An analysis of non-classical austenite-martensite interfaces in CuAINi
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Abstract

Ball & Carstensen [2, 3], theoretically investigated the
possibility of the occurrence of non-classical austenite-
martensite interfaces and studied the cubic-to-tetragonal
case extensively. Here we aim to present an analy-
sis of such interfaces recently observed by Seiner et al.
[12] in CuAlNi single crystals, undergoing a cubic-to-
orthorhombic transition. We show that they can be de-
scribed by the non-linear elasticity model for martensitic
transformations and we make some predictions regarding
the volume fractions of the martensitic variants involved,
as well as the habit plane normals.

Introduction

A classical austenite-martensite interface is one in which
the undistorted austenite meets a simple laminate of
martensite and these have been broadly studied. In recent
years, a theory of martensitic transformations has been
developed which allows austenite-martensite interfaces to
occur in which the microstructure of the martensite is
more complicated; these are referred to as non-classical
interfaces and have hitherto not been systematically ob-
served. In this non-linear elasticity model, in which inter-
facial energy is neglected, microstructures are identified
as limits of minimizing sequences for the total free energy

) = [ ¢(V(@).0)da. 1)
Here, ) represents the reference configuration of undis-
torted austenite at the transformation temperature 6. and
y(z) denotes the deformed position of particle x € Q.
The free-energy function ¢(F,#) depends on the defor-
mation gradient F' and the temperature 6. By frame
indifference, p(RF,0) = (F, ) for all F, 6 and for all
rotations R; that is for all 3 x 3 matrices in SO(3) =
{R :RTR=1,detR = 1}. By adding an appropriate
function of ¢, we may assume that ming o(F,0) = 0. At

0., the energy wells of the free-energy function are given
by SO(3) for the undistorted austenite and SO(3)U;,
i = 1,...,N, for the N distinct variants of martensite,
where each U; is a positive definite, symmetric matrix.
Hence, ¢(F,0.) > 0 with equality if and only if F' €
SO(3) U Uivzl SO(3)U;. For 6 < 0., the martensite wells,
Ui]il SO(3)U;, minimize ¢, whereas for 6 > 6. the min-
imum is given by the austenite well, SO(3)a(6)1, where
«(6) is the thermal expansion coefficient of the austenite
and a(f.) = 1.

A non-classical planar austenite-martensite interface
{z -m =k} corresponds to a choice of habit-plane nor-
mal m such that there exists a sequence of deformations
yY) for which I, (y)) — 0 as j — co. We require
that, for z-m < k, the values of the deformation gradient
Vy) tend to SO(3), i.e. yU) corresponds to the austen-
ite phase; without loss of generality, this is equivalent to
Vy) (z) — 1 except possibly for a set of zero volume.
For z-m > k, we require that, as j — oo, Vy9) tends in
a suitable way to the set K = [, SO(3)U; of martensite
energy wells. In fact, we require that the Young measure
(V2)weq of VyU) is supported in the set K (for details see
e.g. [1]).

From now on, we shall make the assumption that the
martensitic microstructure is homogeneous; that is, for
x - m > k, the macroscopic deformation gradient F =
Vy(z) is independent of z. The set of all such matrices
F' is called the quasiconvezification of K and is denoted
by K%. It can be shown that K9¢ is also the set of F'
such that there exists a sequence of deformations z() with
2\ (z) = Fx on the boundary of Q, 99, and VzU) () —
K in the above sense.

If we know K?¢ for a given set of martensite wells, to en-
sure geometric compatibility, we need to examine whether
it is possible to establish a rank-one connection between
SO(3) and K%, that is, we need to find vectors b and m
such that

1+b@me K, 2)



where, by frame indifference, we have chosen the iden-
tity matrix 1 to represent the austenite energy well.
Unfortunately, we only have a characterization of K9¢
for two martensitic wells (N = 2), i.e. when K =
SO(3)U; USO(3)Us. In this case, any F' € K9° can be
obtained as the macroscopic deformation gradient of a
double laminate (see [5]). Even though K% is unknown
in the case of three tetragonal wells, Ball & Carstensen
[3] were able, using the two-well calculation, to character-
ize exactly the values of the deformation parameters for
a cubic-to-tetragonal transformation which permit non-
classical interfaces. They also presented results for a
cubic-to-orthorhombic transformation, though not of the
type occurring in CuAINi.

Given a matrix F, the question as to whether we can
solve the equation

1+b@me SOB3)F (3)
for vectors b and m is answered by the following lemma
in [4, 8].

Lemma 1. Let F be a non-singular matrix that is
not a rotation. Then the wells SO(3) and SO(3)F are
rank-one connected if and only if the middle eigenvalue
of FTF is 1. Then 1+b®m € SO(3)F for some b if and
only if m is a non-vanishing multiple of one of the two
vectors, 1 — Aje; = A3 — leg, where 0 < Ay <1 < )3
are the three eigenvalues of FTF with corresponding
eigenvectors ej, ea, e3.

Having outlined a brief description of the model, we
proceed to the experimental observations on a CuAINi
single crystal.

Experimental Observations

The first micrographs of interfaces between austenite and
crossing twins were obtained by Seiner et al. [13], who
documented that such interfaces can form during the
shape recovery process of CuAlINi single crystals. How-
ever, these interfaces were only weakly non-classical, i.e.
they were classical interfaces weakly disturbed by a negli-
gible volume fraction of compound twins intersecting the
first-order laminate of the Type-II twins. These obser-
vations motivated the authors towards more intensive re-
search in this field — the experiment was improved in order
to increase the volume fraction of the compound twins in
the martensitic microstructure. The resulting experimen-
tal procedure is briefly outlined below, and will appear in
more details in [12].

The specimen examined in this case was a
3.9%x3.8x4.2mm rectangular parallelepiped of the
austenitic phase of CuAlNi, cut from a single crystal
of this alloy such that the normals to the specimen
faces had approximately the principal crystallographic
directions (100). The original single crystal was grown
by a Bridgman method at the Institute of Physics ASCR
in Prague. The specimen was subjected to the following
sequence of mechanical and thermal loadings (see Fig.
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Figure 1: Outline of the experimental procedure.

(a) At room temperature, the specimen was transformed
into a single variant of 2H martensite by applying
uniaxial compression (in a bench vice). Due to the
effect called mechanical stabilization of martensite,
the specimen did not return to austenite after un-
loading, but remained as a single variant of marten-
site.

The specimen was rotated by 90° and uniaxial com-
pression was applied again. In this case, the load-
ing induced the reorientation of martensite into an-
other variant via compound twinning (for an anal-
ysis of the relation between the direction of applied
compression and the activated twinning systems in
CuAlNi, see [9]). The reorientation was not fully
completed. Instead, the loading was interrupted at
the moment when the specimen contained compa-
rable volume fractions of both variants. By such a



procedure, we obtained a finely compound twinned
specimen.

The finely compound twinned specimen was heated
from one side using a gas lighter, which induced the
shape recovery process, i.e. the thermally driven re-
turn of the specimen into austenite. As the com-
pound twins cannot form any compatible interface
with austenite, the transition was achieved by for-
mation of an interfacial microstructure, which en-
sured a compatible connection between the mechan-
ically stabilized martensite (the compound twins)
and austenite. This interfacial microstructure was
formed by Type-II twins crossing the original com-
pound microstructure and getting arranged into a so
called X-interface (for more details of formation of X-
interfaces in CuAlINi see [13], for the theoretical anal-
ysis of this microstructure, see [10]). By removing
the heating in the middle of the course of the transi-
tion, the interfacial microstructure was stopped, and
the non-classical interfaces between austenite and the
two mutually crossing systems of twins (compound
and Type-II) were observable by optical microscopy.
An example is given in Fig. 2.
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Figure 2: Optical micrograph of a non-classical inter-
face between austenite and a martensitic microstructure.
The arrows indicate the orientations of twinning planes
of Type-II and compound twinning systems.

This procedure was repeated several times, which enabled
the capturing of several optical micrographs of the non-
classical interfaces. An interesting observation was that,
as shown in Fig. 3, the interface between the austenite
and the system of crossing twins was never exactly planar,

but rather slightly curved. This results from the fact that
the pattern of compound twins induced in the specimen
by the uniaxial compression in stage (b) of the experi-
mental procedure is never exactly homogeneous. With
varying volume fraction of the compound twins, the ad-
missible orientation of the habit plane varies as well, as
will be shown in the theoretical analysis given in the fol-
lowing section. However, a more complete analysis of the
curved interface remains to be done.

AUSTENITE

Figure 3: Curved interface between crossing twins and
austenite resulting from the inhomogeneity of compound
twinning. (Optical microscopy.)

Analysis of Non-Classical Interfaces

In this section, we focus on the homogeneous case for the
above non-classical austenite-martensite interface and we
present an analysis via the non-linear elasticity model for
martensitic transformations. We deduce that the inter-
face is predictable by the model in the sense that the
compatibility equations admit a solution; this solution is
by no means unique as the compound volume fraction can
be varied arbitrarily. Furthermore, we show numerically
that this variation in the compound volume fraction gives
rise to different habit plane normals, providing an insight
into the slightly curved interface observed between the
austenite and the heterogeneous martensitic microstruc-
ture. The martensitic region on one side of the observed
interface consists of twin crossings involving four marten-
sitic variants. Since the quasiconvexification of more than
two wells is unknown, we are not able to analyze all the
possibilities for non-classical interfaces in CuAINi. How-
ever, we can do this in the twin crossing case. Firstly,
we shall concentrate on the martensite phase and try to



construct the microstructure consisting of compound and
Type-II twin crossings, as shown in Fig. 4.

Figure 4: Parallelogram microstructure

Let U4 and Upg be two martensitic variants able to
form a Type-II twin and Ua/, Ups the respective com-
pound counterparts. Clearly Uy and Upgs can also form
a Type-II twin and we proceed by writing the compatibil-
ity equations for the parallelogram microstructure. These
are:

RapUp —Ua =bap ®nap (4)
RaopUp —Up =barp Qnarp (5)
RaaUar —Ua =baa @naar (6)
RppUp —Up =bpp @npp (7)

where b;; and nyj are, respectively, the shearing vector
and the normal to the twinning plane for the system of
variants Uy and Uj;. Also, R;; denotes the mutual rota-
tion between variants U; and Uj.

If the above compatibility equations hold, a necessary
and sufficient condition for the entire parallelogram mi-
crostructure to be compatible is that

(®)

Equation (8) is necessary, since both sides describe the
mutual rotation between Uy and Up:, and sufficiency fol-
lows by showing that (4)-(7) imply that the normals n4p,
nap, naa and npp are coplanar.

Let

RupRpp = RaaRap.

MAB = (1 — /\)UA + )\RABUB
Myp = (1=ANUa + ARa pUp

9)
(10)

which represent the macroscopic deformation gradients
corresponding to the Type-II structures. From [7], there
are solutions of the twinning relations (6) and (7) with

(11)

and we make this choice in accordance with the exper-
imental observations. Then the geometry of the paral-
lelogram structure requires A to be the same in (9) and
(10).

At this stage we note that det M4 g = det Map. To
see this, consider equation (4). We get that

nAA = NBR

RapUp =Us(1+ Uy 'bap @ nap).
Therefore, by taking determinants, we obtain

detUp = det Ua(1 + Uy bap - nap).
Clearly det Ug = det U4 and thus

(12)

UgleB -nap = 0.
Hence, for M 4p, we have
det Myp =detUy,4.

Similarly, det M 4/ = det U4 = det U4 and we deduce
that det M4gr = det Map. This result has a simple
physical interpretation. Since the determinants have the
meaning of volume change and the microstructures Mg
and M4/ are just mixtures of variously rotated single
variants, the volume must remain the same.

Now, assume that the volume fraction of variant U 4+ in
Ua, as well as that of Ug in Ug, is A. Then, the macro-
scopic deformation gradient of the entire microstructure
is

M=(1—-A)Msp+ARaa Mo p. (13)

Whether the interface between the parallelogram mi-
crostructure and the austenite can be formed is a ques-
tion of finding A and A such that the middle eigenvalue
of MTM is equal to 1, which is equivalent to finding a
rank-one connection between the austenite and SO(3)M.
In particular, by Lemma 1,

det(MTM —1) = 0. (14)

Forming the Interface

By manipulating the compatibility equations and making
use of equations (8) and (11) we can see that

(baar—RaBbep )®naar—bap®@nap+Ranbap @nap



=0.

All normals cannot be parallel to each other and hence,
using a result in [10], we deduce that

baar — Rapbpp || bap || Raabap. (15)
Hence, there exists some 7 such that
Nbap =baa — Rapbpp'. (16)

By identifying the rotation R4p and using the formulae
for the twinning solutions in Result 5.2 of [6], as well as
the relations between them [7], we obtain that

2

= WbAA/ ~bap.
AB

n

Our goal is to deduce an expression for det(MTM — 1)
which will enable us to find solutions of (14) for A\, A €
(0,1). Towards this end, we shall seek a rank-one con-
nection between M4p and M4 p/. Indeed, using (8) and
equations (4)-(7),

RaaMyp—Map = (1-N\)baa@naa+ARAbpp @npp
Having that naa = npp and using (16) we get
RaaMyp — My = b, ®naar, (17)

where b, = baar — Anbap. Combining equation (17) with
(13) we get that

M = Map + Ab, @ naar
and using the expression for Map we obtain
M =Uyg+ Noag @nap +Ab, @ngar. (18)
Then,
det(M*M — 1) = det M* det(M — M~T). (19)
We shall first calculate det M” = det M. Hence we have,
det M = det Map det(1 + AM 3b. @ naar).
However, from (17)

RaarMap = Map(14+ Mypb. @naar)
and taking determinants, we see that

det Marp = det Map(1 + Mypbe-naar).
Since det M4/ g = det Map we get that

M by -naa =0. (20)

From (19), we have
det(MTM — 1) = det Uq det(M — M~T)

and it remains to calculate M — M ~T. Making use of the
expression for M and (20)

M™T = ML~ AM Enaa © ML,
and from (9) and (12)
Myp=Uy' =AU, bap @ Uy nas.

Combining the last two equations and after some calcu-
lations we obtain that

M T =U" =AU 'nap @ Uz bap (21)
—AU 'naa @ Uy baa
FANU  'nan @ U bap(Uy i nap - baar +1).
Here we have already used the fact that
Ui'naa -bap =0. (22)

The above result requires some effort and is provided by
investigating the axes of the rotations in the austenitic
point group along with Result 5.2 in [6].

Using the expressions for M and M7 we get

det(MTM — 1) = det(Ag + AA; + Ads + MAA3g), (23)

where
Ay = Uj-—-1 (24)
Ay = Uabap®@nap+nap@Uy'bap (25)
Ay = Unabaa @naar +naa @U  bans (26)
A3 = —(Ui'nap-baa +n)naa @ Uy'bap (27)

—nUabap @ naar.

It is trivial to observe that, for fixed A, the expression
multiplying A is of rank 2 and similarly, for fixed A, the
expression multiplying A is of the same rank. Hence, the
determinant of M — M~7T will only contain terms with A
and A in powers not greater than two. Letting g(A\, A) :=
det(MTM — 1) we deduce that

g A) = o+ BA+ YA + aX? + DA% + cAA + dAA? (28)
+eXZA + FAZAZ
Using the relations between the twinning solutions for dif-

ferent martensitic variants [7], the above expression sim-
plifies further by noting that for all A € (0,1)

g<07A) :g(lvA) (29)



and, respectively, for all A € (0, 1)
g(A,0) =g(A1).

Now, from equations (28)-(30) we obtain the following
form for g;

(30)

g\ A) = ag+ar (N2 =) +az(A2=A)+az(A\>—N\)(A%=A).

(31)
From (23) and (31) it becomes easy to specify the coeffi-
cients ag, a1, az,as in the expression for g(\, A). Firstly,

ap = 9(0,0) = det(U3 — 1). (32)
Noting that a; = —%(0,0) and as = —g—X(0,0), we de-
duce, after a simple calculation, that
a1 = —2bap - Upcof(U3 — )nap (33)
and
as = —2bgar - UACOf(Ui — 1)77,,4,4/. (34)

As for the last coefficient, ag = 4(%(0, 1) +a1) and the
expression gets more complicated reducing to

1 1
az — 4COf(AO + 5142) . (Al + §A3) + 40,1. (35)

For A = 0, we only have the Type-II structure and we get
g\ A) = ag +ar (A2 = )N).

This becomes zero for A2 — \ = —42; call this A = \* €

(O, %] , which agrees with the value obtained, for example,
by Ball & James in [4].

Setting g(A, A) = 0 and solving for A we deduce that,
as long as

% ¢ 0.4 (36)

then
_a() + QQ(A2 — A)
a1 + 0,3(1\2 — A) ’

For A = 0 and A = 1 the above equation admits two
solutions, namely A* and 1—\*, and we see that branches
starting from (A*,0) and (A\*,1) are created consisting
of values of (A, A) that make the non-classical interface
possible. Provided that

A= (37)

apas 7é aj1a9 (38)

a necessary and sufficient condition for these to meet, i.e.
for equation (37) to have solutions for all A € [0,1], is

that 4
0 < 200~ a2 <

1
-. 39
~ 4a1 — a3 4 ( )

If, in addition,

4(10 — a2 1

4(11 — as 7& 4 (40)
then the solutions will be distinct.

Otherwise, if agas = ajas, g simplifies even further
and we obtain that, for all A € [0,1], A = A* and )\ =
1 — X\* will suffice. Due to the symmetry of g, branches
are also created at the points (1—A*,0) and (1—\*,1) and
the condition for these to meet is the same. A remaining
question is whether it is the middle eigenvalue that is
equal to 1. This is answered in a similar fashion to [4]
and hence, we shall require that

trU% —det U3 —2+ (A2 =\) [bap|>+(A2—A) [baa > (41)

+(A2 =N (A% = AN |basl> >0

for all pairs (A, A) that make the interface possible. This
will also imply that the other eigenvalues of MTM, X\,
and A3, are bounded away from 1,ie. 0 < A\ < 1< A3,

However, the formulae for the cubic-to-orthorhombic
transformation get too involved and for this reason we
will proceed numerically.

Numerical Results

In the remainder of this section we present a numeri-
cal calculation where, in accordance with [11], the lattice
parameters for CuAINi were chosen to be a = 1.06372,
[ = 0.91542 and ¢ = 1.02368. The martensitic variants
used are the ones obtained from the experimental obser-
vations; that is, A = 3, B = 6 with A’ = 4, B’ = 5 their
compound counterparts. Following the above analysis,
we calculated the zeros of g, i.e. the values of (A, A) that
allow the interface to occur. Relations (36) and (38)-(41)
were satisfied and we plotted A against A as shown in Fig.
5.

It is easily seen that the value of A\ does not change sig-
nificantly from A* (corresponding to A = 0), which would
give the classical interface between the Type-II twinning
system and the austenite.

Moreover, using the algebraic procedure given in [4],
we calculated the different normals m(\, A) for (A, A) on
the curves of Fig. 5 and a plot of these is given in Fig.
6, where the normals are depicted as points on the unit
sphere. These normals lie on four segments of curves
whose endpoints correspond to the normals of possible
classical austenite-martensite interfaces. A similar cal-
culation was performed in [2] for the cubic-to-tetragonal
transformation, where, in contrast to the predictions here,
these segments were in fact arcs of circles on the unit
sphere.
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Figure 5: Values of A that make the interface possible for
0<AKL1

A more detailed comparison of these theoretical predic-
tions with the observed non-classical interfaces will ap-
pear in [12].

Conclusion

This paper presents a theoretical analysis of compati-
ble interfaces between austenite and a crossing twins mi-
crostructure of 2H martensite of the CuAINi shape mem-
ory alloy, where the crossing twins microstructure consists
of Type-IT and compound twinning systems. These inter-
faces were recently observed by optical microscopy during
the shape recovery process of single crystals of this alloy
[12]. The main aim of this paper is to show that these
interfaces (although never observed in any shape memory
alloy before) do not contradict the commonly accepted
non-linear elasticity model, but are, on the contrary, pre-
dictable by this model for arbitrary volume fraction of
the compound laminate. Since the relation (37) between
this volume fraction A and the volume fraction A of the
Type-II laminate was derived analytically for a general
cubic-to-orthorhombic transition, the analysis in this pa-
per can be easily applied to predict the existence of sim-
ilar non-classical interfaces in any other shape memory
alloy with the same class of transition (e.g. CuAlMn), as
well as for materials undergoing cubic-to-tetragonal tran-
sitions (since the tetragonal symmetry is a member of the
orthorhombic symmetry class.)

The numerical simulations carried out in the last sub-
section of this paper reveal that there is a dependence be-
tween the compound volume fraction and the habit plane
orientation for the CuAlNi alloy. This finding is consis-
tent with the optical observations of slightly curved non-

Figure 6: Plot of the normals on the unit sphere for (A, A)
as in Fig. 5

classical interfaces between austenite and the crossing-
twins microstructure with heterogeneous compound vol-
ume fraction (Fig.3).
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