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ABSTRACT

We present a construction of a mathematical model of an interfacial microstructure (i.e., mi-
crostructure forming at the phase interface between austenite and martensite) in a single
crystal of Cu-Al-Ni shape memory alloy. In the first part of the article, the experiment is
briefly outlined and the compatibility of the experimentally observed microstructures is ana-
lyzed, showing that the observed X-interfaces cannot be compatible without the presence of
elastic strains. Then, the elastic strains in the microstructure are evaluated by finite element
method, whereby the elastic coefficients of finely microstructured regions are obtained by ho-
mogenization. The significant influence of the choice of the geometry on the numerical results
is shown and discussed.
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1. INTRODUCTION

All the unique thermomechanical properties of
shape memory alloys (SMAs), such as the shape
memory effect, superelasticity, or pseudoplastic-
ity, are commonly known to result from reversible
martensitic transitions taking place in these materi-
als under proper mechanical and/or thermal load-
ing [1]. Similarly, most of these effects would be im-
possible without the ability of the low-temperature
(martensitic) phases of SMAs to form geometri-
cally ordered mixtures of different variants, i.e., of
martensites rotated variously with respect to the
parent (high-temperature, austenitic) crystal lattice.
These mixtures are usually called martensitic mi-
crostructures [2], and their existence is enabled by
reversible twinning of martensite (we will refer to
them further in text as twinned structures or simply
twins). According to the theory developed by Ball
and James (see [3, 4]), the observed domain Ω of an
SMA single crystal always forms such microstruc-
ture that the entire free energy

Φ =
∫

Ω

ϕ(∇y(x), T )dV (1)

is minimal for given boundary conditions at ∂Ω.
Here, x denotes the reference configuration (which
is usually chosen identically with the unrotated
austenite phase), y is the deformed configuration,
T is temperature, and ϕ is the multiwell free-energy
density. In a stress-free state, this energy density has
equivalently deep minima in the deformation gradi-
ents ∇y(x), corresponding to all particular variants
of martensite, and one minimum in ∇y(x) ∈ SO(3)
(i.e., for austenite), which can be either deeper (at T
higher than some critical temperature) or have the
same or lower depth than the martensitic wells (at
the critical temperature and below it). For most of
the boundary conditions, the minimizer of (1) can-
not be directly obtained, but the minimum (or in-
fimum) can be approached by construction of mini-
mizing sequences, which is an equivalent of fine mi-
crostructuring in the real material (for more details,
see, e.g., [5]). The most usually observed homoge-
neous microstructure (the first-order laminate con-
sisting of two variants of martensite forming par-
allel lamina of alternate thicknesses) corresponds
to the simplest possible minimizing sequence for a
wide range of boundary conditions [6].

The concept of microstructures as minimizing
sequences of (1) has successfully explained many
features observed in real single crystals of SMAs–
above all, the formation of fine laminates at pla-
nar austenite-to-martensite interfaces, called habit
planes. There are, however, few cases where this the-
ory is not able to predict exactly what microstruc-
ture will form and how it will develop in time under
given external mechanic and thermal loadings. Or,
in other words, under some special mechanic and
thermal loadings, microstructures can develop that
do not minimize (1) for prescribed boundary con-
ditions. An apparent example of such a case is the
shape recovery process (i.e., the thermally induced
transition from a mechanically stabilized martensite
[7] to austenite) of Cu-Al-Ni single crystals, recently
reported in [8]. In this case, the transition front has
a form of the so-called X-interface (microstructure
first documented in the In-Th alloy by Basinski and
Christian [9]). As shown by Ruddock [10] for the In-
Th system (and as it will be shown for Cu-Al-Ni in
this article), this microstructure cannot achieve com-
patibility without elastic strains and thus cannot be
an energy minimizer of (1) at the transition tempera-
ture for the free boundary conditions. However, the
X-interfaces observed by the authors of [8] in Cu-
Al-Ni were pretty stable in a whole range of tem-
peratures and did not exhibit any tendency to get
rebuilt into true energy minimizers. A similar situa-
tion appears for so-called wedge microstructures of-
ten observed during thermally induced transitions
from austenite to self-accommodated martensite. In
[11], the authors have given a detailed analysis of
this microstructure, showing again that the compat-
ibility can be attained only by the presence of elastic
strains.

This article aims to discuss the X-interfaces in
Cu-Al-Ni single crystals reported in [8], with a focus
on determination of the elastic strain fields enabling
such microstructure to achieve compatibility. This
includes a detailed analysis of the experimentally
observed microstructures, construction of a numer-
ical model such that it copies the real geometry in
an optimal way (although some simplifications are
necessary), and solution of the resulting elasticity
problem. In general, the mathematical modeling of
martensitic microstructure is always a strongly mul-
tiscale problem [12], as the deformed configuration
y can be always decomposed as follows:

y(x) = (yelast ◦ ytrans)(x) (2)
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where the elastic strains (given by mapping yelast)
are incomparably smaller than the transformation
strains (mapping ytrans), i.e., strains given by the
martensitic transition itself. In this article (analo-
gously to [11]), we suppress the multiscale charac-
ter of this problem by taking the mapping ytrans

directly from the experimental observations, in-
stead of from the condition of minimality of (1).
Then, the strain fields are determined as minimiz-
ers of (1) for given ytrans. Such an optimization
problem is incomparably simpler than the solution
of models capturing fully the constitutive behav-
ior of the material [13–16]. On the other hand,
the multiscale character cannot be fully avoided,
as the analyzed microstructures include different
length scales: They consist of finely twinned re-
gions, which must be homogenized (both in their
deformation gradients ∇ytrans and in their elastic
properties) prior to their own numerical treatments.

2. EXPERIMENT

2.1 Examined Material

The Cu-Al-Ni alloy used in the experiments re-
ported in [8] and in this article is a shape memory al-
loy undergoing a cubic-to-orthorhombic transition
(for more details, see, e.g., [17], and the extensive
list of references therein; for a comprehensice sum-
mary of microstructures forming in single crystals
of this alloy, see [18]). For this kind of transition,
the austenite phase can transform into six different
variants of martensite. We will denote these vari-
ants in this article by arabic numbers 1 to 6, and use
the same numbering as in [19], where, also, the Bain
matrices U1,...,6 for these variants can be found. As
none of these variants can form a compatible inter-
face with austenite (i.e., the compatibility equation
[3, 4])

rank (QUi − I) = 1 (3)

cannot be fulfilled for any i and any Q ∈ SO(3)), all
the phase interfaces in this alloy can exist only be-
tween austenite and a twinned structure of marten-
site. According to [2], the martensitic phase of this
alloy can form twins in three different twinning sys-
tems. These are the compound twins, where the twin-
ning plane is a plane of mirror symmetry between
the two involved variants, and type I and type II
twins, where it is not. Another difference between

these twinning systems is that whereas the fine lam-
inates of type I and type II twins can form compat-
ible interfaces with austenite (i.e., there exist matri-
ces QA ∈ SO(3) and QB ∈ SO(3) and a scalar pa-
rameter λ such that

rank (λQAUA + (1− λ)QBUB − I) = 1 (4)

where A and B is a pair of variants able to form type
I or type II twins), the laminates of compound twins
cannot. For this reason, any transition from a single
variant of martensite into austenite cannot proceed
without formation of laminates of type I or type II
twins at the transition front, i.e., without formation
of the so-called interfacial microstructures (see [8] for
a more exact definition).

For completeness, we will list here also the tran-
sition temperatures as determined for the examined
material by DSC measurements: The martensite
start temperature was MS = −5◦C, the martensite
finish temperature was MF = −22◦C, the austenite
start temperature was AS = 26◦C, and the austenite
finish temperature was AF = 52◦C.

2.2 Experimental Procedure

The X-interfaces in Cu-Al-Ni single crystals were
prepared by the following experimental procedure
(for more details, see [8]). A specimen (15 mm long
and 5 × 5 mm thick prismatic bar of single crys-
tal of austenite oriented along the [001] direction)
was uniaxially compressed until it transformed into
mechanically stabilized 2H martensite. Due to the
mechanical stabilization (i.e., the inability of the ob-
tained martensite to form directly compatible inter-
faces with austenite), the specimen did not return
to austenite after the loading was removed, but re-
mained in martensite even when it was heated over
the AS temperature. The obtained martensitic bar
was a single variant of martensite including a negli-
gible (less than 5%) volume fraction of another vari-
ant in the form of thin plates running through the
specimen and forming compound twins with the
major variant. In one corner of the specimen, a
small nucleus of the austenite phase was induced by
strong localized heating (using a gas lighter). Then,
the whole specimen was heated by being immersed
into a warm (60◦C) water bath, which induced a
growth of austenite from the nucleus. As soon as the
transition front reached approximately the middle
of the specimen, the specimen was removed from
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the bath and cleaned and was cooled down by ethyl
alcohol. The formed microstructure (stable at room
temperature) was observed by optical microscopy.

Repeatedly, the transition front was arranged
as shown in Fig. 1, forming the so-called X-
interface, consisting of two mutually intersecting
habit planes separating austenite from twinned re-
gions of martensite and another pair of mutually
intersecting interfaces separating these twinned re-
gions from the original stabilized martensite. The
interfaces between the twinned regions and the
original stabilized martensite were parallel (or very
close to parallel) to the twinning planes seen inside
the twinned regions. The whole X-interface was
mirror symmetric about the (11̄0) plane in austen-
ite.

2.3 Compatibility Analysis

Schematically, the geometry of the X-interface is
sketched in Fig. 2. For simplicity, we will assume the
stabilized martensite to be a single variant.1 Under
such an assumption, the microstructure consists of
austenite and three variants of martensite only (de-
noted A, B, and C in Fig. 2). To analyze the com-
patibility, the particular variants of martensite and
twinning systems appearing in the microstructure
were identified. Optical micrographs of all faces of
the specimen were taken, and the angles between
the habit planes, twinning planes, and the edges of
the specimen were measured. A script written in
MATLAB was used to compute orientations of habit
planes and twinning planes of all possible combi-
nations of variants able to form X-interfaces, and
to find which of these combinations fits the opti-
cal micrographs optimally. By this script, the twin-
ning systems observed in the microstructure were
identified as type II twinning planes of 2H marten-
site. The involved variants identified by this script
were no. 4 and no. 6, forming one type II lami-
nate, and no. 2 and no. 6, forming the second one.
This induced that the stabilized martensite (i.e., the
variant involved in both laminates) must be no. 6,
which was verified by X-ray measurements (Laue
method).

1 As shown in [8] by a numerical example, the negligible
amount of compound twins in the real specimen does not
have any measurable effect on the orientation of the habit
planes, etc.

FIGURE 1. Optical micrograph of the X-interface in
Cu-Al-Ni

FIGURE 2. Geometry of the X-interfaces observed in
Cu-Al-Ni single crystals

For general analysis of the compatibility of the
microstructure, we will return to the notation intro-
duced in Fig. 2 (now A ∼ no. 6, B ∼ no. 4, and C ∼
no. 2). The variants A and B form a laminate of
type II twins, which borders on the austenite over
a habit plane (let us denote a normal vector to this
plane by n) and pure variant A over the A-B type II
twinning plane. Similarly, variant A forms a type II
laminate with variant C, and this laminate borders
over another habit plane (normal vector orientation
n̂) on the austenite, and over the A-C type II twin-
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ning plane on pure variant A. For UA, UB , and UC

being the Bain tensors of particular variants b and
b̂ being the shearing vectors corresponding to tran-
sitions at habit planes with normals n and n̂, and λ

and λ̂ being the volume fractions of variant A in the
two considered laminates, we can write the compat-
ibility equations at both habit planes as

I− (λQAUA + (1− λ)QBUB) = b⊗ n (5)

I−
(
λ̂Q̂AUA + (1− λ̂)QCUC

)
= b̂⊗ n̂ (6)

where QA, QB , Q̂A, and QC are rotations between
austenite and particular variants of martensite in-
volved in the microstructure. Simultaneously, the
compatibility conditions must be fulfilled at the
type II twinning planes, i.e., there must exist such
shearing vectors a and â such that

QAUA −QBUB = a⊗m (7)

Q̂AUA −QCUC = â⊗ m̂ (8)

where m and m̂ are unit normals to the A–B and
A–C twinning planes.

Two general conditions can be formulated, un-
der which the whole microstructure is compatible
without elastic strains. The first condition is that the
pure variant A in the stabilized region must be ro-
tated with respect to austenite equivalently as in the
laminates since it borders an the variants B and C
over the A–B and B–C twinning planes. This di-
rectly induces that Q̂A = QA. However, as it can
be easily checked numerically, this condition is not
satisfied for our material. For the lattice parameters
taken from [18], we can calculate the difference be-
tween these two rotations Q̂−1

A QA = Q̂T
AQA (the all

rotation matrices in (5) and (6) as well as the volume
fractions can be obtained by algorithms described in
[3, 4]). In a quaternion representation, the difference
Q̂T

AQA equals a rotation by 6.6◦ around a direction
close to [773̄] in austenite.

The second condition is that the habit planes and
the twinned-to-detwinned interfaces must intersect
in the same line, i.e.,

(n× n̂)‖(m× m̂) (9)

(providing that the twinned-to-detwinned inter-
faces are exactly equal to the twinning planes).
Again, this condition cannot be fulfilled for the ex-
amined Cu-Al-Ni alloy. The difference between

n×n̂ and m×m̂ determined numerically for the lat-
tice parameters taken from [18] is 2.2◦. The incom-
patibility of the X-interface can be also illustrated
by the difference between vectors m×n and m̂× n̂,
which is, for the same lattice parameters, equal to
7.2◦.

If the twinned-to-detwinned interfaces are de-
clined from the orientation of the corresponding
type II twinning planes, condition (9) can be ful-
filled, but in such case, the presence of elastic
strains is necessary to ensure compatibility along
the twinned-to-detwinned interfaces.

3. MATHEMATICAL MODELING

The revealed difference from compatibility must be
compensated by the presence of elastic strains. In
this section, we will try to determine these strain
fields by the finite element method (FEM). Unlike
in most FEM models of SMAs [20, 21], the elements
used in this case do not have to incorporate the con-
stitutive behavior of the material, and thus common
FEM solvers can be used.

3.1 Simplified Geometry Used in the Model

As mentioned in the introduction, the FEM model of
the interfacial microstructure cannot be constructed
for exactly the geometry obtained from the experi-
ments, and some simplifications are necessary. The
reason is that the difference between n × n̂ and
m × m̂ (i.e., between the intersection of the habit
planes and the type II twinning planes) is compara-
ble to the accuracy with which the real angles from
the optical micrographs are determined, so the exact
orientation of the crossing line is unknown. More-
over, there is no physical justification for the as-
sumption that the twinned-to-detwinned interfaces
are exactly planar.

One possible way to solve this problem is to
parametrize the orientations (and possibly also the
shapes [22]) of all interfaces to find which geome-
try results in minimal energy (1). However, as the
X-interface analyzed in this article is a priori not an
energy minimizer of (1), such an approach would be
completely unjustified. Instead, we decided to eval-
uate the elastic strain fields for four different simpli-
fied geometries (SG). These are (c is always a unit
vector determining the direction of the crossing line)
as follows:
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• SG 1: where the crossing line lies in the inter-
section of the habit planes (i.e., c = n× n̂), and
the planar twinned-to-detwinned interfaces are
chosen as such planes containing c that the de-
clinations of the normal vectors to these planes
from m and m̂ are minimal. In this case, the
compatibility conditions at the habit planes (5)
and (6) are fulfilled, but not at the twinned-to-
detwinned interfaces, where the elastic strains
must ensure the compatibility.

• SG 2: where the crossing line lies in the inter-
section of the type II twinning planes (i.e., c =
m×m̂), and the planar twinned-to-austenite in-
terfaces are chosen as such planes containing c
that the declinations of the normal vectors to
these planes from n and n̂ are minimal. Here
the compatibility conditions at the twinned-to-
detwinned interfaces are identical to (7) and (8)
and are fulfilled, whereas the compatibility at
the twinned-to-austenite interfaces (which are
slightly declined from the habit planes deter-
mined by conditions (5) and (6)) must be en-
abled by the presence of elastic strains.

• SG 3: where the crossing line lies in the in-
tersection of one habit plane and one type II
twinning plane (i.e., c = n × m), and the re-
maining twinned-to-austenite and twinned-to-
detwinned interfaces are chosen as such planes
containing c that the declinations of the normal
vectors to these planes from n̂ and m̂ are mini-
mal. In this case, only conditions (5) and (7) are
fulfilled, so the region with the A–B laminate is
compatibly connected to both austenite and the
stabilized martensite.

• SG 4: is mirror symmetric to SG 3 (i.e., c =
n̂ × m̂) with the region with the A–C laminate
compatibly connected to both austenite and the
stabilized martensite.

The real geometry of the microstructure can be ex-
pected to be somewhere between the simplified ge-
ometries SG 1÷4.

The simplified geometries are shown in Fig. 3.
For parametrization of the location of the crossing
line in each geometry, the distance of the intersec-
tion of the crossing line with the chosen face from a

FIGURE 3. Simplified geometries SG 1 to SG 4. Filled (shaded) planes are always those compatible without elastic
strains, planes outlined by the dashed lines are compatible only due to elastic strains. The first scheme shows the
orientation of unit vectors m, n, m̂ and n̂, and the choice of Lx. Parametrization by dx is shown for each geometry
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chosen edge of the specimen was used. For this dis-
tance, denoted by dx, the dimensionless ratio dx/Lx

(where Lx is the width of the chosen face in austen-
ite; see Fig. 3) has the following sense: The geome-
tries SG 1 and SG 2 are symmetric for dx/Lx = 1/2,
the geometry SG 3 is fully compatible for dx/Lx = 1,
and SG 4 is fully compatible for dx/Lx = 0.

3.2 Elasticity of Pure and Twinned Regions

To evaluate the elastic stress and strain fields in the
X-interface of known geometry, the elastic coeffi-
cients of all materials contained in the microstruc-
ture must be known. For austenite and stabilized
martensite (single variant), the elastic coefficients
can be found in [19], where the methodology of how
these coefficients were determined from ultrasonic
measurements is also described in details. Austenite
exhibits cubic elastic anisotropy, which means that
it can be fully described by three independent elas-
tic coefficients. A single variant of martensite is or-
thorhombic; for this class of symmetry, the number
of independent elastic coefficients is nine (e.g., [23]).

Theoretically, the coefficients for austenite and
a single variant of martensite would be sufficient
for evaluation of the stresses and strains in any
microstructure. However, in our case of the X-
interface, such an approach would require us to
treat all the lamina within the twinned regions as
individual components with prescribed geometries
and elastic properties. This would turn the evalu-
ation of the stress and strain fields into a strongly
multiscale problem, as the thicknesses of individ-
ual layers are incomparably smaller than other di-
mensions of the microstructure. At the length scales
comparable to the dimensions of the specimen, the
twinned regions can be treated as homogeneous,
with elastic properties obtained by some homoge-
nization procedure.

The homogenization procedure used here for
evaluation of all elastic coefficients (21 independent
coefficients, as the resulting material is triclinic) of
the type II twinned structures of CuAlNi was very
similar to those used for evaluation of elastic coeffi-
cients of layered macroscopic composites (e.g., [24]).
The details on the procedure can be found in [25]
and in [26]. Here, thus, we restrict ourselves to a
short outline of the algorithm and the obtained re-
sults only.

The procedure homogenizes a first-order lami-
nate of two variants (denoted, again, A and B),
which are connected by relation (7). In the natu-
ral coordinate system of variant A (i.e., the system
aligned with the orthorhombic axes of this variant),
the elastic coefficients of variant B can be obtained
by rotating the tensor of elastic coefficients of vari-
ant A by two rotation matrices. The first is such a
matrix R that

UA = RUBRT (10)

The second matrix represents the mutual rotation of
variants A and B within the laminate, i.e.,

Q = QT
AQB (11)

where the matrices QA and QB are those appearing
in (7). The homogenization procedure constructs a
set of stress and strain fields homogeneous both in
the lamina of variant A and the lamina of variant B.
These fields are always chosen such that the com-
patibility and continuity conditions at the twinning
plane are held. For these fields, the procedure eval-
uates the overall (averaged) elastic strain and the
corresponding stored energy of the laminate. In the
final step, the elastic coefficients of the laminate are
obtained as (numerical) derivatives of the elastic en-
ergy function with respect to the averaged strains.

The way in which the twinning influences the
symmetry and magnitude of the elastic anisotropy
of martensite is shown in Fig. 4, where the
Young moduli of austenite, martensite, and twinned
martensite (a laminate of type II twins able to form
a habit plane with austenite) are compared. The
chosen graphical representation is as follows: The
3D surfaces are plots of the Young moduli for uni-
axial tensions in directions given by unit vector n,
which runs through a unit sphere. The plotted vec-
tor quantity is thus nE(n). The moduli for austen-
ite and a single variant of martensite are shown
in the coordinate systems given by principal axes
of austenite and martensite, respectively, whereas
the moduli of the twinned martensite are plotted in
the principal coordinate system of the major vari-
ant. Obviously, the difference between Young mod-
uli of the single variant and the twinned martensite
is mostly in the symmetry. Similar results can be ob-
tained for shear moduli or for any other represen-
tation of the anisotropic elasticity (e.g., surfaces of
phase or group velocity of ultrasonic waves, as used
in [19]).
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FIGURE 4. Surfaces of Young moduli nE(n) for all materials involved in the X-interface: (a) austenite phase; (b)
single variant of martensite; (c) martensite in the twinned regions

3.3 Results of FEM Modeling

As mentioned in the introduction, to avoid prob-
lems with multiscale modeling, the displacement
field was decomposed into two parts: transforma-
tion and elastic. The nature of the martensitic phase
transition enables us to understand these two parts
as two independent processes. The first is the de-
formation according to macroscopic gradients given
by the transition, which leads to a discontinuous
displacement field over the incompatible interfaces,
and the second is the elastic deformation, which
ensures the continuity of resulting displacements.
Notice that both fields are discontinuous, but their
composite is continuous. Whereas the first field is
taken directly from the experimental observations,
the second one is to be found using FEM.

In the following paragraphs, the whole proce-
dure will be demonstrated for the case of simplified
geometry SG 1. Let us denote the macroscopic de-
formation gradients for austenite, for the A–B lami-
nate, for the A–C laminate, and for the pure variant
A by

FI = I (12)

FAB = λQAUA + (1− λ)QBUB (13)

FAC = λQ̂AUA + (1− λ)QBUB (14)

FA = QAUA (15)

Then, four affine transformations can be con-
structed:

yI : x → Ix + bI (16)

yAB : x → FABx + bAB (17)

yAC : x → FACx + bAC (18)

yA : x → FAx + bA (19)

The initial geometry for FEM modeling is obtained
by applying these transformations to corresponding
domains of the reference configuration. For SG 1,
the vectors bI , bAB , bAC , and bA are taken as fol-
lows: bI = 0, bA is arbitrary, bAB and bAC are cho-
sen so that the entire body remains unbroken over
the habit planes (corresponding gradients are com-
patible, hence such vectors can be found). When the
twinned-to-detwinned interfaces are not planes of
compatibility, in general, the body splits into two
parts. The first one comprises the region of austenite
and both twinned regions; the second one contains
only the stabilized (detwinned) martensite.

Now, the elasticity problem of putting those parts
“back together” must be solved. Elastic moduli are
known, so just boundary conditions are to be sup-
plied. These conditions must ensure the unique-
ness of the solution and the continuity of the overall
displacement field, and thus the integrity of the re-
sulting body. Consider (in the reference configura-
tion) a point x0 lying in the twinned-to-detwinned
interface between the A–B laminate and the pure
variant A. In general, points xA = yA(x0) and
xAB = yAB(x0) are different. Therefore the sought
elastic displacement field u must meet the following
condition:

xA + u(xA) = xAB + u(xAB) (20)
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It can be easily seen that xAB = (yAB ◦ y−1
A )(xA),

and the boundary condition in terms of xA is

u(xA) = (yAB ◦ y−1
A )(xA)

+u((yAB ◦ y−1
A )(xA))− xA

(21)

This is exactly the boundary condition which was
looked for. Similarly, such a condition can be found
for the second twinned-to-detwinned interface. To
achieve the uniqueness of the solution, the bottom
face of the austenite domain was fixed. Hence the
multiscale character was fully avoided in the prob-
lem formulation, but the non locality of the second
term of the right-hand side of (21) is its consequence.

The problem was solved using FEM program
COMSOL Multiphysics (formerly Femlab) in con-
nection with the Matlab environment. In Matlab,
the geometry was computed as prescribed by the
macroscopic morphology. The following FEM com-
putations were done in the COMSOL Structural

Mechanics module (Solid, Stress-Strain application
mode). For each part of the body in the initial con-
figuration, an independent mesh was needed. To do
this, the option Use Assembly was enabled. COM-
SOL was also able to deal with nonlocal couplings
through Extrusion Coupling Variables. On bound-
ary, where the “gluing” condition was prescribed,
the Boundary Extrusion Coupling Variable was cre-
ated according to the known mapping yAB ◦ y−1

A .
For the FEM discretization, the Lagrange cubic fi-
nite elements were used. The obtained linear sys-
tem was solved by the memory-efficient SPOOLES
direct solver implemented in COMSOL.

The elastic stress and strain fields were evalu-
ated for all geometries SG 1÷4 and for ratios dx/Lx

running from 0 to 1. An example of the results is
shown in Fig. 5. The plotted quantity here is the Von
Mises stress (the square root of the second invariant
of the stress tensor), evaluated on cuts of the spec-
imen by planes as close as possible to the individ-

FIGURE 5. Maps of Von Mises stress evaluated on planar cuts closest to the faces of the specimen in simplified
geometries SG 1÷4 for dx/Lx = 0.65. The dashed lines denote the intersection of the cutting planes with planes of
compatibility (habit planes for SG 1, twinning planes for SG 2, and combinations of habit and twinning planes for SG 3
and SG 4)
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ual faces of the specimen.2 In Fig. 5, the difference
between those interfaces (habit planes, twinned-to-
detwinned interfaces), which were chosen as planes
of compatibility, and those at which the compatibil-
ity must be attained by elastic strains is obvious. For
SG 1, the elastic strains are concentrated along the
twinned-to-detwinned interfaces; for SG 2, a similar
concentration is along the austenite-to-martensite
interfaces. For SG 3 and SG 4, the maximum stress
is localized within the regions surrounded by the in-
terfaces not initially chosen as compatible (this is si-
miliar to [11], where the stress concentration was re-
vealed at the tip of the wedge microstructure). In
other words, the obtained elastic fields are strongly
influenced by our choice of the simplified geometry
(see the last section for a more detailed discussion).
In real microstructure (which can be expected to be
somewhere between our SGs), both the habit planes
and the twinned-to-detwinned interfaces could be
elastically strained to achieve full compatibility.

The maximum of the Von Mises stress for all SGs
shown in Fig. 5 is nearly the same (approximately
450 MPa). The difference between the geometries
can be thus more clearly seen from Fig. 6, where the
elastic energy stored in the specimen is plotted as
a function of dx/Lx for all SGs. As expected, the
energies of specimens in SG 1 and SG 2 are sym-
metric about dx/Lx = 1/2. For SG 3 and SG 4, the
energy decreases towards the fully compatible con-
figurations. Let us notice here that the crossing lines
in the real X-interfaces reported in [8] were located
close to the center of the specimen, i.e., close to max-
imal energies for SG 1 and SG 2.

4. SUMMARY AND DISCUSSION

In this article, a procedure of construction of
a mathematical model of an interfacial marten-
sitic microstructure was presented. The examined

2 The initial configuration for which the elasticity prob-
lem is solved is given by mapping ytrans, where the faces
of the specimen are not planar and the specimen geom-
etry is discontinuous. For this reason, the plotted Von
Mises stress was evaluated on cuts of the specimen af-
ter the problem solution, i.e., after the “gluing” boundary
condition (21) was fulfilled. As the cutting planes, planes
as close as possible to the faces of the specimen were cho-
sen. Thus the values of the Von Mises stress in Fig. 5 are
very close approximations of the values at the surface

FIGURE 6. Dependence of the elastic energy stored in
the specimen on the position of the crossing line for sim-
plified geometries SG 1÷4

material was the Cu-Al-Ni shape memory alloy, and
the modeled interfacial microstructure was the X-
interface appearing during the shape recovery pro-
cess in single crystals of this material. From the
analysis of the optical micrographs of the real mi-
crostructure, the individual twinning systems and
variants of martensite forming the microstructure
were identified. Based on this identification, the
difference of the microstructure from compatibility
was analyzed. The elastic strains necessary for the
microstructure to achieve compatibility were evalu-
ated by FEM, whereby the elastic coefficients of the
twinned regions were evaluated by a homogeniza-
tion procedure. Four different simplified geometries
were used for the calculation. In each of these ge-
ometries, the calculation revealed strong concentra-
tions of Von Mises stress along the interfaces not ini-
tially chosen as planes of compatibility. Although
the simplified geometries are just rough approxima-
tions of the real X-interfaces, they enable us to es-
timate the dependence of the elastic energy stored
in the specimen on a chosen geometric parameter
(the distance dx). The presented simulations show
that the experimentally observed microstructures
are not even local minimizers of the energy (their
energy decreases with proper change of parameter
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dx), and thus there must be another explanation for
their stability.

On the other hand, the results obtained for
SG 1÷4 were strongly influenced by our (artificial)
choice of at which planes the compatibility was
achieved without elastic strains. Although the dif-
ferences between the orientation of the habit and
twinning planes and those planes that approximate
them in our simplified geometries are minimal (less
than 2◦ in the orientation of the normal vectors), the
differences in the evaluated elastic fields are tremen-
dous. The internal stress fields in real interfacial
microstructures may thus significantly differ from
those evaluated for SG 1÷4. However, construction
of any more realistic geometry would be extremely
complicated, at least for the following three reasons:

1. As the interfacial microstructure grows from
the nucleus situated in the corner of the spec-
imen (see [8] for more details), the laminates
inside the twinned regions form under (vary-
ing) internal stress. For this reason, the lami-
nates cannot be treated as fully homogeneous
with the volume fractions given by relations (5)
and (6). This may induce additional residual
stresses both inside the twinned regions and at
the habit plane. However, such variation of λ

with the spatial coordinates cannot be evalu-
ated without a complete knowledge of the mi-
crostructure’s history.

2. As already mentioned, there is no justification
for our assumption that the interfaces within
the microstructure are exactly planar. Espe-
cially close to the crossing line, where all the
compatibility conditions (5)–(8) are to be met
and where the new martensitic needles nucle-
ate (again, see [8] for more details), the shapes
can be completely general. However, the real
shapes of the interfaces can be determined nei-
ther experimentally (from optical micrographs,
only the intersections of the interfaces with the
surfaces of the specimen can be obtained; ul-
trasonic methods do not have sufficient resolu-
tion) nor theoretically (as the optimality crite-
rion for the X-interfaces, which are a priori not
minimizers of energy, is unknown).

3. The multiscale character cannot be fully
avoided. Along the twinned-to-detwinned

interfaces, the stress fields are not homoge-
neously distributed, but concentrated around
the tips of individual martensitic needles nucle-
ating at the crossing line and growing toward
the lateral faces of the specimen. Moreover, the
exact shapes of the needles are not known, and
their determination is complicated for the same
reasons as discussed in point 2.

Solution of the problems resulting from the preced-
ing three points will be the subject of the authors’
future work.

ACKNOWLEDGMENT

This work was supported by the project A200100627
of the Grant Agency of ASCR, the projects Nos.
101/06/0768 and 202/09/P164 of the Czech Sci-
ence Foundation, by the institutional project of IT
ASCR v.v.i. (CEZ:AV0Z20760514), and by the re-
search center 1M06031 of the Ministry of Education
of the Czech Republic. Authors would also like to
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