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Abstract

At the basis of combinatorial methods in density estimation introduced by De-
vroye and Lugosi is the so-called Sche¤é selection rule. We show by an examples that
this rule based on L1 errors may not bring the selection closer to optimality than
tossing of a coin. As in any estimation problem, the choice of a criterion is at the
heart of the matter. The optimality of the Sche¤é estimate is perceived di¤erently
by di¤erent ��divergence criteria. We show that the L1 oracle inequality satis�ed
by the Sche¤é estimate can be extended to ��divergences. It can be also extended
to estimates associated with selection rules based on ��divergences. As the L1 rule,
the new rules are applicable to any selection problem in density estimation.

AMS 1991 subject classi�cation: 62G05.

Key Words: Density estimation. Nonparametric estimation. Selection of estimates.
Information divergence. Optimality. Combinatorial methods.

1 Introduction and basic concepts

In the book of Devroye and Lugosi (2001), the authors considered the statistical model
with Rd-valued observations X1; : : : ; Xn i.i.d. by a probability density f on Rd and two
estimates

f (i)n = f (i)n (�;X1; : : : ; Xn); i 2 f1; 2g (1)

of this density. They were interested in the problem how to select for each realization of
X1; : : : ; Xn the better of these estimates in the sense of L1-error. Obviously, the optimal
but practically unachievable selection is

f (0)n =

8><>:
f
(1)
n if

Z
jf (1)n � f j <

Z
jf (2)n � f j;

f
(2)
n otherwise:

(2)

They proposed a practically achievable approximation to this selection called Sche¤é
estimate which is selected by by the rule

f �n =

8><>:
f
(1)
n if

����Z
An

f (1)n � �n(An)

���� < ����Z
An

f (2)n � �n(An)

���� ;
f
(2)
n otherwise

(3)
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where
An = A

�
f (1)n ; f

(2)
n

�
=
�
x : f (1)n (x) > f (2)n (x)

	
(4)

is the so-called Sche¤é set for f (1)n ; f
(2)
n and

�n(A) =
1

n

nX
i=1

I (Xi 2 A) ; A 2 Bd; (5)

is the empirical probability measure on the �-algebra of Borel sets Bd. Chapter 6 of
the cited book contains a number of arguments in favour of the Sche¤é selection rule
(3). However, the next example demonstrates that the favorization of the Sche¤é rule is
problematic in some cases. As above, I (�) denotes the indicator function.

Example 1. Consider f uniform on the closed interval [0; 1] � R and the corresponding
ordered sample Xn:1; : : : ; Xn:n: For the estimates

f (1)n = I(Xn:1 � x � Xn:1 + 1) and f (2)n = I(Xn:n � 1 � x � Xn:n)

of f we get

An = (Xn:n; Xn:1 + 1 j; �n(An) = 0Z
An

f (1)n = Xn:1 + 1�Xn:n and
Z
An

f (2)n = 0

so that ����Z
An

f (1)n � �n(An)

���� = jXn:1 + 1�Xn:nj > Xn:1

exceeds with probability 1 the absolute deviation����Z
An

f (2)n � �n(An)

���� = 0:
Consequently the Sche¤é rule selects the estimate f (2)n achieving the L1-error

R
jf (2)n �f j =

2 (1�Xn:n) whereas the estimate f
(1)
n achieves the error

R
jf (1)n � f j = 2Xn:1; so that is

strictly better in the L1-sense with the probability Pr(Xn:1 +Xn:n < 1) = 1=2.

The book of Devroye and Lugosi (2001) presents a systematic theory dealing with
properties and applications of the Sche¤é selection f �n: This theory is based on Theorem 6.1
which compares the errorsZ

jf (0)n � f j = min
�Z

jf (1)n � f j;
Z
jf (2)n � f j

�
and

Z
jf �n � f j:

This fundamental theorem can be given the form of the inequalityZ
jf �n � f j � 3

Z
jf (0)n � f j+ 4

����Z
An

f � �n(An)

���� (6)
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where An is the Sche¤é set for f
(1)
n ; f

(2)
n . This inequality states that the selection f �n can

achieve the error level 3
R
jf (0)n �f j up to the universal error term appearing on the right.

This inequality was applied not only in Chapters 7�17 of the Devroye-Lugosi book, but
also in subsequent papers, among them in Berlinet, Biau and Rouviere (2005 a,b).

The latter papers observed that the L1-error criterion
R
jf � gj for the estimates g

being formally probability densities is a special case of the more general �-divergence
criterion D�(f; g) de�ned for arbitrary probability densities f; g by the formula

D�(f; g) =

Z
g �

�
f

g

�
: (7)

Here �(t) is nonnegative and convex in the domain t 2 (0;1), strictly convex and van-
ishing at the point t = 1 (for details about formula (7) and the basic properties of
�-divergences used below, see Csiszár (1967a) or Liese and Vajda (1987, 2006).

The L1-error is the �-divergence for �(t) = jt� 1j, called total variation and denoted
by V (f; g), i. e.

V (f; g) =

Z
jf � gj = 2 sup

A2Bd

����Z
A

f �
Z
A

g

���� : (8)

Other examples are the squared Hellinger distance

H2(f; g) = 2

Z �p
f �pg

�2
for �(t) = 2

�p
t� 1

�2
, (9)

the squared LeCam distance

LC2(f; g) =
1

2

Z
(f � g)2

f + g
for �(t) =

(t� 1)2

2(t+ 1)
; (10)

and the information divergence

I(f; g) =

Z
f ln

f

g
for �(t) = t ln t: (11)

Natural motivation for the alternative �-divergence error criteria is the need to work
with estimates converegent in the topologies stronger than that induced by the total
variation (cf. Csiszár 1967b and Österreicher and Vajda (2003). This paper introduces
a new motivation achieved in Example 3 below by extending the framework of Example
1 through admitting non-uniform densities with unit supports on R: In this extended
setting Example 3 demonstrates that for some densities f the alternative �-divergence
error criteria exhibit with positive probabilities optimality of the estimate g = f (1) at the
same time when the L1-error exhibits the optimality of g = f (2).

Since the optimality of the Sche¤é estimates f �n is perceived di¤erently by di¤erent �-
divergence error criteria, it is important to see whether or how the fundamental Devroye�
Lugosi inequality (6) can be extended from the total variation criteria

V (f; f�n) =

Z
jf �n � f j and V (f; f (0)n ) =

Z
jf (0)n � f j (12)
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to the more general �-divergence criteria

D�(f; f
�
n) =

Z
f �n �

�
f

f �n

�
and D�(f; f

(0)
n ) =

Z
f (0)n �

 
f

f
(0)
n

!
: (13)

This problem is solved in Section 3.

Section 4 introduces a replacement of the Sche¤é L1-based selection rule by a more gen-
eral �-divergence selection rule and solves a problem parallel to that of Section 3, namely
whether or how the Devroye�Lugosi inequality (6) can be extended to these estimates
and to the more general �-divergence criteria.

For the obvious reasons, in this paper the attention is restricted to the estimates (1)
which are a.s. probability densities themselves.

2 Metric divergence criteria of errors

Let us start with the following basic properties of �-divergences needed in the sequel:

(i) The range of values is
0 � D�(f; g) � �(0) + ��(0) (14)

where �(0); ��(0) are smooth extensions of �(t), ��(t) = t �(1=t) to the point t = 0. In
(14) D�(f; g) = 0 if and only if f = g a. s. and D�(f; g) = �(0) + ��(0) if (for �nite
�(0) + ��(0) if and only if) f?g (disjoint supports).
(ii) The symmetry D�(f; g) = D�(g; f) for all f; g holds if and only if � = �� fot the
adjoint function �� de�ned in (i).

(iii) The monotonicity property deals with relations between �-divergences

D�(�; �) � D�(f; g)

of the distributions

�(A) =

Z
A

f; �(A) =

Z
A

g; A 2 Bd

and �-divergences of restrictions of these distributions on sub-�-algebras S � Bd of the
Borel �-algebra Bd de�ned by formula

D�(�; �jS) = D�(fS ; gS) =

Z
gS �

�
fS
gS

�
for S-measurable versions fS ; gS of densities f; g. It states that the ordering

D�(f; gjS) � D�(�; �jS) � D�(�; �) � D�(f; g) (15)

holds. If the equality in (15) takes place then we say that S preserves the �-divergence
D�(f; g). It is known (see e.g. Corollary 1.29 in Liese and Vajda (1987)) that if a sub-
�-algebra S is su¢ cient for the pair ff; gg then the equality takes place in (15), i.e. the
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su¢ cient S allways preserves the �-divergence D�(f; g).

(iv) Finally, the spectral representation says that if a sub-�-algebra S � Bd is generated
by a �nite or countable Bd-measurable partition P of Rd (spectrum of S, in symbols we
write S = S(P)) then

D�(f; gjS) =
X
A2P

Z
A

g :�

�R
A
fR

A
g

�
: (16)

Example 2. Consider for every A 2 Bd the partition P = (A;Ac) of Rd and the P-
generated (or, more simply, A-generated) algebra

SA := S (A;Ac) � Bd (17)

consisting of the sets Rd; A;Ac; ;: Then the general spectral representation (16) implies

V (f; gjSA) =
X

B2fA;Acg

����Z
B

f �
Z
B

g

���� = 2 ����Z
A

f �
Z
A

g

���� : (18)

From (8) and (18) we see that the fundamental Devroye�Lugosi inequality (6) can be
given the form

V (f; f�n) � 3V (f; f (0)n ) + 2V (�; �njSAn) (19)

for the Sche¤é set An of the estimates f
(1)
n and f

(2)
n :

If A in (18) is the Sche¤é set A(f ; g) of f and g then the absolute di¤erence on the
right of (18) can be replaced by the ordinary di¤erence. Moreover, it is seen from (8)
that then SA preserves V (f; g) so that the formula (18) can be extended and speci�ed as
follows

V (f; gjSA) = V (f; g) = 2

�Z
A

f �
Z
A

g

�
: (20)

The following sections extend the Devroye�Lugosi theorem (6), or equivalently (19),
to the error criteria D(f; g) for probability densities f; g on (Rd;Bd) satisfying similar
metric properties as the total variation criterion V (f; g) namely

the re�exivity
D(f; g) = 0 if and only if f = g a. s.; (21)

the symmetry
D(f; g) = D(g; f) for all f; g (22)

and the triangle inequality

D(f; g) � D(f; h) +D(h; g) for all f; g; h: (23)

We restrict ourselves to the metric divergence criteria de�ned as powers

D(f; g) = D�(f; g)
�; � > 0
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of �-divergences D�(f; g) satisfying (21)-(23). These�-divergences achieve �nite uppr
bounds

�(0) + ��(0) = 2�(0) <1 (24)

(see (ii) for the equality and Csiszár (1967b) for the �niteness).

To provide a su¢ ciently rich class of such criteria, let us introduce the class of ��-
divergences

D�(f; g) = D��(f; g); � 2 R: (25)

Here the convex functions ��(t) are given in the domain t > 0 by the formula

��(t) =
j � j

�(�� 1)
�
2��1(t+ 1)� (t1=� + 1)�

�
(26)

if �(�� 1) 6= 0; and by the corresponding limits

�0(t) = j t� 1 j =2; (27)

�1(t) = t ln t+ (t+ 1) ln
2

t+ 1
(28)

otherwise. The subclass of these divergences for � � 0 was proposed (with a di¤erent
parametrization) by Österreicher and Vajda (2003). The extension to � < 0 was proposed
recently by Vajda (2008). It is easy to verify for all f; g the formulas

D0(f; g) =
1

2
V (f; g) (total variation, (8)); (29)

D2(f; g) =
1

2
H2(f; g) (Hellinger, (9)); (30)

D�1(f; g) =
1

4
LC2(f; g) (Le Cam, (10)) (31)

and
D1(f; g) = I (f; (f + g)=2) + I(g; (f + g)=2): (32)

In the Appendix we demonstrate that the powers

D(f; g) := D�(f; g)1=maxf2;�g, � 2 R (33)

of the divergences (25) satisfy (21)�(23), i. e. that they are metric divergence criteria.

3 Sche¤é selection rule

This section extends the fundamental Devroye�Lugosi inequality (6) for the Sche¤é es-
timates f �n from the total variation error criteria (12) to the more general �-divergence
criteria (13). The next example provides a motivation for this extension.
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Example 3. Main result of this section is the following theorem. This theorem and its
proof refer to the lower and upper error bounds

L�(V ) � D�(f; g) � U�(V ) (34)

achieved for a given convex � by the �-divergences D�(f; g) on the class of densities f; g
satisying the total variation condition

V (f; g) = V; 0 � V � 2:

By Proposition 8.27 in Liese and Vajda (1987), the upper bound is for general � given by
the formula

U�(V ) = V � c� where c� =
�(0) + ��(0)

2
(cf. (14)) (35)

and the lower bound L�(V ) is convex and strictly increasing in the variable V from the
minimum L�(0) = 0 to the maximum L�(2) = �(0) + ��(0) = 2c�. Hence the strictly
increasing and concave inverse function

L�1� (D) : [0; 2c�] �! [0; 2] (36)

allways exists. For � such that the powers D�(f; g)
� are metrics on the space of densities

f; g (24) implies
c� = �(0) <1: (37)

Theorem 1. Let f be an estimated distribution on Rd, f (0)n ; f
(1)
n and f

(2)
n the estimates

considered in (1), (2) with the corresponding Sche¤é set An and f �n the Sche¤é estimate
resulting from the selection rule (3). Then for every metric divergence criterion D(f; g) =
D�(f; g)

�

D (f �n; f) � D
�
f (0)n ; f

�
+ 2�c��

�
L�1�

�
D
�
f (0)n ; f

�1=��
+ 2

����Z
An

f � �n(An)

������ (38)

where L�1� and c� are given by (36) and (37)

Proof. Consider the random variables

Eij = I
�
f �n = f (i)n ; f (0)n = f (j)n

�
where

2X
i;j=1

Eij = 1: (39)

By the triangle inequality and symmetry of D(f; g), and by the de�nition of Eii;

D (f �n; f) � D
�
f (0)n ; f

�
+

2X
i;j=1

D
�
f �n; f

(0)
n

�
Eij

= D
�
f (0)n ; f

�
+D

�
f �n; f

(0)
n

�
E21 +D

�
f �n; f

(0)
n

�
E12: (40)

It su¢ ces to prove that for i 6= j

D
�
f �n; f

(0)
n

�
Eij � 2�c��

�
L�1�

�
D
�
f (0)n ; f

�1=��
+ 2

����Z
An

f � �n(An)

������ Eij: (41)
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We restrict ourselves to E21: For E12 the proof is similar. By the de�nition of E21 and (35),
(36),

D
�
f �n; f

(0)
n

�
E21 = D

�
f (1)n ; f (2)n

�
E21 �

�
c� V

�
f (1)n ; f (2)n

��� E21
= c�� V

�
f (1)n ; f (2)n jSAn

�� E21
� c��

�
V
�
f (1)n ; f jSAn

�
+ V

�
f (2)n ; f jSAn

��� E21
� c��

�
V
�
f (1)n ; f

�
+ V

�
�(2)n ; �njSAn

�
+ V (�n; �jSAn)

�� E21
� 2�c��

�
V
�
f (0)n ; f

�
+ V (�n; �jSAn)

�� E21
� 2�c��

h
L�1�

�
D
�
f (0)n ; f

�1=��
+ V (�n; �jSAn)

i�
E21:

where we bounded the sum of the total variations in the third line above by

V
�
f (1)n ; f

�
+ V

�
�(1)n ; �njSAn

�
+ V (�n; �jSAn)

� V
�
f (1)n ; f

�
+ V

�
�(1)n ; �jSAn

�
+ 2V (�n; �jSAn)

� 2V
�
f (1)n ; f

�
+ 2V (�n; �jSAn) :

This completes the proof.

The next corollary reformulates the result of Theorem 1 in a simpler but slightly
weaker form.

Corollary 1. For 0 < � � 1, under the assumptions and notations of Theorem 1,

D (f �n; f) � 21��c��
�
3L�1�

�
D
�
f (0)n ; f

�1=��
+ 4

����Z
An

f � �n(An)

������ (42)

Proof. Clear from (38) by taking into account the inequalities

D
�
f (0)n ; f

�
� U�

�
V
�
f (0)n ; f

���
=
�
c�V

�
f (0)n ; f

��� � hc�L�1� �D �f (0)n ; f
�1=��i�

obtained from (34), (36) and also the inequality

 �(a) +  �(b) � 21�� �(a+ b)

obtained from Jensen�s inequality for the concave function  �(x) = x�.

The next example demonstrates that Theorem 1 generalizes the Devroye and Lugosi
inequality (6).

Example 4. Put D(f; g) = D0(f; g) = V (f; g)=2 (cf. (29)). Then c0 = �0(0) = 1=2;

L0(V ) = U0(V ) =
V

2
; 0 � V � 2

and L�10 (D) = 2D. Hence Theorem 1 implies

D0 (f �n; f) � D0
�
f (0)n ; f

�
+ 2D0

�
f (0)n ; f

�
+ 2

����Z
An

f � �n(An)

����
8



or, equivalently,

V (f �n; f) � 3V
�
f (0)n ; f

�
+ 4

����Z
An

f � �n(An)

����
which coincides with (6) and (19).

The next example illustrates contributions of Theorem 1 and its Corollary 1 beyond
the framework of Devroye and Lugosi.

Example 5. Put D(f; g) = D�1(f; g)1=2, i.e. take the LeCam error criterion LC(f; g)=2
(cf. (31)). Then parts (ii) and (iii) of Theorem A1 in the Appendix imply that c�1 = 1=8,
U�1(V ) = V=16 and

L�1(V ) =
1

2

 
1

2
�
�

1

1 + V=2
+

1

1� V=2

��1!

=
1

2

�
1

2
� 1� (V=2)

2

2

�
=

�
V

4

�2
:

Therefore L�1�1(D) = 4
p
D and for the Sche¤é selection f �n of Devroye and Lugosi we get

from Theorem 1 the relation

D (f �n; f) � D
�
f (0)n ; f

�
+

�
2

8

�
4D
�
f (0)n ; f

�
+ 2

����Z
An

f � �n(An)

������1=2
i. e.

LC (f �n; f) � LC
�
f (0)n ; f

�
+

r
1

2
LC

�
f
(0)
n ; f

�
+
1

8
jfn � �n(An)j

where An is the Sche¤é set of the initial estimates f
(1)
n and f (2)n . Corollary 1 implies for

the same f �n and An as before the alternative inequality

D (f �n; f) �
�
2
3

8
4D
�
f (0)n ; f

�
+ 2

4

8

����Z
An

f � �n(An)

�����1=2
i. e.

LC (f �n; f) �

s
3

2
LC

�
f
(0)
n ; f

�
+
1

4

����Z
An

f � �n(An)

����:
We see that the rate of convergence of the Le Cam error LC (f �n; f) to zero garanteed by our

theory for the Sche¤é estimate is strictly below the rate of the Le Cam error LC
�
f
(0)
n ; f

�
achieved by the ideal estimate f (0)n . One can deduce from the known properties of the
lower bound L�(V ) and its inverse L�1� (D) that similar result can be expected also for
other divergence errors D� (f

�
n; f) with � strictly convex everywhere.
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4 Divergence selection rule

This section is a continuation of Section 3 where the estimation errors are still evaluated by
metric divergence criteria of the type D(f; g) = D�(f; g)

�; � > 0 but the Sche¤é selection
(3) of Devroye and Lugosi (2001) is replaced by a more general selection. One arrives
quite naturally at such generalization if he applies the same criteria also to the de�nition
of the optimal estimate f (0)n and its practical approximation f �n. In other words, the
generalization consists in the replacement of the L1-based de�nition (2) by the divergence
based de�nition

f (0)n =

8<: f
(1)
n if D

�
f
(1)
n ; f

�
< D

�
f
(2)
n ; f

�
f
(2)
n otherwise:

(43)

and the L1-based Sche¤é selection rule (3) by the divergence selection rule

f �n =

8<: f
(1)
n if D

�
�
(1)
n ; �njSn

�
< D

�
�
(2)
n ; �njSn

�
f
(2)
n otherwise:

(44)

This rule uses the empirical distribution �n de�ned by (5), the estimates

�(i)n (B) =

Z
E

f (i)n ; B 2 Bd; i 2 f1; 2g

of the probability distribution � � f; and the sub-�-algebra Sn � Bd preserving the
divergence D

�
�
(1)
n ; �

(2)
n

�
, i. e. satisfying the equality

D
�
�(1)n ; �(2)n

�
= D

�
�(1)n ; �(2)n jSn

�
(cf. (15)): (45)

Next follows the main result of this section where � � f is the estimated distribution
and Sn is sub-�-algebra preserving the divergence D(f (1)n ; f

(2)
n ) of the estimates f

(1)
n ; f

(2)
n

in (43) ( e.g. the intersection of all sub-�-algebras S � Bd preserving this divergence).

Theorem 2. The estimate f �n resulting from the metric divergence selection rule (44)
satis�es the inequality

D (f �n; f) � 3D
�
f (0)n ; f

�
+ 2D (�; �njSn) : (46)

Proof. We can start with the equality (40) valid in the present situation as well. It
su¢ ces to prove that for i 6= j

D
�
f �n; f

(0)
n

�
Eij � 2

�
D
�
f (0)n ; f

�
+D (�n; �jSn)

�
Eij
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where Eij is de�ned by (39) for f �n; f
(0)
n given by (43), (44). Using repeatedly the triangle

inequality and relations (45) and (15) we obtain

D
�
f �n; f

(0)
n

�
E21 = D

�
f (0)n ; f (2)n

�
E21 = D

�
f (1)n ; f (2)n jSn

�
E21

�
�
D
�
f (1)n ; f jSn

�
+D

�
f (2)n ; f jSn

��
E21

�
�
D
�
f (1)n ; f

�
+D

�
�(2)n ; �njSn

�
+D (�n; �jSn)

�
E21

�
�
D
�
f (1)n ; f

�
+D

�
�(2)n ; �jSn

�
+ 2D (�n; �jSn)

�
E21

�
�
D
�
f (1)n ; f

�
+D

�
�(1)n ; �jSn

�
+ 2D (�n; �jSn)

�
E21

�
�
2D
�
f (1)n ; f

�
+ 2D (�n; �jSn)

�
E21

= 2
�
D
�
f (0)n ; f

�
+D (�n; �jSn)

�
E21:

In the same manner we obtain

D
�
f �n; f

(0)
n

�
E12 � 2

�
D
�
f (0)n ; f

�
+D (�n; �jSn)

�
E12

which completes the proof of (46).

The next corollary presents a di¤erent expression of the error term in (46).

Corollary 2. The estimate f �n resulting from the selection rule (44) employing a metric
divergence D(f; g) = D�(f; g)

� satis�es the inequality

D (f �n; f) � 3D
�
f (0)n ; f

�
+ 2�+1c�� sup

B2Sn

����Z
A

f � �n(B)

����� (47)

where f (0)n ; f and Sn are the same as in Theorem 2 and c� = �(0) <1:

Proof. By Proposition 8.27 in Liese and Vajda (1987) and (8),

D� (�n; �jSn) � c� V (�n; �jSn) and V (�n; �jSn) = 2 sup
A2Sn

j�(A)� �n(A)j

and the rest follows from Theorem 2 and (37)..

As in the previous section, our �rst step is to verify that Theorem 1 generalizes the
Devroye�Lugosi result (6).

Example 6. Putting D(f; g) = V (f; g) in Theorem 2 and using the fact that by (20)
the sub-�-algebra SAn preserves the total variation V (f

(1)
n ; f

(2)
n ) of the estimates f

(1)
n ; f

(2)
n ;

we get
V (f �n; f) � 3V

�
f (0)n ; f

�
+ 2V (�; �njSAn) :

This coincides with the equivalent form (19) of the Devroye-Lugosi inequality (6).

Most important from the point of view of applications is the complexity of the sub-�-
algebra Sn � Bd which appears in the right-hand error terms of (46) and (47). It depends
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on the complexity of the used divergence error criterion D(f; g) and the complexity of
the estimates f (1)n ; f

(2)
n . In the previous example we have seen that if D(f; g) is as simple

as the total variation V (f; g), then Sn is the simple �-algebra SAn generated by just one
set �the Sche¤é set An of the estimates f

(1)
n ; f

(2)
n �irrespectively of how complex these

estimates are. In the following example we shall see the opposite extreme, namely simple
estimates f (1)n ; f

(2)
n leading to a simple �-algebra Sn = SBn generated by just one set

Bn speci�ed by these estimates, irrespectively of how complex the divergence criterion
D(f; g) is. More precisely, Bn does not depend on this criterion at all.

Example 7. Let the sample X1; : : : ; Xn be governed by a bell-shaped density f on R
and consider the sample mean and variance

�n =
1

n

nX
i=1

Xi and �2n =
1

n

nX
i=1

(Xi � �n)
2;

and also the following central cover set

Bn = fx : jx� �nj < 3�ng: (48)

Let f be estimated by Cauchy type densities

f (1)n (x) =
�n

� [�2n + (x� �n)2]

and

f (2)n (x) = I(x 2 Bn)
b�n

�[�2n + (x� �n)2]
(49)

where

b =

�
1� 2

�
1

2
� 1

�
arctg 3

���1
=

�

2 arctg 3
:

In (49) we used the fact that the condition I(x 2 Bn) cuts away from f
(1)
n (x) two tail

probabilities of the sizeZ �n�3�n

�1
f (1)n =

Z �3

�1

dx

�[1 + x2]

=
1

2
+
1

�
arctg(�3) = 1

2
� 1

�
arctg 3

so that the f (1)n -probability of the sample central cover set is 1/b. The likelihood ratio
f
(2)
n =f

(1)
n is piecewise constant,

f
(2)
n (x)

f
(1)
n (x)

=

�
b if x 2 Bn
0 otherwise;

where b is the normalizing factor used in (49). Therefore the sub-�-algebra SBn =
fR; Bn; Bc

n; ;g � B generated by the central cover set Bn of (48) is su¢ cient for the
family ff (1)n ; f

(2)
n g. By what was said in Section 2, this means that SBn preserves for every

12



convex � the �-divergence D�(f
(1)
n ; f

(2)
n ). In other words, the sub-�-algebra Sn considered

in Theorem 2 and Corollary 2 is SBn. Hence, by Theorem 1 and formula (16), for every
metric divergence criterion D(f; g) = D�(f; g)

� with � > 0

D (f �n; f) � 3D
�
f (0)n ; f

�
+ 2

24 X
B2fBn;Bcng

Z
B

f �

�
�n(B)R
B
f

�35� : (50)

By Corollary 2, simpler but in general weaker variant of the result (50) is the inequality

D (f �n; f) � 3D
�
f (0)n ; f

�
+ 2�+1��(0)

����Z
Bn

f � �n(Bn)

����� : (51)

Next follows a theorem which generalizes and makes precise the phenomena observed
in the last example.

Theorem 3. If the metric divergence criterion D(f; g) is a �-divergence power with
�(t) strictly convex in the whole domain t > 0 then a sub-�-algebra Sn � Bd preserves
D(f

(1)
n ; f

(2)
n ) in the sense

D
�
f (1)n ; f (2)n jSn

�
= D

�
f (1)n ; f (2)n

�
if and only if Sn is su¢ cient for ff (1)n ; f

(2)
n g.

Proof. Let D(f (1)n ; f
(2)
n ) = D�(f

(1)
n ; f

(2)
n )� for some � > 0. By the Corollary 2 above, the

metricity of D�(f; g)
� implies D�(f

(1)
n ; f

(2)
n ) � 2�(0) < 1. Hence, by Corollary 1.29 in

Liese and Vajda (1987), the equality D�(f
(1)
n ; f

(2)
n ) = D�(f

(1)
n ; f

(2)
n jSn) takes place if and

only if Sn is su¢ cient.

From this theorem we see that functions � strictly convex everywhere de�ne the most
complex divergence criteria for which the �-algebra Sn is simple only if the estimates
f
(1)
n ; f

(2)
n are simple enough. Example 4 illustrated such situation.

5 Appendix

For practical applications of the results of Sections 3 and 4 one needs concrete metric
divergence criteria D(f; g) = D�(f; g)

� with known and simple upper and lower bound
U�(V ) and L�(V ) introduced in (34). For this purpose he can use the criteria from theclass

D(f; g) = D�(f; g)�(�) for �(�) =
1

maxf2; �g =

8><>:
1
2
when �1 < � � 2

1
�
when � > 2:

(52)

introduced in (25)�(28). The following theorem summarizes basic relevant properties of
the divergences D�(f; g). For the proof we refer to Vajda (2008).
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Theorem A1.

(i) D�(f; g) are ��-divergences with functions ��(t) strictly convex in the domain t > 0
when � 6= 0.

(ii) The lower bounds of the divergencesD�(f; g), � 2 R under the constraint V (f; g) = V
are given for 0 � V � 2 by the formulas

L�(V ) =
j�j

�(�� 1)

 
2� �

"�
1 +

V

2

�1=�
+

�
1� V

2

�1=�#�!
(53)

if �(�� 1) 6= 0 and otherwise by the corresponding limits

L0(V ) = V=2; L1(V ) =

�
1 +

V

2

�
ln

�
1 +

V

2

�
+

�
1� V

2

�
ln

�
1� V

2

�
: (54)

(iii) The upper bounds of the divergencesD�(f; g), � 2 R under the constraint V (f; g) = V
are U�(V ) = c�V where c� > 0 is continuous in the variable � 2 R; given by the
formula

c� = ��(0) =

8>>>>><>>>>>:

2��1

j�j+ 1 when � < 0

ln 2 when � = 1

2��1 � 1
�� 1 when � � 0; � 6= 1:

(55)

(iv) The powers D�(f; g)�(�) given in (52) are metrics in the space of probability densities
f; g.

Remark. Putting � = 0 in (iv) of Theorem A1 one obtains among other the triangle
inequality p

D0(f; g) �
p
D0(f; h) +

p
D0(h; g)

for the divergence D0(f; g) = V (f; g)=2 which is weaker than the classical triangle in-
equality

D0(f; g) � D0(f; h) +D0(h; g) (56)

obtained by applying the L1-norm argument to the total variation V (f; g). Using the
continuity of the divergences D�(f; g) in the variable � 2 R we can deduce from (56)
that more sophisticated arguments than those used to prove Theorem A1 lead to stronger
triangle inequalities also for the remaining divergences D�(f; g), � 2 R, in particular for
those with � close to 0.
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