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Phase synchronization is an important phenomenon of nonlinear dynamics and has recently re-
ceived much scientific attention. In this work a method for identifying phase synchronization
epochs is described which focuses on estimating the gradient of segments of the generalized phase
differences between phase slips in an experimental time series. In phase synchronized systems,
there should be a zero gradient of the generalized phase differences even if the systems are con-
taminated by noise. A method which tests if the gradient of the generalized phase difference is
statistically different from zero is reported. The method has been validated by numerical studies on
model systems and by comparing the results to those published previously. The method is applied
to cardiorespiratory time series from a human volunteer measured in clinical settings and compared
to synchrogram analysis for the same data. Potential problems with synchrogram analysis of ex-
perimental data are discussed. © 2009 American Institute of Physics. �DOI: 10.1063/1.3143903�

A range of synchronization phenomena has been identi-
fied in different types of coupled complex dynamical sys-
tems. Phase synchronization is a type of synchronization
reflecting mutual adjustment of rhythms of self-sustained
oscillatory systems. Typically when trying to identify
phase synchronization, the activity of participating sys-
tems is encoded as a multivariate time series. The focus of
this work is on the development of a method for detecting
phase synchronized epochs in experimentally obtained bi-
variate time series. The criterion for identifying phase
synchronized epochs is the existence of a zero gradient in
the generalized phase difference of the investigated time
series between phase slips. The method can be applied to
phase synchronization analysis of systems studied in di-
verse areas of science and engineering.

I. INTRODUCTION

Synchronization, a phenomenon of cooperative behavior
occurring due to interactions between complex systems, has
attracted considerable interest from theoreticians as well as
experimentalists �see, e.g., the monograph1� in the past two
decades. Synchronization and related phenomena have been
observed in systems studied not only in physics but also in
natural and social sciences, medicine, and technology. Ex-
amples include cardiorespiratory interaction,2–4 synchroniza-
tion of neural signals,5–8 or episodes of synchronization be-
tween meteorological variables reflecting changes in
climate.9,10

The strongest definition of synchronization requires that
the difference between states of synchronized systems as-
ymptotically vanishes. This definition is called identical
synchronization,11 while the notion of generalized synchro-
nization requires that states of coupled systems are �asymp-

totically� related by some function.12,13 In the case of
coupled self-sustained oscillatory systems, phase synchroni-
zation, given by a relation of the instantaneous phases, can
occur. Even a very weak coupling can result in phase syn-
chronization while the amplitudes remain uncorrelated.14

Some publications focusing on detecting phase synchro-
nization in experimental data use rather qualitative methods
such as the analysis of synchrograms.15 Some authors have
applied the synchrogram method to cardiorespiratory
data4,15–17 and to brain signals.18 Synchrogram analysis has
been applied to intrinsic mode functions17 resulting from an
empirical mode decomposition.19 The works employ visual
examination of the synchrograms as a final means to decide
whether the investigated systems are phase synchronized.
Results based on visual examination may be difficult to re-
produce and some authors have proposed numerical criteria
to define “phase synchronization epochs.”16

Other approaches advocate the use of phase synchroni-
zation indices7,20–22 which compute the amount of interde-
pendence inherent in the data. Sometimes these indices are
accompanied by recommendations for significance tests us-
ing surrogate data. These methods focus on detecting the
existence of coupling between systems and thus identify
phase synchronization in a wider sense: the test results are
positive when the systems exhibit a coupling strong enough
to be detected. It is however not necessary that the phases or
frequencies lock for such tests to report positive results.

In this work a new approach to detecting phase synchro-
nization is proposed which focuses on the behavior of
coupled systems between “phase slips.” The null hypothesis
of the proposed method is that the two systems are phase
synchronized and a statistical procedure is employed to test
it. This is a conceptually correct construction because the
alternate hypothesis is that the systems are either indepen-
dent or dependent but not phase synchronized. The use of aa�Electronic mail: vejmelka@cs.cas.cz.
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strict null hypothesis allows for the construction of a statis-
tical test to determine whether the data allows one to reject it
at a given significance level. The performance of the method
is demonstrated with numerical studies, by reproducing pre-
viously published results and on an experimental example. In
practice it may be difficult to obtain segments without any
phase slips for analysis and a robust regression method has
been used that allows a phase slip to be present at the edge of
an epoch without negatively impacting the results.

The rest of this paper is organized as follows: Section II
considers phase synchronization in detail, in Sec. III the
method of identifying phase synchronization epochs is intro-
duced and Sec. IV details the numerical studies that show the
performance of the newly proposed approach. The method is
applied to cardiorespiratory data measured in a clinical set-
ting in Sec. V. The paper closes with a discussion �Sec. VI�
and conclusion �Sec. VII�.

II. PHASE SYNCHRONIZATION

In theory,1,23 mathematical definitions exist to describe
synchronized systems and the effect of synchronization on
their phases. On the other hand, in time series analysis syn-
chronization is often interpreted as a statistical phenomenon,
leading to the quantification of a “degree of synchroniza-
tion.” In the following paragraphs mathematical definitions
of phase synchronization are briefly recounted.

The criteria of synchronization make use of the defini-
tion of the generalized phase difference

�mn = n�1 − m�2, �1�

where �1,2 are the instantaneous phases describing the mo-
tion of the two systems, �mn is the generalized phase differ-
ence and m :n is the locking ratio. In the above case, m
periods of the first system �represented by �1� correspond to
n periods of the second system. Where appropriate, the sub-
scripts m, n are dropped to simplify the notation. In the rest
of this paper, the term phase difference will be interchange-
ably used with the term generalized phase difference as m :n
phase synchronization is explicitly considered in this work.

The condition for phase synchronization is usually given
in the form1

��mn� � const. �2�

This condition is applicable to series of infinite length and
would be difficult to test in practice as any finite time series
will exhibit some maximum difference whether the two sys-
tems synchronize or not. A statistical test of the absolute
phase difference or a related quantity would be necessary as
attempted in Ref. 24. Another definition given in Ref. 1 is
termed frequency locking. The condition can be stated as

n��̇1� = m��̇2� , �3�

where � · � denotes the time average. The same condition can
also be written as

��̇mn� = 0. �4�

In the case of deterministic dynamics the above criteria
of phase synchronization are equivalent. However when the

systems are disturbed by noise the situation becomes com-
plicated. If the intensity of the noise is not high enough to
perturb the two systems so that they slip against each other
then the effect is only of increasing the fluctuations of the
phase difference while preserving both properties �2� and �3�.
Of course, the bounding constant in Eq. �2� may become
larger. If the intensity of the noise is higher than this thresh-
old then it is possible that phase slips occur and the systems
slip against each other by 2� radians or a multiple thereof. If
the coupling between the systems is strong then the phase
difference rapidly changes—“jumps.” The increase may be
somewhat slower if the coupling is weak. In this regime, the
phase difference is essentially unbounded and criterion �2�
cannot be fulfilled. However the mean frequencies should
still be equal in this regime even though the phase difference
may exhibit a random walk type behavior because of the
phase slips. More importantly, if the systems are phase syn-
chronized, then there should be no systematic drift of the
phase difference between the phase slips.

It may seem that the situation of deterministic coupled
systems close to the phase synchronization region is the
same as that of coupled phase synchronized systems per-
turbed by noise. This is, however, not the case: in the case of
deterministic subthreshold coupled �unsynchronized� sys-
tems the generalized phase difference is not constant but
drifts in one direction. This is evident from the fact that the
phase difference between the two systems must progress to a
point where a phase slip occurs and shifts the phase differ-
ence between the systems to a new starting point for the slow
drift and the situation repeats itself.

The presence of external disturbances and noise sources
in many real systems makes it difficult to experimentally
observe perfect phase or frequency locking �3�. More fre-
quent is the observation of imperfect phase
synchronization,25–27 where phase synchronization epochs
are intermingled with phase slips. Systems with broadband
spectra and especially those with unbounded return times,
such as the Lorenz system, can also slip against a driving
force or against the system to which they are coupled when
they visit a particular region in their state space.25,26 Their
phase locking behavior is described by a multiwell potential
and sufficiently strong perturbations can cause the system to
move from one potential well to another one.23,28 Even in
this case the situation can be described in terms of regions
between phase slips: for subthreshold coupled systems, the
phase difference between phase slips is not constant but sys-
tematically drifts.

III. PHASE SYNCHRONIZATION ANALYSIS
BY GRADIENT ESTIMATION

In this section an approach to detecting phase synchro-
nized epochs based on the above considerations is described.
Following our previous line of thought, a test must be con-
structed to determine if the gradient of the phase differences
of the analyzed segment is statistically different from zero. If
the phase difference time series constructed using Eq. �1�
does not contain phase slips then a suitably long segment can
be used according to results from numerical studies and the
analysis can be split into multiple epochs as needed.
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There are some important practical issues: one is that of
fluctuations. Some fluctuations can obscure a small trend in
the evolution of the phase differences. This may happen if
there are very large fluctuations or if the trend is almost
negligible �on the border of the synchronization region�. The
second issue is the selection of segments not containing
phase slips: in practice, it may be difficult to select analysis
segments so that they do not contain any phase slips. The
proposed gradient estimation method can cope with a phase
slip near the edge of an analysis epoch by using a robust
estimation method.

The hypothesis test that will be constructed assumes that
the gradient is zero in the phase difference time series and
tries to use the evidence in the time series to reject it. The
problem is that the statistical distribution of the gradient es-
timate is unknown and the test must be devised so that its
significance can be tested using another method.

To estimate the gradient in the data we use least-squares
linear regression

��i� = at�i� + b + ��i� , �5�

where � is the generalized phase difference and a, b are
chosen to minimize �2= ���i�2.29,30 As a corollary to this we
have that mean ��i� is zero. Subtracting the equations for
��i� from the equation for ��i+1� and rearranging gives

��i + 1� − ��i�
t�i + 1� − t�i�

= a +
��i + 1� − ��i�
t�i + 1� − t�i�

. �6�

Averaging over all samples and taking the limit t�i+1�
− t�i�→0 gives

��̇� = a . �7�

Independently of the actual �complicated� evolution of the
phase difference a linear trend will be present if the phase
difference drifts systematically. In experimentally obtained
time series, noise and fluctuations will invariably cause the
value of a to be slightly different from zero. The question
remains whether the gradient a is significantly different from
zero.

The key difficulty with this approach is that the statisti-
cal properties of the time series are not known. Phase syn-
chronization detection methods are often applied to complex
systems whose physics are poorly understood. Often the only
statistical information available is that contained within the
time series themselves. This leads us to the following idea: a
horizontal line is fitted to the time series using the same
approach as previously and residuals of the two fits are com-
pared. The equation for a horizontal line is simply

��i� = c + ��i� , �8�

where ��i� are the residuals. The least-squares fit is just the
arithmetic average c= ���i��. Using a least-squares fit ensures
that ���i��=0. We stress that it is not critical that ordinary
least-squares regression is used. The estimator is only re-
quired to guarantee that the residuals 	��i�
 and 	��i�
 will
have zero means, otherwise the gradient estimate will be
biased.

If the two systems are phase synchronized then there is
no real gradient and the value of a extracted from the linear
fit is just a random fluctuation about 0. This means that the
residuals 	��i�
 and 	��i�
 are drawn from the same distribu-
tion and, because of the nonzero value of a, one of the data
sets is slightly perturbed. On the other hand, if there is a
significant gradient in the 	��i�
 then the data sets 	��i�
 and
	��i�
 will belong to different distributions.

There is a standard test to verify if two data sets have
been drawn from the same distribution—the Kolmogorov–
Smirnov test.29,31 The test computes the probability that the
maximum difference in the cumulative distribution functions
estimated from two samples will be observed, assuming that
they are drawn from the same probability distribution.29 The
test makes no assumptions about the nature of the underlying
distribution and is invariant under a reparametrization of the
data. In this work we characterize a time series as unsynchro-
nized if the Kolmogorov–Smirnov test gives a probability of
less than 5% that the residuals 	��i�
 and 	��i�
 are taken
from the same probability distribution.

Long-term correlations in the phase difference time se-
ries can cause spurious rejections of the null hypothesis as
sometimes they are detected as a trend. In applications to
experimental data, it is likely that measurement error will be
a further source of fluctuations. Our approach to reduce the
problem is to sort the time indices by the associated phase
differences. The input to the transformation is a sequence
���i��i=1

N . A sequence of indices J= j1 , . . . , jN is computed
such that the sequence ���ji��i=1

N is sorted in ascending order.
Now the indices ji define a new order on the data points so
that ��i� will be at the jith position. Many software libraries
contain the function argsort which can be used to obtain J as
J=argsort����i��i=1

N �. If the phase difference series contains a
trend, the sort will entail “local” mixing only and the auto-
correlation function of the phase difference time series is not
appreciably changed.41 If, on the other hand, there is no
long-term trend then the series is “globally” mixed thereby
significantly attenuating the magnitude and cyclicity of the
autocorrelation function. This is exactly what is required to
reduce the influence of the correlations on the quality of the
least-squares fit. This procedure causes slightly higher false
positives when series with a high noise content are analyzed.
Excessive noise may obscure the trend in the phase differ-
ence time series which then becomes difficult to detect. Nev-
ertheless, the amount of data required for accurate detection
is dramatically reduced and the method becomes highly ef-
fective. The above procedure improves the effectiveness of
the method considerably and that is the only reason for its
inclusion in the method.

In numerical experiments the above approach is very
effective. Experimentally obtained data are frequently par-
tially contaminated by outliers �such as phase slips or mea-
surement errors� and noise. These may adversely affect the
estimation of the generalized phase difference gradient. Thus
in practice a more robust approach to fitting the straight line
�5� of the generalized phase differences is in order. Least
trimmed squares �LTS� regression32 is particularly suited to
this task as the estimator starts out with the hypothesis that a
subset of the data is outliers. The LTS approach proceeds by
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assuming that at least h data points out of the total of N
analyzed are leverage points �useful data� and the rest are
outlier points. Given this assumption an algorithm such as
FAST-LTS33 can be applied to find this subset and estimate
the fit parameters. In the numerical examples the dependence
of the sensitivity and specificity on the parameter h is exam-
ined. The minimum value for h is N /2+1 which yields an
estimator with the highest possible breakdown point, a mea-
sure of the robustness of the fit. Related approaches such as
least median of squares are not suitable as the mean of the
errors is not guaranteed to be zero which is required by the
analysis above. When LTS is applied the mean �8� is calcu-
lated from the set of points selected as leverage points by the
LTS method when fitting the straight line �5� so that the
distributions of the errors come from the same set of points
and are comparable.

The method above is one way of statistically testing the
gradient of the phase difference time series against a null
hypothesis of zero gradient. It takes into account the fact that
the statistical properties of the gradient estimate are un-
known and that a subset of the time series may not represent
useful information. This happens if a phase slip is at one of
the edges of the analyzed segment.

IV. NUMERICAL STUDIES

Detailed numerical experiments have been performed on
the paradigmatic pair of symmetrically coupled Rössler sys-
tems to investigate the behavior of the proposed method. The
equations of a symmetrically coupled Rössler oscillator pair
can be written as

ẋ1,2 = − �1,2y1,2 − z1,2 + C�x2,1 − x1,2� ,

ẏ1,2 = �1,2x1,2 + 0.15y1,2, �9�

ż1,2 = 0.2 + z1,2�x1,2 − 10� ,

where �1,2 controls the frequency of the oscillators and C
represents the strength of coupling. The behavior of sym-
metrically coupled Rössler oscillators has been thoroughly
investigated1,14,28,34,35 and is well understood. The evolution
of phase differences with respect to coupling strength is em-
phasized and shown in Fig. 1. It is clear from the figure that
an almost linear evolution of phase differences persists until
approximately C=0.027 where “plateaus” appear inter-
spersed with phase slips. However these “plateaus” are not
segments with zero phase difference gradient, they only ap-
pear so because the growth of the phase difference is small.
At the transition to synchronization there is a relationship
between the frequency of phase slips and the difference be-
tween a given coupling strength and the synchronization
threshold35,36

Ns � exp�C − Ct�−1/2, �10�

where Ct=0.03 is the synchronization threshold, C is the
strength of symmetrical coupling in Eq. �9� and Ns is the
number of slips per unit of time. When the synchronization
threshold is reached, the systems synchronize, and the phase
difference remains within tight bounds. For reference the

phase difference evolution for the uncoupled systems is also
shown �top curve in Fig. 1�: clearly the systems are unsyn-
chronized for C	0.024 and their relative phase velocity is
more than half of the relative phase velocity of the un-
coupled systems.

A Runge–Kutta fourth order scheme was used to inte-
grate the oscillators with a step of 0.01 s, the resulting time
series was subsampled by a factor of 10 to yield a time series
with approximately 60 points per period. The phase extrac-
tion procedure is similar to the one used in Ref. 34: project-
ing the attractor into a plane spanned by two selected coor-
dinates and using the angle of the line from the origin to the
current position of the system state in this plane as the in-
stantaneous phase. The period of the oscillator was first es-
timated by detecting the number of positive-going zero
crossings and relating it to the length of the time series. This
is a coarse detection of the approximate number of samples
per period and corresponds to marked events phase
extraction.35,37 Using this estimate a two-dimensional time
delay embedding38,39 is constructed using two samples of the
same time series one quarter of the estimated period apart.
This separation would give an optimal projection for a har-
monic oscillator. The instantaneous phase is estimated as

��i� = arctan� x�i�
x�i − �T/4�� , �11�

where T is the estimated number of samples per period. This
is a realistic procedure and can be applied to experimental
time series if it does not contain excessive noise and if the
period of oscillation is relatively stable.

Figure 2 �top� shows how the proposed method detects
synchronized states in a time series originating from a pair of
coupled Rössler systems for different system parameters.
The plot shows the detection rates for each parameter com-
bination: the frequency mismatch 
� and the coupling
strength C. The frequencies of the Rössler oscillators were
derived from the frequency mismatch as �1,2=1�
�. The
number of samples used as input to the detection method is
1024, which represents approximately 18 periods. The image
can be directly compared to Fig. 2 �bottom� which appeared
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FIG. 1. Evolution of the phase differences for different strengths of coupling
C from a pair of symmetrically coupled Rössler oscillators �9�.
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in the work of Rosenblum et al.14 The figure shows the com-
puted mean frequency mismatch 
�= ���̇1�− ��̇2�� for the
same parameter range. The systems are considered synchro-
nized if 
� is negligible. The results of the proposed detec-
tion algorithm are clearly in agreement with previously pub-
lished results. The detection rates are close to 0 in the
unsynchronized region and close to 1 in the synchronized
region.

In Fig. 3 the results for a pair of symmetrically coupled
Rössler systems with �1,2=1�0.015 are shown. The experi-
ment was run for all coupling strengths C� �0,0.04� with a
step of 0.002. Only relevant parts of the results are shown as
for C�0.024 the detection rates are negligible and for C
0.34 they are close to 1. The plot shows how the parameter
h indicating the assumed number of leverage points inside
the data set affects the detection statistics. For h=N /2+1 it is
clear that some sensitivity is lost and for h= 3

4N the results
are very close to those for h=N. In this numerical example
there are no outliers, so setting h=N is optimal and makes
use of all the data. However using three-quarters of the avail-
able points has not diminished the performance of the detec-
tor significantly �cf. Fig. 3, compare center and right plot�.
This is the value of h that will be used in the analysis of
cardiorespiratory synchronization in Sec. VI. This will allow
the existence of phase slips at the edge of the analyzed seg-
ments.

There are some positive detections for the coupling C
�0.028 for shorter windows. This is because the amount of
variability �although deterministic in the model systems� is
too high for the very small gradient to be detected in short
time series. In the numerical experiments such false positive
classifications happen more often in short time series �cf.
Fig. 3� and only just before the phase synchronization thresh-
old. This corresponds to previous considerations in Sec. III
on noise content obscuring a small gradient.

V. APPLICATION TO CARDIORESPIRATORY DATA

The analyzed electrocardiogram �ECG� and respiratory
effort time series have been acquired in the context of the EC
FP6 BRACCIA project. Measurements were carried out in
the waking state and under general anesthesia for spontane-
ous or controlled respiration depending on the choice of an-
esthetic for the subject. The aim was to obtain a record of
about 20–30 min of the activity of the heart and lungs in
each state. In this first study only subjects with no neurologi-
cal or degenerative diseases and with no cardiovascular com-
plications were included. Subjects that have agreed to pro-
vide data to the project were lying still while the recording in
the waking state took place. For the analyzed subject general
anesthesia was induced with Sevoflurane �an inhalatory an-
esthetic� and the neuromuscular blocking agent cis-
atracurium �also known as Curare� was administered. The
subject had to be provided with a breathing apparatus, which
provided a forced periodic drive to the respiratory system.

The observed time series were preprocessed to extract
peaks and obtain a linearly interpolated phase time series.
The ECG time series was filtered with a high-pass filter to
remove baseline fluctuations, R-peaks were detected using an
ad hoc approach and the results were visually checked. The
respiratory time series was bandpass filtered to smooth the
waveform and remove various artifacts and low-frequency
base line fluctuations. Then the time instances of local
maxima were extracted. In both cases the peak times tk were
used to construct an interpolated phase time series
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FIG. 2. Detection rates for the proposed method using least trimmed squares
�h= 3

4N� from short time series of �18 periods �a� and difference of mean
frequencies for a symmetrically coupled Rössler system pair �b� from Ref.
14, used with permission. C represents the coupling strength, 
� represents
the nominal frequency mismatch and 
� is the actual frequency difference
computed from the time series. The systems are considered synchronized
when the computed frequency difference 
� is negligible. In this region,
the detection rates are close to 1 almost everywhere.
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FIG. 3. Results of the proposed method for symmetrically coupled Rössler
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��t� = 2�
t − tk

tk+1 − tk
,

for tk	 t� tk+1. The phase time series was subsampled to 60
Hz from the original 1200 Hz sampling frequency and the
analysis was performed by a moving window strategy with
windows of 8192 points ��136 s� with no overlap. The main
concern here is that in one window, there should be as many
data points as possible but only one segment between phase
slips should be analyzed. If the window contains two differ-
ent segments separated by a phase slip in the middle, then
the method will not be able to compute the gradient of either
segment: the returned value will an estimate of the gradient
of the larger segment perturbed by the data points from the
smaller segment. Such a result is not meaningful for our
purposes. Using 8192 points we have been able to fulfill this
requirement of having a dominant segment in each window.
Otherwise a more sophisticated approach with manual selec-
tion of segments between phase slips would have to be em-
ployed.

The proposed method was configured to be used with
interpolated phase time series from peak detection methods.
Of crucial importance is an estimate of the number of inde-
pendent data points. Numerical experiments have shown that
for phase time series derived from the simple embedding
approach it is sufficient to take the number of data points as
the number of independent samples although this is clearly
not the case. For interpolated phase time series the number of
independent measurements is bounded from above by the
number of periods. In numerical experiments not reported in
this work it was sufficient to use the number of periods as the
number of independent measurements in the Kolmogorov–
Smirnov test. The same has been used here: for each ana-
lyzed epoch, the number of periods was found for both time
series and passed into the Kolmogorov–Smirnov two sample
test �cf. Sec. III�.

The detection of phase synchronized epochs was based
on two steps. The first was the estimation of the rational
frequency ratios of the two systems. The mean frequency
ratio was computed in each epoch and matched with the
closest ratio of integers where the number of respiratory pe-
riods was fixed at 1, 2, or 3 per N heartbeats. The choice was
thus constrained to m :n with m� 	1,2 ,3
 and n an integer.
For the closest ratio �e.g., 3:14, 2:15, or 1:4� in each epoch,
the proposed method for identifying phase synchronization
was applied to the generalized phase difference. The best
fitting integer ratio is by itself important and was also used �a
posteriori� in the construction of appropriate synchrograms
and phase difference plots for the awake state and anesthe-
tized state. It was found that the simple estimator of the
frequency ratio

f =
�
�card�t��
�
�resp�t��

, �12�

was misled by any phase slips or acquisition errors in the
analyzed epoch. Therefore the more robust LTS estimate of
the mean frequencies was applied to yield

fLTS =
�
�card�t��LTS

�
�resp�t��LTS
, �13�

where h=N /2+1 points were used to compute the robust
estimate of the mean. The effect of phase slips was thus
excluded from the estimate of the frequency ratio.

In the awake state, strong cardiorespiratory phase lock-
ing was found at a ratio of 1:4. Here both of the participating
systems can be considered autonomous oscillators and the
interaction can be analyzed in the framework of phase syn-
chronization. The strength of the mutual locking is apparent
from the generalized phase difference plot in Fig. 4 where
the phase difference

�1:4�t� = 4�resp�t� − �card�t�

is constrained within a 20 rad region for more than 9 min.
However, even close examination of the synchrogram in Fig.
5 does not seem to reflect this. The phase synchronization
detector clearly indicates the correct epochs of synchroniza-
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FIG. 4. Generalized phase difference 1:4 for the cardiorespiratory system of
the subject in the awake state, resting. Thick horizontal line indicates epochs
detected as phase synchronized. The markers show window edges and the
number of respiratory periods in each epoch is given.
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FIG. 5. Synchrogram �1:n� of the cardiorespiratory activity of the subject in
the awake state.
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tion indicated by a thick horizontal line in Fig. 4. Phase
locking has been found in the subject in the awake state
which is not visible on the synchrogram but is detected by
the proposed method. The reason why the phase locking epi-
sode is not visible in the synchrogram is analyzed in detail in
the Appendix.

In the anesthetized state the subject was mechanically
respirated using an external device generating a periodic
breathing pattern. The mechanical respirator acted as a non-
autonomous external force which through its action on the
respiratory system influenced the cardiac rhythm. The heart,
an autonomous oscillatory system, was coupled to an exter-
nal periodic force and the framework of phase dynamics
could be applied. The cardiac rhythm phase locked to the
periodic forcing strongly during the second half of the re-
cording at a ratio of 3 respiratory periods to 16 heartbeats.
The evolution of the generalized phase difference

�3:16�t� = 16�resp�t� − 3�card�t�

is shown in Fig. 6. The plateau from about 700 to 1300 s is
clearly visible and a detailed view is in the inset of Fig. 6.
This synchronization can be seen also in the synchrogram in
the same time frame �Fig. 7�. In the segment where the phase
difference plateau is located the proposed method has cor-
rectly identified coupling in all epochs. Synchrogram analy-
sis and the proposed phase synchronization identification
method agree well in this instance.

VI. DISCUSSION

Theoretically, synchronization is a process, not a state.1

The only way to reliably detect whether synchronization is
taking place is to perform an active experiment, i.e., to in-
troduce a disturbance into the coupled system and observe
whether a phase locked state is reasserted once the transient
effects disappear. In principle, it is not possible to detect with
certainty whether two systems are synchronized purely from
their time series recorded in a passive experiment. It is how-
ever possible to statistically test whether the time series re-
flect a synchronized state as per definitions �2� and �3�. Of

course a state satisfying these mathematical conditions can
come about due to other effects than synchronization and this
would result in a false positive detection. Assumptions about
the detector and the time series must be carefully reviewed
and only if they are satisfied can the result of the detection be
considered valid.

VII. CONCLUSION

A new approach to the problem of detection of phase
synchronized states has been proposed. The method is based
on the analysis of the phase difference gradient. A zero gra-
dient indicates a phase synchronized epoch of the coupled
systems. This is a principled way to detect phase synchroni-
zation even in the presence of noise. A test which detects if
the gradient of the phase differences is statistically different
from zero has been constructed. The test ensures that only
phase synchronized states are identified as such, while states
where the coupling is not strong enough to ensure locking of
frequencies and phases are excluded. The test uses robust
statistics so that analyzed segments may contain phase slips
at their edges without negatively impacting the results of the
estimation.

The proposed method has been shown to be effective in
detecting phase synchronization in the paradigmatic Rössler
oscillators. Our numerical studies indicate that the method is
capable of distinguishing between synchronized and unsyn-
chronized states using a relatively small sample of data.

The method has been applied to cardiorespiratory data
acquired in a clinical setting. Data from a subject exhibiting
strong cardiorespiratory synchronization in the awake state
and cardiac phase locking onto a periodic force in the anes-
thetized state were analyzed. The results of the method have
been compared to generalized phase difference plots and
with synchrogram analysis. It was shown that the proposed
method detects synchronization epochs in the data even
when a synchrogram might not indicate phase synchronized
segments. Some caveats when using synchrograms and
simple safeguards against these were described in the
Appendix.
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FIG. 6. Generalized phase difference �m=3,n=16� for the cardiorespiratory
system of the subject in the anesthetized state. The markers show window
edges and the number of respiratory periods in each epoch is given. Inset
shows detail of segment 700–1300 s.
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FIG. 7. Synchrogram �3:n� for the cardiorespiratory system of the subject in
the anesthetized state.

023120-7 Phase synchronization analysis Chaos 19, 023120 �2009�

Downloaded 04 Jun 2009 to 147.231.6.9. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/chaos/copyright.jsp



ACKNOWLEDGMENTS

This work was supported in part by the European Com-
mission Sixth Framework Programme project BRACCIA
�Contract No. 517133 NEST� and by the Institutional Re-
search Plan under Contract No. AV0Z10300504. Some of the
computations were performed using supercomputing re-
sources in the Edinburgh Parallel Computing Center within
the framework HPC-EUROPA �Grant No. RII3-CT-2003-
506079�. We gratefully acknowledge the work of Tomas
Draegni, Per Kvandal, Svein Landsverk, and Johan Raeder in
acquiring the data within the scope of the BRACCIA project.
The authors would like to thank Michael Rosenblum for in-
teresting discussions.

APPENDIX: SYNCHROGRAM ANALYSIS

We analyze in detail why the synchrogram in Fig. 5 does
not clearly indicate phase synchronization although a genu-
ine phase difference restraint is evident in Fig. 4. To illustrate
the issue, we will visualize additional information pertaining
to the synchrogram plot.

If two deterministic systems are phase synchronized in
an m :n regime, we expect that n periods of one system cor-
respond to m periods of the other system. As a convention
m	n and we will assume this here without loss of general-
ity. If the systems are perturbed by noise, the situation is
more complicated and the number n of periods of the faster
system in m periods of the slower system fluctuate as some-
times the systems evolve apart slightly but must return back
if the generalized phase difference is genuinely restrained.
Let us concentrate on the faster system: if its activity is tran-
siently faster, then there will be in m periods of the slower
system n�n periods of the faster system and vice versa. On
average the relationship of n periods of the faster system
�heartbeats in our case� to m periods of the slower system
�respiratory cycles� should hold. If and only if the faster
system consistently has n�n periods or consistently has
n��n periods per m periods of the slower system can there
be any systematic increase or decrease in the generalized
phase difference �for a detection method based on similar
considerations cf. Quiroga et al.40�. We will exploit this fact
in the following considerations.

In Fig. 8 the number of heartbeats inside each respiratory
period of the awake patient fluctuates around 4 �correspond-
ing to the 1:4 synchronization� and the average for the whole
segment is exactly 4. The situation for the anesthetized pa-
tient in Fig. 9 clearly changes at about 730 s into the record-
ing. In the first part, the number of heartbeats n per 3 respi-
ratory periods is consistently either 16 or lower than 16. This
means that there cannot be a 3:16 synchronization and the
generalized phase difference �3:16 in Fig. 6 consistently in-
creases. In the second part of the recording the number of
heartbeats clearly fluctuates around 16 and is often exactly
16.

We now draw a parallel between the situation in the right
half of Fig. 9 and in the whole of Fig. 8. On a macroscopic
level �in terms of entire respiratory periods�, there is no evi-
dent systematic increase or decrease and thus the results re-
flect the tendency of the generalized phase differences in

Figs. 4 and 6 �synchronized region only� showing the gener-
alized phase differences which fluctuate �strongly in the
awake case, weakly in the anesthetized case� but does not
systematically deviate in either direction.

Turning our attention back to the synchrograms, we will
now explain why in the awake case the phase synchroniza-
tion is not evident while in the anesthetized case it is. To do
this, we will track what happens to every nth heartbeat in the
recording. Our reasoning is the following: if the systems are
not synchronized and the generalized phase difference is sys-
tematically increasing or decreasing, we will see a consistent
vertical drift across the synchrogram of the sequence of ev-
ery nth heartbeat. If the systems were perfectly synchronized
the nth heartbeat would show up at approximately the same
position all the time. The synchrograms depicting a phase
synchronized regime can be influenced by mild fluctuation as
in Fig. 7 or by strong fluctuation as in Fig. 5.

We will now assume that a synchrogram depicts a phase
synchronized pair of systems. In the case of small fluctua-
tions which permit the “rows” of points to be clearly sepa-
rated, phase synchronization can be identified by means of a
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FIG. 8. Plot of number of heartbeats in each single respiratory period for the
awake patient �corresponds to synchrogram in Fig. 5�.
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FIG. 9. Plot of number of heartbeats in each respiratory period for the asleep
patient �corresponds to synchrogram in Fig. 7�.
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FIG. 10. �Color online� Plot of the evolution of the sequences of every 16th heartbeat of the anesthetized patient in the same coordinates as a standard
synchrogram plot �synchrogram is an excerpt from synchronized segment, cf. Fig. 7�. The fluctuations are very small and there is no apparent drift of the
sequences.
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FIG. 11. �Color online� Plot of the evolution of the sequences of every 16th heartbeat of the anesthetized patient in the same coordinates as a standard
synchrogram plot �synchrogram is an excerpt from nonsynchronized segment cf. Fig. 7�. The fluctuations are very small and a drift toward the top of the
synchrogram can be seen.
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FIG. 12. �Color online� Plot of the evolution of sequences of every fourth heartbeat of the awake patient in the same coordinates as a standard synchrogram
plot �synchrogram is excerpt from synchronized region in Fig. 5�. There is no apparent drift of the sequences but large fluctuations can be seen.
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synchrogram visually. If the fluctuations are strong so that
these rows overlap or even the order of heartbeats in each
period is changed, then the standard synchrogram cannot be
used to identify the synchronization. This is exactly what has
occurred in the case of the patient in the awake state.

The synchronization is 1:4 in the awake case and we will
thus connect every fourth heartbeat with a line and show the
result compared with a standard synchrogram view. Our de-
tailed analysis will require that the boundaries of every m
respiratory periods are also indicated in the synchrogram.
The two synchrograms �for the synchronized and unsynchro-
nized region� for the anesthetized patient are shown in Figs.
10 and 11 and the same for the awake patient is shown in
Figs. 12 and 13.

In Fig. 10 showing the structure of the synchrogram for
the anesthetized state, the lines connecting every 16th heart-
beat do not overlap: the fluctuations are small. On the other
hand in the awake state, the fluctuations are much stronger as
is clear from Fig. 12 but note that the final state of the se-
lected segment is identical to the starting point. This subseg-
ment has been deliberately selected for illustration purposes
but from the computations above �indicating an average of
exactly 4 heartbeats per respiratory period� we know that this
is the case for the entire phase synchronized segment of the
awake patient which is too long to show in detail. The rows
overlap and even the order of the nth heartbeat sequences
inside each respiratory period is changed on occasion. How-
ever note that the order is then changed back after some time
and there is no systematic drift. As a control, the same de-
tailed view is also shown in Fig. 11 for the epoch not exhib-
iting 3:16 synchronization in the anesthetized patient. Here
the synchrogram resembles the synchrogram for the phase
synchronized region in Fig. 10 but this is because of the
proportions of the figures. A direct comparison between the
two regions can be made in Fig. 7. The “enriched” view of
the synchrogram is, however, markedly different: the rows
are now not horizontal but they drift toward the top of the
synchrogram in Fig. 11. We stress that the above analysis is
possible because we have a-priori selected a particular syn-
chronization ratio �3:16 or 1:4� and thus have been able to
assign special meaning to every nth �16th, 4th� heartbeat and

add new information to the synchrogram in the form of
boundaries between every m respiratory periods and connec-
tions between nth heartbeats.

Putting all of the ideas and results in the previous para-
graphs together, it should now be clear why phase synchro-
nization �which is genuine according to Figs. 8 and 4� in the
awake state is not visible in the synchrogram. The phase
differences fluctuate too much to be visually detected in the
synchrogram: this is made clear by the more detailed syn-
chrogram in Fig. 12. The standard synchrogram view of the
unsynchronized segment of the awake patient in Fig. 13 is
very similar but connecting every fourth heartbeat and show-
ing their progression in different colors clearly shows the
difference in the information presented in the synchrogram.
In the synchrogram corresponding to the anesthetized patient
in Fig. 10 the phase synchronization is clear because there is
less fluctuation in the generalized phase differences. Note
that this is consistent with the result that heart rate variability
and respiratory rate variability are lower under general anes-
thesia than in the awake state. For the analyzed patient, the
interval between heartbeats in the awake state was
1.06�0.14 s and in the anesthetized state 0.95�0.05 s.
The respiratory interval was 4.22�0.54 s in the awake state
and 4.99�0.15 s in the anesthetized state. The variability
was thus about three times smaller in the anesthetized state
with the heartbeat slightly faster and the respiration slower.

In the Appendix we have tried to clarify potential pitfalls
when using a synchrogram as a means of identifying phase
synchronization. We have extracted additional information
from the data available when creating the synchrogram and
have shown that it is possible that a phase synchronization
epoch is not visible in a synchrogram if strong fluctuations
are present. It is not difficult to compute and plot this addi-
tional information and we suggest that this new information
is added to synchrograms as a matter of routine.
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