∗ ν♠ψ1

(
0.5ν♠

)]
< 0
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The last inequality holds, because the function xψ1 (x) > 1, ∀x > 0 (See proposition 11).

Straightforward application of Proposition 5 yields the following algorithm. Recall that Ψ = [d, ψ].

Algorithm 5 (Updating bdD and ν)
( bdD♠, ν♠

)
= UPDATE DFM(w, C, ν, θ̂, bdD, Ψ)

1. ê = d− θ̂′ψ, ζ = ψ′Cψ

2. νU = ν + 1, bdDU = bdD + ê2

1+ζ

3. XS = (1− w) ν
bdD

+ w νU

bdDU

4. Υ = (1− w)
[
ψ0 (0.5ν)− ln

( bdD)]
+ w

[
ψ0

(
0.5νU

)− ln
( bdDU

)]− ln
(
0.5XS

)

5. Solve the equation for ν♠: ln
(
0.5ν♠

)− ψ0

(
0.5ν♠

)
= Υ

6. bdD♠ = ν♠
XS

Remarks 10

1. Step 5 must be solved numerically or using some suitable approximation.

For detail description of the numerical solution and for proof of unicity of the solution see [9].

5.3.2 Searching for θ̂♠ and C♠

Proposition 6 For θ̂♠ and C♠ minimizing (5.3) it holds:

C♠ = C + wczz′ (5.17)

θ̂♠ = θ̂ + wθz (5.18)

where

z = Cψ, ê = d− θ̂′ψ, ζ = ψ′Cψ

wc =
[

ê2

(1 + ζ)2
XXU

X + XU
− w

1 + ζ

]
, wθ =

[
ê

1 + ζ

XU

X + XU

]

X = (1− w)
ν
bdD

, XU = w
νU

bdDU

Proof:
We again use the differential calculus to find the minimizer of function

GO
(
θ̂, C, ν, bdD, θ̂U , CU , νU , bdDU , θ̂♠, C♠

)
= (1−w)G

(
θ̂, C, ν, bdD, θ̂♠, C♠

)
+wG

(
θ̂U , CU , νU , bdDU , θ̂♠, C♠

)
.

According to the form of function G, it is better to find C♠
−1

rather than C♠.

0 = (1− w)
∂G

(
θ̂, C, ν, bdD, θ̂♠, C♠

)

∂C♠−1 + w
∂G

(
θ̂U , CU , νU , bdDU , θ̂♠, C♠

)

∂C♠−1 (5.19)

0 = (1− w)
∂G

(
θ̂, C, ν, bdD, θ̂♠, C♠

)

∂θ̂♠
+ w

∂G
(
θ̂U , CU , νU , bdDU , θ̂♠, C♠

)

∂θ̂♠
(5.20)

Using the relation (B.8) , the equation (5.20) yields:

0 = (1− w)
ν
bdD

C♠
−1′ (

θ̂ − θ̂♠
)

+ w
νU

bdDU
C♠

−1′ (
θ̂U − θ̂♠

)

XS θ̂♠ = (1− w)
ν
bdD︸ ︷︷ ︸

X

θ̂ + w
νU

bdDU︸ ︷︷ ︸
XU

θ̂U

θ̂♠ =
(

X

XS
θ̂ +

XU

XS
(θ̂ + hUz)

)
= θ̂ + hU

XU

XS
z (5.21)
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We used the relation θ̂U = θ̂ + hUz which was pronounced in section 5.2.
Using the relation (B.7) , the equation (5.19) yields:

0 = (1− w)
[
0.5(C − C♠) + 0.5

ν
bdD

(
θ̂ − θ̂♠

)′ (
θ̂ − θ̂♠

)]
+

+w

[
0.5(CU − C♠) + 0.5

νU

bdDU

(
θ̂U − θ̂♠

)′ (
θ̂U − θ̂♠

)]

C♠ = (1− w)C + wCU + X
(
θ̂ − θ̂♠

)′ (
θ̂ − θ̂♠

)
+ XU

(
θ̂U − θ̂♠

)′ (
θ̂U − θ̂♠

)

According to section 5.2 it holds:

θ̂U = θ̂ + hUz , hU =
ê

1 + ζ
(5.22)

CU = C + gUzz′ , gU = − 1
1 + ζ

(5.23)

z = Cψ (5.24)

It holds:
(
θ̂ − θ̂♠

)
= θ̂ −

(
X

XS
θ̂ +

XU

XS
(θ̂ + hUz)

)
= −hU

XU

XS
z (5.25)

(
θ̂U − θ̂♠

)
= θ̂ + hUz −

(
X

XS
θ̂ +

XU

XS
(θ̂ + hUz)

)
= −hU

(
XU

XS
− 1

)
z (5.26)

Hence

C♠ = C + wgUzz′ + X

(
hU

XU

XS

)2

zz′ + XU

(
hU

(
XU

XS
− 1

))2

zz′

C♠ = C +
[
wgU + h2

U

XXU

XS

]
zz′ (5.27)

Simplifying the relations (5.27) and (5.21) we get:

C♠ = C +
[

ê2

(1 + ζ)2
XXU

X + XU
− w

1 + ζ

]
zz′

θ̂♠ = θ̂ +
[

ê

1 + ζ

XU

XS

]
z

We must now check if the obtained matrix C♠ is positive definite. The proposition 18 proves that.
We also have to prove that the result is a minimum. I.e we need to show the negative definitness of the Hessian
matrix.
Because the function GO is a matrix function, we must obtain its hessian by formal differentiation with respect

to some vector. Let’s define vector x = [vecC♠
−1; θ̂♠]

Hence we want to investigate the hessian of function

GO
(
θ̂, C, ν, bdD, θ̂U , CU , νU , bdDU , x

)
≡ GO

(
θ̂, C, ν, bdD, θ̂U , CU , νU , bdDU , θ̂♠, C♠

)
.

According to the relation (B.10) it holds:

∂2G(· · · , x)
∂x∂x′

=


 0.5C♠ ⊗ C♠ − ν

bdD
I ⊗

(
θ̂ − θ̂♠

)′

− ν
bdD

I ⊗
(
θ̂ − θ̂♠

)′
ν
bdD

C♠
−1




∂2GO(· · · , x)
∂x∂x′

= (1− w)


 0.5C♠ ⊗ C♠ − ν

bdD
I ⊗

(
θ̂ − θ̂♠

)′

− ν
bdD

I ⊗
(
θ̂ − θ̂♠

)′
ν
bdD

C♠
−1


 +

+ w


 0.5C♠ ⊗ C♠ − νU

bdDU I ⊗
(
θ̂U − θ̂♠

)′

− νU

bdDU I ⊗
(
θ̂U − θ̂♠

)′
νU

bdDU C♠
−1
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The relations (5.25) and (5.26)gives:

(
θ̂ − θ̂♠

)
= −hU

XU

XS
z

(
θ̂U − θ̂♠

)
= −hU

(
XU

XS
− 1

)
z

using it, we get:

∂2GO(· · · , x)
∂x∂x′

=


 0.5C♠ ⊗ C♠

=0︷ ︸︸ ︷[
XhU

XU

XS
+ XUhU

(
XU

XS
− 1

)]
I ⊗ z′

[
XhU

XU

XS + XUhU

(
XU

XS − 1
)]

I ⊗ z XSC♠
−1


 =

=
(

0.5C♠ ⊗ C♠ 0
0 XSC♠

−1

)

(XS)C♠−1
is positive definite, because C♠ is positive definite and XS is a positive scalar.

The sentences about Kronecker product proves that C♠ ⊗ C♠ is also positive definite.
Now is the proposition proven.

Algorithm 6 (Updating θ̂ and C) (C♠, θ̂♠) = UPDATE C(w,C, ν, θ̂, bdD, Ψ)

1. ê = d− θ̂′ψ, ζ = ψ′Cψ

2. νU = ν + 1, bdDU = bdD + ê
1+ζ

3. X = (1− w) ν
bdD

, XU = w νU

bdDU

4. z = Cψ

5. C♠ = C +
[

ê2

(1+ζ)2
XXU

X+XU − w
1+ζ

]
zz′

6. θ̂♠ = θ̂ +
[

ê
1+ζ

XU

XS

]
z

5.3.3 Algorithmic Aspects

We become some relations for updating the statistics of GiW distributions in its C, θ̂, bdD representation.
Because the current solution uses the L′DL representation of the statistics, we need to formulate the relations
5,6 in algorithm 6 in the same representation. We can use the proposition 26. It’s clear that the relations
from algorithm 6 can be formulated in the following form : bψV ♠ = bψV + w1ψψ′, bdψV ♠ = bdψV + w2dψ,
where the scalars w1, w2 are obtained by solving the equations:

wC = − w1

1 + w1ζ

wθ̂ =
w2d + w1(ê− d)

1 + w1ζ

This equations have simple solution

w1 = − wC

1 + wCζ

w2 =
wθ̂(1 + w1ζ)− w1(ê− d)

d
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5.4 Resulting PB algorithm

In this Section, we summarize all the elaborated parts into one consistent algorithm.

Algorithm 7 (PB)

Inputs - κ•;t−1, C••;t−1, θ̂••;t−1,
bdD••;t−1, ν••;t−1, Ψ••;t

Outputs - κ•;t, C••;t, θ̂••;t, bdD••;t, ν••;t

1. For each factor ic: Lic;t = FACNORM(Cic;t−1, θ̂ic;t−1,
bdDic;t−1, νic;t−1, Ψic;t) . ( algorithm 4)

2. Evaluate w•;t = EVAL WEIGHT(L••;t, κ•;t−1). (algorithm 1)

3. Evaluate κ•;t = NEW KAPPA(w•;t, κ•;t−1). (algorithm 3)

4. For each factor ic:
( bdDic;t, νic;t

)
= UPDATE DFM(wc;t, Cic;t−1, νic;t−1, θ̂ic;t−1,

bdDic;t−1, Ψic;t).
(algorithm 5)

5. For each factor ic:
(
Cic;t, θ̂ic;t

)
= UPDATE C(wc;t, Cic;t−1, νic;t−1, θ̂ic;t−1,

bdDic;t−1,Ψic;t).
(algorithm 6)



Chapter 6

Comparison of PB and QB algorithms

In this Section, we compare the performance of the PB algorithm with the performance of the standard QB
algorithm. The QB algorithm has been used extensively in real-life applications [11], and it is proven to be
reliable and computationally efficient. Therefore, we study differences of the PB algorithm from the QB in
terms of numerical properties and quality of estimation. The algorithms are based on different objective
criteria for which they are optimal. Therefore, comparison of their behaviour is presented in a subjective
way: arguing what seem to be more ”rational”.

In order to compare the analytical properties, we review the QB algorithm. Then, we investigate the
differences between the two algorithms from analytical and computational point of view. Those finding are
supported by experimental results.

6.1 The Quasi-Bayes algorithm

The general QB algorithm uses the following rule(see [4]):

κt = κt−1 + wt

πic(Θic|Sic;t) ∝ [fic(dic;t|ψic;t,Θic)]
wc;t πic(Θic|Sic;t−1)

Let’s mark the statistics corresponding to the QB algorithm by the subscript Q. Application of the
general algorithm to the case with Normal factors yields:

VQ = V + wΨΨ′, νQ = ν + w, κQ•;t = κ•;t−1 + w•;t (6.1)

We would receive exactly this result, if we approximate the KL distances in the PB algorithm with
squares of euclidian norms of the parameter difference (see remarks 6 and 9).

For better comparison of the QB algorithm with the PB algorithm, we rewrite the relations (6.1) in terms
of C, θ̂, bdD:

CQ = C + wQCzz′ (6.2)

θ̂Q = θ̂ + wQθz , bdDQ = bdD +
wê2

1 + wζ
(6.3)

where

z = Cψ, ê = d− θ̂′ψ, ζ = ψ′Cψ

wQC =
−w

1 + wζ
, wQθ =

wê

1 + wζ

6.2 Analytical comparison

Nature of both algorithms allows us to divide the analytical investigation into two parts. In the first part,
we investigate the update of factors. This part is discussed next. In the second part, computing of the new
component weights can be studied, see [9].

25
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a) wC , wQC b) wθ, wQθ

w
C

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

w
θ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−9

−8

−7

−6

−5

−4

−3

−2

−1

0
x 10

−3

w w

c) ν♠, νQ d) bdD♠, bdDQθ

ν

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
165.2

165.4

165.6

165.8

166

166.2

166.4

bd
D

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

9.7

9.72

9.74

9.76

9.78

9.8

w w

Figure 6.1: Similar behavior of the QB and PB algorithms for case a)

The figure shows the parameters (ν♠, νQ), ( bdD♠, bdDQ), (wC , wQc), (wθ, wQθ) as the func-
tions of w ∈< 0, 1 > for the case a) ν = 165.39, bdD = 9.77, ê = −0.0140, ζ = 0.59. The
parameters related to PB algorithm are plotted with the thick line. In this case the difference
between the QB and PB algorithms is rather small.

6.2.1 Differences of the algorithms

Note that the expressions for the QB update (6.2), (6.3) are very similar to the expressions for the PB
update (5.17),(5.18). Hence, it suffice to investigate differences between the pairs (ν♠, νQ), ( bdD♠, bdDQ)
(wC , wQC), (wθ, wQθ). This involves observation of 4 scalar variables, no matter what is the full dimension
of the parameters.

We illustrates differences in behavior on the following examples. Consider the following situations:

a) ν = 165.39, bdD = 9.77, ê = −0.0140, ζ = 0.59

b) ν = 102.82, bdD = 1.14, ê = −0.7386, ζ = 1.20

The figures 6.1 and 6.2 shows the parameters (ν♠, νQ), ( bdD♠, bdDQ), (wC , wQc), (wθ, wQθ) as functions
of w ∈< 0, 1 >. The parameters related to the PB algorithm are plotted with the thick line. It is clear, that
values obtained using PB equals to those of QB for w = 0, w = 1.

6.2.2 Bahaviour of the PB algorithm

In this Section, we study two particular factors and evaluate marginal distributions of their updates provided
by both algorithms. For better comparison, we will also show the marginal pdf of the correct Bayesian update
(4.1) which is a mixture of two GiW factors.

Consider the GiW factor π(Θ|S) = GiWθ,r(V, ν) and denote the associated densities as follows:

trial update π(Θ|SU ) = GiWθ,r(V U , νU ) V U = V + ΨΨ′, νU = ν + 1
QB update π(Θ|SQ) = GiWθ,r(VQ, νQ) VQ = V + wΨΨ′, νQ = ν + w
PB update π(Θ|S♠) = GiWθ,r(V ♠, ν♠) result of the algorithms 5 and 6
correct update π̂(Θ) = (1− w)π(Θ|S) + wπ(Θ|SU )

Consider the statistics V, ν of the GiW factor, updating weights w and actual data vectors of the factor
Ψ, to be:
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a) wC , wQC b) wθ, wQθ

w
C

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5

2

2.5

w
θ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

w w
c) ν♠, νQ d) bdD♠, bdDQθ

ν

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
70

75

80

85

90

95

100

105

bd
D

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

w w

Figure 6.2: Different behavior of the QB and PB algorithms for case b)

The figure shows the parameters (ν♠, νQ), ( bdD♠, bdDQ), (wC , wQc), (wθ, wQθ) as the func-
tions of w ∈< 0, 1 > for the case b) ν = 102.82, bdD = 1.14, ê = −0.7386, ζ = 1.20. The
parameters related to the PB algorithm are plotted with the thick line. In this case, the
difference between the QB and PB algorithms is significant.

a) b)

V =
(

1.16 0.12
0.12 0.83

)
V =

(
1.96 −1.47
−1.47 6.07

)

ν = 102.82 ν = 108.06
Ψ = (−0.59 1)′ Ψ = (−0.79 1)′

w = 0.43 w = 0.39

The figures 6.3 and 6.4 shows marginal pdfs of all discussed densities for both cases. From visual
inspection of these figures, we can conclude that the PB algorithm can provide results significantly different
from those of the QB algorithm. We also consider behavior of the PB algorithms as reasonable.

6.3 Experimental comparison

Intensive tests consisting of 1396 data sets were done. Data used for this test represent various types of
systems (static, dynamic, multidimensional) and are part of standard testing procedure of new algorithms.
As a quality measure, we used the likelihood [2] of the estimated model. For each set, we evaluated a criterion
h which is the difference between the likelihood obtained by the PB algorithm and the QB algorithm. (i.e
h > 0 if the PB algorithm was better.) The table 6.1 shows the results. Mean value of h over all sets is 6.18.

6.4 Comparing of computational complexity

We compare all 5 steps of the PB algorithm (algorithm 7).

1. This step is needed in both algorithms.

2. This step is needed in both algorithms.

3. We have to find minimizer of a convex function with c̊ variables. There exist a good approximation of
the starting point for iterative numerical algorithm, which warrants quick solution of this task [9].

4. Solution of one-dimensional nonlinear equation must be found. However, a good approximation which
always leads to solving the equation in a few steps was found [9].

5. This step has the same complexity in both algorithms.
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a) π(Θ|S), π(Θ|SU ), π̂(θ) b) π(Θ|S♠), π(Θ|SQ), π̂(θ)
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Figure 6.3: Marginal pdfs of the QB and PB updates for the case a)

The left part shows original factor (dashdot), its trial update (dotted) and the correct
Bayesian update (thick), i.e. the mixture of the two mentioned factors. The right part
shows how the QB update (dashdot) and the PB update (solid) approximates the correct
Bayesian update (thick). It can be seen that the PB update is in this case flatter then the
QB update which concentrates on smaller interval.

a) π(Θ|S), π(Θ|SU ), π̂(θ) b) π(Θ|S♠), π(Θ|SQ), π̂(θ)
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Figure 6.4: Marginal pdfs of the QB and PB updates for the case b)

The left part shows original factor (dashdot), its trial update (dotted) and the correct
Bayesian update (thick), i.e. the mixture of the two mentioned factors. The right part
shows how the QB update (dashdot) and the PB update (solid) approximates the correct
Bayesian update (thick). It can be seen that the PB update in this case better approximates
the correct pdf.

condition number of sets percentage
h > 0 1125 80.6%
h < 0 271 19.4%

abs(h) < 2 1126 80.6%
h > 2 251 18.0%

h < −2 19 1.4%

Table 6.1: Results of experimental comparison
The table shows some conditions for h
and number of sets fulfilling each con-
dition.
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Addressing the previous considerations, we conclude that computational cost of numerical evaluation of
the PB algorithm is comparable to the computational cost associated with the QB algorithms. Detailed case
study of the computational costs of both algorithms can be found in [12].
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Conclusions
This work describes a novel and efficient algorithm for recursive estimation of finite probabilistic mixture.

The algorithm has the potential of providing more accurate results than the well-established quasi-Bayes es-
timator. This improvement is important as mixtures represent a universal approximating tool for modelling
of non-linear stochastic systems. Therefore, mixture models can be used to address complex control and
decision-making problems in changing environments, such as multiple-participants decision making. Each
participant (or group of participants) can be modelled by a component of the overall mixture model. All
subsequent decision-making task can be easily formalized within the consistent formal framework of proba-
bilistic mixture models. We believe, that the algorithms presented in this paper will be an important part
of this framework.
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Appendix A

Proximity meassures

A.1 Kullback-Leibler distance

Kullback-Leibler distance measures well proximity of a pair of pdfs. Let f, g be a pair of pdfs acting on a
common set x∗. Then, the Kullback-Leibler distance D(f ||g) is defined by the formula

D(f ||g) ≡
∫

x∗
f(x) ln

(
f(x)
g(x)

)
dx. (A.1)

For conciseness, the Kullback-Leibler distance is referred to as the KL distance.

A.2 Kerridge distance

We can rearrange the expression of KL distance:
∫

x∗
f(x) ln

(
f(x)
g(x)

)
dx =

∫

x∗
f(x) ln (f(x)) dx−

∫

x∗
f(x) ln (g(x)) dx (A.2)

It’s clear that the first element doesn’t influence the result when minimizing the KL distance with respect
to the function g(x). We define so called Kerridge distance:

Let f, g be a pair of pdfs acting on a common set x∗. Then, the Kerridge distance K(f ||g) is defined by the
formula

K(f ||g) ≡ −
∫

x∗
f(x) ln (g(x)) dx. (A.3)

For conciseness, the Kerridge distance distance is referred to as the K distance.

Proposition 7
Argmin

g
D(f ||g) = Arg min

g
K(f ||g) (A.4)

Proof:

min
g
D(f ||g) = min

g

∫
f ln

f

g
= min

g

{∫
f ln f −

∫
f ln g

}
=

∫
f ln f + min

g

{
−

∫
f ln g

}

Proposition 8

K
(

c̊∑
c=1

αcfc(x)
∣∣∣
∣∣∣ g(x)

)
=

c̊∑
c=1

αcK
(
fc(x)

∣∣∣
∣∣∣ g(x)

)
(A.5)

Proof:

K
(

c̊∑
c=1

αcfc(x)
∣∣∣
∣∣∣ g(x)

)
= −

∫ c̊∑
c=1

αcfc(x) ln(g(x)) =
c̊∑

c=1

αc

{
−

∫
fc(x) ln(g(x))

}
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Proposition 9
K

(
f(x)h(y)

∣∣∣
∣∣∣ g(x)v(y)

)
= K

(
f(x)

∣∣∣
∣∣∣ g(x)

)
+K

(
h(y)

∣∣∣
∣∣∣ v(y)

)
(A.6)

Proof:

K
(
f(x)h(y)

∣∣∣
∣∣∣ g(x)v(y)

)
= −

∫
f(x)h(y) ln

(
g(x)v(y)

)
dxdy = −

∫
f(x)h(y)

(
ln(g(x)) + ln(v(y))

)
dxdy =

= −
∫

f(x)h(y) ln(g(x))dxdy −
∫

f(x)h(y) ln(v(y))dxdy =

= −
∫

f(x) ln(g(x))dx−
∫

h(y) ln(v(y)dy



Appendix B

Auxiliary propositions

B.1 Properties of the digamma and trigamma functions

digamma ψ0 (x) =
d ln (Γ (x))

dx

trigamma ψ1 (x) =
dψ0 (x)

dx

Proposition 10 (Properties of the function h(x) = ψ0 (x)− ln (x))

• h(x) is for positive arguments increasing and negative.

• h((0, +∞)) = (−∞, 0)

Proposition 11 (Properties of the function ψ1 (x))

• ψ1 (x) is for positive arguments decreasing and positive.

• xψ1 (x) > 1,∀x > 0

Remarks 11 Proofs of the presented propositions can be found for example in [9].

B.2 Other relations

Proposition 12 Let
∑c̊

c=1 wc;t = 1. It holds:

d̊,̊c∑

j,c=1

wc;tKU
jc +

c̊∑
c=1

wc;t

d̊,̊c∑
j,r=1
r 6=c

Kjr =
d̊,̊c∑

j,c=1

[
wc;tKU

jc + (1− wc;t)Kjc

]
(B.1)

Proof:

d̊,̊c∑

j,c=1

wc;tKU
jc +

c̊∑
c=1

wc;t

d̊,̊c∑
j,r=1
r 6=c

Kjr =
d̊,̊c∑

j,c=1

wc;tKU
jc +

c̊∑
c=1

wc;t




d̊,̊c∑

j,r=1

Kjr −
d̊∑

j=1

Kjc


 =

=
d̊,̊c∑

j,c=1

wc;tKU
jc +

d̊,̊c∑

j,r=1

Kjr −
d̊,̊c∑

j,c=1

wc;tKjc =
d̊,̊c∑

j,c=1

[
wc;tKU

jc + (1− wc;t)Kjc

]

Proposition 13 Let function M be defined as follows:

M
(
ν, bdD, ν♠, bdD♠

)
= ln

(
Γ

(
0.5ν♠

))
+ 0.5ν♠ ln

( bdD
bdD♠

)
− 0.5ν♠ψ0 (0.5ν) + 0.5

ν bdD♠
bdD
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The partial derivatives can be evaluated in the following way:

∂M(ν, bdD, ν♠, bdD♠)
∂ bdD♠ = 0.5

(
ν
bdD

− ν♠
bdD♠

)
(B.2)

∂M(ν, bdD, ν♠, ν♠)
∂ bDν♠

= 0.5
(

ψ0

(
0.5ν♠

)− ψ0 (0.5ν) + ln
( bdD
bdD♠

))
(B.3)

∂2M(ν, bdD, ν♠, bdD♠)
∂2 bdD♠ = 0.5

ν♠

bdD♠2 (B.4)

∂2M(ν, bdD, ν♠, ν♠)
∂2 bDν♠

= 0.25ψ1

(
0.5ν♠

)
(B.5)

∂2M(ν, bdD, ν♠, ν♠)
∂ bDν♠∂ bdD♠ = − 0.5

bdD♠ (B.6)

Proof: Straightforward evaluation

Proposition 14 Let function G be defined as follows:

G
(
θ̂, C, ν, bdD, θ̂♠, C♠

)
= −0.5 ln

∣∣∣CC♠
−1

∣∣∣ + 0.5tr
[
CC♠

−1
]

+ 0.5
ν
bdD

(
θ̂ − θ̂♠

)′
C♠

−1
(
θ̂ − θ̂♠

)

Then the partial derivatives can be evaluated as follows:

∂G(θ̂, C, θ̂♠, C♠)

∂C♠−1 = −0.5C♠C−1C + 0.5C + 0.5
ν
bdD

(
θ̂ − θ̂♠

)′ (
θ̂ − θ̂♠

)
(B.7)

∂G(θ̂, C, θ̂♠, C♠)

∂θ̂♠
= − ν

bdD
C♠

−1′ (
θ̂ − θ̂♠

)
(B.8)

(B.9)

In order to evaluate the hessian of the function G, we have to formally differentiate it with respect to some
vector. Let’s define vector x = [vecC♠

−1
, θ̂♠].

G
(
θ̂, C, ν, bdD, x

)
≡ G

(
θ̂, C, ν, bdD, θ̂♠, C♠

)

∂2G(x)
∂x∂x′

=


 0.5C♠ ⊗ C♠ − ν

bdD
I ⊗

(
θ̂ − θ̂♠

)′

− ν
bdD

I ⊗
(
θ̂ − θ̂♠

)′
ν
bdD

C♠
−1


 (B.10)

Proof: Almost everything is straightforward a evaluation. Just a little formalism will be recalled. Let’s denote

y = vecC♠
−1

∂2G(· · · , x)
∂x∂x′

=




∂2G(···,x)
∂y∂y′

∂2G(···,x)

∂θ̂♠∂y′
∂2G(···,x)

∂y∂(θ̂♠)′
∂2G(···,x)

∂θ̂♠∂(θ̂♠)′




∂2G(· · · , x)
∂y∂y′

= 0.5C♠ ⊗ C♠ (B.11)

∂G(· · · , x)

∂(θ̂♠)′
= − ν

bdD
C♠

−1
(
θ̂ − θ̂♠

)
(B.12)

∂2G(· · · , x)

∂y∂(θ̂♠)′
= − ν

bdD
I ⊗

(
θ̂ − θ̂♠

)′
(B.13)

∂G(· · · , x)

∂(θ̂♠)∂(θ̂♠)′
=

ν
bdD

C♠
−1

(B.14)

Proposition 15 Let’s suppose all notations from the section 5.3.1. It holds:

Υ < 0
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Proof:

Υ = (1− w)ψ0 (0.5ν) + wψ0

(
0.5νU

)− ln
(
0.5 bdD1−w bdDU w

XS
)

= (1− w)ψ0 (0.5ν) + wψ0

(
0.5νU

)− ln
(

0.5 bdD1−w bdDU w
(

(1− w)
ν
bdD

+ w
νU

bdDU

))

= (1− w)ψ0 (0.5ν) + wψ0

(
0.5νU

)− ln

(
(1− w)0.5ν

( bdDU

bdD

)w

+ w0.5νU

( bdDU

bdD

)w−1
)

Let’s denote x =
bdDU

bdD
. We will now show that the most pessimistic estimate of Υ ≡ Υ(x,w, ν, νU ) is negative.

It is clear that Υ <= maxx Υ(x, w, ν, νU )

∂Υ
∂x

= − (1− w)w0.5νxw−1 + w(w − 1)0.5νUxw−2

((1− w)0.5νxw + w0.5νUxw−1)

Now we have to solve the equation ∂Υ
∂x = 0

(1− w)w0.5xw−2
(
νx− νU

)
= 0

νx− νU = 0, x =
νU

ν

Because the denominator of the derivativ is always positive, is easy to see, that x = νU

ν is global maximizer of

Υ. We proved that Υ(x,w, ν, νU ) <= Υ1(w, ν, νU ) ≡ Υ( νU

ν , w, ν, νU )
Next, we analyze the function Υ1

Υ1(w, ν, νU ) = − ln
(

0.5ν

(
νU

ν

)w)
+ 2 ∗ (

(1− w)0.5ψ0 (0.5ν) + w0.5ψ0

(
0.5νU

))
=

= − ln(0.5ν)− w ln
(

νU

ν

)
+ 2 ∗ (

(1− w)0.5ψ0 (0.5ν) + w0.5ψ0

(
0.5νU

))

Now we want to find maxw Υ1(w, ν, νU )

∂Υ1

∂w
= − ln

(
νU

ν

)
− ψ0 (0.5ν) + ψ0

(
0.5νU

)
= (ln(0.5ν)− ψ0 (0.5ν))− (

ln(0.5νU )− ψ0

(
0.5νU

))

Because the function ln x−ψ0 (x) is for positive arguments positive and descending, the derivative ∂Υ1
∂w is positive

and thus Υ1 is maximized by w = 1. (note that νU = ν + 1)

We proved Υ <= Υ2(ν, νU ) ≡ Υ1(1, ν, νU )

Υ2(ν, νU ) = Υ3(νU ) = ψ0

(
0.5νU

)− ln(0.5νU )

We know that this function is for positive arguments negative(see proposition 10). We proved Υ <= Υ3(νU ) < 0

Proposition 16 Let matrix C be regular and matrix A be symmetric and positive definite. Then the matrix
C ′AC is symmetric positive definite.

Proof:
The matrix A is positive definite, i.e for each y 6= 0 it holds: y′Ay > 0. We want to show that for each
x 6= 0, x′C ′ACx > 0.

C is regular, hence Cx 6= 0 for x 6= 0, hence x′C ′ACx = (Cx)′︸ ︷︷ ︸
z′

A (Cx)︸ ︷︷ ︸
z

= z′Az > 0

Proposition 17 (Determinant of the matrix I+xx’) Let x be a column vector of the length n. Then

|I + xx′| = 1 + x′x
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Proof: First, we will prove that x is eigenvector of the matrix (I + xx′) with eigenvalue 1 + x′x.

(I + xx′)x = x + xx′x = x(1 + x′x) = (1 + x′x)x

Let’s now take such linear independent vectors y1, · · · , yx̊−1, so that x′yi = 0, ∀i. We will prove, that this vectors
are eigenvectors of the matrix (I + xx′) with eigenvalues 1.

(I + xx′)yi = yi + xx′yi = yi + x(x′yi) = yi

Proposition 18 Let’s suppose all notations from the section 5.3.2. C♠ = C + wCzz′ is positive definite

Proof: C is positive definite, hence there exists the square root C
1
2 : C = C

1
2 C

1
2 , which is symmetric and

regular.

C♠ = C
1
2

(
I + wCC−

1
2 zz′C−

1
2

)
C

1
2

Thanks to the proposition 16 it suffice only to prove the posit. definitnes of the matrix:

(
I + wCC−

1
2 zz′C−

1
2

)
.

According to the proposition 17 , the sufficient condition for the previous matrix to be positive definite is

0 < 1 + wCz′C−
1
2 C−

1
2 z = 1 + wCz′C−1z.

Because z = Cψ and ψ′z = ζ, it suffice to check

0 < 1 + wCψ′CC−1z = 1 + wCψ′z = 1 + wCζ

1 + wCζ = 1 +
[
wgU + h2

U

XXU

XS

]
ζ = 1 + wgUζ + h2

U

XXU

XS︸ ︷︷ ︸
>0

1 + wgUζ = 1− wζ

1 + ζ
=

1 + ζ(1− w)
1 + ζ

> 0

The last inequality holds because w ≤ 1 and ζ = ψ′z = ψ′Cψ > 0 (C is positive definite)



Appendix C

Normal factors and its properties

Because this chapter deals with only one factor in one specific time moment, we can omit the indexes ic;t.
i.e.

fic(dic;t|ψic;t, Θic) ≡ f(d|ψ, Θ)

C.1 Gauss dynamic pdf

The normal parameterized factor, we deal with, predicts a real-valued variable d by the pdf

f(d|ψ, Θ) = Nd(θ′ψ, r), where (C.1)

Θ ≡ [θ, r] ≡ [regression coefficients, noise variance] ∈ Θ∗ ⊂ (ψ̊-dimensional, non-negative) real variables,

Nd(θ′ψ, r) ≡ (2πr)−0.5 exp
{
− (d− θ′ψ)2

2r

}
. (C.2)

C.2 Gauss-invers wishart dynamic pdf

C.2.1 Definition

Normal factors belong to the exponential family, so that they possess conjugate (self-reproducing) prior.
This pdf is known as Gauss-inverse-Wishart pdf (GiW ).

GiWΘ(V, ν) ≡ GiWθ,r(V, ν) ≡ r−0.5(ν+ψ̊+2)

I(V, ν)
exp

{
− 1

2r
tr (V [−1, θ′]′[−1, θ′])

}
. (C.3)

The value of the normalization integral I(V, ν) is described below, together with other properties of this
important pdf.

C.2.2 Parameters

The parameter ν is positive scalar. The parameter V is (Ψ̊, Ψ̊)-dimensional symmetric positive definite
extended information matrix.

We often manipulate the matrix V through it’s L′DL decomposition. (i.e. with lower triangular matrix
L and diagonal matrix D which fulfills the relation V = L′DL)

Let us split the information matrix V and its L′DL decomposition as follows:

V =
[ bdV bdψV ′

bdψV bψV

]
, bdV is scalar,

L =
[

1 0
bdψL bψL

]
, D =

[ bdD 0
0 bψD

]
, bdD is scalar. (C.4)

Next, the matrices L and D can be equivalently expressed with help of matrix C, vector θ̂ and scalar
bdD defined by:

θ̂ ≡ bψL−1 bdψL ≡ least-squares estimate of θ (C.5)

C ≡ bψL−1 bψD−1
(
bψL′

)−1

≡ covariance factor of least-squares estimate (C.6)
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Proposition 19 It holds:

C = bψV −1 (C.7)

θ̂ = bψV −1 bdψV (C.8)

Proof: The relation (C.7) is clear from the following form of the matrix V .

V = L′DL =
[

1 bdψL′

0 bψL′

] [ bdD 0
0 bψD

] [
1 0

bdψL bψL

]
(C.9)

=
[ bdD bdψL′ bψD

0 bψL′ bψD

] [
1 0

bdψL bψL

]
= (C.10)

=
[ bdD + bdψL′ bψD bdψL bdψL′ bψD bψL

bψL′ bψD bdψL bψL′ bψD bψL

]
(C.11)

The proof od the second relation is simple.

bψV −1 bdψV = bψL−1 bψD−1 bψL′−1 bψL′ bψD bdψL = bψL−1 bdψL = θ̂

Proposition 20 (Alternative expressions of the GiW pdf) GiWΘ(V, ν) has the following alternative
expressions

GiWΘ(V, ν) ≡ r−0.5(ν+ψ̊+2)

I(L,D, ν)
exp

{
− 1

2r

[(
bψLθ − bdψL

)′ bψD
(
bψLθ − bdψL

)
+ bdD

]}
≡

≡ r−0.5(ν+ψ̊+2)

I(C, θ̂, bdD, ν)
exp

{
− 1

2r

[
(θ − θ̂)′C−1(θ − θ̂) + bdD

]}
(C.12)

Proposition 21 (Normalization integral)
The normalization integral is

I(L,D, ν) = Γ(0.5ν) bdD−0.5ν
∣∣∣ bψD

∣∣∣
−0.5

20.5ν(2π)0.5ψ̊ (C.13)

Repeatedly, we need to evaluate the KL distance of a pair of GiW pdfs.

Proposition 22 (KL distance of GiW pdfs) Let f(Θ) = GiWΘ(L,D, ν), f̃(Θ) = GiWΘ

(
L̃, D̃, ν̃

)
be a

pair of GiW pdfs of parameters Θ ≡ (θ, r) = (regression coefficients, noise variance). Let Dii stand for the
diagonal element of the matrix D. Then, the KL distance of f and f̃ is given by the formula

D
(
f ||f̃

)
= ln

(
Γ (0.5ν̃)
Γ (0.5ν)

)
− 0.5 ln

∣∣∣CC̃−1
∣∣∣ + 0.5ν̃ ln

( bdD
bdD̃

)
+ (C.14)

+ 0.5(ν − ν̃)ψ0 (0.5ν)− 0.5ψ̊ − 0.5ν + 0.5tr
[
CC̃−1

]
+

+ 0.5
ν
bdD

[(
θ̂ − ˆ̃

θ
)′

C̃−1
(
θ̂ − ˆ̃

θ
)

+ bdD̃
]

.

Proposition 23 (Estimation of the normal factor)

GiWΘ(Vt−1, νt−1)Ndt(θ
′ψt, r)∫

dtto dΘ
= GiWΘ(Vt−1 + ΨtΨ′t, νt−1 + 1) (C.15)

Proposition 24 (Prediction of the normal factor) The predictive pdf is known as Student pdf. For
any data vector Ψ = [d, ψ′]′, its values can be found numerically as the ratio

f(d|ψ, L,D, ν) =
Γ(0.5(ν + 1))

[ bdD(1 + ζ)
]−0.5

√
πΓ(0.5ν)

(
1 + ê2

bdD(1+ζ)

)0.5(ν+1)
, where (C.16)

ê ≡ d− θ̂′ψ ≡ prediction error
ζ ≡ ψ′Cψ,
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The relations for evaluating ζ and ê are based on (C, θ̂, bdD) representation of matrix V . We will now show
how to compute these characteristic from L′DL representation without converting between representations.

Proposition 25 (Evaluating ζ, ê in L′DL representation)

ê = d− bdψL′x

ζ = x′ bψD−1x, where bψL′x = ψ

Proof:

ê = d− θ̂′ψ = d− bdψL′
(
bψL′

)−1

ψ

ζ = ψ′ bψL−1 bψD−1
(
bψL′

)−1

ψ

Let’s denote

x =
(
bψL′

)−1

ψ

then the characteristics become the form

ê = d− bdψL′x

ζ = x′ bψD−1x

Remarks 12

1. We can see that with known vector x the evaluation of ê consists of computing scalar product of two
vectors. Similarly, because matrix bψD is diagonal, evaluation of ζ consists of ”scalar product” of three
vectors.

2. The vector x can be simply computed from the equation bψL′x = ψ. Because bψL′ is triangular matrix
with unite diagonal, the solving consists of backward run.

Algorithm 8 (Evaluating ζ, ê in L′DL representation) (ζ, ê) = GETCHARS( bψL, bψD, bdψL,Ψ)

1. Solve
( bψL′

)−1
x = ψ

2. ê = d− bdψL′x

3. ζ = x′ bψD−1x

C.3 Properties of the operation V + wΨΨ′

This section deals with important operation with GiW parameters. First of all, try to rewrite this operation

into block form. Recall that Ψ =
[

d
ψ

]
.

V = L′DL =
[ bdD + bdψL′ bψD bdψL bdψL′ bψD bψL

bψL′ bψD bdψL bψL′ bψD bψL

]
(C.17)

ΨΨ′ =
[

d
ψ

] [
d ψ′

]
=

[
d2 dψ′

ψd ψψ′

]
(C.18)

Proposition 26 Let’s the matrices C, θ̂, L,D, V are defined according to (C.4),(C.5), (C.6). Then the
operation

bψV ♠ = bψV + w1ψψ′, bdψV ♠ = bdψV + w2dψ

can be rewritten to

C♠ = C − w1

1 + w1ζ
zz′

θ̂♠ = θ̂ +
w2d + w1(ê− d)

1 + w1ζ
z

z = Cψ
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Proof: First let’s prove the part dealing with matrix C. According to the relation (C.7), we need to investigate

the element bψV ♠−1
= C♠. We know that bψV ♠ = bψV + w1ψψ′. Using the well known proposition about

inversion it holds:
bψV ♠−1

= bψV −1 − w1
bψV −1ψψ′ bψV −1

1 + w1ψ′ bψV −1ψ

thus:
C♠ = C − w1

1 + w1ζ
zz′

Now we will prove the part dealing with θ̂. Using the relation (C.8), the element θ̂♠ can be expressed:

θ̂♠ = bψV ♠−1 bdψV ♠

θ̂♠ =
(
bψV −1 − w1

bψV −1ψψ′ bψV −1

1 + w1ψ′ bψV −1ψ

) (
bdψV + w2dψ

)
=

= θ̂ +
[
bψV −1ψ − w1

bψV −1ψψ′ bψV −1ψ

1 + w1ψ′ bψV −1ψ

]
w2d− w1

bψV −1ψψ′ bψV −1

1 + w1ψ′ bψV −1ψ
bdψV =

= θ̂ +
[
bψV −1ψ

(
1− w1ψ

′ bψV −1ψ

1 + w1ψ′ bψV −1ψ

)]
w2d− w1

bψV −1ψψ′θ̂
1 + w1ψ′ bψV −1ψ

=

= θ̂ +
bψV −1ψ

1 + w1ψ′ bψV −1ψ
w2d− w1

bψV −1ψψ′θ̂
1 + w1ψ′ bψV −1ψ

=

= θ̂ +
bψV −1ψ

1 + w1ψ′ bψV −1ψ

(
w2d− w1ψ

′θ̂
)

= θ̂ +
w2d + w1(ê− d)

1 + w1ζ
z

Proposition 27 (Determinant of matrix L′DL + ΨΨ′) Let the matrices V, bψV , vectors Ψ, ψ and scalars
ê, ζ be defined as common. w ∈< 0, 1 > . It holds:

|V + wΨΨ′| = |V |
(

(1 + wζ + w
ê2

bdD

)

∣∣∣ bψV + wψψ′
∣∣∣ =

∣∣∣ bψV
∣∣∣ (1 + wζ)

Proof:

|L′DL + wΨΨ′| =
∣∣∣L′
√

D(
√

DL + wD− 1
2 L′−1ΨΨ′)

∣∣∣ =
∣∣∣L′
√

D(I + wD− 1
2 L′−1ΨΨ′L−1D− 1

2 )
√

DL
∣∣∣ =

=
∣∣∣L′
√

D
∣∣∣
∣∣∣I + wD− 1

2 L′−1ΨΨ′L−1D− 1
2

∣∣∣
∣∣∣
√

DL
∣∣∣ = (proposition 17)

= |L′DL| (1 + wΨ′L−1D− 1
2 D− 1

2 L′−1Ψ) =
= |L′DL| (1 + wΨ′L−1D−1L′−1Ψ)

analogically∣∣∣ bψL′ bψD bψL + wΨΨ′
∣∣∣ =

∣∣∣ bψL′ bψD bψL
∣∣∣ (1 + wψ′ bψL−1 bψD−1 bψL′−1︸ ︷︷ ︸

C

ψ) =
∣∣∣ bψL′ bψD bψL

∣∣∣ (1 + wζ)

Lets’ denote x = L′−1Ψ. x is obtained by solving the equation L′x = Ψ.

Ψ′L−1D−1L′−1Ψ = x′D−1x =
n∑

i=1

x2
i

Di,i
.

Analogically denote y = bψL′−1ψ.

ζ = ψ′ bψL−1 bψD−1 bψL′−1ψ = y′ bψD−1y =
n−1∑

i=1

y2
i

bψDi,i
.

Because bdψL resp. bdψD resp. ψ are parts of L resp. D, resp. Ψ, the vector y is part of x. Exactly:
y = (x2, · · · , xn) Hence:

n−1∑

i=1

y2
i

bψDi,i
=

n∑

i=2

x2
i

Di,i
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Using the previous relations we can obtain the following expression:

Ψ′L−1D−1L′−1Ψ = ζ +
x2

1
bdD

Now it is important to evaluate the first element of the vector x.

x1 = d− bdψL′y = d− bdψL′ bψL′−1ψ = d− θ′ψ = ê

|L′DL| (1 + wΨ′L−1D−1L′−1Ψ) = |L′DL|
(

1 + w

(
ζ +

ê2

bdD

))

Proposition 28 Let the matrices C, θ̂, L,D, V be defined according to (C.4),(C.5), (C.6). Then the opera-
tion

V ♠ = V + wΨΨ′

can be rewritten to

C♠ = C − w

1 + wζ
zz′

θ̂2 = θ̂ +
wê

1 + wζ
z

bdD♠ = bdD +
wê2

1 + wζ

z = Cψ

Proof: The first two parts can be simple proven using the proposition 26 and considering w1 = w2 = w. The
third part can be simply proved using the proposition 27.

bdD♠ =

∣∣D♠∣∣
∣∣ bψD♠∣∣ =

∣∣V ♠∣∣
∣∣ bψV ♠∣∣ =

|V | (1 + wζ + w ê2

bdD
)∣∣ bψV

∣∣ (1 + wζ)
= bdD

(
1 +

w ê2

bdD
)

1 + wζ

)
= bdD +

wê2

1 + wζ

C.4 Dirichlet multivariete pdf

C.4.1 Definition

Diα(κ) denotes Dirichlet pdf of α ∈ α∗ ≡ {
αc ≥ 0 :

∑
c∈c∗ αc = 1

}
of the form :

Diα(κ) ≡
∏

c∈c∗ ακc−1
c

B(κ)
, B(κ) ≡

∏
c∈c∗ Γ(κc)

Γ(
∑

c∈c∗ κc)
.

C.4.2 Properties

α̂c =
κc∑c̊

c=1 κc

(C.19)

αcDiα(κ) = α̂cDiα(κ + δ•,c) (C.20)
ε [αc|κ] = α̂c (C.21)

Proof:

B (κ + δ•,c) =

Γ(κc + 1)
∏

k=1,k 6=c

Γ(κk)

Γ (
∑

κk + 1)
=

κc

∏
k=1

Γ(κk)

Γ (
∑

κk)
∑

κk
= B (κ) α̂c

αcDiα(κ) = αc

c̊∏
k=1

ακk−1
k

B (κ)
= α̂c

c̊∏
k=1

α
κk−1+δk,c

k

B (κ + δ•,c)
= α̂cDiα(κ + δ•,c)

ε [αc|κ] =
∫

αcDiα(κ)dα = α̂c

∫
Diα(κ + δ•c)dα = α̂c
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Proposition 29 (KL distance of Di pdfs) Let f(α) = Diα(κ), f̃(α) = Diα (κ̃) be a pair of Dirichlet
pdfs of parameters α ≡ (α1, . . . , αc̊) ∈ α∗ =

{
αc > 0,

∑
c∈c∗ αc = 1

}
, c∗ ≡ {1, . . . , c̊}.

Their KL distance is given by the formula

D(f ||f̃) =
c̊∑

c=1

[
(κc − κ̃c)ψ0 (κc) + ln

(
Γ (κ̃c)
Γ (κc)

)]
− (ν − ν̃)ψ0 (ν) + ln

(
Γ(ν)
Γ(ν̃)

)

ν ≡
c̊∑

c=1

κc, ν̃ ≡
c̊∑

c=1

κ̃c. (C.22)

Moreover it holds:

Argmin
κ̃
D(f ||f̃) = Argmin

κ̃

c̊∑

j=1

[ln (Γ (κ̃j))− κ̃jψ0 (κj)]− [ln(Γ(ν̃)− ν̃ψ0 (ν)] (C.23)
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[11] M. Kárný, J. Böhm, T.V. Guy, L. Jirsa, I. Nagy, P. Nedoma, L. Tesař, and M. Tichý, “Prodactool
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