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Symbols and Notations

x∗ denotes the range of x, x ∈ x∗.

x̊ denotes the number of entries in the vector x.

≡ means the equality by definition.

xt is a (vector) quantity x at the discrete time labelled by t ∈ t∗ ≡ {1, . . . , t̊}.
xi;t is an i-th entry of the vector xt. The semicolon in the subscript indicates that the symbol following

it is the time index.

xk l;t is a subvector of the vector xt. xk l;t = (xk;t, · · · , xl;t).

x(k l) ≡ xk, . . . , xl.

x(t) ≡ x(1 t).

x(t) is an empty sequence and reflects just the prior information if t < 1.

d is data array, dt is data record at time t (vector with entries (d1;t, · · · , dd̊;t ) ).

t̊ is finite time horizon, see Section 2.1.

φt−1 is state vector, see Section 2.1 .

ψt is regression vector, see (4.7) .

Ψt is data vector, see Agreement 4.

Θ is unknown parameter, finite-dimensional array.

f, π, ρ are the letters reserved for probability density functions (pdf).

f(dt|d(t− 1), Θ) means parameterized model of the system.

fc(dt|d(t− 1), Θc) is parameterized component of the mixture.

π0(Θ) denotes prior density of the unknown parameter Θ.

πt(Θ|d(t)) ≡ πt(Θ|Gt) means (approximate) posterior density of the parameter Θ determined by
the sufficient statistic Gt.

ρ(Ω|Ht−1) means (approximate) posterior density of the parameter Ω determined by the statistic
Ht−1.

Gt,Sic;t,Ht are general statistics of (approximate) posterior pdf.

∝ is the proportion sign, h ∝ g means that function h equals to the function g up to the normalization.
i.e. h∫

h
= g∫

g
.

∂ is the model order.
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D(·||·) means the Kullback-Leibler divergence [1]. D
(
f

∣∣∣
∣∣∣ g

)
=

∫
f ln

(
f
g

)
. It is also referred to as the

KL divergence. See Section C.2.

K(·||·) means the Kerridge divergence [2]. K
(
f

∣∣∣
∣∣∣ g

)
= − ∫

f ln (g). See Section C.4.

Γ(x) means gamma function, Γ(x) =
∫ +∞
0

tx−1 exp(−t)dt.

• is used as a placeholder when specifying submatrix of a matrix. See Agreement 2.

ψ0 (x) , ψ1 (x) are digamma and trigamma functions, ψ0 (x) = ∂ ln Γ(x)
∂x , ψ1 (x) = ∂ψ0(x)

∂x .

δ denotes identity matrix. i.e. δij = 1 iff i = j, otherwise δij = 0.

⊗ denotes the Kronecker product of two matrices

GiW denotes Gauss-inverse-Wishart (GiW) pdf, see Section C.5.2.

V is statistic of GiW pdf, symmetric, positive definite matrix, see Section C.5.2.

bψV, bdψV, bdV denote submatrices of matrix V , see (C.15).

ν is statistic of GiW pdf, positive scalar, see Section C.5.2.

L is part of L′DL decomposition, lower triangular matrix with units on diagonal, see Section C.5.2.

bψL, bdψL denote submatrices of the matrix L, see (C.16).

D is part of L′DL decomposition, diagonal matrix with positive diagonal, see Section C.5.2.

bψD, bdD denotes submatrices of the matrix D, see (C.16).

C, θ̂ are alternative statistics of GiW pdf, see (C.18) and (C.17).

N denotes Gaussian pdf, see Section C.5.2.

M is statistic of Gaussian pdf, finite dimensional vector, see (C.6).

R is statistic of Gaussian pdf, symmetric, positive definite matrix, see (C.6).

κ is statistic of Dirichlet pdf, vector with positive elements, see Section C.2.

α is component weighting function, see Section 4.1.

Ω is parameter of component weighting function, see Section 4.1.

′ denotes transposition of a matrix.

Agreement 1 (Generalization of matrix) Within this text, we index general mathematical objects
in the same manner as matrices. For example Θ1,1 is first element of ”generalized matrix” Θ and can
be arbitrary mathematical object. This notation is analogical to cell matrices in MATLAB.

Agreement 2 (Indexing of (generalized) matrices) For M being a (generalized) matrix of type
m,n the following notation is used:

Mij is ij-th entry of M .

M•j is (generalized) matrix




M1j

...
Mmj


.

Mi• is (generalized) matrix (Mi1, · · · ,Min).
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M•• means the same as M .We use this notation when we want to stress that M is a (generalized)
matrix.

Agreement 3 (Other matrix notations) Let M be a matrix of type m,n and c some scalar. Let us
define the following operations:

M ± c is matrix of type m,n, (M ± c)ij = Mij ± c.

exp(M) is matrix of type m,n, (exp(M))ij = exp (Mij).

maxM is scalar with maximal value of M .

|M | is determinant of matrix M .
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Chapter 1

Introduction

1.1 Motivation

This work has its origin in the EU grant ProDaCTool, which stands for Probabilistic Data Clustering
Tool. The aim of the project was to develop an advisory system for operators of complex systems.
Typically, an operator observes many variables indicating state of the system. His task is to manage
the system, i.e. perform necessary actions based on the observations. Experienced operator is trained
to detect abnormal behavior of the system and react appropriately. However, his experience can not be
expressed by simple rules. Therefore it is not easy to share this knowledge with the new unexperienced
operators.

The main assumption of the ProDaCTool project is that the experience of the operators is reflected
in the historical data. If this assumption is true, then it is possible to create an advisory system, which
will guide an unexperienced operator by suggesting solutions that were successful in the past. Moreover,
the current data will also be incorporated into the advisory system to improve quality of advising in
the future. This is known as adaptivity.

The advising problem can be formalized as a task of optimized dynamic decision making. The chal-
lenge is to process huge amount of historical data in such a way that reveals the operator’s experience.
This could be achieved by a detailed analysis of the specific application domain using as much expert
knowledge as possible. Such analysis can be time consuming and expensive task, moreover its results
cannot be used in other application domains. Therefore, this approach is suitable only for large compa-
nies, where benefits of the analysis will pay off. However, in many application domains this approach is
too expensive or risky.

The aim of the ProDaCTool project was to prepare a general theoretical and software background,
that will be applicable to many various application domains. The project was successfully finished in
2003 and the approach was applied in industry (operating cold rolling mill [3]), medicine (treatment of
thyroid glance cancer [4]), traffic control (prediction of traffic flow [5]) and society (modelling of a fair
governing in connection with e-democracy [6]).

In order to make the solution domain-independent, detailed physical modelling of the problem is
not possible, hence the system is modelled by a black-box model. A general parametric model is chosen
and its parameters are estimated to match the observed data as close as possible. The choice of the
parametric model is essential for success of the approach. Too simple parametric model has a low
descriptive power and too complex parameterized model is not analytically tractable. Hence, we seek a
compromise between descriptive power of the model and its analytical tractability.

The probabilistic models were chosen as a base class of parametric models. The advantage of prob-
abilistic models is the availability of compact theoretical solution of all tasks related to model learning,
which is known as the Bayesian theory [7]. This theory allows finding the compromise mentioned above
[8]. Moreover, Bayesian recursive learning of model parameters provides the desired adaptivity of the
advisory system.
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1.2 Problem Formulation

The basic model used in the ProDaCTool project is a probabilistic mixture. It was chosen for the
following reasons: i) it provides a universal approximation of almost any probability density function
[9], ii) the tasks of control and decision making with mixture models are computationally tractable [10].

The mixture model is a convex combination of simpler models called components, the coefficients
of the convex combination are called component weights. If the components model the temporal de-
pendency of data samples, we speak about dynamic components, otherwise, we speak about static
components. Similarly, if the component weights depends on historical data, they are called dynamic,
otherwise, they are called static.

In the ProDaCTool project, mixtures with dynamic components and static weights were used. Exact
Bayesian inference of their parameters is not tractable and some approximations of Bayesian learning
has to be used. The quasi-Bayes approximation [11] was exploited to solve this task. This approach was
successfully used in many application domains [3, 4, 5, 6], however, for some data sets this approach does
not provide an acceptable solution. This can be due to two reasons: i) the quasi-Bayes approximation
is too coarse, or ii) the descriptive power of the model is not sufficient. The aim of this work is to
address these two issues as follows: i) to develop a better approximation for inference of parameters of
mixtures with static weights, ii) to find a richer model than mixtures with static weights and to develop
an adequate approximate inference method.

1.3 State of the Art

1.3.1 Inference of Mixture-model Parameters

Rich literature on inference of probabilistic mixtures with static components and static weights is avail-
able [9, 12, 13, 14, 15, 16]. These models are appropriate for sequences of independent observation [9].
They are related to clustering [17], neural networks [18] or principal component analysis (PCA) [19].
However, the static mixtures are not sufficiently rich for the considered advisory system.

Inference of probabilistic mixtures with dynamic components and static weights is more demanding
task and only a little work was published in this area [20]. The quasi-Bayes algorithm [21] developed for
static probabilistic mixtures has been generalized to cope with dynamic components [10]. Theoretical
justification of the quasi-Bayes modification is missing.

Particle filters [22] can be efficiently used for estimation of parameters of arbitrary probability den-
sity function. They are based on Monte-Carlo techniques and their use is limited to low dimensional
cases only. Another general approach is based on mean field methods [23], which provide promising ap-
proximation techniques. Especially, the variational Bayes (VB) approach [24] provides a systematic and
applicable solution. It is based on minimization of Kullback-Leibler divergence [1]. Since this divergence
is not symmetric, the result of optimization depends on the selected argument order of this divergence.
Theoretical analysis [25, 26] suggest that one argument order provides a better approximation. However,
the VB approach uses the opposite order of arguments, which allows to find an analytical solution [27].

The theoretical analysis [25, 26] motivates our search for an approximation minimizing the KL
divergence with recommended argument order. It may not be possible to derive such general results as
the VB approach, but it may be possible to derive inference algorithms for special but important classes
of pdfs. This approach will be used to address the tasks of this work.

1.3.2 Other Classes of Models

Naturally, there are competitive ways of modelling the dependency of data samples. For example
dynamic versions of PCA [28, 29, 30] or neural networks [18]. PCA provides probabilistic model of
the system, but it can represent unimodal pdfs only. Hence it can not be used instead of probabilistic
mixtures. It can be used as a mixture component, but the problem with static component weights
remains.
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Neural networks (NN) serve as universal approximations of multivariate, generally non-linear map-
pings [31]. As such, they provide non-linear black-box dynamic models used in various decision-
supporting modules, for instance, as standards in fault detection or as predictors [32]. They are exten-
sively used so that their advantages and limitations can be studied on real cases [33]. Unfortunately,
NN does not provide probabilistic description of the system and thus can not be exploited to solve our
task.

Other important approaches to probabilistic models are based on nonparametric Bayesian estima-
tion [34, 35]. They are mostly used for simple static cases. Important representant of nonparametric
classes are gaussian priors and mixtures of them [36]. These models look very promising, but still, the
complexity of systems, which this approach is tractable for, is limited.

To our best knowledge, none of the existing system models is equivalent with probabilistic mixtures
in the sense of tractability, description power and suitability for subsequent control or decision-making
tasks. This forces us to stay within the class of probabilistic mixture models. It was proven [10] that
probabilistic mixtures with dynamic component and static weights describes all dynamic probability
distributions only asymptotically. There were also attempts [10] to estimate dynamic mixtures with
specific types of dynamic weights, but a general framework is missing. This leads to the need for
introducing general probabilistic mixtures with both dynamic components and dynamic weights and
developing an appropriate estimating algorithm.

1.4 Aims of the Work

The two main problems addressed within this text were already mentioned. Firstly, we need to improve
estimation of dynamic probabilistic mixtures with static weights. Secondly, we need to improve the
mixture model to work with data-dependent component weights.

As the static-weights mixtures are a special case of dynamic-weights mixtures, both these tasks can
be solved within a single general framework. Estimation algorithm for static-weights mixtures will be
then obtained by specialization of the general algorithm. The specific tasks of the work are:

• to define dynamic probabilistic mixture model with dynamic weights as a generalization of the
current dynamic mixture with static weights,

• to elaborate a general algorithm for recursive estimation of the generalized model,

• to apply the algorithm to specific types of components and component weighting functions,

• to specialize the algorithm for mixtures with static weights,

• to implement all algorithms in MATLAB,

• to implement algorithms for static-weights mixtures in C and integrate them into MATLAB tool-
box Mixtools,

• to compare quality of the new algorithm with the current quasi-Bayes algorithm on a large set of
examples dealing with estimation of a static-weights mixture,

• to test reliability of algorithms for dynamic-weights mixtures on simple examples.

1.5 Thesis Layout

Chapter 1 summarizes the aims of this work. Also, the means used to achieve this aims are presented
here.

The underlaying Bayesian estimation is discussed in Chapter 2.

In Chapter 3, general useful propositions about projection into two important classes are proved.
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Chapters 4, 5, 6 and 7 form the core of the work. The two main problems of the work are discussed
and solved here.

Chapter 4 provides a specific problem formulation.

General techniques describing solution of the formulated problem form the content of Chapter 5. The
problem is split into two subproblems: (i) optimizing of factors statistics and (ii) optimizing of
statistics determining the component weighting functions.

Chapters 6 and 7 solves the mentioned subproblems (i) and (ii).

Content of Chapter 8 is formed by experiments demonstrating and verifying the theoretical results.

Chapter 9 concludes the work by summarizing the status of the research achieved and lists some
problems to be addressed in future.

Appendix A recalls the quasi-Bayes estimation algorithm, which serves as a reference for quality com-
parison. Also the algorithm mixinit for initialization of mixture estimation is briefly described
there.

General mathematical tools used, auxiliary propositions and properties of polygamma functions are
summarized in Appendix B.

Appendix C summarizes basic properties and propositions of probabilistic calculus, The Kullback-
Leibler divergence, the Kerridge divergence and their properties as well as important probability
density functions and their properties.

Appendix D describes normal autoregressive factors and their Bayesian estimation.

In order to provide compact text, majority of propositions, definitions and pdf properties are placed
in the appendices. Inside the main text, references to them are made. This style of presentation may
be little bit confusing for the readers who are beginners in area of probabilistic modelling. To minimize
this confusion, Section 1.6 briefly summarizes most of the terms, which will be referred within the main
text.

1.6 Means and Tools Used for the Work

Here, the main tools and means used for the work are summarized.

• Basic properties of probability density functions (Appendix C)

– Conditioning (Proposition 19)

– Jensen inequality (Proposition 20)

– Mean value transformation (Proposition 21)

– Marginalization (Proposition 19)

– Chain rule (Proposition 19)

• Properties of known pdfs

– Gaussian pdf (Section C.6)

– Dirichlet pdf (Section C.2)

– Gauss-inverse Wishart pdf (Section C.5)

• Bayesian estimation (Chapter 2)

– Prior, posterior pdf (Section 2.1)
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– Bayes rule, Bayesian updating (Section 2.2)

– Conjugate prior, conjugate posterior (Section 2.3)

• Proximity measures (Appendix C)

– Kullback-Leibler divergence (Section C.1.1)

– Kerridge divergence (Section C.1.2)

• General mathematical tools (Appendix B)

– Matrix differential calculus (Section B.1)

– Extremes of multivariate functions (Proposition 10)

– Monte-Carlo integral evaluation (Section 7.2.5)

– Polygamma functions (Appendix B.3)

This text doesn’t have ambitions to provide exact mathematical description of the presented propo-
sitions and their proofs. Instead, it tries to present them as simply as possible in the form close to their
software implementation.
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Chapter 2

Bayesian Estimation

This chapter starts with a description of Bayesian estimation. Then its feasibility is discussed. Finally,
general mechanism for achieving feasibility of Bayesian recursive estimation is proposed.

2.1 General Description of Bayesian Estimation

Let us have some process with d̊ scalar sensors called here data channels. Current values on all data
channels at time t form a d̊-dimensional data vector dt ≡ [d1;t, · · · , dd̊;t]. We measured values on all data
channels for t̊ times and got data d(̊t) ≡ (d1, · · · , d̊t).

Probabilistic modelling relies on assumption that d(t) is a random quantity. Then the task of
estimation is defined as finding the probability density function (pdf) of this random quantity. It means
that our task is to find pdf f(d(̊t)). Because this task is enormously difficult, we usually assume that
f(d(̊t)) belongs to some known class of pdfs determined by finite dimensional parameter Θ, f(d(̊t)) ≡
f(d(̊t)|Θ). Then the task reduces to estimating the parameter Θ.

According to the chain rule (Proposition 19), we can factorize the pdf f(d(̊t)|Θ) as follows:

f(d(̊t)|Θ) =
t̊∏

t=1

ft(dt|d(t− 1), Θ).

It is reasonable to expect that dt does not depend on all historical values d(t − 1), but just on a
subselection φt−1 forming state vector, i.e.

ft(dt|d(t− 1), Θ) ≡ ft(dt|φt−1,Θ).

The state vector φt−1 can be even empty. In such a case no dependence on past is considered and the
model is called static. Otherwise, the model is called dynamic.

Next, it is often reasonable to expect that all pdfs ft have the same functional form:

ft(dt|d(t− 1),Θ) ≡ f(dt|φt−1, Θ).

The pdf f(dt|φt−1,Θ) is called parameterized model of the system and it of course fully determines
the pdf f(d(̊t)|Θ) considering the previous assumptions.

The basic principle of Bayesian decision making [7] states that uncertainty should be modelled by
randomness. This means that unknown parameter Θ should be treated as a random quantity. If Θ is
a random quantity it makes sense to speak about its pdf. The main interest of Bayesian analysis lies
on studying the pdf of Θ conditioned by all known data d(̊t). This is so called posterior pdf π(Θ|d(̊t)).
This pdf is the main outcome of Bayesian estimation as it provides full information about the unknown
parameter Θ. From practical reasons, we consider the posterior pdf π(Θ|d(̊t)) to be determined by
statistic Gt̊ instead of all d(̊t). This assumption is very weak, because we do not assume the finiteness of

21



22 CHAPTER 2. BAYESIAN ESTIMATION

Gt̊ yet. Hence π(Θ|d(̊t)) ≡ π(Θ|Gt̊). Important object of Bayesian estimation needed for evaluation of
π(Θ|d(̊t)) is also so called prior pdf π(Θ) ≡ π(Θ|G0) reflecting our knowledge about the system before
the estimation. This pdf can be constructed using information of some experts. The expert information
must be of course translated into probabilistic terms [37].

According to previous considerations, we can formulate the task of Bayesian parameter estimation:

Provide the posterior pdf π(Θ|Gt̊), using the knowledge of:

• t̊ data records (realizations) d(̊t),

• the prior pdf π(Θ),

• the parameterized model f(dt|φt−1, Θ).

In practical application we often need to update the posterior pdf π(Θ|Gt−1) with each new data record
dt. This task can be formulated as follows:

Provide the posterior pdf πt(Θ|Gt), using the knowledge of:

• state vector φt−1,

• new data record dt,

• the parameterized model f(dt|φt−1, Θ),

• old posterior pdf πt−1(Θ|Gt−1).

This task is called Bayesian recursive estimation and is the key problem addressed within this text.
It is simple to observe, that non-recursive version of estimation can be obtained by repetitive use of the
recursive version.

The following example illustrates some terms defined in previous paragraph.

Example 1 (Bayesian estimation)

d̊ = 1 (scalar data)
φt−1 ≡ (dt−1, dt−2) (state of the model)

Θ ≡ (a, b, c) (unknown parameter)
f(dt|φt−1, Θ) = Ndt (adt−1 + bdt−2 + c, 1) (normal parameterized model)

π0(Θ|G0) ≡ Ua(0, 2)Ub(1, 3)Uc(−1, 1) (uniform prior pdf)

We have some scalar system. Data record dt at time t depends on two historical values dt−1 and dt−2.
We measured t̊ data records d1, · · · , d̊t. We do not know the values of parameters a, b, c, but the prior
pdf says that a ∈ (0, 2), b ∈ (1, 3), c ∈ (−1, 1). We need to know more about them. The posterior pdf
πt̊(a, b, c|Gt̊) will give us better information.

2.2 Solution of Bayesian Recursive Estimation

Bayesian recursive estimation has a simple solution:

πt(Θ|Gt) =
f
(
dt|φt−1,Θ

)
πt−1(Θ|Gt−1)∫

f
(
dt|φt−1, Θ

)
πt−1(Θ|Gt−1)dΘ

. (2.1)

The pdf f
(
dt|φt−1, Θ

)
is taken as a function of Θ. The data record dt and state vector φt−1 must

be known. The following example demonstrates use of this relation.
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Example 2 (Bayesian recursive estimation)

d̊ = 1 (scalar data)
φt−1 ≡ ∅ (static model)

Θ (unknown scalar parameter)
f(dt|φt−1,Θ) ≡ Ndt (Θ, 1) (normal parameterized model)
πt−1(Θ|Gt−1) ≡ NΘ (Mt−1, Rt−1) (Gaussian old posterior pdf)

According to the relation (2.1), the new posterior pdf is:

πt(Θ|Mt, Rt) =
Ndt (Θ, 1)NΘ (Mt−1, Rt−1)∫ Ndt

(Θ, 1)NΘ (Mt−1, Rt−1) dΘ
.

With a simple computation, we obtain the result:

πt(Θ|Mt, Rt) = NΘ

(
Mt−1 + Rt−1dt

Rt−1 + 1
,

Rt−1

1 + Rt−1

)
.

The new posterior pdf πt(Θ|Mt, Rt) has the same functional form as the old one. This fact is very
important, because Bayesian update reduces here to updating of statistics Mt, Rt, i.e. it consists of the
mapping (Mt−1, Rt−1, dt) → (Mt, Rt) defined as follows:

Mt =
Mt−1 + Rt−1dt

Rt−1 + 1
, Rt =

Rt−1

1 + Rt−1
.

Now let us assume we have the prior pdf π0(Θ|M0, R0) ≡ NΘ (M0, R0) and apply the rule repeatedly in
t̊ time steps. We get the posterior pdf πt̊(Θ|Mt̊, Rt̊) ≡ NΘ (Mt̊, Rt̊) .

Let us simulate t̊ ≡ 10 data records with Θtrue ≡ 2.0000. The result of simulation is displayed in
Table 2.1.

t 1 2 3 4 5
dt 1.7271 0.9745 3.0329 1.0502 1.4423
t 6 7 8 9 10
dt 1.4322 1.2444 2.7505 1.7242 4.9642

Table 2.1: Simulated data

If we select relatively flat prior pdf given by

M0 = 0.0000, R0 = 5.0000,

we obtain the result

M10 = 1.9944, R10 = 0.0980.

The prior pdf π0(Θ|M0, R0) and posterior pdf π10(Θ|M10, R10) as well as values of Mt and Rt during
the estimation are depicted on Figure 2.1. Note that the posterior pdf is concentrated near the true value
2.0000.

2.3 Feasibility of Bayesian Estimation

In Example 2, the Bayesian estimation leads to simple recursion on statistics Mt and Rt. Unfortunately,
this happens only in a very limited number of cases, when the new posterior pdf πt(Θ|Gt) after one
step of estimation preserves the same functional form as the previous posterior pdf πt−1(Θ|Gt−1). Then
we can omit the time subscript in the pdf, i.e. πt(Θ|Gt) ≡ π(Θ|Gt)∀t. When updating from π(Θ|Gt−1)
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t Mt Rt

0 0.0000 5.0000
1 1.4392 0.8333
2 1.2280 0.4545
3 1.7920 0.3125
4 1.6154 0.2381
5 1.5821 0.1923
6 1.5579 0.1613
7 1.5144 0.1389
8 1.6651 0.1220
9 1.6715 0.1087
10 1.9944 0.0980

Figure 2.1: Example of Bayesian estimation
The figure shows the prior pdf π0(Θ|M0, R0) and resulting posterior pdf π10(Θ|M10, R10) after
processing 10 data records. It can be seen that the posterior pdf concentrated near the true value
2.0000. The table in the right part of the figure shows evolution of the posterior statistics during
time.

to π(Θ|Gt), it suffices to update the statistic Gt. The prior pdf, which leads to this behavior is called
conjugate[38] .

In this text, we will orient on the case when the conjugate pdf does not exist. Then we have to face
to two major problems.

• The normalizing integral in (2.1) need not be analytically solvable.

• Repetitive use of this rule would lead to very complex forms of the posterior pdf.

The first problem can be solved by approximation of the integral or using numeric integration.
Solution of the second problem is much more difficult. We will demonstrate this problem on a simple
example.

Example 3 (Not suitable Bayesian estimation)

d̊ = 1 (scalar data)
φt−1 ≡ ∅ (static model)

Θ ≡ (a, b) (unknown parameter)
f(dt|φt−1, Θ) ≡ 0.5Ndt (a, 1) + 0.5Ndt (b, 1) (parameterized model)

π0(a, b|G0) ≡ N(a,b) (M0, R0) (Gaussian prior pdf)

According the Bayes rule (2.1):

π1(a, b|G1) ∝ 0.5Nd1 (a, 1)N(a,b) (M0, R0) + 0.5Nd1 (b, 1)N(a,b) (M0, R0) .

With a little simple computation:

π1(a, b|G1) = w1N(a,b)

(
M

(1)
1 , R

(1)
1

)
+ (1− w1)N(a,b)

(
M

(2)
1 , R

(2)
0

)
,

where w1,M
(1)
1 ,M

(2)
1 , R

(1)
1 , R

(2)
1 are evaluated somehow. Details are not important now. Important is

that π1 is a weighted sum of two pdfs of the same type as π0. It is simple to observe, that π2 would
be a weighted sum of two pdfs of the same type as π1, i.e. it will be a sum of 4 pdfs of the type π0.
Generally, πt would consist of 2t weighted terms. It is clear that we are not able to store the statistics
of these terms in computer even for a relatively small t.
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In the previous example, we were able to perform analytically one estimation step, but we were not
able to use its result in the next estimation steps. A simple way out of this situation is to approximate
the new posterior pdf to obey the same form as the old posterior pdf. Now let us formalize the Bayesian
estimation using this trick.

Off-line phase

• Choose sufficiently rich class of posterior pdfs, element of this class is determined by finite
statistic Gt. π(Θ|Gt)

• Set G0 so that π(Θ|G0) reflects the prior information.

On-line phase

• Evaluate one step of the Bayesian estimation (2.1), getting

π̂t(Θ) =
f(dt|φt−1, Θ)π(Θ|Gt−1)∫
f(dt|φt−1,Θ)π(Θ|Gt−1)dΘ

. (2.2)

This pdf will be referred to as correct update and it is usually out of our class.
• Find Gt so that π(Θ|Gt) is the best projection of the obtained pdf π̂t into our class of poste-

riors.

The term ”best projection” is a little bit vague. Within this text, under this term we will consider
exclusively minimizer of Kullback-Leibler divergence [1]. So the task can be more precisely formulated
as follows:

Find Gt so that
D

(
π̂t(Θ)

∣∣∣
∣∣∣ π(Θ|Gt)

)

is minimal.

Note that this divergence is not symmetric in order of its arguments. There exist approaches min-
imizing the other argument order[39], because more or less analytical solution can be found [40]. We
choose KL divergence and this argument order, because it is compatible with the Bayesian methodology
[25, 26]. The feasible solution is not guaranteed at general level, but it is possible to find the minimizer
for special cases. Because the specified approach finds the best projection into specific classes, it is
called projection based approach.

Example 4 (Projection based approach) Let us have the same parameterized model and prior pdf
as in Example 3. Now we will force the posterior pdf to stay within the class of 2-dimensional Gaussian
distributions.

d̊ = 1 (scalar data)
φt−1 ≡ ∅ (static model)

Θ ≡ (a, b) (unknown parameter)
f(dt|φt−1, Θ) ≡ 0.5Ndt (a, 1) + 0.5Ndt (b, 1) (parameterized model)

π(a, b|Gt−1) ≡ N(a,b) (Mt−1, Rt−1) (Gaussian class of posteriors)

Similarly as in the previous example, we came to the relation

π̂t(a, b) = wtN(a,b)

(
M

(1)
t , R

(1)
t

)
+ (1− wt)N(a,b)

(
M

(2)
t , R

(2)
t

)
.

Now we have to find Gt ≡ (Mt, Rt) determining the best projection of this pdf to class of 2-dimensional
Gaussian pdfs. Using Propositions 2 and 22 it can be found that

Mt = wtM
(1)
t + (1− wt)M

(2)
t

Rt = wtR
(1)
t + (1− wt)R

(2)
t + wt(1− wt)(M

(2)
t −M

(1)
t )(M (2)

t −M
(1)
t )′,

where ’ denotes transposition.



26 CHAPTER 2. BAYESIAN ESTIMATION



Chapter 3

Basic Tool

This chapter contains two important propositions exploited extensively during the work. They converts
very complex problem of minimization the KL divergence into a simpler task of integration for two
important classes.

Proposition 1 (Best projection into GiW class) Let f(θ, r) be arbitrary joint pdf on vector θ and
positive scalar r fulfilling following conditions.(The assumptions are not very restrictive and in obvious
situations they are fulfilled.)

p ≡
∫

f(θ, r)
r

dθdr is finite.

s ≡
∫

ln (r) f(θ, r)dθdr is finite.

h(θ, r) ≡ f(θ, r)
rp

has finite positive definite covariance matrix cov [θ]h .

Then the statistics (C, bdD, θ̂, ν) minimizing the KL divergence
D

(
f(θ, r)

∣∣∣
∣∣∣ GiWθ,r(C, bdD, θ̂, ν)

)
fulfill:

C = p cov [θ]h
θ̂ = E [θ]h

ln (0.5ν)− ψ0 (0.5ν) = ln (p) + s

bdD =
ν

p

Proof: We will show that the specified statistics minimize the Kerridge divergence

K
(
f(θ, r)

∣∣∣
∣∣∣ GiWθ,r(C, bdD, θ̂, ν)

)
= −

∫
f(θ, r) ln

(
GiWθ,r(C, bdD, θ̂, ν)

)
, (3.1)

which, according to Proposition 23, directly implies the statement of the proposition.
GiW pdf has the following form:

GiWθ,r(C, bdD, θ̂, ν) =
r−0.5(ν+ψ̊+2)

I(C, bdD, ν)
exp

{
− 1

2r

[
(θ − θ̂)′C−1(θ − θ̂) + bdD

]}
, where

I(C, bdD, ν) = Γ(0.5ν) bdD−0.5ν
∣∣C−1

∣∣−0.5
20.5ν(2π)0.5ψ̊.
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We need to evaluate logarithm of GiW pdf:

ln
(
GiWθ,r(C, bdD, θ̂, ν)

)
= −0.5(ν + ψ̊ + 2) ln (r)− ln (Γ (0.5ν)) + (3.2)

+ 0.5ν ln
(
bdD

)
− 0.5ψ̊ ln (2π)− 0.5ν ln (2) +

+ 0.5 ln
(|C−1|)− 1

2r

[
(θ − θ̂)′C−1(θ − θ̂) + bdD

]
.

Before substituting (3.2) into (3.1), we split it into two parts. The first part depends only on ν, bdD, the

second part depends on θ̂, C. The part, which does not depend on any of ν, bdD, θ̂, C is omitted. With this
separation, the Kerridge divergence we are evaluating splits into

K
(
f(θ, r)

∣∣∣
∣∣∣ GiWθ,r(C, bdD, θ̂, ν)

)
= G(ν, bdD) + W (θ̂, C) + const, where

G(ν, bdD) =

= −
∫

f(θ, r)
[
−0.5ν ln (r)− ln (Γ (0.5ν)) + 0.5ν ln

(
0.5 bdD

)
− 1

2r
bdD

]
dθdr =

= 0.5ν

∫
f(θ, r) ln (r) dθdr

︸ ︷︷ ︸
≡s

+ ln (Γ (0.5ν))− 0.5ν ln
(
0.5 bdD

)
+ 0.5 bdD

∫
1
r
f(θ, r)dθdr

︸ ︷︷ ︸
≡p

=

= 0.5νs + ln (Γ (0.5ν))− 0.5ν ln
(
0.5 bdD

)
+ 0.5 bdDp

W (θ̂, C) =

= −
∫

f(θ, r)
[
0.5 ln

(|C−1|)− 1
2r

[(θ − θ̂)′C−1(θ − θ̂)]
]

dθdr =

= −0.5 ln
(|C−1|) +

∫
f(θ, r)

1
2r

[θ′C−1θ − 2θ̂′C−1θ + θ̂′C−1θ̂]dθdr

Prop.7︷︸︸︷
=

= −0.5 ln
(|C−1|) + 0.5tr


C−1

∫
θθ′

r
f(θ, r)dθdr

︸ ︷︷ ︸
≡Q


− θ̂′C−1

∫
θ

r
f(θ, r)dθdr

︸ ︷︷ ︸
≡U

+0.5p θ̂′C−1θ̂ =

= −0.5 ln
(|C−1|) + 0.5tr

(
C−1Q

)− θ̂′C−1U + 0.5p θ̂′C−1θ̂

It is clear, that we can split the minimization task into two independent parts. The first part is searching
for the optimal scalars ν, bdD and the second part is searching for the optimal matrix C and vector θ̂. The
minimization will use the standard differential approach summarized in Proposition 10. Let us start with the
first 2-dimensional minimization.

First we evaluate partial derivatives of G.

∂G

∂ bdD
= −0.5

ν
bdD

+ 0.5p (3.3)

∂G

∂ν
= 0.5s + 0.5ψ0 (0.5ν)− 0.5 ln

(
0.5 bdD

)
(3.4)

∂2G

∂ bdD2 = 0.5
ν

bdD2 (3.5)

∂2G

∂ν2
= 0.25ψ1 (0.5ν) (3.6)
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∂2G

∂ν∂ bdD
= − 0.5

bdD
(3.7)

(3.8)

By zeroing the first derivatives, we obtain the equations for the optimal values:

bdD =
ν

p
(3.9)

ln (0.5ν)− ψ0 (0.5ν) = ln (p) + s (3.10)

According to Proposition 17, the equation (3.10) is known to have unique positive solution iff ln (p)+s >
0. It holds:

ln (p) + s = ln
(∫

1
r
f(θ, r)dθdr

)
−

∫
ln

(
1
r

)
f(θ, r)dθdr = (3.11)

= ln
(
E

[
1
r

])
− E

[
ln

(
1
r

)]
(3.12)

Applying the Proposition 21, Jensen inequality (Proposition 20) and assumptions of the current proposition
on (3.12) gives that ln (p) + s > 0.

We found unique stationary point. Lets investigate the definiteness of the Hessian.

H =
(

0.5 ν
bdD2 − 0.5

bdD

− 0.5
bdD

0.25ψ1 (0.5ν)

)

According to the Proposition 12, we need to show that

0.5
ν

bdD2 > 0 (3.13)
∣∣∣∣

0.5 ν
bdD2 − 0.5

bdD

− 0.5
bdD

0.25ψ1 (0.5ν)

∣∣∣∣ > 0. (3.14)

The inequality (3.13) holds, because ν > 0. The determinant is equal to: 0.25
bdD2 (0.5νψ1 (0.5ν)− 1)

which is positive, because the function νψ1 (ν) > 1, ∀ν > 0 (Proposition 18).
We proved that there is unique local minima. Because the minimization was performed without con-

straints, we need tho show, that the resulting bdD and ν are positive. We already showed that ν is positive.
Because p is positive, bdD = ν

p is positive too. Because the function G is continuous and has unique local
extreme, this extreme is global extreme.

Now we have to do the same work for W (θ̂, C). The used formulas from matrix differential calculus are
summarized in Proposition 8.

∂W

∂θ̂
= −C−1U + pC−1θ̂ (3.15)

∂W

∂C−1
= −0.5C + 0.5Q′ − θ̂U ′ + 0.5pθ̂θ̂′ (3.16)

∂2W

∂θ̂2
= pC−1 (3.17)

∂2W

∂C−2
= 0.5C ⊗ C (3.18)

∂2W

∂C−1∂θ̂
= I ⊗

(
−U + pθ̂

)
, (3.19)

where ⊗ denotes Kronecker product of matrices.
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After a simple manipulation with first derivatives, we get the unique solution (note that Q is symmetric):

θ̂ =
U

p
(3.20)

C = Q− 2θ̂U ′ + pθ̂θ̂′ = Q− UU ′

p
. (3.21)

We found the stationary point, we need to prove that it is a minimum. For the stationary point it holds

that
(
−U + pθ̂

)
= 0, hence the Hessian matrix

H =

(
∂2W
∂θ̂2

∂2W
∂C−1∂θ̂

′

∂2W
∂C−1∂θ̂

∂2W
∂C−2

)
=

(
pC−1 0

0 C ⊗ C

)

is positive definite, because Kronecker product of positive definite matrices is positive definite.
As we performed minimization without constraints, we need to prove that the obtained C is positive

definite.

C = Q− UU ′

p

Q =
∫

θθ′

r
f(θ, r)dθdr = pE [θθ′]h

U =
∫

θ

r
f(θ, r)dθdr = pE [θ]h

C = p
(E [θθ′]h − E [θ′]h E [θ]′h

)
= pcov [θ]h

Because p is positive and we assume that cov [θ]h is positive definite, the obtained C is positive definite.
The function W is continuous and has unique local extreme, hence this extreme is global extreme.

Proposition 2 (Best projection into Gaussian class) Let f(θ) be arbitrary joint pdf on vector θ
with a finite positive definite covariance matrix cov [θ]f . Then the statistics (M,R) minimizing the KL
divergence

D
(
f(θ)

∣∣∣
∣∣∣ Nθ (M,R)

)

fulfill:

R = cov [θ]f
M = E [θ]f

Proof: The proof is omitted here. It is just simplified version of proof of Proposition 1.



Chapter 4

Problem Formulation

Within this text, we consider the parameterized model of the system in the form of finite probabilistic
mixture with data dependent weights. Here, these mixture models are defined and the main estimation
task is formulated.

4.1 Dynamic Probabilistic Mixture

We consider the parameterized model of the system in the following form:

f(dt|φt−1,Θ) ≡
c̊∑

c=1

αc(φt−1|Ω)fc(dt|φt−1, Θc), c̊ < ∞, where (4.1)

c̊ ≡ number of components (4.2)
fc(dt|φt−1, Θc) ≡ c-th component given by the component parameters Θc

αc(φt−1|Ω) ≡ c-th component weighting function (cwf ) given by the parameter Ω

αc(φt−1|Ω) ≥ 0,

c̊∑
c=1

αc(φt−1|Ω) = 1, ∀φt−1, ∀c (4.3)

Θ ≡ {Θ1, · · · , Θc̊, Ω} is unknown parameter
(4.4)

Verbally: The dynamic probabilistic mixture is a convex combination of several dynamic pdfs called
components. The actual weights depends generally on the state vector φt−1. Mixture parameter Θ is
formed by the component parameters {Θ1, · · · , Θc̊} and by the parameter Ω determining the behavior
of component weighting functions. The parameter Θ represents our only uncertainty about the system
model, i.e. we assume the know functional form of the components fc and component weighting functions
αc. The next simple example illustrates all defined terms.

Example 5 (Dynamic probabilistic mixture)

d̊ ≡ 1 (data are scalar)
c̊ ≡ 2 (2 components)

φt−1 ≡ (dt−1, dt−2) (state of the model)
Ω ≡ (λ1, λ2) (parameter of cwfs)
Θ ≡ (λ1, λ2,Θ1, Θ2) (mixture parameter)

31
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α1(φt−1|Ω) ≡ α1(dt−1, dt−2|λ1, λ2) = λ2
1d2

t−1

λ2
1d2

t−1+λ2
2d2

t−2
(1st cwf)

α2(φt−1|Ω) ≡ α2(dt−1, dt−2|λ1, λ2) = λ2
2d2

t−2

λ2
1d2

t−1+λ2
2d2

t−2
(2nd cwf)

f1(dt|φt−1, Θ1) ≡ f1(dt|dt−1, dt−2,Θ1) = 1
(1+(dt−Θ1dt−1)2)×π (1st component)

f2(dt|φt−1, Θ2) ≡ f2(dt|dt−1, dt−2,Θ2) = 1
(1+(dt−Θ2dt−2)2)×π (2nd component)

The example presents one dimensional dynamic mixture with dynamic weights. It has two compo-
nents with Cauchy distribution. Note that sum of cwfs is always 1.

Before fixing and refining nomenclature related to the mixture, we split the individual components
into so called factors that provide flexibility of the parametric description. Using the chain rule (Propo-
sition 19), the pdfs fc(dt|φt−1,Θc) can be written as a product of pdfs of individual entries of dt:

fc(dt|φt−1, Θc) =
d̊∏

i=1

fic(di;t|di+1;t, · · · , dd̊;t, φt−1,Θic). (4.5)

The additional subscript i of the parameter Θic indicates that only some entries of Θc may occur in
i-th pdf (factor) in (4.5).

Before applying the chain rule, entries of dt can be permuted and some permutations may lead to
parameterizations with less parameters. This motivates inclusion of permutations into the model de-
scription. Because each component can generally use another permutation, we have to add an additional
parameter to the data index, which will determine the component (permutation). More exactly, let dc;t

denote the data record after permutation in c-th component. dic;t is then i-th entry in this permuted
data record. Using this notation, the result of the chain rule reads:

fc(dt|φt−1,Θc) =
d̊∏

i=1

fic(dic;t|d(i+1)c;t, · · · , dd̊c;t, φt−1,Θic) ≡
d̊∏

i=1

fic(dic;t|ψic;t, Θic), (4.6)

where the regression vector ψic;t is generally a sub-vector of the vector

[d(i+1)c;t, · · · , dd̊c;t, φt−1]′.

Often, it is reasonable to include constant 1 into the regression vector ψic;t. Hence we define ψic;t as a
sub-vector of the vector

[d(i+1)c;t, · · · , dd̊c;t, φt−1, 1]′. (4.7)

The next example demonstrates two ways of splitting components into factors.

Example 6 (Parameterized factor)

d̊ ≡ 2 (2-dimensional data ⇒ we have 2 permutations)
Θ1 ≡ (µ, ρ), ρ ∈ (−1, 1) (we are dealing with component 1)

φt−1 ≡ ∅ (for simplicity, we suppose no dependence on past)

f1(dt|φt−1, Θ1) ≡ Ndt

((
0
µ

)
,

(
1 ρ
ρ 1

))

First Permutation
ψ11;t ≡ d2;t, Θ11 ≡ (µ, ρ), ψ21;t ≡ ∅, Θ21 ≡ µ

f1(dt|φt−1, Θ1) ≡ Nd1;t

(
ρ(d2;t − µ), 1− ρ2

)
︸ ︷︷ ︸

f11(d11;t|ψ11;t,Θ11)

Nd2;t (µ, 1)︸ ︷︷ ︸
f21(d21;t|ψ21;t,Θ21)

Second Permutation
ψ11;t ≡ d1;t, Θ11 ≡ (µ, ρ), ψ21;t ≡ ∅, Θ21 ≡ ∅

f1(dt|φt−1, Θ1) ≡ Nd2;t

(
µ + ρd1;t, 1− ρ2

)
︸ ︷︷ ︸

f11(d11;t|ψ11;t,Θ11)

Nd1;t (0, 1)︸ ︷︷ ︸
f21(d21;t|ψ21;t,Θ21)
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The example presents two possible ways of splitting two-dimensional normal pdf into normal factors.
Note that the second way of splitting results into empty Θ21 whereas the first splitting results into
nonempty Θ21. This shows that it makes sense to distinguish the particular permutations.

According to the previous definitions, the parameterized factor fic(dic;t|ψic;t,Θic) is determined by
its parameter Θic, by the index of the channel it acts on and by the way how the regression vector ψic;t

is constructed from d(t).
Now let us summarize the nomenclature related to the mixtures.

Agreement 4 (Nomenclature related to mixtures review)

c̊ is called number of components.

fc(dt|φt−1,Θc) is called parameterized component.

αc(φt−1|Ω) is the component weighting function (cwf) of the c-th parameterized component.

fic(dic;t|ψic;t,Θic) is called parameterized factor.

ψic;t is regression vector.

Ψic;t is the coupling Ψic;t ≡ [dic;t, ψ
′
ic;t]

′ and it is called data vector of the factor.

4.2 Form of the Prior and the Posterior Pdfs

According to the general rules in Section 2.3, we need to choose the prior and posterior pdf in a form
that is well manipulable. This motivates us to select this general form:

Agreement 5 (Considered forms of pdfs on Θ∗) The prior π(Θ) ≡ π(Θ|G0) and the posterior
π(Θ|d(t)) ≡ π(Θ|Gt) are considered to be of the common form:

π(Θ|Gt) ≡ ρ(Ω|Ht)
d̊,̊c∏

i,c=1

πic(Θic|Sic;t), t ∈ {0} ∪ t∗, where (4.8)

ρ(Ω|Ht) is pdf on cwf parameter Ω determined
by the finite-dimensional statistic Ht

πic(Θic|Sic;t) are pdfs on factor parameters Θic;t determined
by the finite-dimensional statistics Sic;t

Gt ≡ (Ht,S••;t).

Verbally, parameters Θic, i ≡ {1, · · · , d̊}, c ∈ {1, · · · , c̊}, of the individual parameterized factors are
considered to be conditionally independent, and also, independent of the parameter Ω of component
weighting functions. The posterior statistic Gt is formed by the statistic Ht determining the pdf of the
parameter of cwfs and by the statistics {Sic;t}d̊,̊c

i=1,c=1 determining the pdf of parameters of particular
factors.

Remarks 1

1. The independence of the factor parameters is restrictive, but it is the only way to cope with the
high dimensional cases.

2. When the conjugate pdf to the particular factor fic(di|ψic;t,Θic) exists, it is of course reasonable
to select the pdf πic(Θic|Sic;t) as conjugate one.
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Example 7 (Form of the prior and posterior pdf) The posterior pdf of the mixture model from
Example 5 could look as follows:

ρ(Ω|Ht) ≡ ρ(λ1, λ2|Mt, Rt) = N(λ1,λ2)′ (Mt, Rt)
π11(Θ11|S11;t) ≡ π11(Θ1|mt) = NΘ1 (mt, 1)
π12(Θ12|S12;t) ≡ π12(Θ2|µt) = NΘ2 (µt, 1)

Ht ≡ (Mt, Rt), S11;t ≡ mt, S12;t ≡ µt

Gt ≡ (Mt, Rt,mt, µt)
π(Θ|Gt) ≡ π(λ1, λ2, Θ1, Θ2|Mt, Rt,mt, µt) = N[λ1,λ2]′ (Mt, Rt)NΘ1 (mt, 1)NΘ2 (µt, 1)

4.3 Addressed Problem

Now, it is time to exactly define the addressed problem. We apply the approximation from Section 2.3
to the introduced mixture model (4.1) and get the following problem:

Find the statistic Gt, which minimizes KL divergence D
(
π̂t(Θ)

∣∣∣
∣∣∣ π(Θ|Gt)

)
, where

π̂t(Θ) ≡ f(dt|φt−1,Θ)π(Θ|Gt−1)∫
f(dt|φt−1, Θ)π(Θ|Gt−1)dΘ

(4.9)

π(Θ|Gt−1) ≡ ρ(Ω|Ht−1)
d̊,̊c∏

i=1,c=1

πic(Θic|Sic;t−1)

f(dt|φt−1,Θ) ≡
c̊∑

c=1

αc(φt−1|Ω)
d̊∏

i=1

fic(dic;t|ψic;t, Θic).

In other words, we are looking for Gt ≡ (Ht,S••;t) knowing Gt−1 ≡ (Ht−1,S••;t−1) and dt, φt−1. This
optimization task is solved in next chapter.



Chapter 5

General Solution

In this chapter, we will solve the problem formulated in Section 4.3 as generally as possible. First let
us investigate the form of correct update π̂t(Θ) defined in (4.9).

5.1 Form of Correct Update

Proposition 3 (Form of correct update) The correct update π̂t(Θ) defined by (4.9) for the mixture
model (Section 4.1) has the following form:

π̂t(Θ) =
c̊∑

c=1

wc;t ρU
c (Ω|HU

c;t−1)
d̊,̊c∏

i,r=1
r 6=c

πir(Θir|Sir;t−1)
d̊∏

j=1

πU
jc(Θjc|SU

jc;t), (5.1)

where the following constituents are used:

data weight wc;t ≡ α̂c;t−1βc;t∑c̊
c=1 α̂c;t−1βc;t

(5.2)

weight estimate α̂c;t−1 ≡
∫

αc(φt−1|Ω)ρ(Ω|Ht−1)dΩ (5.3)

component prediction βc;t ≡
d̊∏

i=1

Iic;t (5.4)

factor prediction Iic;t ≡
∫

fic(dic;t|ψic;t,Θic)πic(Θic|Sic;t−1)dΘic (5.5)

cwf update ρU
c (Ω|HU

c;t−1) ≡ αc(φt−1|Ω)ρ(Ω|Ht−1)
α̂c;t−1

(5.6)

factor update πU
ic(Θic|SU

ic;t) ≡ fic(dic;t|ψic;t, Θic)πic(Θic|Sic;t−1)
Iic;t

(5.7)

Proof:

f(dt|φt−1, Θ)π(Θ|Gt−1) =

=




c̊∑
c=1

αc(φt−1|Ω)
d̊∏

j=1

fjc(djc;t|ψjc;t, Θjc)


×


ρ(Ω|Ht−1)

d̊,̊c∏

i=1,r=1

πir(Θir|Sir;t−1)


 =

=
c̊∑

c=1


αc(φt−1|Ω)ρ(Ω|Ht−1)︸ ︷︷ ︸

α̂c;t−1ρU
c (Ω|HU

c;t−1)

×
d̊∏

j=1

πjc(Θjc|Sjc;t−1)fjc(djc;t|ψjc;t, Θjc)︸ ︷︷ ︸
Ijc;tπU

jc
(Θjc|SU

jc;t)

d̊,̊c∏
i,r=1
r 6=c

πir(Θir|Sir;t−1)
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=
c̊∑

c=1

α̂c;t−1βc;t ρU
c (Ω|HU

c;t−1)
d̊∏

j=1

πU
jc(Θjc|SU

jc;t)
d̊,̊c∏

i,r=1
r 6=c

πir(Θir|Sir;t−1)

︸ ︷︷ ︸
This part is pdf, hence it integrates to 1.

It is clear that the normalizing integral
∫

f(dt|φt−1,Θ)π(Θ|Gt−1)dΘ =
c̊∑

c=1
α̂c;t−1βc;t, hence

π̂(Θ) =
c̊∑

c=1

α̂c;t−1βc;t∑c̊
c̃=1 α̂c̃;t−1βc̃;t︸ ︷︷ ︸
≡ wc;t

ρU
c (Ω|HU

c;t−1)
d̊∏

j=1

πU
jc(Θjc|SU

jc;t)
d̊,̊c∏

i,r=1
r 6=c

πir(Θir|Sir;t−1).

Remarks 2 It is obvious that if w•;t has only one nonzero element, the form of the correct update
(5.1) is the same as the form of old posterior density π(Θ|Gt−1) (4.8). This means that in this case no
approximation is needed and new posterior density π(Θ|Gt) equals to the correct Bayesian update π̂t(Θ)
(5.1).

5.2 General Minimization

Proposition 4 (Minimization of the KL divergence) For Gt ≡ {S••;t, Ht} minimizing

D
(
π̂t(Θ)

∣∣∣
∣∣∣ π(Θ|Gt)

)
, it holds:

Ht ∈ Argmin
Ht

D
(

c̊∑
c=1

wc;tρ
U
c (Ω|HU

c;t−1)
∣∣∣
∣∣∣ ρ(Ω|Ht)

)
(5.8)

Sic;t ∈ Argmin
Sic;t

D
(
(1− wc;t)πic(Θic|Sic;t−1) + wc;tπ

U
ic(Θic|SU

ic;t)
∣∣∣
∣∣∣ πic(Θic|Sic;t)

)
.

Proof:
Instead of working with KL divergence, we will evaluate the Kerridge divergence K

(
π̂t(Θ)

∣∣∣
∣∣∣ π(Θ|Gt)

)
.

Details about this divergence, its properties and its relation to the KL divergence are discussed in Section
C.1.2.

K




c̊∑
c=1

wc;tρ
U
c (Ω|HU

c;t−1)
d̊,̊c∏

i,r=1
r 6=c

πir(Θir|Sir;t−1)
d̊∏

j=1

πU
jc(Θjc|SU

jc;t)
∣∣∣
∣∣∣ π(Θ|Gt)




Proposition 24︷︸︸︷
=

=
c̊∑

c=1

wc;tK


ρU

c (Ω|HU
c;t−1)

d̊,̊c∏
i,r=1
r 6=c

πir(Θir|Sir;t−1)
d̊∏

j=1

πU
jc(Θjc|SU

jc;t)
∣∣∣
∣∣∣ π(Θ|Gt)




Proposition 26︷︸︸︷
=

=
c̊∑

c=1

wc;t


K

(
ρU

c (Ω|HU
c;t−1)

∣∣∣
∣∣∣ ρ(Ω|Ht)

)
+

d̊,̊c∑
i,r=1
r 6=c

K
(
πir(Θir|Sir;t−1)

∣∣∣
∣∣∣ πir(Θir|Sir;t)

)
+

+
d̊∑

j=1

K
(
πU

jc(Θjc|SU
jc;t)

∣∣∣
∣∣∣ πjc(Θjc|Sjc;t)

)

 .
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Let us temporarily denote

Kic = K
(
πic(Θic|Sic;t−1)

∣∣∣
∣∣∣ πic(Θic|Sic;t)

)

KU
jc = K

(
πU

jc(Θjc|SU
jc;t−1)

∣∣∣
∣∣∣ πjc(Θjc|Sjc;t)

)
.

The minimized function gets the form

c̊∑
c=1

wc;tK
(
ρU

c (Ω|HU
c;t−1)

∣∣∣
∣∣∣ ρ(Ω|Ht)

)
+

c̊∑
c=1

wc;t

d̊,̊c∑
i,r=1
r 6=c

Kir +
d̊,̊c∑

j,c=1

wc;tKU
jc

Proposition 15︷︸︸︷
=

=
c̊∑

c=1

wc;tK
(
ρU

c (Ω|HU
c;t−1)

∣∣∣
∣∣∣ ρ(Ω|Ht)

)
+

d̊,̊c∑

i,c=1

[
wc;tKU

ic + (1− wc;t)Kic

]
.

Now it is clear that minimization of this expression can be done separately.

Ht ∈ Argmin
Ht

[
c̊∑

c=1

wc;tK
(
ρU

c (Ω|HU
c;t−1)

∣∣∣
∣∣∣ ρ(Ω|Ht)

)]

Sic;t ∈ Argmin
Sic;t

[
(1− wc;t)Kic + wc;tKU

ic

]
=

= Arg min
Sic;t

[
(1− wc;t)K

(
πic(Θic|Sic;t−1)

∣∣∣
∣∣∣ πic(Θic|Sic;t)

)
+

+ wc;tK
(
πU

ic(Θic|SU
ic;t)

∣∣∣
∣∣∣ πic(Θic|Sic;t)

)]

Now, after applying Propositions 24 and 23, we obtain directly the statement of the proposition.

5.3 General Algorithm

Proposition 4 splits the overall problem into two subproblems. The first subproblem is obtaining the
statistic Ht determining the posterior pdf of the parameter Ω of cwfs. The second subproblem is
evaluation of statistics {Sic;t}d̊,̊c

i,c=1 determining the posterior pdf on parameters Θic of particular factors.
Important result is that the minimization can be done factor-wise, which simplifies substantially the
optimization. The two mentioned subproblems are connected through evaluation of weights wc;t, which
are needed in both subproblems.

Now we will specify the tasks, which must be done for particular factors and cwfs types.

For all factors

• evaluate factor predictions Iic;t (5.5)

• evaluate factor updates πU
ic(Θic|SU

ic;t) (5.7)

• perform the minimization
.Sic;t ∈ ArgminSic;t

[
D

(
(1− wc;t)πic(Θic|Sic;t−1) + wc;tπ

U
ic(Θic|SU

ic;t)
∣∣∣
∣∣∣ πic(Θic|Sic;t)

)]

For all cwfs

• evaluate weight estimates α̂c;t−1 (5.3)

• evaluate cwf updates ρU
c (Ω|HU

c;t−1) (5.6)
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• perform the minimization
Ht ∈ ArgminHt

D
(∑c̊

c=1 wc;tρ
U
c (Ω|HU

c;t−1)
∣∣∣
∣∣∣ ρ(Ω|Ht)

)

When we are able to perform all the mentioned steps, we can perform one step of the projection
based estimation according to Algorithm 1. Before specifying this algorithm, let us summarize some
rules of writing algorithms bellow.

Agreement 6

• Each algorithm has unique name.

• Each algorithm begins with specification of its name, input and output parameters.

• Algorithm can contain ”calling” of other algorithms, using their name and lists of parameters.
Neither the order of inputs nor outputs parameters is significant. The meaning should be clear
from the variables names.

• In all algorithms, we expect that the state vectors and regression vectors are known. Hence they
will not be specified as inputs of algorithms.

• In all algorithms, we expect that the functional forms of the parameterized model and posterior pdf
are known. Hence they will not be specified as inputs of algorithms.

Algorithm 1 (General update) (Ht, S••;t)= MIXUPDT
(Ht−1, S••;t−1

)

1. For each factor ic, evaluate the factor prediction

Iic;t =
∫

fic(dic;t|ψic;t, Θic)πic(Θic|Sic;t−1)dΘic

2. For each component c, evaluate the weight estimate α̂c;t−1 =
∫

αc(φt−1|Ω)ρ(Ω|Ht−1)dΩ

3. For each component c, evaluate the data weight wc;t =
α̂c;t−1

∏
Iic;t∑

α̂c;t−1

∏
Iic;t

4. For each factor ic, evaluate the factor update πU
ic(Θic|SU

ic;t) = πic(Θic|Sic;t−1)fic(dic;t|ψic;t,Θic)
Iic

5. For each factor ic, evaluate the updated factor statistic
Sic;t ∈ ArgminSic;t

[
D

(
(1− wc;t)πic(Θic|Sic;t−1) + wc;tπ

U
ic(Θic|SU

ic;t)
∣∣∣
∣∣∣ πic(Θic|Sic;t)

)]

6. For each component c, evaluate the cwf update ρU
c (Ω|HU

c;t−1) = ρ(Ω|Ht−1)αt(φt−1|Ω)
α̂c;t−1

7. Evaluate the updated cwf statistic Ht ∈ ArgminHt D
(∑c̊

c=1 wc;tρ
U
c (Ω|HU

c;t−1)
∣∣∣
∣∣∣ ρ(Ω|Ht)

)

It can be simply seen that the order of steps 1 and 2 can be arbitrary. The steps can be even
performed simultaneously. Similarly, the steps 4, 5 can be performed simultaneously with steps 6, 7.

Evaluating of the data weights wc;t in the way specified in the previous algorithm would cause
numerical problems, because Iic;t can be very very small numbers. We need to work with logarithms of
them. Let us denote Lic;t ≡ ln (Iic;t), Zc;t−1 ≡ ln (α̂c;t−1). Now we will rewrite Algorithm 1 using the
mentioned logarithms. Simultaneously, we will replace some steps with ”calling” of algorithms, which
were not defined yet. This can be taken as a ”forward declaration of algorithm” and it specifies the
work, which should be done in next chapters.

Algorithm 2 (General update) (Ht, S••;t)= MIXUPDT
(Ht−1, S••;t−1

)
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1. For each factor ic, evaluate Lic;t = FACNORM(Sic;t)

2. Evaluate Z•;t−1 = WEIGHTNORM(Ht−1)

3. Evaluate w•;t = EVAL WEIGHT(L••;t,Z•;t−1)

4. For each factor ic, evaluate the statistic Sic;t = FACUPDT (Sic;t−1, wc)

5. Evaluate Ht = WEIGHTUPDT (Ht−1, w•)

Remarks 3 The steps 4, 5 (6, 7) of Algorithm 1 were replaced with single step 4(5) in Algorithm 2,
because sometimes it is unnecessary to evaluate SU

ic;t explicitly.

Within Algorithm 2, we formalized all tasks, which have to be solved in the next work. The algo-
rithms FACNORM, WEIGHTNORM, FACUPDT, WEIGHTUPDT depend, of course, on the functional
form of parameterized factors and cwfs. Hence for each considered variant of factor, we need variant
of algorithms FACNORM and FACUPDT and for each variant of cwf we need variant of algorithms
WEIGHTNORM and WEIGHTUPDT. Important variants of factors and cwfs are proposed in subse-
quent chapters.

The algorithm EVAL WEIGHT can be simply written at this general level.

Algorithm 3 (Evaluation of data weight) (w•;t)= EVAL WEIGHT
(L••;t,Z•;t−1

)

1. For each component c evaluate Qc;t = Zc;t−1 +
∑d̊

i=1 Lic;t

2. Q̄•;t ≡ Q•;t −max Q•;t

3. w•;t =
exp(Q̄•;t)∑
c
exp(Q̄•;t)

Proposition 5 (Correctness of algorithm 3) Algorithm 3 is correct.
Proof:

wc;t =
exp (Qc;t −max Q•;t)∑
c (exp (Qc;t −maxQ•;t))

=
− exp (Qc;t) exp (max Q•;t)

− exp (max Q•;t)
∑

c exp (Qc;t)
=

=
exp (Qc;t)∑
c exp (Qc;t)

=
α̂c;t−1

∏ Iic;t∑
c α̂c;t−1

∏ Iic;t
.
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Chapter 6

Optimization of Statistics for
Normal Factors

In this chapter, we will solve the factor-related problems sketched in Section 5.3 for dynamic normal
models with unknown and known variance. The outcome is design of algorithms FACNORM and
FACUPDT used in Algorithm 2 for each factor type.

Because this chapter deals with only one factor fic(dic;t|ψic;t, Θic) and with corresponding part of
posterior pdf πic(Θic|Sic;t), we can omit the indexes i and c, i.e. fic(dic;t|ψic;t, Θic) → f(dt|ψt, Θ),
πic(Θic|Sic;t) → π(Θ|St).

6.1 Normal Factors with Unknown Variance

In this section, we assume that the parameterized factor is dynamic normal pdf with parameters Θ ≡
(θ, r), where θ is vector of regression coefficients and r is noise variance of the factor.

f(dt|ψt,Θ) = Ndt(θ
′ψt, r) =

1√
2πr

exp
(
− (dt − θ′ψt)2

2r

)
(6.1)

We do not need to introduce a shift in the mean value, because the regression vector can contain
entry equal to 1 (see (4.7)). The shifting constant is then placed to the corresponding place of the
vector of regression coefficients. Details about Bayesian estimation of normal factors can be found in
Appendix D.

Example 8 (Normal factor)

ψt ≡ (1) (regression vector)
Θ ≡ (θ, r) (unknown factor parameter consists of two scalars)

f(dt|ψt, Θ) ≡ Ndt (θ, r) (normal static factor)

The factor is one-dimensional pdf, which can be simply plot when its parameters are known. Figure
6.1 shows this pdf for θ = 2 and r = 2.

6.1.1 Form of the Posterior Pdf

The parameterized factor (6.1) has conjugated prior pdf [10]. Hence it is advantageous to use this pdf,
when specifying the form of the posterior pdf. (See Remarks 1.) The mentioned conjugated pdf to this
model is the Gauss inverse Wishart pdf with statistics St ≡ (νt, Vt) [10], where νt is scalar number of
degrees of freedom and Vt is so called extended information matrix (square, symmetric, positive definite
matrix with Ψ̊t rows).

41
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Figure 6.1: Normal factor with known parameters
The figure shows pdf Ndt

(θ, r) for known parameters θ = 2, r = 2.

π(Θ|St) = GiWθ,r(Vt, νt) ∝ r−0.5(νt+ψ̊t+2) exp
{
− 1

2r
tr (Vt[−1, θ′]′[−1, θ′])

}

Example 9 (GiW factor) The posterior pdf related to the factor specified in Example 8 would be:

Θ ≡ (θ, r) (unknown factor parameter consists of two scalars)
St ≡ (νt, Vt) (statistics of the posterior pdf, scalar and 2x2 matrix)

π(Θ|St) = GiWθ,r(Vt, νt) (GiW posterior)

Because the factor parameter θ was scalar in this case, we can plot the pdf GiWθ,r(Vt, νt) for given
statistics. Figure 6.2 displays this pdf for some given statistics.

Figure 6.2: GiW factor with known statistics

The figure shows pdf GiWθ,r(Vt, νt) for known statistics νt = 6 and Vt =
(

16.3333 1.6667
1.6667 0.3333

)
.

The details and important properties of this pdf are summarized in Appendix D. Note that the
matrix Vt can be equivalently manipulated through its L′DL decomposition. i.e. with lower triangular
matrix Lt with unit diagonal and positive diagonal matrix Dt, which fulfills the relation Vt = L′tDtLt.
Next, the matrices Lt and Dt can be equivalently expressed via positive definite matrix Ct, vector θ̂t and
scalar bdDt. This representation determines well-known least squares (LS) statistics. (θ̂t ≡ LS estimate
of θ, bdDt ≡ LS remainder,

bdDt

νt−2Ct ≡ covariance of LS estimates).The relations between individual
representations can be found in Section C.5.2.
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Agreement 7 Because all three representations described above are equivalent, we will not formally
distinguish them. If Vt is a statistic of GiW factor, the variables Lt, Dt, θ̂t, Ct,

bdDt automatically mean
the parts of corresponding representation of the matrix Vt.

Example 10 (Different representations of matrix V )

The matrix Vt =
(

16.3333 1.6667
1.6667 0.3333

)
from Example 9 has following alternative representations:

bdDt = 8, θ̂t = 5, Ct = 3

or

Lt =
(

1 0
5 1

)
, Dt =

(
8 0
0 1

3

)
.

6.1.2 Factor Prediction

The factor prediction It (5.5) is defined as

It =
∫

f(dt|ψt, Θ)π(Θ|St−1)dΘ =
∫
Ndt

(θ′ψt, r)GiWθ,r(Vt−1, νt−1)dθdr.

According to Proposition 38, for normal factors and conjugate prior It is evaluated as:

It =
Γ(0.5(νt−1 + 1))

[ bdDt−1(1 + ζt)
]−0.5

√
πΓ(0.5νt−1)

(
1 + ê2

t
bdDt−1(1+ζt)

)0.5(νt−1+1)
, where (6.2)

êt ≡ dt − θ̂′t−1ψt ≡ prediction error
ζt ≡ ψ′tCt−1ψt

Remarks 4 We need to evaluate Lt = ln It. It can be done efficiently using the product form of (6.2).
The following algorithm summarizes this task.

Algorithm 4 (Factor prediction) (Lt)= FACNORM
(
Ct−1, θ̂t−1,

bdDt−1, νt−1

)

1. Evaluate ζt = ψ′tCt−1ψt

2. Evaluate êt ≡ dt − θ̂′t−1ψt

3. Evaluate

Lt = ln It = ln (Γ (0.5(νt−1 + 1)))− ln (Γ (0.5νt−1))− 0.5 ln
(
bdDt−1

)
− 0.5 ln (1 + ζt)−

−0.5(νt−1 + 1) ln
(

1 +
ê2
t

bdDt−1(1 + ζt)

)
− 0.5 ln (π)

Remarks 5 Function ln (Γ(x)) can be efficiently evaluated without computing Γ(x) first [41].

Example 11 (Factor prediction)

ψt ≡ (1) (regression vector)
Θ ≡ (θ, r) (unknown factor parameter consists of two scalars)

f(dt|ψt,Θ) ≡ Ndt (θ, r) (normal static factor)
π(Θ|St−1) = GiWθ,r(Vt−1, νt−1) (GiW posterior)

The Figure 6.3 displays It taken as a function of dt for given values of statistics Vt−1 and νt−1.
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Figure 6.3: Factor prediction as a function of dt

The figure shows It taken as a function od dt for νt−1 = 6 and Vt−1 =
(

16.3333 1.6667
1.6667 0.3333

)
.

6.1.3 Factor Update

According to Proposition 35, SU
t ≡ [V U

t , νU
t ] can be evaluated in the following way:

V U
t = Vt−1 + ΨtΨ′t (6.3)

νU
t = νt−1 + 1.

Using Proposition 33, the relation (6.3) can be rewritten into the C, θ̂, bdD representation in the following
way :

CU
t = Ct−1 + hcztz

′
t, θ̂U

t = θ̂t−1 + hθzt,
bdDU

t = bdDt−1 +
ê2
t

1 + ζt

zt ≡ Ct−1ψt, hc ≡ − 1
1 + ζt

, hθ ≡ êt

1 + ζt

Example 12 (Factor update)

ψt ≡ (1) (regression vector)
Θ ≡ (θ, r) (unknown parameter)

f(dt|ψt, Θ) ≡ Ndt (θ, r) (normal static factor)
π(Θ|St−1) ≡ GiWθ,r(Vt−1, νt−1) (GiW posterior pdf)
πU (Θ|SU

t ) = GiWθ,r(V U
t , νU

t ) (updated GiW posterior pdf)

The table 6.1 shows statistics of the involved pdfs and some other mentioned auxiliary values for two
cases.

6.1.4 Optimization of Statistics

We will use Proposition 1. First we have to check if our case fulfills its assumptions. The pdf f from
Proposition 1 has the form

f(θ, r) = (1− w)GiWθ,r(Ct−1, θ̂t−1,
bdDt−1, νt−1) + wGiWθ,r(CU

t , θ̂U
t , bdD

U

t , νU
t ).

Using basic properties of GiW pdf (Proposition 31) we get:

p ≡
∫

1
r
f(θ, r)dθdr = (1− w)

νt−1

bdDt−1︸ ︷︷ ︸
≡p0

+ w
νU

t

bdDU
t︸ ︷︷ ︸

≡pu

(6.4)
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a) b)

Vt−1 ≡
(

1.16 0.12
0.12 0.83

)
Vt−1 ≡

(
1.96 −1.47
−1.47 6.07

)

νt−1 ≡ 102.82 νt−1 ≡ 108.06
dt ≡ −0.59 dt ≡ −0.79

θ̂t−1 = 0.14 θ̂t−1 = −0.24
Ct−1 = 1.20 Ct−1 = 0.16

bdDt−1 = 1.14 bdDt−1 = 1.60

V U
t =

(
1.50 0.12
0.12 1.83

)
V U

t =
(

2.58 −2.26
−0.47 7.07

)

νU
t = 103.82 νU

t = 109.06
ζt = 1.20 ζt = 0.16
êt = −0.730 êt = −0.54
zt = −0.73 zt = 0.16

hC = −0.45 hC = −0.86
hθ = −0.33 hθ = −0.47
θ̂U

t = −0.25 θ̂U
t = −0.32

CU
t = 0.54 CU

t = 0.14
bdD

U

t = 1.38 bdD
U

t = 1.86

Table 6.1: Statistics of updated posterior densities
The table shows statistics of posterior pdf and updated posterior pdf for two cases. It also
shows some auxiliary values needed for evaluating the statistics of updated pdf. In subsequent
examples, another computations with the statistics and auxiliary variables will be performed.

s ≡
∫

ln (r) f(θ, r)dθdr = (1− w) ln
(
0.5 bdDt−1

)
+ w ln

(
0.5 bdD

U

t

)
−

− (1− w)ψ0 (0.5νt−1)− wψ0

(
0.5νU

t

)
.

It is clear that both scalars p, s are finite for bdDt > 0, νt > 0. Now let us evaluate the form of pdf
h(θ, r) from Proposition 1. Again, using Proposition 31, we simply get:

h(θ, r) =
p0

p
GiWθ,r(Ct−1, θ̂t−1,

bdDt−1, νt−1 + 2) +
pu

p
GiWθ,r(CU

t , θ̂U
t , bdD

U

t , νU
t + 2).

The use of Proposition 22 gives:

cov [θ]h =
p0

p

bdDt−1

νt−1
Ct−1 +

pu

p

bdD
U

t

νU
t

CU
t +

p0pu

p2
(θ̂t−1 − θ̂U

t )(θ̂t−1 − θ̂U
t )′.

Matrices Ct−1 and CU
t were positive definite, hence cov [θ]h is also positive definite.

The assumptions of Proposition 1 are hence fulfilled, and we can obtain the optimization result using
the definition of p (6.4).

Ct = p cov [θ]h = (1− w)Ct−1 + w(Ct−1 + hCztz
′
t) +

+
p0pu

p
(θ̂t−1 − θ̂t−1 − hθzt)(θ̂t−1 − θ̂t−1 − hθzt)′ =

= Ct−1 +
[
whc +

p0pu

p
h2

θ

]
ztz

′
t

θ̂t = E [θ]h =
p0

p
θ̂t−1 +

pu

p
(θ̂t−1 + hθzt) = θ̂t−1 +

[
pu

p
hθ

]
zt

νt = solution of ln (0.5νt)− ψ0 (0.5νt) = ln (p) + s

bdDt =
νt

p
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Straightforward application of previous considerations yields the following algorithm.

Algorithm 5 (Optimization of statistics) (Ct, θ̂t,
bdDt, νt)= FACUPDT

(
w, Ct−1, νt−1, θ̂t−1,

bdDt−1

)

1. êt = dt − θ̂′t−1ψt, ζt = ψ′tCt−1ψt

2. νU
t = νt−1 + 1, bdD

U

t = bdDt−1 + ê2
t

1+ζt

3. p0 = (1− w) νt−1
bdDt−1

, pu = w
νU

t
bdDU

t

, p = p0 + pu

4. hθ = êt

1+ζt
, hC = − 1

1+ζt

5. Υ = (1− w)
[
ψ0 (0.5νt−1)− ln

( bdDt−1

)]
+ w

[
ψ0

(
0.5νU

t

)− ln
( bdDU

t

)]− ln (0.5p)

6. zt = Ct−1ψt

7. νt = GETNU(Υ) (Algorithm 19, page 96)

8. bdDt = νt

p

9. θ̂t = θ̂t−1 +
[

pu

p hθ

]
zt

10. Ct = Ct−1 +
[
whc + p0pu

p h2
θ

]
ztz

′
t

Example 13 (Optimization of statistics)

ψt ≡ (1) (regression vector)
Θ ≡ (θ, r) (unknown parameter)

f(dt|ψt, Θ) ≡ Ndt (θ, r) (normal static factor)
π(Θ|St−1) ≡ GiWθ,r(Vt−1, νt−1) (GiW posterior)
πU (Θ|SU

t ) ≡ GiWθ,r(V U
t , νU

t ) (factor update)
f(θ, r) ≡ (1− w)GiWθ,r(Vt−1, νt−1) + wGiWθ,r(V U

t , νU
t ) (Bayesian update)

Statistic St ≡ (Vt, νt) ≡ (Ct, θ̂t,
bdDt, νt) was evaluated using projection based algorithm for the same

two cases as Example 12. Table 6.2 shows statistics of the involved pdfs and some other mentioned
auxiliary values for both cases. Figure 6.4 plots marginal pdfs of some involved pdfs.
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case a)

case b)

Figure 6.4: Marginal pdfs resulting from PB algorithm
The left part shows marginal pdfs of original factor posterior π(θ|St−1) (dashdot), its update
πU (θ|SU

t )(dotted) and the correct Bayesian update f(θ) (thick), i.e. the mixture of the two mentioned
factors. The right part shows how the result of PB algorithm (solid) approximates the correct Bayesian
update f(θ) (thick). In the case a), the approximation doesn’t look very nice, but it at least covers the
correct range. In the second case, the approximation looks nice enough.
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a) b)

Vt−1 ≡
(

1.16 0.12
0.12 0.83

)
Vt−1 ≡

(
1.96 −1.47
−1.47 6.07

)

νt−1 ≡ 102.82 νt−1 ≡ 108.06
dt ≡ −0.59 dt ≡ −0.79
w ≡ 0.43 w ≡ 0.39
p0 = 51.29 p0 = 41.09
pu = 32.18 pu = 22.85
p = 83.47 p = 63.94
Υ = −0.0138 Υ = −0.0115
νt = 72.57 νt = 86.93
θ̂t = −0.01 θ̂ = −0.27
Ct = 4.10 Ct = 0.24

bdDt = 0.87 bdDt = 1.36

Table 6.2: Statistics optimized using PB algorithm
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6.1.5 Quasi-Bayes as Approximation

According to Propositions 23 and 24, the minimization

(Vt, νt) ∈ Arg min
(Vt,νt)

D
(
(1− w)GiWθ,r(Vt−1, νt−1) + wGiWθ,r(V U

t , νU
t )

∣∣∣
∣∣∣ GiWθ,r(Vt, νt)

)

is equivalent to minimization

(Vt, νt) ∈ Arg min
(Vt,νt)

(1− w)D
(
GiWθ,r(Vt−1, νt−1)

∣∣∣
∣∣∣ GiWθ,r(Vt, νt)

)
+

+wD
(
GiWθ,r(V U

t , νU
t )

∣∣∣
∣∣∣ GiWθ,r(Vt, νt)

)
.

If we approximate

D
(
GiWθ,r(Vt−1, νt−1)

∣∣∣
∣∣∣ GiWθ,r(Vt, νt)

)
→ ||Vt−1 − Vt||2 + ||νt−1 − νt||2

and
D

(
GiWθ,r(V U

t , νU
t )

∣∣∣
∣∣∣ GiWθ,r(Vt, νt)

)
→ ||V U

t − Vt||2 + ||νU
t − νt||2,

we can quickly achieve the result

Vt = Vt−1 + wΨtΨ′t, νt = νt−1 + w,

which is exactly the same as the quasi-Bayes update [21].

Example 14 (QB update) Table 6.3 shows numerical results of the QB algorithm on the same cases
as Example 13. Figure 6.5 shows how the result of QB estimation differs from the correct Bayesian
update.

a) b)
νt = 103.25 νt = 108.45
θ̂t = 0.14 θ̂ = −0.24
Ct = 1.20 Ct = 0.16

bdDt = 1.14 bdDt = 1.60

Table 6.3: Statistics of pdfs updated with QB algorithm

The presented approximation is not important in the sense of a speed increase. It has almost the
same computational complexity as PB algorithm. Just Step 7 of PB algorithm (Algorithm 5) is replaced
with simple assignment νt = νt−1 + wt. This doesn’t bring substantial speed increase, because the one-
dimensional nonlinear equation in Step 7 is solved very fast using Newton method and a good starting
point.

It is important, because it explains the well -known heuristic quasi-Bayes algorithm as an approxi-
mation of the general PB approach.

6.2 Normal Factors with Known Variance

In this section, we assume the parameterized factor to be dynamic Gaussian pdf with a known variance.
This factor variant is important, because in some applications of mixture estimation, we have to assume
the knowledge of factor variance [10]. Because the evaluation of all problems related to normal factors
with known variance are simplified cases of those with unknown variance, we will concentrate on showing
the results not on their derivation.

In this case, Θ ≡ (θ), the form of the factor is the same as in previous case. The variance r is
expected to be known and it is not specified as input to algorithms.

f(d|ψ,Θ) = Nd(θ′ψ, r) =
1√
2πr

exp
(
− (dt − θ′ψt)2

2r

)
(6.5)
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case a) case b)

Figure shows how the QB update (solid) approximates the correct Bayesian update f(θ) (thick).

Figure 6.5: Marginal pdf of QB update
We can compare result of QB algorithm, with result of PB algorithm displayed on Figure
6.4. In case a, both approximation are inaccurate, but the PB algorithm at least covers the
correct range. In case b, both approximation gives acceptable results, but it can be seen that
the result of PB algorithms looks better.

6.2.1 Form of the Posterior Pdf

The conjugated pdf to factor (6.5) is the Gaussian pdf with statistics St ≡ (Mt, Rt), where Mt is mean
and Rt is covariance matrix. Hence we will use it in the class of considered mixture posterior pdfs.

π(Θ|St) ≡ Nθ (Mt, Rt) ∝ exp
{
−1

2
(θ −Mt)′R−1

t (θ −Mt)
}

6.2.2 Factor Prediction

The factor prediction It for normal factor with known variance and conjugate prior is evaluated as
follows:

It =
exp

(
− ê2

t

2r(1+ζt)

)
√

2πr(1 + ζt)
, where (6.6)

ζt ≡ ψ′tRt−1ψt

êt ≡ dt −M ′
t−1ψt

Algorithm 6 (Factor prediction) (Lt)= FACNORM
(
Mt−1, Rt−1

)

1. Evaluate ζt = ψ′tRt−1ψt

2. Evaluate êt = dt −M ′
t−1ψt

3. Evaluate

Lt ≡ ln (It) = − ê2
t

2r(1 + ζt)
− 0.5 ln (2πr)− 0.5 ln (1 + ζt)
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6.2.3 Factor Update

SU
t ≡ [RU

t ,MU
t ] can be evaluated in the following way:

RU
t = Rt−1 + hRztz

′
t, MU

t = Mt−1 + hMzt

hR ≡ − 1
r + ζ

, hM ≡ êt

r + ζt

6.2.4 Optimization of Statistics

We will use Proposition 2. First we have to check if our case fulfills its assumptions. The pdf f from
the proposition has the form

f(θ, r) ≡ (1− w)Nθ (Mt−1, Rt−1) + wNθ

(
MU

t , RU
t

)
.

Now we can use Proposition 22, which yields:

cov [θ]f = (1− w)Rt−1 + wRU
t + w(1− w)(Mt−1 −MU

t−1)(Mt−1 −MU
t−1)

′.

Matrices Rt−1 and RU
t were positive definite, hence cov [θ]f is also positive definite.

The assumptions of Proposition 2 are hence fulfilled, and we can obtain the result.

Rt = cov [θ]h = (1− w)Rt−1 + w(Rt−1 + hRztz
′
t) +

+w(1− w)(Mt−1 −Mt−1 − hMzt)(Mt−1 −Mt−1 − hθzt)′ =
= Rt−1 +

[
whR + w(1− w)h2

M

]
ztz

′
t

Mt = E [θ]h = (1− w)Mt−1 + w(Mt−1 + hMzt) = Mt−1 + [whM ] zt

Straightforward application of previous results gives the following algorithm.

Algorithm 7 (Optimization of statistics) (Rt,Mt) = FACUPDT(w,Rt−1,Mt−1)

1. êt = dt −M ′
t−1ψt, ζt = ψ′tRt−1ψt

2. hR = − 1
r+ζ , hM = êt

r+ζt

3. zt = Rt−1ψt

4. Mt = Mt−1 + [whM ] zt

5. Rt = Rt−1 +
[
whR + w(1− w)h2

M

]
ztz

′
t
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Chapter 7

Optimization of Statistics of
Component Weighting Functions

This chapter deals with general steps from Chapter 5 for some specific types of cwfs. Specially, we need
to perform following tasks:

to evaluate weight estimates α̂c;t−1 (5.3) (page 35),

to evaluate cwf updates ρU
c (Ω|HU

c;t−1) (5.6),

to perform minimization
Ht ∈ ArgminHt D

(∑c̊
c=1 wc;tρ

U
c (Ω|HU

c;t−1)
∣∣∣
∣∣∣ ρ(Ω|Ht)

)
(5.8).

In other words, we need to design the algorithms proposed in Section 5.3:

(Zc;t−1)= WEIGHTNORM
(Ht−1

)
,

(Ht)= WEIGHTUPDT
(Ht−1, w•

)
.

The algorithm second algorithm solves the second and third tasks listed above.

7.1 Constant Component Weights

In this section, we examine the simplest case of cwf:

αc(φt−1|Ω) ≡ αc(φt−1|α) ≡ αc, ∀c, (7.1)

where Ω ≡ α is a vector of c̊ nonnegative entries fulfilling the condition
∑c̊

c=1 αc = 1.

7.1.1 Form of Posterior Pdf

It is reasonable to choose the posterior pdf of α as Dirichlet distribution (Section C.2).

ρ(Ω|Ht−1) ≡ ρ(α|κt−1) ≡ Diα(κt−1), (7.2)

where Ht−1 ≡ κt−1 is a vector with c̊ positive entries.

53
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7.1.2 Weight Estimate

It holds that

α̂c;t−1 =
∫

αc(φt−1|Ω)ρ(Ω|Ht−1)dΩ
(7.1),(7.2)︷︸︸︷≡

∫
αcDiα(κt−1)dα

(C.2.3)︷︸︸︷
=

κc;t−1∑c̊
c̃=1 κc̃;t−1

.

Thus, we can simply formulate the algorithm WEIGHTNORM evaluating logarithm of α̂•;t−1.

Algorithm 8 (Weight estimate) (Z•;t−1)= WEIGHTNORM
(
κt−1

)

1. Evaluate temporary variable Q = ln
(∑c̊

c=1 κc;t−1

)

2. For each component c evaluate Zc;t−1 = ln (κc;t−1)−Q.

7.1.3 Cwf Update

ρU
c (Ω|HU

c;t−1) =
αc(φt−1|Ω)ρ(Ω|Ht−1)

α̂c;t−1

(7.1),(7.2)︷︸︸︷≡ αcDiα(κt−1)
α̂c;t−1

(C.10)︷︸︸︷
= Diα(κt−1 + δ•c) (7.3)

7.1.4 Optimization of Cwf Statistics

We have to perform the following optimization task (5.8):

Ht ∈ Arg min
Ht

D
(

c̊∑
c=1

wc;tρ
U
c (Ω|HU

c;t−1)
∣∣∣
∣∣∣ ρ(Ω|Ht)

)

Applied to our task, it reads (using (7.3)):

κt ∈ Argmin
κt

D
(

c̊∑
c=1

wc;tDiα(κt−1 + δ•c)
∣∣∣
∣∣∣ Diα(κt)

)
. (7.4)

The following proposition converts this task to minimization of an algebraic expression.

Proposition 6 (Minimization with respect to κt)
For κt minimizing

D
(

c̊∑
c=1

wc;tDiα(κt−1 + δ•c)
∣∣∣
∣∣∣ Diα(κt)

)

it holds that

κ•;t ∈ Argmin

{
c̊∑

c=1

[
ln (Γ (κc;t))− κc;tξc;t

]
− ln

(
Γ

(
c̊∑

c=1

κc;t

))}

where

ξc;t =

(
ψ0 (κc;t−1) +

wc,t

κc;t−1
− ψ0

(
c̊∑

c=1

κc;t−1 + 1

))
,

Γ(x) is gamma function and ψ0 (x) is digamma function (see Appendix B.3).
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Proof: According to Propositions 23 and 24, we can minimize

c̊∑
c=1

wc;tD
(
Diα(κt−1 + δ•c)

∣∣∣
∣∣∣ Diα(κt)

)
.

Proposition 27, which evaluates KL divergence of two Dirichlet pdfs, yields the following expression to
be minimized:

c̊∑
c=1

wc;tZ(κt−1, κt, c), where

Z(κt−1, κt, c) =
c̊∑

j=1

[ln (Γ (κj;t))− κj;tψ0 (κj;t−1 + δcj)]−

−

ln(Γ(

c̊∑

k=1

κk;t)−
c̊∑

j=1

κj;tψ0

(
c̊∑

k=1

κk;t−1 + 1

)
 .

Because ψ0 (κj;t−1 + δcj) = ψ0 (κj;t−1) + δcj

κj;t−1
( Proposition 16) and

∑c̊
j=1

δcj

κj;t−1
= 1

κc;t−1
:

Z(κt−1, κt, c) =
c̊∑

j=1

[
ln (Γ (κj;t))− κj;tψ0 (κj;t−1)− κj;tψ0

(
c̊∑

k=1

κk;t−1 + 1

)]
−

− ln

(
Γ

(
c̊∑

k=1

κk;t

))
− 1

κc;t−1
.

Because the only term depending on c is 1
κc;t−1

and
∑c̊

c=1 wc;t = 1:

c̊∑
c=1

wc;tZc;t =
c̊∑

j=1

[
ln (Γ (κj;t))− κj;tψ0 (κj;t−1)− κj;tψ0

(
c̊∑

k=1

κk;t−1 + 1

)]
−

− ln

(
Γ

(
c̊∑

k=1

κk;t

))
−

c̊∑
c=1

wc;t

κc;t−1
=

=
c̊∑

j=1




ln (Γ (κj;t))− κj;t

(
ψ0 (κj;t−1) +

wj,t

κj;t−1
− ψ0

(
c̊∑

c=1

κc;t−1 + 1

))

︸ ︷︷ ︸
ξj;t



−

− ln

(
Γ

(
c̊∑

c=1

κc;t

))

Proposition 6 yields the following algorithm.

Algorithm 9 (Optimization of cwf statistics) (κ•;t)= WEIGHTUPDT
(
w•;t, κ•;t−1

)

1. For each component c evaluate ξc;t = ψ0 (κc;t−1) + wc,t

κc;t−1
− ψ0

(∑c̊
c=1 κc;t−1 + 1

)

2. κ•;t ∈ Argmin
{∑c̊

j=1

[
ln (Γ (κj;t))− κj;tξj;t

]
− ln

(
Γ

(∑c̊
c κc;t

))}
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Remarks 6
The minimization problem in step 2 can be solved numerically or by suitable approximation.(See the

next paragraph) For a detailed solution of this problem, see [42].

7.1.5 Quasi-Bayes as Approximation

Minimization (7.4) can be simply approximated. According to Propositions 23 and 24, the minimization

κt ∈ Arg min
κt

D
(

c̊∑
c=1

wc;tDiα(κt−1 + δ•c)
∣∣∣
∣∣∣ Diα(κt)

)

reduces to the minimization

κt ∈ Argmin
κt

c̊∑
c=1

wc;tD
(
Diα(κt−1 + δ•c)

∣∣∣
∣∣∣ Diα(κt)

)
.

By approximating D
(
Diα(κt−1 + δ•c)

∣∣∣
∣∣∣ Diα(κt)

)
with square of the Euclidean norm ||κt−1 + δ•c−

κt||2, the problem is transformed into minimization of

c̊∑
c=1

wc;t||κt−1 + δ•c − κt||2.

It can be simply shown that the previous expression is minimized by κt = κt−1 + wt, which is iden-
tical to the solution obtained using the quasi-Bayes algorithm (Appendix A).

The approximation replaced the problem of finding minimizer of a convex function with c̊ variables
with a simple assignment. It was shown [42] that results obtained using the approximation are in
fact almost the same as results using numerical solution. Hence, in the resulting PB algorithm, this
approximation is used. Although there exist a good approximation of the starting point for iterative
numerical algorithm, which guarantees relatively quick solution of this task [42], it pays back to use the
mentioned approximation.

7.2 Dynamic Weights

We will try to derive algorithms for updating the statistics Ht as general as possible. Hence we will not
specify the precise form of component weighting functions in following evaluations, but we will make
some assumption about the parameter Ω.

Because some variables and statistics introduced in the following text have the same names as the
variables and statistics related to factors and their posteriors, the variables and statistics related to cwfs
are prefixed by the sign bα, e.g. bαθ̂.

7.2.1 Form of Posterior Pdf

Let us assume that Ω consists of n conditionally independent parts Ω ≡ (Ω1, · · · ,Ωn). The posterior
pdf on Ω is then equal to

ρ(Ω|Ht) =
n∏

k=1

ρk(Ωk|Hk;t), Ht ≡ (H1;t, · · · ,Hn;t). (7.5)

The particular pdfs ρk(Ωk|Hk;t) will be assumed to be either GiW or Gaussian pdfs.
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GiW

In the case when the parameter Ωk consists of a pair (vector,scalar), Ωk ≡ ( bαθk, bαrk), we can consider
the posterior pdf on ( bαθk, bαrk) to be GiW pdf given by the statistics ( bαVk;t

bανk;t).

ρk(Ωk|Hk;t) ≡ GiW bαθk, bαrk
( bαVk;t,

bανk;t), Hk;t ≡ ( bαVk;t
bανk;t)

Gaussian

In the case when the parameter Ωk is a vector (Ωk ≡ bαθk), we can consider the posterior pdf on bαθk

to be Gaussian pdf given by the statistics (Mk;t, Rk;t).

ρk(Ωk|Hk;t) ≡ N bαθk
(Mk;t, Rk;t) , Hk;t ≡ (Mk;t, Rk;t)

For formal purposes, let us define two sets: GA ⊂ {1, · · · , n}, GI ⊂ {1, · · · , n}, GA contains all indexes
for which ρk(Ωk|Hk;t) is Gaussian pdf, GI is complement of GA, GI = {1, · · · , n} − GA , i.e. indexes
in GI point to GiW pdfs.

7.2.2 Weight Estimate

The weight estimate α̂c;t−1 is defined as follows:

α̂c;t−1 =
∫

αc(φt−1|Ω)ρ(Ω|Ht−1)dΩ.

It can not be simplified at this general level, we can just recall that we are looking for an algorithm:

ln (α̂•;t−1) ≡ Z•,t−1 = WEIGHTNORM(Ht−1).

7.2.3 Cwf Update

We have to evaluate the expression

ρU
c (Ω|HU

c;t−1) ∝ αc(φt−1|Ω)ρ(Ω|Ht−1),

but at this general level, we cannot proceed similarly as in previous section. This form will be used in
the next computations.

7.2.4 Optimization of Cwf Statistics

We have to minimize:

Ht ∈ Argmin
Ht

D




c̊∑
c=1

wc;tρ
U
c (Ω|HU

c;t−1)

︸ ︷︷ ︸
≡h(Ω)

∣∣∣
∣∣∣ ρ(Ω|Ht)




. (7.6)

According to Proposition 25, for the selected form of posterior pdf (7.5), the previous problem
reduces to subproblems:

Hk;t ∈ ArgminD
(
h(Ωk)

∣∣∣
∣∣∣ ρk(Ωk|Hk;t)

)
, ∀k ∈ n̂,

where h(Ωk) are corresponding marginal pdfs of h(Ω) in (7.6).
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For our case, it means that we need to solve subproblems of type

Arg min
Mk;t,Rk;t

D
(
h( bαθk)

∣∣∣
∣∣∣ N bαθk

(Mk;t, Rk;t)
)
∀k ∈ GA and (7.7)

Arg min
bαVk;t, bανk;t

D
(
h( bαθk, bαrk)

∣∣∣
∣∣∣ GiW bαθk, bαrk

( bαVk;t,
bανk;t)

)
∀k ∈ GI. (7.8)

According to Proposition 2 (assuming its assumptions hold), the subproblems (7.7) have solution

Mk;t ≡ E
[
bαθk

]
h

=
∫

bαθkh(Ωk)d bαθk =
∫

bαθkh(Ω)dΩ

Rk;t ≡ cov
[
bαθk

]
h

=
∫

bαθk
bαθ′kh(Ωk)d bαθk −Mk;tM

′
k;t,

Solution of the subproblems (7.8) is little bit more complicated. The resulting expression are in
C, θ̂, bdD representation again. According to Proposition 1 (assuming its assumptions hold):

bαθ̂k;t ≡ E
[
bαθk

]
h

pk
bαrk

=
1
pk

∫ bαθk

bαrk
h(Ωk)dΩk

bαCk;t ≡ cov
[
bαθk

]
h

pk
bαrk

= pk

(∫ bαθk
bαθ′k

pk
bαrk

h(Ωk)dΩk − θ̂k;tθ̂
′
k;t

)

bανk;t solves ln
(
0.5 bανk;t

)
− ψ0

(
0.5 bανk;t

)
= ln (pk) + sk

bαdDk;t ≡
bανk;t

pk
, where

pk =
∫

1
bαrk

h(Ωk)dΩk

sk =
∫

ln
(
bαrk

)
h(Ωk)dΩk

Remarks 7

• The assumption of Proposition 1 must be checked during the use of this algorithm. Nevertheless,
they will almost sure never be violated.

• These results are very important, because they converted the problem of minimization and diver-
gence evaluation into the evaluation of moments ”only”. Unfortunately, these moments can be
rarely evaluated analytically.

7.2.5 Approximation

Our ability to obtain feasible algorithms depends on the ability to evaluate the integral (5.3)

α̂c;t−1 =
∫

αc(φt−1|Ω)ρ(Ω|Ht−1)dΩ

and integrals of type
∫

K(Ωk)h(Ω)dΩ, where

h(Ω) =
c̊∑

c=1

wc;tρ
U
c (Ω|HU

c;t) = ρ(Ω|Ht−1)
c̊∑

c=1

wc;t

α̂c;t
αt(φt−1|Ω).
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We need to evaluate the mentioned integrals for the following forms of function K

K(Ωk) ≡ bαθk
bαrk

, K(Ωk) ≡ bαθk
bαθ′k

bαrk
, K(Ωk) ≡ bαθk,

K(Ωk) ≡ bαθk
bαθ′k, K(Ωk) ≡ 1

bαrk
, K(Ωk) ≡ ln

( bαrk

)
.

The simplest and universal approximation of all the mentioned integrals is Monte Carlo integration.
Hence it was used on the examined cases. In future research, others approximation of the integral have
to be used.

Let us generate N samples from ρ(Ω|Ht−1) and denote them (Ω1, · · ·ΩN ). Then, the mentioned
integrals can be approximated as follows:

α̂c;t−1 =
∫

αc(φt−1|Ω)ρ(Ω|Ht−1)dΩ ≈ 1
N

N∑

l=1

αc(φc;t−1|Ωl)

∫
K(Ω)h(Ω)dΩ ≈ 1

N

N∑

l=1

K(Ωl)
c̊∑

c=1

wc;t

α̂c;t
αc(φc;t−1|Ωl)

︸ ︷︷ ︸
≡N×υl

≡
N∑

l=1

υlK(Ωl). (7.9)

The vector υ of length N defined above will be called MC weights.
To apply this approximation, we need to be able to take efficiently samples from ρ(Ω|Ht−1) and to

evaluate αc(φt−1|Ω) . For detailed description of Monte-Carlo methods see e.g [43].

Sample Generation

Thanks to the selected form of pdf

ρ(Ω|Ht−1) =
n∏

k=1

ρk(Ωk|Hk;t−1), Ht−1 ≡ (H1;t−1, · · · ,Hn;t−1),

the sample Ωl ≡ (Ωl
1, · · · , Ωl

n) consists of samples Ωl
k from ρk(Ωk|Hk;t−1), ∀k ∈ {1, · · · , n}. Because we

consider two possible types of densities ρk(Ωk|Hk;t−1), the generation of samples Ωl
k is performing either

for Gaussian pdf (Ωl
k ≡ bαθl

k) or for GiW pdf Ωl
k ≡ ( bαθl

k, bαrl
k). The following algorithm summarizes

the sample generation.

Algorithm 10 (Sampling from posterior pdf) (Ω1, · · ·ΩN )= SAMPLE
(Ht−1, N

)

FOR l = 1 : N

FOR k = 1 : n

if k ∈ GA
(Ωl

k ≡ ( bαθl
k))= GAUSSGEN

(
Mk;t−1, Rk;t−1

)
(Algorithm 23, page 103)

if k ∈ GI
(Ωl

k ≡ ( bαθl
k, bαrl

k))= GIWGEN
( bαCk;t−1,

bαθ̂k;t−1,
bα bdDk;t−1,

bανk;t−1

)
(Algorithm 22, page

103)

END FOR

END FOR

Weight-evaluating

We expect, that for each type of cwf there exist an algorithm (Q•)= EVAL WEIGHT
(
Ωl

)
, evaluating

Qc = αc(φc;t−1|Ωl).

This algorithm is in-fact the only connection to the form of cwfs. This means, that we can simply use
the presented approach with various types of cwfs specifying only algorithm EVAL WEIGHT for each
cwf type.
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Weight Estimate

Using the algorithms defined above, it is easy to create an algorithm for approximate evaluation of
α̂•;t−1

Algorithm 11 (Weight estimate) (Z•;t−1)= WEIGHT NORM
(Ht−1

)

1. Choose N

2. α̂•;t−1 = 0

3. (Ω1, · · ·ΩN )= SAMPLE
(Ht−1,N

)
(Algorithm 10)

4. FOR l=1:N

5. (Q•)= EVAL WEIGHT
(
Ωl

)
(Algorithm 3)

6. α̂•;t−1 = α̂•;t−1 + 1
N Q•

7. END FOR

8. Z•;t−1 = ln (α̂•;t−1)

Pre-computation

For simplifying the algorithms, let us design a special algorithm for computing the MC weights υl

(defined in (7.9)).

Algorithm 12 (MC weights) (υ)= MC WEIGHTS
(
Ω1, · · · , ΩN , w•;t, α̂•;t−1

)

1. FOR l = 1 : N

2. (Q•)= EVAL WEIGHT
(
Ωl

)
(Algorithm 3)

3. υl =
∑c̊

c=1
wcQc

α̂c;t−1

4. END FOR

Optimization of Cwf Statistics

We are now also able to design an algorithm WEIGHTUPDT for approximate update of cwf statistics.
Before specifying the algorithm, let us recall the structure of Ω and Ht.

∀l ∈ {1, · · · , N} Ωl ≡ (Ωl
1, · · ·Ωl

n) Ht ≡ (H1;t, · · · ,Hn;t)
∀l ∈ {1, · · · , N}, ∀k ∈ GA : Ωl

k ≡ bαθl
k, Hk;t−1 ≡ (Mk;t−1, Rk;t−1)

∀l ∈ {1, · · · , N}, ∀k ∈ GI : Ωl
k ≡ ( bαθl

k, bαrl
k), Hk;t−1 ≡ ( bαCk;t−1,

bαθ̂k;t−1,
bα bdDk;t−1,

bανk;t−1)

The main algorithm for optimization of cwf statistics reads:

Algorithm 13 (Optimization of cwf statistics) Ht=WEIGHTUPD(Ht−1,wt)

1. (Ω1, · · ·ΩN )= SAMPLE
(Ht−1, N

)
(Algorithm 10, page 59 )

2. (α̂•;t−1)= WEIGHT NORM
(Ht−1

)
(Algorithm 8, page 54)

3. (υ•)= MC WEIGHTS
(
Ω1, · · ·ΩN , w•;t, α̂•;t−1)

)
(Algorithm 12, page 60)

4. FOR k ∈ GA:
(Mk;t, Rk;t)= GAUSSUPD

( bαθ1
k, · · · bαθN

k , υ•
)

(Algorithm 14, page 61)
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5. FOR k ∈ GI:
( bαCk;t,

bαθ̂k;t,
bα bdDk;t,

bανk;t)= GIWUPD
(
( bαθ1

k, bαr1
k), · · · ( bαθN

k , bαrN
k ), υ•

)
(Algorithm 15, page 61)

Algorithm 14 (Gaussian updating) (Mk;t, Rk;t)= GAUSSUPD
( bαθ1

k, · · · bαθN
k , υ

)

1. Mk;t =
∑N

l=1 υl
bαθl

k

2. Rk;t =
∑N

l=1 υl
bαθl

k
bαθl′

k −MkM ′
k

Algorithm 15 (GiW updating)
( bαCk;t,

bαθ̂k;t,
bα bdDk;t,

bανk;t)= GIWUPD
(
( bαθ1

k, bαr1
k), · · · ( bαθN

k , bαrN
k ), υ

)

1. pk =
∑N

l=1
1

bαrl
k

υl

2. sk =
∑N

l=1 ln
( bαrl

k

)
υl

3. bαθ̂k;t = 1
pk

∑N
l=1

bαθl
k

bαrl
k

υl

4. bαCk;t =
∑N

l=1

bαθl
k
bαθl′

k
bαrl

k

υl − pk
bαθ̂k;t

bαθ̂′k;t

5. ( bανk;t)= GETNU
(
ln (pk) + sk

)
(Algorithm 19, page 96)

6. bdDk;t =
bανk;t

pk

Remarks 8

• The software realization of the algorithms can be done in a bit more clever way. For example, the
weight estimate α̂t−1 need not to be computed twice.

• Evaluation of matrices bαCk should be of course realized in L’DL decomposition (Section C.5.2).

• For achieving of feasibility, effective stopping rules [44] should be designed so that the number of
simulated samples needed for each step is minimized.

7.2.6 Specific Forms of Component Weighting Functions

Switching Weight

In the case when φt−1 is scalar and c̊ = 2, we can use this type of cwf. It has low practical applicability.
It illustrates the derived relations and serves for checking the Monte-Carlo evaluation, because the result
can be found analytically here.

α1(φt−1|Ω) =
{

1 φt−1 > Ω
0 φt−1 ≤ Ω , α2(φt−1|Ω) =

{
0 φt−1 > Ω
1 φt−1 ≤ Ω

The cwf parameter Ω is scalar in this case. The posterior pdf on this parameter can be chosen as
Gaussian pdf with mean Mt and variance Rt.

ρ(Ω|Ht) ≡ NΩ (Mt, Rt) , Ht ≡ (Mt, Rt)

For this case, we are able to evaluate the weight estimate more or less analytically.

α̂1;t−1 =
∫

α1(φt−1|Ω)ρ(Ω|Ht−1)dΩ =

φt−1∫

−∞
NΩ (Mt−1, Rt−1) dΩ = J (Mt−1, Rt−1,−∞, φt−1)

α̂2;t−1 = 1− α̂1;t−1,
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where J (µ,R, a, b) is normalization integral of so called Truncated Gaussian Distribution (C.3). The
updated pdfs ρU

1 (Ω|HU
1;t−1) and ρU

2 (Ω|HU
2;t−1) are itself Truncated Gaussian distributions:

ρU
1 (Ω|HU

1;t−1) =
α1(φt−1|Ω)ρ(Ω|Ht−1)

α̂1;t
= T NΩ (Mt−1, Rt−1,−∞, φt−1)

ρU
2 (Ω|HU

2;t−1) =
α2(φt−1|Ω)ρ(Ω|Ht−1)

α̂2;t
= T NΩ (Mt−1, Rt−1, φt−1,∞)

The function h(Ω) defined in (7.6) (page 57) reads:

h(Ω) ≡
c̊∑

c=1

wc;tρ
U
c (Ω|HU

c;t−1) =

= w1;tT NΩ (Mt−1, Rt−1,−∞, φt−1) + w2;tT NΩ (Mt−1, Rt−1, φt−1,∞) .

According to the results presented in Section 7.2.4, the new values of statistics Mt and Rt can be
evaluated as follows:

Mt = E [Ω]h = w1;tE [Ω]ρU
1

+ w2;tE [Ω]ρU
2

Rt = cov [Ω]h = w1;tcov [Ω]ρU
1

+ w2;tcov [Ω]ρU
2

+ w1;tw2;t

(
E [Ω]ρU

1
− E [Ω]ρU

2

)2

.

We need to compute mean values, variances and normalizing integral of Truncated Gaussian Distrib-
ution. This will be done with algorithms TRUNCSTAT (Algorithm 21) and TRUNCNORM (Algorithm
20). Using these algorithms, we can formulate the algorithms for weight update WEIGHTNORM and
WEIGHTUPDT.

Algorithm 16 (Switching-weight normalizing) (Z•,t−1)= WEIGHTNORM
(
Mt−1, Rt−1

)

1. (α̂1;t−1)= TRUNCNORM
(
Mt−1, Rt−1,−∞, φt−1

)
(Algorithm 20, page 100)

2. α̂2;t−1 = 1− α̂1;t−1

3. Z•,t−1 = ln (α̂•,t−1)

Algorithm 17 (Switching-weight Updating) (Mt, Rt)= WEIGHTUPDT
(
Mt−1, Rt−1, wt

)

1. (E1, C1)= TRUNCSTAT
(
Mt−1, Rt−1,−∞, φt−1

)
(Algorithm 21, page 100)

2. (E2, C2)= TRUNCSTAT
(
Mt−1, Rt−1, φt−1, +∞

)

3. Mt = w1;tE1 + w2;tE2

4. Rt = w1;tC1 + w2;tC2 + w1;tw2;t(E1 − E2)2

Example 15 (Updating of truncated Gaussian distribution ) Let us suppose the following case:

φt−1 = 3,Mt−1 = 2, Rt−1 = 1, w = [0.75, 0.25].

Old posterior pdf on cwf parameter Ω is Gaussian pdf. Its updates ρU
1 (Ω|HU

1;t−1) and ρU
2 (Ω|HU

2;t−1) are
truncated normal distributions. Function h(Ω) is mixture of the updates. Figure 7.1 shows all involved
pdfs in details.

Remarks 9 It is not possible to generalize this type of cwf to multiple component case, because it doesn’t
allow permutation of components during estimation and hence it is very sensitive on initial conditions.
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Figure 7.1: Updating of truncated gaussian distribution
The left part shows old posterior pdf ρ(Ω|Ht−1)(thin) and updates ρU

1 (Ω|HU
1;t)(dotted) and

ρU
2 (Ω|HU

2;t)(thick). The right part shows how the result of optimization ρ(Ω|Ht) (thick)
approximates the pdf h(Ω) (thin).

Gaussian Ratio

We have to define more general cwfs than the specified ones. In general, it suffice to select c̊ nonnegative
functions gc(φt−1|Ωc), each parameterized by own parameter Ωc. Then the cwfs can be defined as

αc(φt−1|Ω) ≡ gc(φt−1|Ωc)∑c̊
c=1 gc(φt−1|Ωc)

, Ω ≡ (Ω1, · · · , Ωc),

which guarantees that
∑c̊

c=1 αc(φt−1|Ω) = 1, ∀φt−1, ∀Ω.
We will deal with gc(φt−1|Ωc) defined as a value of factorized multivariate Gaussian distribution.

(This approach has a good justification. See [10].) The factorization is performed in the same way as
in Section 4.1. It is usual to denote the factorized elements with two indices, but the theory presented
in this chapter indexes the parts of Ω and related pdfs with only one index. We will face this problem
by defining operator <>, which uniquely converts two indexes into one:

< oc >= (o− 1)× c̊ + c.

Using the mentioned notation, we can define function gc(φt−1|Ωc) Analogical to factors defined in
Section 4.1:

gc(φt−1|Ωc) =
φ̊∏

i=1

Nφi;t−1

(
bαθ′<ic>

bαψ<ic>;t−1,
bαr<ic>

)
, where bαψ<ic>;t−1

is a subvector of vector [φi+1,···,φ̊;t−1, 1] and Ωc ≡ {( bαθ<ic>, bαr<ic>)|i ∈ {1, · · · , φ̊}}. Hence, the
cwfs are defined as follows::

αc(φt−1|Ω) =
∏φ̊

i=1Nφi;t−1

( bαθ′<ic>
bαψ<ic>;t,

bαr<ic>

)
∑c̊

c̃=1

∏φ̊
i=1Nφi;t−1

( bαθ′<ic̃>
bαψ<ic>;t, bαr<ic>

) ,

Ω ≡ { bαθk, bαrk|k ∈ {1, · · · , c̊× φ̊}}.
If we want to use the numeric approximations derived in Section 7.2, we have only to design specific

version of algorithm EVAL WEIGHT.

Algorithm 18 (Cwf evaluation) (Q•)= EVAL WEIGHT
(
Ωl

)

1. For each component c, evaluate lc =
∑φ̊

i=1

(
− ln( bαr<ic>)

2 − ( bαθ′<ic>ψ<ic>;t−φi;t−1)
2

2 bαr<ic>

)
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2. l• = exp (l• −max(l•))

3. Q• = l•
sum(l•)

Remarks 10 Examples of this cwf type are plotted in Section 8.2.2 and 8.2.3.



Chapter 8

Experiments

This chapter illustrates the developed theory on several examples. Mostly, it shows evolution of the
estimates over time to demonstrate the algorithms behavior. In section dealing with constant-weights
mixtures, the PB algorithm is compared with classical QB algorithm (Appendix A).

8.1 Gaussian Mixtures with Constant Weights

This section deals with normal factors (Section 6.1) and constant component weighting functions (Sec-
tion 7.1). First, the behavior of the algorithm is demonstrated on simple examples. Then, the compar-
ison of the PB and QB algorithms is performed.

8.1.1 The Simplest Case

Model

Let us have a 2-component static mixture defined on scalar data. For a better readability, the index
denoting the data channel is omitted here.(It is 1 in all cases.)

d̊ = 1 (data are scalar)
c̊ = 2 (2 components)

φt−1 ≡ (1) (system is static)
Ω ≡ (α1, α2), αi > 0,

∑2
i=1 αi = 1 (parameter of cwfs)

Θ ≡ (θ1, θ2, r1, r2, α1, α2) (mixture parameter)

α1(φt−1|Ω) ≡ α1(1|α1, α2) = α1 (1st cwf)
α2(φt−1|Ω) ≡ α2(1|α1, α2) = α2 (2nd cwf)

f1(dt|φt−1,Θ1) ≡ f1(dt|Θ1) = Ndt (θ1, r1) (1st component)
f2(dt|φt−1,Θ2) ≡ f2(dt|Θ2) = Ndt (θ2, r2) (2nd component)

f(dt|φt−1,Θ) ≡ α1Ndt (θ1, r1) + α2Ndt (θ2, r2) (mixture)

Form of Prior and Posterior pdf

ρ(Ω|Ht) ≡ ρ(α1, α2|κ1;t, κ2;t) = Diα1,α2(κ1;t, κ2;t)
π1(Θ1|S1;t) ≡ π1(θ1, r1|V1;t, ν1;t) = GiWθ1,r1(V1;t, ν1;t)
π2(Θ2|S2;t) ≡ π2(θ2, r2|V2;t, ν2;t) = GiWθ2,r2(V2;t, ν2;t)

Ht ≡ (κ1;t, κ2;t), S1;t ≡ (V1;t, ν1;t), S2;t ≡ (V2;t, ν2;t)
Gt ≡ (κ1;t, κ2;t, V1;t, ν1;t, V2;t, ν2;t)

π(Θ|Gt) ≡ π(θ1, θ2, r1, r2, α1, α2|κ1;t, κ2;t, V1;t, ν1;t, V2;t, ν2;t) ≡
≡ GiWθ1,r1(V1;t, ν1;t)GiWθ2,r2(V2;t, ν2;t)Diα1,α2(κ1;t, κ2;t)

65
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Posterior pdf on Ω ≡ (α1, α2) was chosen as Dirichlet pdf. Posterior pdf on factor parameters was
selected as GiW pdfs. The overall posterior pdf is thus product of two GiW pdfs and one Dirichlet pdf.
The posterior statistic Gt is formed with statistics of Dirichlet pdf and GiW pdfs. Of course, equivalent
representations of GiW statistics V are considered. (See Agreement 7)

The True Value of Parameter and the Initial Statistics

Θtrue ≡ (θ1true ≡ 2.5, θ2true ≡ 1, r1true ≡ 0.005, r2true ≡ 0.001,

α1true ≡ 0.3333, α2true ≡ 0.6666)
G0 ≡ (κ1;0 ≡ 6, κ2;0 ≡ 6,

C1;0 ≡ 1000, θ̂1;0 ≡ 0.0401, bdD1;0 ≡ 0.022, ν1;0 ≡ 4.20,

C2;0 ≡ 1000, θ̂2;0 ≡ −0.6209, bdD2;0 ≡ 0.022, ν2;0 ≡ 4.20)

The true system model f(dt|Θ = Θtrue), and initial point estimate f(dt|Θ = Θ̂0), Θ̂0 = E [Θ]π(Θ|G0)

are depicted on Figure 8.1.

Figure 8.1: The true system model and initial mixture

The left hand part of this figure shows the true system model f(dt|Θ = Θtrue). It is a scalar
2-component static Gaussian mixture. The right part shows point estimate of the system
f(dt|Θ = Θ̂0) based on the prior pdf given by the statistic G0. It can be seen that this initial
point estimate is completely different then the true system model.

Processing

We simulated 60 data records generated by the true system and estimated their model using PB algo-
rithm. The simulated data are depicted on Figure 8.2.

We want to show behavior of PB algorithm in details, hence evolutions of important statistic during
estimation are displayed. The most important statistics θ̂1;t, θ̂2;t, C1;t, C2;t are depicted on Figure
8.3. (They are scalars in this case.) Because the statistic θ̂c;t represents a point estimate of θc (θ̂c;t =

E
[
θc| θ̂c;t

]
), we can simply observe the quality of the estimation. According to Proposition 31, the

covariance cov
[
θc| νc;t,

bdDc;t, Cc;t

]
= r̂c;tCc;t. It means that covariance of the point estimate is direct

proportional to the value of statistic Cc;t.
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Figure 8.2: Simulated data

The figure shows 60 data records generated by the true system model f(dt|Θ = Θtrue).
According to the form of the system model (see Figure 8.1), it is clear that data must be
concentrated in regions near by θ1true ≡ 2.5 and θ2true ≡ 1.

Also the evolution of statistics νc;t and bdDc;t should be displayed. Instead, we display point esti-
mates r̂c;t of rc and variance sc;t of this estimate. According to Proposition 31,

r̂c;t ≡ E
[
rc| νc;t,

bdDc;t

]
=

bdDc;t

νc;t − 2
, sc;t = cov

[
rc| νc;t,

bdDc;t

]
=

r̂2
c;t

νc;t − 4
.

Evolution of statistics r̂c;t and sc;t can be seen on Figure 8.4.
Figure 8.5 shows, how the point estimates of the component weights α̂c;t evolve during estimation.
Another significant indicator of the estimation quality is the difference from the correct Bayesian

estimation. Of course, we are not able to perform correct Bayesian estimation of a mixture model, unless
we know the relation of each data record to the component it was generated from. This is possible for
simulated systems. We can simply remember active components during the simulation and then confront
this information with the weights wc;t from PB algorithm. It is obvious (See Remarks 2) that Bayesian
estimation can be formulated as PB estimation with w•;t having the only one nonzero element on the
position which corresponds to the component being active in time t. We call such weight as Bayesian
weight. Of course, the numbering of components in estimated mixture need not be the same as the
numbering in simulated mixture, hence we may need to permute the Bayesian weights to be comparable
with the PB weights. Let us denote the permuted Bayesian weights as wB•;t. Then the quality of
estimating each particular component during the time can be measured as Qc;t = abs(wc;t − wBc;t).
It is clear that in ideal case Qc;t is zero for all c, t. It is also clear that in our case of two component
mixture, Q1;t = Q2;t ∀t. Hence it suffice to display Q1;t only.

The QB algorithm (Appendix A) uses the weights wc;t analogically to the PB algorithm. Hence we
can define QB quality indicator Qc;t as analogy to Qc;t. Evolution of Q1;t and Q1;t during the estimation
is depicted on Figure 8.5.

Resulting point estimate of the mixture parameters obtained using PB estimation and resulting
point estimate obtained using QB estimation are depicted on Figure 8.6.

Conclusions

The presented example shows that PB algorithm behaves reasonably. On this simple example it gives
a very good result, better than the result of QB algorithm.
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Figure 8.3: Evolution of statistics θ̂c;t and Cc;t

The left hand part of this figure shows how the point estimates of factor means θ̂1;t, θ̂2;t

approach the true values θ1true, θ2true. It can be seen that after processing approximately 16
data records, the point estimates started to be almost perfect. The right part of this figure
shows evolution of statistics C1;t, C2;t. Because covariance of point estimates θ̂c;t depends
proportionally on Cc;t, the decreasing trends of C1;t, C2;t indicates increasing quality of the
point estimate.

Figure 8.4: Evolution of point estimates of factor variances rc;t

The left hand part of this figure shows how the point estimates of factor variances r̂1;t, r̂2;t

approach the true values r1true, r2true. It can be seen that estimating the factor variance is
more complex problem than estimating the means, but it can be seen that the estimates are
slowly approaching the true values. The right hand part of this figure shows evolution of
variances of point estimates r̂c;t, which are quickly decreasing.
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Figure 8.5: Evolution of point estimate of component weights κ
The left hand part of this figure shows how the point estimates of component weights α̂1;t, α̂2;t

approach the true values α1true, α2true. The right hand part of this figure shows evolution of
quality indicators Q1;t determining the quality of PB estimation and Q1;t determining the
quality of QB estimation. It can be seen that after some time both indicators Q1;t and Q1;t

approach zero. This means that after some time, both algorithms perform almost exactly as
the Bayesian estimation in this case.

Figure 8.6: Resulting point estimates
Resulting point estimate f(dt|Θ = Θ̂60) of the mixture is depicted on left hand part of this
figure. Point estimate of the same system obtained through QB algorithm f(dt|Θ = Θ̂QB;60)
is depicted on right hand part of this figure. If we compare these results with the true system
model from Figure 8.1, we can see that both algorithms estimated the parameters θ1, θ2 well.
But the estimates of parameters r1, r2 determining the factors variances are much better in
PB estimation.
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8.1.2 Banana Shape

This example belongs to the set of classical examples for testing of mixture estimation. System is a
two-dimensional static mixture with 32 components. Figure 8.7 shows the true system f(dt|Θ = Θtrue)
and 1500 data records generated.

We modelled this system with 20-component mixture. Initial statistics of the PB estimation was
selected randomly. Figure 8.8 shows the mixture f(dt|Θ = Θ̂0) with the point estimate of Θ based
on initial statistics. Second part of this figure shows the mixture f(dt|Θ = Θ̂1500) with point estimate
based on statistics obtained with PB algorithm. For comparison, Figure 8.9 shows point estimate based
on QB algorithm f(dt|Θ = Θ̂QB;1500).

Figure 8.7: Banana shape: System and simulated data
Left hand part of this figure shows the true system f(dt|Θ = Θtrue). It is a two-dimensional
function and it is displayed as so called contour plot, i.e. the value in a point on the grid is
given by the color of this point. The right hand part of this figure shows the data generated
by the system. These data are then used for estimating the model.

Conclusions

The presented example shows estimation results with PB algorithm on a more complex example. It can
be seen that again very good result was obtained. The result of QB algorithm is worse. If we would use
initial statistic obtained using algorithm mixinit (See Appendix A) instead of random ones, even the
QB algorithm would get very good result.
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Figure 8.8: Banana shape: initial mixture and result of estimation
Left hand part of this figure shows the point estimate of the system f(dt|Θ = Θ̂0) based on
the initial statistics. It can be seen that this initial estimate is completely different from the
true system. The right hand part of this figure shows the point estimate based on statistics
obtained from the PB algorithm. It can be seen that the result is similar to the true system.

Figure 8.9: Result of QB estimation
The figure shows the point estimate of the system f(dt|Θ = Θ̂QB;1500) based on the statistics
obtained from the QB algorithm. It can be seen that the result is worse than the result of
the PB algorithm.
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8.1.3 Comparison on ”Classical” Examples

Intensive tests consisting of 1396 data sets were performed. Data used for this test represent various
types of systems (static, dynamic, multidimensional) and are a part of standard testing procedure of
new algorithms within Mixtools system [45]. As a quality measure, we used the v-likelihood [11] of
the estimated model. For each set, we evaluated a criterion h, which is the difference between the
loglikelihood obtained by the PB algorithm and the QB algorithm. Thus, h > 0 if the PB algorithm
was better. Table 8.1 shows the results. Mean value of h over all sets is 6.18. The cases where likelihood
of one result is not greater than exp (2)× likelihood of the second are taken as a draw. This leads
to condition abs(h) < 2 on the draw cases. The overall computing time spent by this testing was
approximately 20 hours.

condition number of cases percentage
h > 0 1125 80.6%
h < 0 271 19.4%

abs(h) < 2 1126 80.6%
h > 2 251 18.0%

h < −2 19 1.4%

Table 8.1: Results of experimental comparison
The table shows the number of cases fulfilling several conditions for h. Since the values with
abs(h) < 2 are taken as a draw, we can conclude that the PB algorithm was worse than the
QB algorithms in only 1.4% of cases. Without this condition, the PB algorithm improves
(slightly) the QB result in 80% of cases.

8.1.4 Comparison on Randomly Generated Examples

In order to compare the PB algorithm on other than the classic examples, random generator was used
to generate stable systems. We generated 198 mixtures with dimension from 1 to 20, with 2 to 10
components and with order 0 to 5. Number of data generated from each of these systems was selected
randomly between 1000 and 3000 and increased by 400-multiple of the system dimension. Histograms
showing the frequencies of used dimensions, orders etc. are displayed on Figures 8.10 and 8.11.

Initial estimate and model structure was obtained using the algorithm mixinit. (See Appendix A.)
Since the mixinit algorithm is based on repetitive using of mixture estimation, we can speak about QB
and PB variant of mixinit. Hence we tested two versions:

• QB variant of mixinit, QB variant of mixture estimation.

• PB variant of mixinit, PB variant of mixture estimation.

Results of estimation were processed in the same way as in previous section. The table 8.2 shows
them. Mean value of h over all sets is 36716.5454. The overall computing time spent by this testing
was approximately 12 days.
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condition number of sets percentage
h > 0 328 98.8%
h < 0 4 1.2%

abs(h) < 2 2 0.6%
h > 2 327 98.5%

h < −2 3 0.9%

Table 8.2: Results of experimental comparison with random systems
The table shows the number of cases fulfilling several conditions for h. Since values with
abs(h) < 2 are taken as a draw, we can conclude that PB algorithm was worse than QB
algorithm in approximately 1% of cases and was better in 98.5% cases.
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Figure 8.10: Histograms of systems characteristics
The left hand part of this figure shows histogram of dimensions of generated systems. The
right hand part shows histogram of components numbers.
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Figure 8.11: Result of QB estimation
The left hand part of this figure shows histogram of orders of generated systems. The right
hand part shows histogram of the numbers of data. Note that system order is defined as the
maximal order of all its parts. Orders of particular components were selected uniformly from
{0,1,2,3,4,5}.
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8.1.5 Comparison on Cluster-Analysis Examples

In order to be able to compare our algorithm with a plethora of others, we apply it in the field of cluster
analysis. Cluster analysis can be viewed as estimation of static mixture on features-space and then
predicting the value of the cluster label. The following text describes the mixture-based clustering in
detail.

The mixtures can be used for clustering tasks in the following way:

1. Include the class label into the data records as its last item dd̊;t.

2. Choose structure of static mixture f(dt|Θ) and construct initial estimate π(Θ|G0).

3. Estimate static mixture f(dt|Θ), i.e obtain π(Θ|Gt̊).

4. Construct the predictive pdf f(dt) =
∫

f(dt|Θ)π(Θ|Gt)dΘ.

5. Construct the conditional pdf f(dd̊;t|d1;t · · · dd̊−1;t).

The resulting pdf is our classifier. Knowing the values of features d1;t · · · dd̊−1;t it gives distribution
on the class labels f(dd̊;t). As a class label we can take a label with the highest probability.

Remarks 11
• In fact, the class label need not be on the last position of dt. It can be placed on arbitrary position.

Naturally, the resulting classifier must be pdf on the class label determined by the other channels.

• Because we are not able to model efficiently dependency of discrete data on continuous data, the
discrete data are modelled as continuous ones. The resulting class label is then selected as the
mean value of the pdf f(dd̊;t) rounded to the nearest discrete value of class label.

• The step 2 can of course significantly influence the clustering quality. The structure must be rich
enough, but it must not be richer than the number of training samples allows to estimate. The
algorithm mixinit (See Appendix A) solves this problem. Its result is both, the mixture structure
and the initial estimate. The algorithm mixinit performs mixture estimation as its subtask. Hence
we have two variants of mixinit: mixinit with PB and mixinit with QB.

• In the tests performed, we distinguished two variants of classifiers:

Mix PB Step 2 performed using PB variant of mixinit, step 3 performed using PB estimation.
Mix QB Step 2 performed using QB variant of mixinit, step 3 performed using QB estimation.

The data and results of other algorithms come from [46]. Authors of the referred paper adopted
majority of the data sets from repository of University of California
(http://www.ics.uci.edu/ mlearn/MLSummary.html). The paper provides clustering results for follow-
ing methods:

RBF Radial Based Functions Network, classical neural networks method. [18]

AdaBoost Adaptive boosting. [46]. The mentioned paper describes several variants of AdaBoost. We
are comparing only the best one.

SVM Support Vector Machine [47]

KFD Kernel Fisher Discriminant [48]

The tested data consist of several datasets. Each dataset has 100 realizations and each realization
consist of training data, training labels, test data and test labels. Detailed information about each
dataset is in Table 8.3. For each realization, the classifier is built using the training data and training
labels. Then, the classifier assigns a label to each data record in test data. Percentual number of mis-
classified data records is then evaluated. Its mean value and standard deviation over the 100 realizations
is taken as the result for each classification method.

Table 8.4 shows the results for all investigated data-sets. We can se, that mixture-based classifier is
comparable with other methods. It confirms that PB estimation gives reasonable results.
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dataset name twonorm flare-solar heart german ringnorm
training data records 400 666 170 700 400
test date records 7000 400 100 300 7000
data dimension 20 9 13 20 20
dataset name titanic thyroid diabetis breast-cancer
training data records 150 140 468 200
test date records 2051 75 300 77
data dimension 3 5 8 9

Table 8.3: Characteristics of data sets

Conclusions

The presented results shows that the mixture-based clustering gives results comparable with other
methods. It shows that the estimation algorithms works well.
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twonorm
method mean std
Mix QB 2.58 0.20
Mix PB 2.60 0.22
KFD 2.61 0.15
AdaBoost 2.70 0.24
RBF 2.85 0.28
SVM 2.96 0.23

flare-solar
method mean std
SVM 32.43 1.82
KFD 33.16 1.72
AdaBoost 34.20 2.18
RBF 34.37 1.95
Mix PB 35.49 1.38
Mix QB 36.66 1.98

heart
method mean std
SVM 15.95 3.26
KFD 16.14 3.39
AdaBoost 16.47 3.51
RBF 17.55 3.25
Mix PB 21.51 3.94
Mix QB 21.69 3.77

german
method mean std
SVM 23.61 2.07
KFD 23.71 2.20
AdaBoost 24.34 2.08
RBF 24.71 2.38
Mix PB 25.95 2.86
Mix QB 26.49 3.27

ringnorm
method mean std
KFD 1.49 0.12
AdaBoost 1.58 0.12
SVM 1.66 0.12
Mix QB 1.69 0.23
Mix PB 1.69 0.27
RBF 1.70 0.21

titanic
method mean std
SVM 22.42 1.02
Mix PB 22.43 1.31
Mix QB 22.45 1.44
AdaBoost 22.64 1.20
KFD 23.25 2.05
RBF 23.26 1.34

thyroid
method mean std
Mix PB 3.39 1.78
Mix QB 3.51 1.92
KFD 4.20 2.07
RBF 4.52 2.12
AdaBoost 4.55 2.19
SVM 4.80 2.19

diabetis
method mean std
KFD 23.21 1.63
SVM 23.53 1.73
AdaBoost 23.79 1.80
RBF 24.29 1.88
Mix QB 26.58 2.17
Mix PB 26.66 2.72

breast-cancer
method mean std
KFD 24.77 4.63
Mix PB 25.66 4.74
SVM 26.04 4.74
AdaBoost 26.51 4.47
Mix QB 27.17 4.86
RBF 27.64 4.71

Table 8.4: Results of cluster analysis examples
Although the mixture based clustering is not the best one in all cases, it can be seen that it
gives reasonable results. The PB variant seems to behave a little better than the QB variant.
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8.1.6 Conclusions

Behavior of the PB estimation was illustrated on simple examples. On more complex examples, the PB
algorithm was compared with the current QB algorithm. It was shown that using the PB estimation in-
stead of the QB estimation brings significant quality increase. Moreover, it was shown that probabilistic
mixtures can be successfully used in cluster analysis. Consequently, the PB estimation was selected as
the default estimation method in MATLAB toolbox Mixtools.
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8.2 Gaussian Mixtures with Dynamic Weights

This section deals with normal factors (Section 6.1) and various types of component weighting functions.
The aim of this section is to present behavior of the PB estimation of mixture with dynamic weights.

8.2.1 Switching Weights

Here, the cwfs of type ”hard bounded” (Section 7.2.6) are considered. Because the data are scalar, we
can omit the channel index 1 again.

Model

d̊ = 1 (data are scalar valued)
c̊ = 2 (2 components)

φt−1 ≡ (dt−1, 1) (state of the model)
Ω ≡ (scalar) (parameter of cwfs)
Θ ≡ (θ1, θ2, r1, r2,Ω) (mixture parameter)

α1(φt−1|Ω) ≡ α1(dt−1, 1|Ω) =
{

0 if dt−1 > Ω
1 if dt−1 ≤ Ω (1st cwf)

α2(φt−1|Ω) ≡ α2(dt−1, 1|Ω) =
{

1 φt−1 > Ω
0 φt−1 ≤ Ω (2nd cwf)

f1(dt|φt−1, Θ1) ≡ f1(dt|φt−1, Θ1) = Ndt

(
φ′t−1θ1, r1

)
(1st component)

f2(dt|φt−1, Θ2) ≡ f2(dt|φt−1, Θ2) = Ndt

(
φ′t−1θ2, r2

)
(2nd component)

f(dt|φt−1, Θ) ≡
{ Ndt

(
φ′t−1θ2, r2

)
if dt−1 > Ω

Ndt

(
φ′t−1θ1, r1

)
if dt−1 ≤ Ω (Mixture)

Form of Prior and Posterior Pdfs

ρ(Ω|Ht) ≡ ρ(Ω|Mt, Rt) = NΩ (Mt, Rt)
π1(Θ1|S1;t) ≡ π1(θ1, r1|V1;t, ν1;t) = GiWθ1,r1(V1;t, ν1;t)
π2(Θ2|S2;t) ≡ π2(θ2, r2|V2;t, ν2;t) = GiWθ2,r2(V2;t, ν2;t)

Ht ≡ (Mt, Rt), S1;t ≡ (V1;t, ν1;t), S2;t ≡ (V2;t, ν2;t)
Gt ≡ (Mt, Rt, V1;t, ν1;t, V2;t, ν2;t)

π(Θ|Gt) ≡ π(θ1, θ2, r1, r2, Ω|Mt, Rt, V1;t, ν1;t, V2;t, ν2;t) ≡
≡ NΩ (Mt, Rt)GiWθ1,r1(V1;t, ν1;t)GiWθ2,r2(V2;t, ν2;t)

True Value of Parameter and the Initial Statistics

Θtrue ≡ (θ1 ≡ [0.200, 0.300], θ2 ≡ [0.200,−0.300],
r1 ≡ 0.200, r2 ≡ 0.100, Ω ≡ −0.108)

G0 ≡ (
M0 ≡ −2.000, R0 ≡ 40.000,

C1;0 ≡ diag([2.000, 2.000]), θ̂1;0 ≡ [1.000, 1.000],
bdD1;0 ≡ 0.315, ν1;0 = 4.100,

C2;0 ≡ diag([2.000, 2.000]), θ̂2;0 ≡ [1.000,−1.000],
bdD2;0 ≡ 0.315, ν2;0 = 4.100

)

We simulated 500 data records. The simulated data and diagram of the correspondence of each data
record to the component it was generated from are depicted on Figure 8.12. Figure 8.13 shows evolution
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of statistics Mt and Rt during the estimation. Because Mt is in fact a point estimate of the unknown
cwf parameter Ω, we can simply see that the point estimate approaches the true value.

Figure 8.14 shows the quality measure Q, discussed in Section 8.1.1. For comparison, Q is displayed
even for the case of treating this model as a mixture with constant weights. It just illustrates the obvious
fact, that mixtures with dynamic weights can not be simply approximated by static-weights mixtures
of the same complexity.

For estimation of this model, analytical expressions derived in Section 8.1.1 were used. For debugging
purposes, we also tried to estimate the same model using the general Monte-Carlo approximation from
Section 7.2.5. For N ≡ 10000 MC samples per approximation, we obtained exactly the same result as
the presented one.

Figure 8.12: Data generated and active component
The figure shows the data generated from the mixture with true parameters. The small
crosses underneath the figure denotes which component was active in each particular time.

Figure 8.13: Evolution of statistics Mt and Rt

The left hand part of this figure shows how the point estimate of cwf parameter Mt approaches
the true value Ωtrue. The right hand part of this figure shows evolution of statistics Rt.
Because the statistic Rt is in fact variance of point estimate Mt, the decreasing trend of Rt

indicates increasing quality of the point estimate.
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Figure 8.14: Quality of estimation
The left hand part of this figure shows evolution of the quality indicator Q1;t determining the
quality of the PB estimation. It can be seen that the quality is increasing during time. After
some time the algorithm performs almost exactly as the Bayesian estimation. The right hand
part of this figure shows evolution of quality indicator Q1;t determining the quality of the PB
estimation with the static-weights model. It just illustrates the obvious fact, that mixtures
with dynamic weights can not be simply approximated by static-weights mixtures of the same
complexity.
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8.2.2 Gaussian Ratio Dynamic Weights

Here, the cwfs of type Gaussian ratio (Section 7.2.6) are considered. Because the data are scalars, we
can omit the channel index 1 again.

Model

d̊ = 1 (data are scalars)
c̊ = 2 (2 components)

φt−1 ≡ (dt−1, 1) (state of the model)
Ω ≡ ( bαθ1,

bαθ2,
bαr1,

bαr2) (parameter of cwfs)
Θ ≡ (θ1, θ2, r1, r2, Ω) (mixture parameter)

α1(φt−1|Ω) ≡ α1(dt−1| bαθ1,
bαθ2,

bαr1,
bαr2) =

=
Ndt−1( bαθ1, bαr1)

Ndt−1( bαθ1, bαr1)+Ndt−1( bαθ2, bαr2) (1st cwf)

α2(φt−1|Ω) ≡ α2(dt−1| bαθ1,
bαθ2,

bαr1,
bαr2) =

=
Ndt−1( bαθ2, bαr2)

Ndt−1( bαθ1, bαr1)+Ndt−1( bαθ2, bαr2) (2nd cwf)

f1(dt|φt−1,Θ1) ≡ f1(dt|φt−1,Θ1) = Ndt

(
φ′t−1θ1, r1

)
(1st component)

f2(dt|φt−1,Θ2) ≡ f2(dt|φt−1,Θ2) = Ndt

(
φ′t−1θ2, r2

)
(2nd component)

f(dt|φt−1, Θ) ≡
Ndt−1( bαθ1, bαr1)

Ndt−1( bαθ1, bαr1)+Ndt−1( bαθ2, bαr2)Ndt

(
φ′t−1θ1, r1

)
+

+
Ndt−1( bαθ2, bαr2)

Ndt−1( bαθ1, bαr1)+Ndt−1( bαθ2, bαr2)Ndt

(
φ′t−1θ2, r2

) (Mixture)

Form of Prior and Posterior Pdfs

ρ(Ω|Ht) ≡ ρ( bαθ1,
bαθ2,

bαr1,
bαr2| bαV1;t,

bαν1;t,
bαV2;t,

bαν2;t) ≡
≡ GiW bαθ1, bαr1

( bαV1;t,
bαν1;t)GiW bαθ1, bαr2

( bαV2;t,
bαν2;t)

π1(Θ1|S1;t) ≡ π1(θ1, r1|V1;t, ν1;t) = GiWθ1,r1(V1;t, ν1;t)
π2(Θ2|S2;t) ≡ π2(θ2, r2|V2;t, ν2;t) = GiWθ2,r2(V2;t, ν2;t)

Ht ≡ ( bαV1;t,
bαV2;t,

bαν1;t,
bαν2;t), S1;t ≡ (V1;t, ν1;t), S2;t ≡ (V2;t, ν2;t)

Gt ≡ ( bαV1;t,
bαV2;t,

bαν1;t,
bαν2;t, V1;t, ν1;t, V2;t, ν2;t)

π(Θ|Gt) ≡ π(θ1, θ2, r1, r2,
bαθ1,

bαθ2,
bαr1,

bαr2| bαV1;t,
bαV2;t,

bαν1;t,
bαν2;t, V1;t, ν1;t, V2;t, ν2;t) ≡

≡ GiWθ1,r1(V1;t, ν1;t)GiWθ2,r2(V2;t, ν2;t)×
×GiW bαθ1, bαr1

( bαV1;t,
bαν1;t)GiW bαθ1, bαr2

( bαV2;t,
bαν2;t)

True Value and Initial Statistics

Θtrue ≡ (θ1 ≡ [0.200, 0.300], θ2 ≡ [0.200,−0.300], r1 = 0.200, r2 = 0.100,
bαθ1 ≡ 1.000, bαθ2 ≡ −1.000, bαr1 = 1.500, bαr2 = 2.000)

G0 ≡ (

C1;0 = diag([2.000, 2.000]), θ̂1;0 ≡ [1.000, 1.000],
bdD1;0 = 0.315, ν1;0 = 4.100,

C2;0 = diag([2.000, 2.000]), θ̂2;0 ≡ [1.000,−1.000],
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bdD2;0 = 0.315, ν2;0 = 4.100
bαC1;0 ≡ 40.000, bαθ̂1;0 ≡ 0.000, bα bdD1;0 ≡ 6.600, bαν1;0 ≡ 4.200
bαC2;0 ≡ 40.000, bαθ̂2;0 ≡ 0.000, bα bdD2;0 ≡ 6.600, bαν2;0 ≡ 4.200

)

Figure 8.15 shows the data generated and active components in each time. Right hand part of this
figure shows the true cwfs α(dt−1|Ω = Ωtrue). Evolution of statistics bαθ̂1;t,

bαθ̂2;t and bαC1;t,
bαC2;t is

depicted on Figure 8.16. Because these statistics bαθ̂1;t,
bαθ̂2;t are also point estimates of cwf parameters

bαθ1,
bαθ2, we can confront them with the true values bαθ1true,

bαθ2true. We can see that the estimates
are close to the true value, but they are not approaching it. This is still reasonable behavior, because
for this type of cwfs, different values of parameters can give very similar forms of cwfs. Hence we should
look on another quality indicators.

Figure 8.17 displays the indicator of estimation quality Q (see Section 8.1.1) and point estimate of
cwfs α(dt−1|Ω = Ω̂500). Also the difference from the correct cwfs E(dt−1) = abs

(
α1(dt−1|Ω = Ω̂500)− α1(dt−1|Ω = Ωtrue)

)

is displayed there.

Figure 8.15: Data generated and true cwf

Left hand part of this figure shows the data generated and active components in each time.
Right hand part of this figure shows the true cwfs. It can be seen how the last data record dt−1

influences the active component in the next step. If dt−1 is near to zero, both components
have approximately the same chance to become active. With dt−1 receding from zero, chances
of one of the components to be active are increasing.
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Figure 8.16: Evolution of statistics during estimation
Left hand part of this figure shows evolution of the statistics bαθ̂1;t,

bαθ̂2;t. Because these
statistics are also point estimates of cwf parameters bαθ1,

bαθ2, we can confront them with
the true values bαθ1true,

bαθ2true. Right hand part of this figure shows evolution of statistics
bαC1;t,

bαC2;t. Because the covariance of point estimates bαθ̂c;t is proportional to bαCc;t, the
decreasing trends of bαC1;t,

bαC2;t indicates increasing quality of the point estimates.

Figure 8.17: Estimation quality and point estimate of cwf
Left hand part of this figure displays the estimation quality Qt (see section 8.1.1). It
can be seen, that the value of Qt is very low, which indicates that almost correct
Bayesian estimation was performed. Right hand part of this figure shows the point es-
timate of cwfs α(dt−1|Ω = Ω̂500). Also the difference from the correct cwfs E(dt−1) =
abs

(
α1(dt−1|Ω = Ω̂500)− α1(dt−1|Ω = Ωtrue)

)
is displayed here. It can be seen, that the

estimated cwf is very close to the true one.
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8.2.3 Gaussian Ratio Weights II

Because the data are scalars, we can omit the channel index 1 again.

Model

d̊ = 1 (data are scalar)
c̊ = 3 (3 components)

φt−1 ≡ (dt−1, 1) (state of the model)
Ω ≡ ( bαθ1,

bαθ2,
bαθ3,

bαr1,
bαr2,

bαr3) (parametr of cwfs)
Θ ≡ (θ1, θ2, θ3, r1, r2, r3, Ω) (mixture parameter)

αc(φt−1|Ω) ≡ Ndt−1( bαθc, bαrc)
Ndt−1( bαθ1, bαr1)+Ndt−1( bαθ2, bαr2)+Ndt−1( bαθ3, bαr3) (c-th cwf)

fc(dt|φt−1,Θi) ≡ Ndt

(
φ′t−1θc, rc

)
(c-th component)

f(dt|φt−1, Θ) ≡ ∑3
c=1 αc(φt−1|Ω)Ndt

(
φ′t−1θc, rc

)
(Mixture)

Form of Prior and Posterior Pdfs

ρ(Ω|Ht) ≡ ρ(Ω| bαV1;t,
bαν1;t,

bαV2;t,
bαν2;t,

bαV3;t,
bαν3;t) ≡

≡
3∏

c=1

GiW bαθc, bαrc
( bαVc;t,

bανc;t)

πc(Θc|Sc;t) ≡ πc(θc, rc|Vc, νc) = GiWθc,rc(Vc;t, νc;t)

Ht ≡ ( bαV1;t,
bαV2;t,

bαV3;t,
bαν1;t,

bαν2;t,
bαν3;t)

Sc;t ≡ (Vc;t, νc;t)

Gt ≡ ( bαVc;t,
bανc;t, Vc;t, νc;t, c ∈ (1, 2, 3))

π(Θ|Gt) ≡
3∏

c=1

GiW bαθc, bαrc
( bαVc;t,

bανc;t)
3∏

c=1

GiWθc,rc(Vc;t, νc;t)

True Value and Initial Statistics

Θtrue ≡ (θ1 ≡ −0.300, θ2 ≡ −1.300, θ3 ≡ 1.000,

r1 ≡ 0.100, r2 ≡ 0.050, r3 ≡ 0.040,
bαθ1 ≡ 0.000, bαθ2 ≡ −3.000, bαθ3 ≡ 2.000,
bαr1 ≡ 0.100, bαr2 ≡ 0.500, bαr3 ≡ 0.500)

G0 ≡ (

C1;0 ≡ 20.000, θ̂1;0 ≡ 0.000, bdD1;0 ≡ 0.1050, ν1;0 ≡ 4.100,

C2;0 ≡ 20.000, θ̂2;0 ≡ −4.000, bdD2;0 ≡ 2.1, ν2;0 ≡ 4.100

C3;0 ≡ 20.000, θ̂3;0 ≡ −2.000, bdD3;0 ≡ 0.1050, ν3;0 ≡ 4.100
bαC1;0 ≡ 40.000, bαθ̂1;0 ≡ 0.000, bα bdD1;0 ≡ 0.220, bαν1;0 ≡ 4.200
bαC2;0 ≡ 40.000, bαθ̂2;0 ≡ 0.000, bα bdD2;0 ≡ 0.220, bαν2;0 ≡ 4.200
bαC3;0 ≡ 40.000, bαθ̂3;0 ≡ 0.000, bα bdD3;0 ≡ 0.220, bαν3;0 ≡ 4.200

)

Figure 8.18 shows the data generated and active components in each time. Right hand part of this
figure shows the true cwfs.

Evolution of statistics bαθ̂1;t,
bαθ̂2;t,

bαθ̂3;t and bαC1;t,
bαC2;t,

bαC3;t is depicted on Figure 8.19.
Figure 8.20 displays the estimation quality Q (see Section 8.1.1) and the point estimate of cwfs. Evo-
lution of statistics θ̂1;t, θ̂2;t, θ̂3;t is displayed on Figure 8.21.
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Figure 8.18: Data generated and original cwfs
Left hand part of this figure shows the data generated and active components in each time.
Right hand part of this figure shows the true cwfs. Note that the third component was not
active roughly in initial 200 time moments.

8.2.4 Conclusions

On three examples, we showed that the estimation of mixtures with dynamic weights using the presented
algorithm gives reasonable results. Of course, use of Monte-Carlo integral approximation is limited to
low-dimensional cases only. Alternative approximations are needed for high dimensional cases.
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Figure 8.19: Evolution of statistics during estimation
Left hand part of this figure shows evolution of statistics bαθ̂1;t,

bαθ̂2;t,
bαθ̂3;t. Right hand part

of this figure shows evolution of statistics bαC1;t,
bαC2;t,

bαC3;t. It should be also mentioned
that components 2 and 3 are permuted in the estimated mixture. It can be seen that bαC2;t

is relatively high and bαθ̂2;t completely bad for time moments lower than 200. After that
time moment, the third component started to be active for the first time and both bαθ̂2;t and
bαC2;t have reasonable values almost immediately.

Figure 8.20: Estimation quality and point estimate of cwf
Left hand part of this figure shows point estimate of cwfs. It can be seen that this estimate
is similar tu the true cwfs up to the fact that cwf 3 and 2 are permuted. Right hand part
of this figure shows the quality indicators Q1;t, Q2;t, Q3;t. It can be seen that the estimation
was very good during almost all the time. The several time moments with big values of Qt

can not influence the overall result.
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Figure 8.21: Evolution of statistics θ̂1;t, θ̂2;t, θ̂3;t

This figure shows evolution of statistics θ̂1;t, θ̂2;t, θ̂3;t, which represent point estimates of the
component parameters. It can be seen how the estimates approach the true values. It can
also be seen that components 3 and 2 are switched.
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Chapter 9

Conclusions

Within this work, estimation of dynamic probabilistic mixtures was improved by designing new pro-
jection based (PB) algorithm. Moreover, the dynamic probabilistic mixtures were generalized to work
with data-dependent component weights. Here, the main outcomes of the work are summarized:

• Dynamic probabilistic mixture model with dynamic weights was defined as a generalization of the
current dynamic mixture with static weights. (Chapter 4)

• General algorithm for recursive estimation of the generalized model was elaborated. Problem of
minimization of KL divergence was converted into a simpler task of evaluation of moments of
involved pdfs. Monte-Carlo integration was successfully used for evaluating these moments in
low-dimensional cases. (Chapters 5,3,7)

• The algorithm was applied to components composed of normal factors with known or unknown
variance. Two types of component weighting functions were defined, one of them is very general.
(Chapters 6,7)

• The algorithm was specialized for mixtures with static weights. (Chapter 7)

• All algorithms were implemented in MATLAB.

• Algorithms for static-weights mixtures were implemented in C and integrated into MATLAB
toolbox Mixtools.

• Quality of the new algorithm was compared with the current quasi-Bayes algorithm on a large set
of examples of estimation of a static-weights mixtures. Results of the comparison show that PB
algorithm is better. Consecutively, PB estimation was selected as a default estimation method in
the Mixtools toolbox. (Chapter 8)

• Static probabilistic mixtures was successfully used on the field of cluster analysis.(Chapter 8)

• Reliability of the estimation of mixture with dynamic weights was demonstrated on several simple
examples.(Chapter 8)

• Results of the work were continuously published.([49, 50, 51, 52, 53, 54, 45, 55])
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Significance for Science

Possibility of using approximations based on correct argument order of Kullback-Leibler divergence
was shown on important class of models.

The work opened a new way of working with data dependent weights as it converted the problem
of approximation of Bayesian estimation to approximation of moments of complex probability
density functions.

The work contributed to improvement of Bayesian decision-making with probabilistic mixture models.

Significance for Applications

There exist many applications based on Bayesian decision making with probabilistic mixtures [56]. As
the estimation forms one of the keystones of all such applications, its improvement has to have
positive impact on them. Preliminary experiments confirms the overall improvement.

In the cases, where the mixtures with static weights was unsuccessfully applied, there is a chance that
mixtures with dynamic weights can be successful.

Open Problems

The Monte-Carlo evaluation of pdf moments needed in the general version of PB estimation is applicable
only to low-dimensional cases. The task of future research is to approximate the moments with
another method, so that mixtures with dynamic weights can be estimated for high-dimensional
component weighting functions.

The correct posterior pdf connected with the mixture model is a mixture with number of components
growing up exponentially with number of data samples. Within this work, we approximate this
mixture by one component only. In future, we should try to approximate this mixture by mixture
with predefined fixed number of components. This will open new problems, because KL divergence
of two mixtures cannot be simply evaluated.



Appendix A

The Quasi-Bayes Algorithm and
Mixinit

Here, we will briefly describe the quasi-Bayes (QB) estimation algorithm and algorithm mixinit for
initialization of mixture estimation. The QB algorithm has been used extensively in real-life applications
[10], and it is proven to be reasonably reliable and computationally efficient. This text refers to it as a
standard, which is to be improved. It was designed for mixtures with constant weights.

A.1 The Quasi-Bayes Algorithm

The general QB algorithm uses the following rule, see [21]:

κt = κt−1 + wt

πic(Θic|Sic;t) ∝ [fic(dic;t|ψic;t,Θic)]
wc;t πic(Θic|Sic;t−1),

where wt is defined in (5.2). Application of this general algorithm to normal factors yields:

Vic;t = Vic;t−1 + wcΨic;tΨ′ic;t, νic;t = νic;t−1 + wc, κ•;t = κ•;t−1 + w•;t, (A.1)

where Vic;t, νic;t are defined in Section 6.1.1. We would receive exactly this result, if we used the PB
algorithm with approximations from Sections 6.1.5 and 7.1.5.

A.2 Mixinit

In AS department ÚTIA, algorithm mixinit for initialization of mixture estimation was developed. As
the input, it takes set of data records, maximum order of the system and prior information. Result of
this algorithm is estimated structure of the system in form of dynamic probabilistic mixture with static
weights and prior pdf, which can be used for consequent mixture estimation.

Mixinit consists of repetitional calls of mixture estimation algorithm. Roughly speaking, it selects
system structure and prior pdf in a sophisticated way and then performs mixture estimation. This is
repeated many times until the best v-likelihood [10] is achieved. As the mixinit algorithm consists of
many mixture estimation steps, increase of quality of mixture estimation will also induce increase of
quality of initialization.
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Appendix B

Exploited Calculus and Linear
Algebra

This chapter collects the most important used results from matrix calculus and algebra. The missing
proofs can be found e.g. in [57, 41].

B.1 Matrix Calculus

Proposition 7 (Integral formulas with trace)

x′Ax = tr (x′Ax) = tr (Axx′)∫
AXdX = A

∫
XdX

∫
tr (AX) dX = tr

(
A

∫
XdX

)

∫
x′Axdx = tr

(
A

∫
xx′dx

)

Proposition 8 (Differential formulas for scalar functions of matrices) Derivatives of scalar func-
tion of matrix arguments are defined element-wise, i.e.

{
∂f
∂x

}
ij

= ∂f
∂xij

∂x′b
∂x

= b

∂x′Cx

∂x
= 2Cx, for symmetric C

∂tr (XA)
∂X

= A′

∂ ln (|X|)
∂X

= X−1

∂a′Xb

∂X
= ab′

Proposition 9 (Differential formulas for matrix functions of matrices) Derivatives of vector func-
tion of vector arguments is defined as follows.

{
∂f
∂x

}
ij

= ∂fi

∂xj
. Derivatives of matrix functions of matrix
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arguments are defined on vectors constructed from columns of the matrices.

∂Cx

∂x
= C

∂C−1

∂C
= −C−1 ⊗ C−1

∂Cx

∂C
= I ⊗ x, where I denotes identity matrix and ⊗ denotes Kronecker product.

Proposition 10 (Minimization) Let f(x) be 2-times continuously differentiable multivariate func-
tion. Then f has local minimum (maximum) in point x0 iff

∂f

∂x
(x0) = 0

∂2f

∂x∂x
(x0) is positive (negative) definite

B.2 Matrix Algebra

Proposition 11 (Kronecker product) Let C be positive definite matrix. Then, the Kronecker prod-
uct C ⊗ C is positive definite.

Proposition 12 (Silvester’s criterion) The matrix C is positive definite iff all main minors of its
determinant are positive.

Proposition 13 (Positive definiteness) Let matrix C be regular and matrix A be symmetric and
positive definite. Then the matrix C ′AC is symmetric positive definite.

Proof:
The matrix A is positive definite, i.e for each y 6= 0 it holds: y′Ay > 0. We want to show that for each
x 6= 0, x′C ′ACx > 0.
C is regular, hence Cx 6= 0 for x 6= 0, hence x′C ′ACx = (Cx)′︸ ︷︷ ︸

z′

A (Cx)︸ ︷︷ ︸
z

= z′Az > 0

Proposition 14 (Determinant of the matrix I+xx’) Let x be a column vector of the length n.
Then

|I + xx′| = 1 + x′x

Proof: First, we will prove that x is eigenvector of the matrix (I + xx′) with eigenvalue 1 + x′x.

(I + xx′)x = x + xx′x = x(1 + x′x) = (1 + x′x)x

Let’s now take such linear independent vectors y1, · · · , yx̊−1, so that x′yi = 0, ∀i. We will prove, that such
vectors are eigenvectors of the matrix (I + xx′) with eigenvalues 1.

(I + xx′)yi = yi + xx′yi = yi + x(x′yi) = yi

B.3 Other Relations

Proposition 15 (Simple algebraic manipulation) Let
∑c̊

c=1 wc;t = 1. It holds:

d̊,̊c∑

j,c=1

wc;tKU
jc +

c̊∑
c=1

wc;t

d̊,̊c∑
j,r=1
r 6=c

Kjr =
d̊,̊c∑

j,c=1

[
wc;tKU

jc + (1− wc;t)Kjc

]
(B.1)
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Proof:

d̊,̊c∑

j,c=1

wc;tKU
jc +

c̊∑
c=1

wc;t

d̊,̊c∑
j,r=1
r 6=c

Kjr =
d̊,̊c∑

j,c=1

wc;tKU
jc +

c̊∑
c=1

wc;t




d̊,̊c∑

j,r=1

Kjr −
d̊∑

j=1

Kjc


 =

=
d̊,̊c∑

j,c=1

wc;tKU
jc +

d̊,̊c∑

j,r=1

Kjr −
d̊,̊c∑

j,c=1

wc;tKjc =
d̊,̊c∑

j,c=1

[
wc;tKU

jc + (1− wc;t)Kjc

]

B.4 Properties of the Digamma and Trigamma Functions

This part summarizes some special properties of digamma and trigamma functions. Although these
functions can be defined both for positive and negative values, we deal only with the part defined on
(0,+∞). For a detailed description of these functions and for proofs see e.g.[42].

digamma ψ0 (x) = d ln(Γ(x))
dx

trigamma ψ1 (x) = dψ0(x)
dx

Figure B.1: Digamma and trigamma functions

Proposition 16 (Recursion for the function ψ0 (x))

ψ0 (x + 1) = ψ0 (x) +
1
x

, ∀x > 0

Proposition 17 (Properties of the function ψ0 (x)− ln (x))

Let the function h(x) ≡ ψ0 (x)− ln (x) be considered on (0, +∞). Then, it holds:

• h(x) is increasing and negative,

• lim
x→+∞

= 0,

• lim
x→0+

= −∞,
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Figure B.2: Functions h(x) ≡ ψ0 (x)− ln (x) and ψ1 (x)

• h(x) is depicted in Figure B.2.

Algorithm 19 (Solving equation ψ0 (x)− ln (x) = z ) (x)= GETNU
(
z
)

This algorithm numerically solves the equation ψ0 (x) − ln (x) = z. The starting point of used Newton
iterative method is selected using approximations of ψ0 (x) so that the solution is very fast. For a detailed
description of the numerical solution see [42].

Proposition 18 (Properties of the function ψ1 (x))

• ψ1 (x) is decreasing and positive for positive arguments.

• xψ1 (x) > 1,∀x > 0.

• ψ1 (x) is depicted in Figure B.2



Appendix C

Calculus with Pdfs

C.1 General Propositions

Proposition 19 (Calculus with pdfs) For any (α, β, γ) ∈ (α, β, γ)∗, the following relationships be-
tween pdfs hold.

Non-negativity f(α, β|γ), f(α|β, γ), f(β|α, γ), f(β|γ) ≥ 0.

Normalization
∫

f(α, β|γ) dαdβ =
∫

f(α|β, γ) dα =
∫

f(β|α, γ) dβ = 1.

Chain rule f(α, β|γ) = f(α|β, γ)f(β|γ) = f(β|α, γ)f(α|γ).

Marginalization f(β|γ) =
∫

f(α, β|γ) dα, f(α|γ) =
∫

f(α, β|γ) dβ.

Bayes rule f(β|α, γ) =

=
f(α|β, γ)f(β|γ)

f(α|γ)
=

f(α|β, γ)f(β|γ)∫
f(α|β, γ)f(β|γ) dβ

∝ f(α|β, γ)f(β|γ). (C.1)

Proposition 20 (Jensen inequality) Let h be strictly concave function, let f(x) be a pdf with a
nonzero variance. Then E [h(x)]f < h

(
E [x]f

)
.

Proposition 21 (Mean value transformation) Let x be random quantity with a pdf fx. Let y be
random quantity obtained as a result of transformation y = g(x), fy is pdf of y. Then E [g(x)]fx

= E [y]fy

Proposition 22 (Covariance matrix of a mixture) Let pdf f be a mixture of pdfs f1 and f2,

f(x) ≡ αf1(x) + (1− α)f2(x), α ∈ (0, 1), then

cov [x]f = αcov [x]f1
+ (1− α)cov [x]f2

+ α(1− α)(E [x]f1
− E [x]f2

)(E [x]f1
− E [x]f2

)′

C.1.1 Kullback-Leibler Divergence

Kullback-Leibler divergence measures well proximity of a pair of pdfs. Let f, g be a pair of pdfs acting
on a common set x∗. Then, the Kullback-Leibler divergence D(f ||g) is defined by the formula

D(f ||g) ≡
∫

x∗
f(x) ln

(
f(x)
g(x)

)
dx. (C.2)

For conciseness, the Kullback-Leibler divergence is referred to as the KL divergence.
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C.1.2 Kerridge Divergence

We can rearrange the expression of KL divergence:
∫

x∗
f(x) ln

(
f(x)
g(x)

)
dx =

∫

x∗
f(x) ln (f(x)) dx−

∫

x∗
f(x) ln (g(x)) dx (C.3)

It is clear that the first element does not influence the result when minimizing the KL divergence with
respect to the function g(x). It leads to the notion. Kerridge divergence:

Let f, g be a pair of pdfs acting on a common set x∗. Then, the Kerridge divergence K(f ||g) is defined
by the formula

K(f ||g) ≡ −
∫

x∗
f(x) ln (g(x)) dx. (C.4)

Proposition 23 (Kerridge and Kullback-Leibler divergence ) Let
∫

flnf < +∞, than it holds:

Argmin
g
D(f ||g) = Arg min

g
K(f ||g) (C.5)

Proof:

min
g
D(f ||g) = min

g

∫
f ln

f

g
= min

g

{∫
f ln f −

∫
f ln g

}
=

∫
f ln f + min

g

{
−

∫
f ln g

}

Proposition 24 (Kerridge divergence of a weighting sum of pdfs)

K
(

c̊∑
c=1

αcfc(x)
∣∣∣
∣∣∣ g(x)

)
=

c̊∑
c=1

αcK
(
fc(x)

∣∣∣
∣∣∣ g(x)

)
(C.6)

Proof:

K
(

c̊∑
c=1

αcfc(x)
∣∣∣
∣∣∣ g(x)

)
= −

∫ c̊∑
c=1

αcfc(x) ln(g(x)) =
c̊∑

c=1

αc

{
−

∫
fc(x) ln(g(x))

}

Proposition 25 (Kerridge divergence of a product of pdfs)

K
(
f(x, y)

∣∣∣
∣∣∣ g(x)v(y)

)
= K

(
f(x)

∣∣∣
∣∣∣ g(x)

)
+K

(
f(y)

∣∣∣
∣∣∣ v(y)

)
, (C.7)

where f(x), f(y) are marginal probability densities of f(x, y).

Proof:

K
(
f(x, y)

∣∣∣
∣∣∣ g(x)v(y)

)
= −

∫
f(x, y) ln

(
g(x)v(y)

)
dxdy =

= −
∫

f(x, y)
(

ln(g(x)) + ln(v(y))
)
dxdy =

= −
∫

f(x, y) ln(g(x))dxdy −
∫

f(x, y) ln(v(y))dxdy =

= −
∫

f(x) ln(g(x))dx−
∫

f(y) ln(v(y)dy
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Proposition 26 (Kerridge divergence of product of independent pdfs)

K
(
w(x)h(y)

∣∣∣
∣∣∣ g(x)v(y)

)
= K

(
w(x)

∣∣∣
∣∣∣ g(x)

)
+K

(
h(y)

∣∣∣
∣∣∣ v(y)

)
(C.8)

Proof: Simple consequence of the previous Proposition 25, with f(x, y) ≡ w(x)h(y), f(x) ≡ w(x), f(y) ≡
h(y)

C.2 Dirichlet Multivariate Pdf

C.2.1 Definition

Diα(κ) denotes Dirichlet pdf of α ∈ α∗ ≡
{

αc ≥ 0 :
∑c̊

c=1 αc = 1
}

in the form :

Diα(κ) ≡
∏c̊

c=1 ακc−1
c

B(κ)
, B(κ) ≡

∏c̊
c=1 Γ(κc)

Γ(
∑c̊

c=1 κc)
.

Agreement 8 We use notion ”statistics” instead of ”parameters” to avoid misunderstanding with un-
known parameter Θ. Moreover, statistics are often used as parameters of pdfs within this text.

C.2.2 Statistics

The statistic κ is a vector with c̊ positive entries.

C.2.3 Properties

E [αc|κ] = α̂c (C.9)
αcDiα(κ) = α̂cDiα(κ + δ•,c) (C.10)

α̂c =
κc∑c̊

c=1 κc

(C.11)

Proof:

B (κ + δ•,c) =

Γ(κc + 1)
∏

k=1,k 6=c

Γ(κk)

Γ (
∑

κk + 1)
=

κc

∏
k=1

Γ(κk)

Γ (
∑

κk)
∑

κk
= B (κ) α̂c

αcDiα(κ) = αc

c̊∏
k=1

ακk−1
k

B (κ)
= α̂c

c̊∏
k=1

α
κk−1+δk,c

k

B (κ + δ•,c)
= α̂cDiα(κ + δ•,c)

E [αc|κ] =
∫

αcDiα(κ)dα = α̂c

∫
Diα(κ + δ•c)dα = α̂c

Proposition 27 (KL divergence of Di pdfs) Let f(α) = Diα(κ), f̃(α) = Diα (κ̃) be a pair of
Dirichlet pdfs of parameters α ≡ (α1, . . . , αc̊) ∈ α∗ =

{
αc > 0,

∑
c∈c∗ αc = 1

}
, c∗ ≡ {1, . . . , c̊}.

Their KL divergence is given by the formula

D(f ||f̃) =
c̊∑

c=1

[
(κc − κ̃c) ψ0 (κc) + ln

(
Γ (κ̃c)
Γ (κc)

)]
− (ν − ν̃)ψ0 (ν) + ln

(
Γ(ν)
Γ(ν̃)

)

ν ≡
c̊∑

c=1

κc, ν̃ ≡
c̊∑

c=1

κ̃c. (C.12)
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Moreover it holds:

Argmin
κ̃
D(f ||f̃) = Arg min

κ̃

c̊∑

j=1

[ln (Γ (κ̃j))− κ̃jψ0 (κj)]− [ln(Γ(ν̃)− ν̃ψ0 (ν)] (C.13)

C.3 Truncated Gaussian Distribution

C.3.1 Definition

T N x (M, R, a, b) denotes Truncated Gaussian pdf of scalar x of the form :

T N x (M,R, a, b) ≡
{

Nx(M,R)
J (M,R,a,b) for x ≥ a and x ≤ b

0 otherwise

The normalizing integral J (M, R, a, b) will be discussed bellow. Truncated Gaussian distribution is
obtained from Gaussian distribution by restricting its support to some interval (possibly infinite).

C.3.2 Statistics

Statistic M is scalar, Statistic R is positive scalar. Statistics a and b are (possibly infinite) scalars,
fulfilling a < b.

C.3.3 Properties

We do not need to describe this pdf in details. There exists a simple algorithm for computing the
normalizing integral J (M,R, a, b).

Algorithm 20 (Normalization integral of truncated Gaussian distribution)

(J )= TRUNCNORM
(
M, R, a, b

)

There also exist a simple algorithm for evaluating mean value and variance of this distribution:

Algorithm 21 (Mean and variance of truncated Gaussian distribution)

(E, C)= TRUNCSTAT
(
M, R, a, b

)

For more detailed description of truncated Gaussian distribution and for the formulas for evaluating
normalizing integral and the moments, see e.g. [39].

C.4 Inverse Gamma Distribution

C.4.1 Definition

IGx (α, β) denotes Inverse gamma pdf of positive scalar x of the form:

IGx (α, β) ≡
x−(α+1) exp

(
−β

x

)

Γ (α) β−α

C.4.2 Statistics

Statistics α and β are positive scalars.
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C.4.3 Sampling

Sampling from inverse gamma distribution can be simply done using sampling from gamma distribution.
For detailed expressions see e.g. [58].

C.5 Gauss-inverse-Wishart Pdf

C.5.1 Definition

GiWθ,r(V, ν) denotes Gauss-inverse-Wishart pdf of a vector θ and a positive scalar r of in form:

GiWθ,r(V, ν) ≡ r−0.5(ν+ψ̊+2)

I(V, ν)
exp

{
− 1

2r
tr (V [−1, θ′]′[−1, θ′])

}
. (C.14)

The value of the normalization integral I(V, ν) is described below, together with other properties of this
important pdf.

C.5.2 Statistics

The statistic ν is positive scalar. The statistic V is square, symmetric, positive definite, extended
information matrix with Ψ̊ rows. We often manipulate the matrix V through its L′DL decomposition.
(i.e. with lower triangular matrix L with unitary diagonal and diagonal matrix D, which fulfill the
relation V = L′DL)

Let us split the information matrix V and its L′DL decomposition as follows:

V =
[ bdV bdψV ′

bdψV bψV

]
, bdV is scalar, (C.15)

L =
[

1 0
bdψL bψL

]
, D =

[ bdD 0
0 bψD

]
, bdD is scalar. (C.16)

Next, the matrices L and D can be equivalently expressed with help of the matrix C, vector θ̂ and
scalar bdD as follows:

θ̂ ≡ bψL−1 bdψL ≡ least-squares (LS) estimate of θ (C.17)

C ≡ bψL−1 bψD−1
(
bψL′

)−1

≡ covariance factor of LS estimate (C.18)

Proposition 28 (Relation between C and bψV ) It holds:

C = bψV −1 (C.19)

θ̂ = bψV −1 bdψV (C.20)

C.5.3 Properties

Proposition 29 (Alternative expressions of the GiW pdf) GiWΘ(V, ν) has the following alter-
native expressions

GiWθ,r(V, ν) ≡ r−0.5(ν+ψ̊+2)

I(L,D, ν)
exp

{
− 1

2r

[(
bψLθ − bdψL

)′ bψD
(
bψLθ − bdψL

)
+ bdD

]}
≡

≡ r−0.5(ν+ψ̊+2)

I(C, bdD, ν)
exp

{
− 1

2r

[
(θ − θ̂)′C−1(θ − θ̂) + bdD

]}
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Proposition 30 (Normalization integral)
The normalization integral can be evaluated as follows:

I(L,D, ν) = Γ(0.5ν) bdD−0.5ν
∣∣∣ bψD

∣∣∣
−0.5

20.5ν(2π)0.5ψ̊ (C.21)

I(C, bdD, ν) = Γ(0.5ν) bdD−0.5ν |C|0.5 20.5ν(2π)0.5ψ̊. (C.22)

Proposition 31 (GiW moments)

cov
[
θ|C, θ̂, ν, bdD

]
=

bdD
ν − 2

C

E
[

θ

r

∣∣∣∣ C, θ̂, ν, bdD
]

=
ν
bdD

θ̂

E
[

1
r

∣∣∣∣ C, θ̂, ν, bdD
]

=
ν
bdD

E
[
r|C, θ̂, ν, bdD

]
=

bdD
ν − 2

≡ r̂

cov
[
r|C, θ̂, ν, bdD

]
=

2r̂2

ν − 4

E
[
ln (r)|C, θ̂, ν, bdD

]
= ln

(
0.5 bdD

)
− ψ0 (0.5ν)

GiWθ,r(C, θ̂, bdD, ν)
r

=
ν
bdD

GiWθ,r(C, θ̂, bdD, ν + 2)

Proposition 32 (Update of matrix V ) Let the matrices C, θ̂, L, D, V be defined according to (C.16),
(C.17), (C.18). Then, the operation

bψṼ = bψV + w1ψψ′, bdψṼ = bdψV + w2dψ

can be rewritten to

C̃ = C − w1

1 + w1ζ
zz′

˜̂
θ = θ̂ +

w2d + w1(ê− d)
1 + w1ζ

z, where

z = Cψ, ê = d− ψ′θ̂, ζ = ψ′Cψ.

Proposition 33 (Update of matrix V ) Let the matrices C, θ̂, L, D, V be defined according to (C.16),(C.17),
(C.18). Then the operation

Ṽ = V + wΨΨ′

can be rewritten to

C̃ = C − w

1 + wζ
zz′

˜̂
θ = θ̂ +

wê

1 + wζ
z

bdD̃ = bdD +
wê2

1 + wζ
, where

z = Cψ, ê = d− ψ′θ̂, ζ = ψ′Cψ.
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C.5.4 Sampling

Sampling from arbitrary pdf f(θ, r), can be split into two subproblems. According to the chain rule
(Proposition 19):

f(θ, r) = f(θ|r)f(r).

First, we will generate samples from f(r) and the generated samples are then used in the condition of
f(θ|r).

In the case of GiW distribution, f(r) is inverse gamma distribution (Section C.4), and f(θ|r) is
multivariate Gaussian distribution (Section C.6).

f(r|C, θ̂, bdD, ν) = IGr

(
0.5 bdD, 0.5ν

)
(C.23)

f(θ|r, C, θ̂, bdD, ν) = Nθ

(
θ̂, rC

)
(C.24)

Algorithm 22 (Sampling from GiW) (rs, θs)= GIWGEN
(
C, θ̂, bdD, ν

)

1. Take sample from inverse gamma distribution. rs ∼ IG(0.5 bdD, 0.5ν)

2. Take sample from multivariate Gaussian distribution.
(θs)= GAUSSGEN

(
rs × C, θ̂

)
(Algorithm 23)

Remarks 12 We store the matrix C in L′DL decomposition. The operation rs×C then simply consist
in multiplying diagonal matrix D with rs.

C.6 Gaussian Multivariate Pdf

C.6.1 Definition

Nθ (M,R) denotes Gaussian pdf of vector θ of the form :

Nθ (M, R) ≡ (2π)−0.5θ̊|R|−0.5 exp {−0.5(θ −M)′R(θ −M)}

C.6.2 Statistics

The statistic M is vector of length θ̊. The statistic R is square, symmetric, positive definite matrix with
θ̊ rows.

C.6.3 Properties

E [θ|M, R] = M

cov [θ|M, R] = R

Proposition 34 (Transformation of random variable) Let θ be distributed with N (0, I), then ran-
dom variable Aθ + B is distributed with N (B, AA′).

C.6.4 Sampling

According to Proposition 34, we can generate sample from N (0, I) (let us denote it θs
0) and than

transform it to be sample from N (M,R). The transformation is: θs =
√

Rθs
0 + M

Taking square roots of a matrix can be computationally intensive. We obviously store the matrix R
in its L′DL decomposition. Then

√
R = L′

√
D.

Algorithm 23 (sampling from Gaussian pdf) (θs)= GAUSSGEN
(
R ≡ L′DL,M

)
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1. Take sample from Gaussian distribution. θs
0 ∼ N (0, I)

2. evaluate θs = L′
√

Dθs
0 + M



Appendix D

Estimation of Normal Factors

Because this chapter deals with only single factor at a specific time moment, we can omit the indexes
ic;t, i.e.

fic(dic;t|ψic;t, Θic) ≡ f(d|ψ, Θ).

Here only the properties needed in Chapter 6 are mentioned. For a detailed description of this topic see
e.g. [10].

D.1 Factor Definition

The normal parameterized factor predicts a real-valued variable d by the pdf

f(d|ψ, Θ) = Nd(θ′ψ, r), where (D.1)

Θ ≡ [θ, r] ≡ [regression coefficients, noise variance]

Nd(θ′ψ, r) ≡ (2πr)−0.5 exp
{
− (d− θ′ψ)2

2r

}
(D.2)

= (2πr)−0.5 exp
{
− 1

2r
tr (ΨΨ′[−1, θ′]′[−1, θ′])

}
. (D.3)

Normal factors belong to the exponential family, so that they possess conjugate (self-reproducing)
prior. This pdf is known as Gauss-inverse-Wishart pdf (GiW ). In the case of known noise variance r,
the conjugate pdf is multivariate Gaussian pdf.

D.2 Form of Posterior Pdf

Gauss-inverse-Wishart pdf is conjugate pdf to normal factors.

π(θ, r|St) ≡ GiWθ,r(Vt, νt)

D.3 Properties

Proposition 35 (Estimation of the normal factor) Let the function

GiWθ,r(V, ν) [Nd(θ′ψ, r)]w

have a finite integral, then it holds:

105



106 APPENDIX D. ESTIMATION OF NORMAL FACTORS

GiWθ,r(V, ν) [Nd(θ′ψ, r)]w =
I(V + wΨΨ′, ν + w)

(2π)0.5wI(V, ν)
GiWθ,r(V + wΨΨ′, ν + w) (D.4)

Proof:

GiWθ,r(V, ν) [Nd(θ′ψ, r)]w =
r−0.5(ν+ψ̊+2)

I(V, ν)
exp

{
− 1

2r
tr (V [−1, θ′]′[−1, θ′])

}
×

×(2πr)−0.5w exp
{
− 1

2r
tr (wΨΨ′[−1, θ′]′[−1, θ′])

}
=

r−0.5(ν+w+ψ̊+2)

(2π)0.5wI(V, ν)
exp

{
− 1

2r
tr ([V + wΨΨ′][−1, θ′]′[−1, θ′])

}
=

=
I(V + wΨΨ′, ν + w)

(2π)0.5wI(V, ν)
GiWΘ(V + wΨΨ′, ν + w)

Proposition 36 (Finiteness of integral) The function GiWθ,r(V, ν) [Nd(θ′ψ, r)]w has finite integral,
iff

w > −ν, w > −1
ζ
, w > −

bdD
ê2 + ζ bdD

, where

ê = d− ψ′θ, ζ = ψ′Cψ.

Proof: It is simple observation that GiWθ,r(V, ν) [Nd(θ′ψ, r)]w has finite integral, iff V + wΨΨ′ is positive
definite and ν + w > 0. According to Proposition 33, the operation V + wΨΨ′ can be expressed as

bdD +
wê2

1 + wζ
, C + wczz′, z = Cψ, wC = − w

1 + wζ

The first expression must be positive. bdD + wê2

1+wζ > 0, which leads to w > − bdD
ê2+ζ bdD

.

The second expression must be positive definite. C is symmetric and positive definite, hence there exists
the square root C

1
2 : C = C

1
2 C

1
2 , which is symmetric and regular. The second expression can be rewritten

to
C

1
2

(
I + wCC−

1
2 zz′C−

1
2

)
C

1
2 .

Thanks to Proposition 13, it suffices to prove only the positive definiteness of the matrix:

(
I + wCC−

1
2 zz′C−

1
2

)
.

According to proof of Proposition 14, the condition for the previous matrix to be positive definite is

0 < 1 + wCz′C−
1
2 C−

1
2 z = 1 + wCz′C−1z = 1 + wCζ.

Substituting wC = − w
1+wζ into it, we get expression 1 + wζ > 0.

Proposition 37 (Factor prediction)

I(V + wΨΨ′, ν + w)
(2π)0.5wI(V, ν)

=
Γ(0.5(ν + w)) bdD

−0.5w
(1 + wζ)−0.5

π0.5wΓ(0.5ν)
(
1 + wê2

bdD(1+wζ)

)0.5(ν+w)
, where (D.5)

ê ≡ d− θ̂′ψ ≡ prediction error
ζ ≡ ψ′Cψ,
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Proof:
According to Proposition 30, the normalizing integral can be evaluated as follows:

I(L, D, ν) = Γ(0.5ν) bdD−0.5ν
∣∣∣ bψD

∣∣∣
−0.5

20.5ν(2π)0.5ψ̊.

According to Proposition 33, the operation Ṽ = V + wΨΨ′ can be rewritten to

bdD̃ = bdD + w
ê2

1 + wζ
.

We need to evaluate the determinant

| bψD̃| = | bψṼ | = | bψV + wψψ′| =

= | bψL′
√

bψD||I + w bψD−0.5 bψL′−1ψψ′ bψL−1 bψD−0.5||
√

bψD bψL|
Prop.14︷︸︸︷

=

= (1 + wψ′ bψL−1 bψD bψL′−1ψ) =
∣∣∣ bψD

∣∣∣ (1 + wψ′Cψ) =
∣∣∣ bψD

∣∣∣ (1 + wζ)

Now we can use the obtained results in evaluation of the normalizing constant.

J =
I (V + wΨΨ′, ν + w)

(2π)0.5wI(V, ν)
=

=
Γ(0.5ν + 0.5w)( bdD + wê2

1+wζ )−0.5ν−0.5w
∣∣ bψD

∣∣−0.5
(1 + wζ)−0.520.5ν+0.5w(2π)0.5ψ̊

(2π)wΓ(0.5ν) bdD−0.5ν
∣∣ bψD

∣∣−0.5 20.5ν(2π)0.5ψ̊
=

=
Γ(0.5ν + 0.5w)
(2π)0.5wΓ (0.5ν)

bdD
−0.5w

(
1 +

wê2

bdD(1 + wζ)

)−0.5ν−0.5w

(1 + wζ)−0.520.5w =

=
Γ(0.5(ν + w)) bdD

−0.5w
(1 + wζ)−0.5

π0.5wΓ(0.5ν)
(
1 + wê2

bdD(1+wζ)

)0.5(ν+w)

Proposition 38 (Factor prediction I)

Iic;t =
Γ(0.5(ν + 1))

[ bdD(1 + ζ)
]−0.5

√
πΓ(0.5ν)

(
1 + ê2

bdD(1+ζ)

)0.5(ν+1)
, where (D.6)

ê ≡ d− θ̂′ψ ≡ prediction error
ζ ≡ ψ′Cψ,

Proof: Simple use of the previous proposition with w=1.
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Dirichlet pdf, 99
discrete time, 7
dynamic model, 21

estimation step, 25
exponential family, 105
extended information matrix, 101

factor, 21, 32
factor prediction, 35, 37, 38, 43
factor update, 35, 37, 38
feasibility, 21
finite dimensional parameter, 21
finite probabilistic mixture, 31
finite statistic, 25

Gt̊, 21
Gauss-inverse-Wishart pdf, 101, 105
Gaussian pdf, 25, 56, 103
GiW, 56

Ht, 33, 37

Inverse gamma pdf, 100

Kerridge divergence, 36, 98
KL divergence, 25, 34, 36, 97
KL divergence of Di pdfs, 99
knowledge about the system, 22

L′DL decomposition, 101
bψL, 101
least-squares (LS) estimate, 101

Marginalization, 97
Minimization with respect to κt, 54
mixinit, 72, 74
mixture model, 34

Nomenclature related to mixtures review, 33
normal parameterized factor, 105
normalizing integral, 24
number of components, 31

omega, 37
Ω, 33

parameterized component, 33
parameterized factor, 33
parameterized model, 21, 22
parameterized model of the system, 31
pdf, 21
φt−1, 21, 31
positive definite, 101, 103
posterior pdf, 21–23, 37
prediction error, 43, 106, 107
prior pdf, 22
Probabilistic modelling, 21
probability density function, 21
process, 21
projection based approach, 25
projection based estimation, 38

quasi-Bayes, 49

regression vector, 32, 33

scalar system, 22
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self-reproducing, 105
state vector, 21, 22, 31
static model, 21

t̊, 21
Θ, 21
Truncated Gaussian pdf, 100

wc;t, 37
weight estimate, 35, 37, 38
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[49] J. Andrýsek, “On identification of probabilistic mixture models with dynamic weights”, Abstracts of
accepted papers of the 6th International Phd Workshop on Systems and Control. Young Generation
Viewpoint, October 4-8 2005, http://www-e2.ijs.si/PhDWorkshop/2005.

[50] J. Andrýsek, “Projection based algorithms for estimation of complex models”, in Proceedings of
the 5th International PhD Workshop on Systems and Control - a Young Generation Viewpoint,
Budapest, September 2004, pp. 5–10, Hungarian Academy of Sciences.
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