
Projection Based Algorithms for Estimation of
Complex Models

J. Andr ýsek
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Abstract: The Bayesian methodology is a consistent tool for dealing with recursive parameter
estimation. The general solution of the estimation problem is available, however, it is analytically
tractable only for a limited class of models. Various approximations must be used to achieve recursive
estimation of complex models. In this paper, we apply the Projection Based (PB) approximation to a
simple but practical example of outlier filtration.
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I. Introduction

The choice of a suitable model is an essential step in control and decision making applications
dealing with complex systems. One way to face complexity is the principle of adaptivity, i.e. the use
of models which evolve during their use. The demand for adaptivity of the model leads to the recursive
estimation of its parameters, i.e. permanent updating of its parameter estimates by new data. In other
words, statistics describing estimates are corrected by newly acquired data.

The recursive Bayesian estimation [1] evaluates the posterior distribution of the parameters at time
t as an update of the posterior distribution at timet − 1 using the Bayes rule and the data acquired
at timet. The recursion starts att = 1 with updating of the prior distribution which must be chosen
before the estimation starts. The posterior distribution obtained by the Bayes rule may not be, however,
analytically tractable and thus unsuitable for the next estimation step.

In such case, we seek an approximate recursive estimation algorithm. The principle of the Projection
Based (PB) method is restriction of the approximate posterior density to a particular (well manipulable)
class of probability densities. The optimal posterior pdf is found as the best projection of the intractable
correct posterior pdf into this class.

II. Basic notions and notations

≡ means the equality by definition.

dt is a data record at the discrete timet, d(t) ≡ d1, . . . , dt.

d(0) is an empty sequence and reflects just the prior information.

Θ is the unknown parameter, finite-dimensional vector.

f, π are the letters reserved for probability density functions(pdf).

∝ is the proportion sign,h ∝ g means that functionh equals to the functiong up to the normalization.

D( || ) means the Kullback-Leibler divergence [2]. This ”distance” is familiarly used in Bayesian
analysis as the measure how good the second pdf approximates the first pdf. For conciseness,
the Kullback-Leibler divergence is referred to as the KL divergence.D

(
f
∣∣∣∣∣∣ g) =

∫
f log

(
f
g

)



III. Problem formulation

The task of recursive parameter estimation is to determine the posterior densityπt(Θ|d(t)) based on
the knowledge of

• last posterior densityπt−1(Θ|d(t− 1))
• new data recorddt

• model of the systemf(dt|d(t− 1), Θ) parameterized by the unknown parameterΘ

The algorithm starts from prior pdfπ0(Θ) ≡ π0(Θ|d(0)).

The standard Bayesian approach determinesπt(Θ|d(t)) as

πt(Θ|d(t)) =
f(dt|d(t− 1), Θ)πt−1(Θ|d(t− 1))∫
f(dt|d(t− 1), Θ)πt−1(Θ|d(t− 1))dΘ

. (1)

Though the above formula looks quite simple, its repetitive use can lead to very complex pdfs. For
example, if the system model is a sum of two pdfs, repetitive multiplication of such models lead to a
posterior density in the form of a sum with number of its elements growing exponentially with number
of data.

Our task is to design such a methodology, which: (i) yields tractable posterior estimates, and (ii)
these estimates are as close to the correct Bayesian ones as possible.

IV. Problem solution

The general PB estimation [3] is defined as follows:

1. Choose suitable class of probability density functionsπ(Θ|•).
2. Select statisticG0 so that the pdfπ(Θ|G0) reflects the prior information.
3. In each step of estimation find the statisticGt in such a way thatπ(Θ|Gt) is the best projection of

the ”correct Bayesian” pdf to the chosen class of pdfsπ(Θ|•).
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Figure 1: Basis of the approach

It remains to define what we mean by: ”correct Bayesian” and ”best projection”. Let’s have the
approximate posterior pdfπ(Θ|Gt−1), which reflects the information obtained from the data records
before timet. If we handle this pdf as the true posterior pdf, we can perform one step of the Bayes rule
(1), which results into the ”correct Bayesian” posterior pdfπ̂t(Θ). The term ”best projection” means
the closest in the sense of Kullback-Leibler divergence [2]. It means that we want to findGt so that

D
(
π̂t(Θ)

∣∣∣∣∣∣ π(Θ|Gt)
)

is minimized.



V. Application

Consider a real system generating many data records per second. The data contains a lot of outliers.
The task is to to design a quick on-line filter.

The filtering task can be formulated as estimation of parameterΘ of Cauchy distribution, which
describes well systems with outliers. Cauchy pdf doesn’t have any moments, the parameterΘ is the
median of this pdf. Intuitively, this fact suggests the use of the median filter, which is known to give
good results. However, the median filter is not fast enough and yields only point estimates. We seek
the Bayesian estimate ofΘ.

Let’s suppose that the system is modelled by a Cauchy pdf:

f(dt|d(t− 1), Θ) =
1

π(1 + (dt −Θ)2)
.

The prior information on its parameter is:Θ ∈ (Θmin, Θmax).

The Cauchy pdf doesn’t have a conjugate pdf, hence it’s parameter can not be estimated analytically
using standard Bayesian approach. We will estimate it’s parameter using PB estimation.

1. Selecting a suitable class of posterior pdfs

We have chosen to use Normal distribution with parametersµ, σ2.

π(Θ|Gt) ≡ π(Θ|µt, σ
2
t ) ≡ NΘ(µt, σ

2
t ) =

1√
2πσ2

t

exp

(
(Θ− µt)

2

2σ2
t

)

2. Specifying the prior distribution

The prior distribution must also be in the form chosen in the previous step. It remains to choose the
parametersµ0, σ

2
0, so thatNΘ(µ0, σ

2
0) reflects the prior information. We chooseµ0 = Θmin+Θmax

2
, σ2

0 =
(Θmax−Θmin

3
)2, which maps the given prior interval onto3σ interval of the Normal pdf.

3. Performing one step of estimation

Using the selected class, one step of Bayesian estimation yields:

π̂t(Θ) ∝ f(dt|d(t− 1), Θ)π(Θ|Gt−1) =
1

π(1 + (dt −Θ)2)

1√
2πσ2

t−1

exp

(
−(Θ− µt−1)

2

2σ2
t−1

)
≡ Lt(Θ)

We seek minimum ofD
(
π̂t(Θ)

∣∣∣∣∣∣ NΘ(µt, σ
2
t )
)

with respect toµt, σ
2
t . Using Proposition 1 (Section

VII.), the minimizing arguments equals to the mean and variance ofπ̂t(Θ) respectively:

µt = E [Θ|π̂t(Θ)] , σ2
t = E

[
Θ2|π̂t(Θ)

]
− E [Θ|π̂t(Θ)]2

However, neither the pdf̂πt(Θ) nor its moments can be evaluated analytically in this case, because we
are not even able to evaluate the normalizing integral

∫
Lt(Θ)dΘ. Because of the speed requirements on

our algorithm, we can not solve the integrals numerically. Hence, we are looking for an approximation
of Lt(θ) giving directly an approximation of̂πt(Θ).

We will use the Laplace approximation method, which is defined in terms of the first three elements
of the Taylor series expansion of the logarithm ofLt(Θ) in its maximum. Hence, we need to find the
maximum of

lt(Θ) ≡ log (Lt(Θ)) = log

 1

π
√

2πσ2
t−1

− log
(
1 + (dt −Θ)2

)
− (Θ− µt−1)

2

2σ2
t−1

.



Because lim
Θ→±∞

lt(Θ) = −∞ and lt(Θ) is continuous, we know that there exist a local maximum,

which is also a global maximum. Hence, we can find the maximum as a point where the first derivative
is equal to zero.

l′t(Θ) =
2(dt −Θ)

1 + (dt −Θ)2
− (Θ− µt−1)

σ2
t−1

=
2(dt −Θ)σ2

t−1 − (Θ− µt−1)(1 + (dt −Θ)2)

(1 + (dt −Θ)2)σ2
t−1

=
2dtσ

2
t−1 − 2σ2

t−1Θ− [Θ(1 + d2
t − 2dtΘ + Θ2)] + µt−1(1 + d2

t − 2dtΘ + Θ2)

(1 + (dt −Θ)2)σ2
t−1

=
−Θ3 + Θ2(2dt + µt−1) + Θ(−2σ2

t−1 − 1− d2
t − 2dtµt−1) + 2dtσ

2
t−1 + µt−1(1 + d2

t )

(1 + (dt −Θ)2)σ2
t−1

We seek suchΘM
t that fulfills l′(ΘM

t ) = 0. It can be found as solution of cubic equation. According
to Proposition 2 (Section VII.), this equation has at least one and at most three real solutions. If there
are more than one real solution, we have to try, which of them gives greatest value oflt(Θ). We denote
the argument of maximum asΘM

t .

The Laplace approximatioñLt(Θ) of Lt(Θ) is then found by approximatinglt(Θ) :

lt(Θ)
.
= lt(Θ

M
t ) + l′t(Θ

M
t )︸ ︷︷ ︸

=0

(Θ−ΘM
t ) + 0.5l′′t (Θ

M
t )(Θ−ΘM

t )2,

l′′t (Θ) =
−2(1 + (dt −Θ)2) + 4(dt −Θ)2

(1 + (dt −Θ)2)2
− 1

σ2
t−1

=
2(dt −Θ)2 − 2

(1 + (dt −Θ)2)2
− 1

σ2
t−1

,

Lt(Θ) = exp (lt(Θ))
.
= exp

−(Θ−ΘM
t )2

2( −1
l′′t (ΘM

t )
)

+ lt(Θ
M
t )

 ≡ L̃t(Θ).

The approximatioñπt(Θ) of π̂t(Θ) is then given by

π̂t(Θ) =
Lt(Θ)∫
Lt(Θ)dΘ

.
=

L̃t(Θ)∫
L̃t(Θ)dΘ

= NΘ(ΘM
t ,− 1

l′′t (Θ
M
t )

) ≡ π̃t(Θ).

The searched parameters of PB-posterior pdf are simply:

µt = ΘM
t , σ2

t = − 1

l′′t (Θ
M
t )

.

The estimation method is summarized by the following algorithm.

Algorithm 1 (One step of PB estimation) INPUTS:dt, µt−1, σ
2
t−1, OUTPUTS:µt, σ

2
t

1. a0 = −2dtσ
2
t−1 − µt−1(1 + d2

t ), a1 = d2
t + 2dtµt−1 + 1 + 2σ2

t−1, a2 = −2dt − µt−1

2. Q =
3a1−a2

2

9
, R =

9a2a1−27a0−2a3
2

54
, D = Q3 + R2, S =

3
√

R +
√

D, T =
3
√

R−
√

D

3. µt = −1
3
a2 + (S + T )

4. IF D > 0 go to 8

5. ΘM
t = −1

3
a2 − 1

2
(S + T ) + 1

2
i
√

3(S − T ), IF l(ΘM
t ) > l(µt) µt = ΘM

t

6. IF D = 0 go to 8

7. ΘM
t = −1

3
a2 − 1

2
(S + T )− 1

2
i
√

3(S − T ), IF l(ΘM
t ) > l(µt) µt = ΘM

t

8. σ2
t =

(
2(dt−µt)2−2

(1+(dt−µt)2)2
− 1

σ2
t−1

)−1



VI. Simulated example

Consider the Cauchy distribution withΘtrue = 2, Θmin = −3, Θmax = 3. The parameterΘ was es-
timated using the PB algorithm on 30 data records. The KL divergence ofπ̂t(Θ) and its approximation
π̃t(Θ) was numerically evaluated in each estimation step, and it is displayed in Figure 2 (left). Note that
the divergence decreases rapidly towards a small positive value. This observation can be interpreted
as follows: after some time, the PB estimation behave almost exactly as the Bayesian estimation. In
general, however, the convergence of the PB estimation is not guaranteed. In this example, we have
studied convergence of the method using numerical evaluation of the full Bayesian posteriorsπt(Θ).
KL divergence ofπt(Θ) andπ̃t(Θ) is displayed in Figure 2 (right). The divergence decreases rapidly
towards a small positive value. Hence, the approximate posteriors are almost identical with the full
Bayesian posteriors after a few estimation steps.
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Figure 2: Convergence of the PB estimation

VII. Propositions used

Proposition 1 Let π̂(Θ) be an arbitrary pdf, which has first two moments defined. Let’s denote them
EΘ, EΘ2. Then

arg min
µ,σ2

D
(
π̂(Θ)

∣∣∣∣∣∣ NΘ(µ, σ2)
)

= (EΘ, EΘ2 − E2
Θ).

Proof: We are minimizing ∫
π̂(Θ) log

(
π̂(Θ)

NΘ(µ, σ2)

)
dΘ.

By omitting the terms which doesn’t influence the optimization, we can minimizeK(µ, σ2) =

= −
∫

π̂(Θ) log
(
NΘ(µ, σ2)

)
dΘ = −

∫
π̂(Θ)

(
−0.5 log (2π)− 0.5 log

(
σ2
)
− (Θ− µ)2

2σ2

)
dΘ =

= 0.5 log (2π) + 0.5 log
(
σ2
)

+
0.5

σ2

∫
(Θ− µ)2π̂(Θ)dΘ =

= 0.5 log (2π) + 0.5 log
(
σ2
)

+
0.5

σ2

[
EΘ2 − 2µEΘ + µ2

]
.

∂K(µ, σ2)

∂µ
=

0.5

σ2
(2µ− 2EΘ) (2)

∂K(µ, σ2)

∂σ2
=

0.5

σ2
− 0.5

(σ2)2

[
EΘ2 − 2µEΘ + µ2

]
(3)



By equaling the derivatives to zero, we get unique solution

µ = EΘ, σ2 = EΘ2 − E2
Θ.

Now we need only to prove that the found extreme is a minimum. It can be simply proven evaluating
the second derivative ofK(µ, σ2).

Proposition 2 The equationx3 + a2x
2 + a1x + a0 = 0 has three solutions:

x0 = −1

3
a2 + (S + T ) (4)

x1 = −1

3
a2 −

1

2
(S + T ) +

1

2
i
√

3(S − T ) (5)

x2 = −1

3
a2 −

1

2
(S + T )− 1

2
i
√

3(S − T ) (6)

where
Q =

3a1−a2
2

9
, R =

9a2a1−27a0−2a3
2

54
, D = Q3 + R2, S =

3
√

R +
√

D, T =
3
√

R−
√

D

Determining which roots are real and which are complex can be accomplished by noting that if the
polynomial discriminantD > 0, one root is real and two are complex conjugates; ifD = 0, all roots
are real and at least two are equal; and ifD < 0, all roots are real and unequal.

Proof: See [4].

VIII. Conclusions

In this paper, we have presented an algorithm for recursive estimation of parameters of Cauchy
distribution using Projection Based (PB) estimation. The intractable posterior distribution was approx-
imated by a Normal distribution. Performance of the algorithm was studied on a simulation study.
It was shown, that the PB algorithm yields results very close to the results obtained by numerical
aided Bayesian estimation. However, evaluation of the PB algorithm is much faster and therefore more
suitable for on-line implementation.
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