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The model of the acrobot
Acrobot

underactuated mechanical
system

the acrobot is a special
case of n-link with n − 1
actuators

underactuated angle is at
the pivot point
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The model of the acrobot
Euler-Lagrange theory

The acrobot can be modelled by usual Lagrangian approach

L(q, q̇) = K − V =
1

2
q̇TD(q)q̇ − V (q)

The resulting Euler-Lagrange equation


d
dt

∂L
∂q̇1
− ∂L

∂q1
...

d
dt

∂L
∂q̇n
− ∂L

∂qn

 = u =


0
τ2
...
τn


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The model of the acrobot
Euler-Lagrange theory

The Euler-Lagrange equation leads to a dynamic equation

D(q)q̈ + C (q, q̇)q̇ + G (q) = u

D(q) is the inertia matrix, C (q, q̇) contains Coriolis and
centrifugal terms, G (q) contains gravity terms, u is vector of
external forces

Kinetic symmetry

D(q) ≡ D(q2)
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The model of the acrobot
Partial exact feedback linearization

System transformation into a new system of coordinates that
display linear dependence between some output and new input

Two independent function with relative degree 3

σ =
∂L
∂q̇1

= (θ1 + θ2 + 2θ3 cos q2)q̇1 +

(θ2 + θ3 cos q2)q̇2

p = q1 +
q2

2
+

2θ2 − θ1 − θ2√
(θ1 + θ2)2 − 4θ2

3

arctan

(√
θ1 + θ2 − 2θ3
θ1 + θ2 + 2θ3

tan
q2

2

)
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The model of the acrobot
Partial exact feedback linearization

The transformation

T : ξ1 = p, ξ2 = σ, ξ3 = σ̇, ξ4 = σ̈

Connection σ and p with L
ṗ = d11(q2)−1σ,

σ̇ =
d

dt

∂L
∂q̇1

=
∂L
∂q1

= − ∂V

∂q1

Acrobot’s dynamics in partial exact linearized form

ξ̇1 = d11(q2)−1ξ2, ξ̇2 = ξ3, ξ̇3 = ξ4,

ξ̇4 = α(q, q̇)τ2 + β(q, q̇) = w

Reference system

ξ̇r1 = d−1
11 (qr

2)ξr2, ξ̇
r
2 = ξr3, ξ̇

r
3 = ξr4, ξ̇

r
4 = w r
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The model of the acrobot
Partial exact feedback linearization

Denoting e := ξ − ξr

ė1 = d−1
11 (φ2(ξ1, ξ3))ξ2 − d−1

11 (φ2(ξr1, ξ
r
3))ξr2

ė2 = e3, ė3 = e4, ė4 = w − w r

Computations based on the Taylor expansions

ė1 = µ1(t)e1 + µ2(t)e2 + µ3(t)e3 + o(e)

ė2 = e3, ė3 = e4, ė4 = w − w r

To ensure e(t)→ 0 for t →∞ we use feedback

w = w r + K 1(t)e1 + K 2(t)e2 + K 3(t)e3 + K 4(t)e4

State feedback controller K 1,2,3,4(t) for the reference
trajectory tracking
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LMI based design for the Acrobot walking
LMI design of gains K1,2,3,4

Open-loop continuous-time and time-varying linear system,
state feedback controller

ė = A(t)e + Bu, u = Ke

Closed-loop system

ė = (A + BK ) e =


µ1(t) µ2(t) µ3(t) 0

0 0 1 0
0 0 0 1
K1 K2 K3 K4

 e,

Bounds for µ1(t), µ2(t), µ3(t) are known

Lyapunov equation is solved for all values of
µ1(t), µ2(t), µ3(t)

(A (µ) + BK )T S + S (A (µ) + BK ) � 0, S = ST � 0
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LMI based design for the Acrobot walking
Bounds for LMI

Convex set is defined in the form

rectangular box

prismatic box
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LMI based design for the Acrobot walking
Simulations - Torque

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−350

−300

−250

−200

−150

−100

−50

0

50

Torque τ
2

τ
2

τ
2
 with sat

Time  [s]

τ 2  [
N

m
]

Yalmip and SEDUMI

(K1,K2,K3,K4) = −104×
(1.9087, 1.2097, 0.1781, 0.0090)

saturation limit in the
range ±10 Nm
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LMI based design for the Acrobot walking
Simulations - Coordinates and Velocities
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LMI based design for the Acrobot walking
Animations with saturation ±10 Nm

(Loading movie...)
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Analytical design of the Acrobot exponential tracking
Analytical desig of gains K1,2,3,4

Using the following notation

e1 = e1 − µ3(t)e2, µ2(t) = µ2(t) + µ1(t)µ3(t)− µ̇3(t)

K̃1 = K 1(t)

K̃2 = K 2(t) + µ3(t)K 1(t)

K̃3 = K 3(t)

K̃4 = K 4(t)

The previous system takes the following form

ė1 = µ1(t)e1 + µ2(t)e2

ė2 = e3, ė3 = e4,(1)

ė4 = K̃1e1 + K̃2e2 + K̃3e3 + K̃4e4
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Analytical design of the Acrobot exponential tracking
Theorem

Theorem

Suppose ∀t µ1(t) ∈
[
µ min

1 , µ max
1

]
, 0 < µ min

2 ≤ µ2(t) ≤ µ max
2

and let K1, K2, K3, K4 are such that

K1 <
K2µ1(t)
µ2(t)

,

λ3 + K4λ
2 + K3λ+ K2 is Hurwitz.

Then ∃Θ such that (1) is exponential stable for

K̃1(t) = Θ3K1, K̃2(t) = Θ3K2, K̃3(t) = Θ2K3, K̃4(t) = ΘK4
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Analytical design of the Acrobot exponential tracking
Summarizing

Summarizing

The system

ė1 = µ1(t)e1 + µ2(t)e2

ė2 = e3

ė3 = e4

ė4 = w − w r

is exponential stable for

w = w r + Θ3K1e1 + Θ3 (K2 + µ3(t)K1) e2 + Θ2K3e3 + ΘK4e4
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Analytical design of the Acrobot exponential tracking
Simulations - Torques
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Analytical design of the Acrobot exponential tracking
Simulations - Coordinates and Velocities

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Coordinates q
1
, q

2
 −−− qref

q
1
 with/without sat

q
2
 with/without sat

Time [s]

q 
[r

ad
]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−4

−3

−2

−1

0

1

2

Velocities q
1
, q

2
 −−− qref

q
1

q
2

q
2
 with sat

q
1
 with sat

Time [s]

q 
[r

ad
/s

]
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Analytical design of the Acrobot exponential tracking
Animations with saturation ±10 Nm

(Loading movie...)
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Impact model for Acrobot
Impact model

Occurs when the swing leg touches the walking surface

The impact between the swing leg and the ground is modeled
as a contact between two rigid bodies

The positions q do not change during the impact q+ = q−

Dynamic model of the Acrobot has to be enlarged by reaction
force effects

De(qe)q̈e + Ce(qe , q̇e)q̇e + Ge(qe) = Beu + δFext

qe = (q1, q2, p
h
H , p

v
H),

δFext the vector of external forces
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Impact model for Acrobot
Simulations
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Conclusions and outlooks

Conclusions

Two methods for the Acrobot exponential tracking compared

Both methods give quite large torques but saturation to
realistic

Impact model for the Acrobot presented values works
perfectly in simulations

Outlooks

Propose the reference trajectory that the initial conditions of
new step after impact are equal to initial conditions of the
reference step
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Conclusions and outlooks

Thank you for your attention
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