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SUMMARY

We consider an initial boundary value problem for the equation describing heat conduction in
a spherical model of neutron star considered by Lattimer et al. We estimate the asymptotic
decay of the solution, which provides a plausible estimate for a “thermalization time” for the
system.

1 Introduction

We consider a simple model used by Lattimer et al. to describe the evolution of temperature [7]
in neutron stars. It supposes a linear dependence of the specific heat as a function of temperature
and assumes that a mechanical equilibrium is reached, so the problem reduces to the study of large
time asymptotic for a Fast Diffusion Equation satisfied by the temperature.

In fact this model supposes that the mechanical structure of the medium does not change as
the star cools and only considers the heat transfer problem for the temperature θ. It amounts to
suppose that we make v ≡ 0 and ρ ≡ ρS in the complete thermo-mechanical system (Navier-Stokes
system if viscosity is taken into account), together with frozen internal energy e(ρ, θ) ≡ e(ρS , θ),
specific heat cV (ρ, θ) ≡ cV (ρS , θ) and thermal conductivity κ(ρ, θ) ≡ κ(ρS , θ).

Then the resulting problem reduces to solve an IBV problem for a Fast Diffusion Equation [9],
for which, one can prove global existence, uniqueness and precise large-time asymptotic.

So we consider the quasilinear parabolic problem for the temperature θ

e(θ)t = q(θ, θx)x, (1)

in the domain Q := Ω×R+ with Ω := (0,M).
In (1), e is the internal energy of the medium e(θ) = A

2(β−1)
θ2

η1−β , where A > 0 and β > 0,

and the heat flux q is defined as q(θ) = κ(θ) r4

η θx. In these definitions, η, r ∈ W 1,∞(Ω) are given
functions associated to a “frozen system” defined on Ω (see [2] for physical motivations) such that

0 < η 6 η(x) 6 η and 0 < R0 6 r(x) 6 R1, (2)

where η, η, R0, R1 are positive constants.
We suppose that the thermal conductivity satisfies

κ(θ) > 0 and s → κ(s) ∈ C1(R+). (3)

In the original model of [7], the following choice is made: κ(θ) = Am

θmηα for Am > 0, with the two
possibilities (m,α) = (1, 1) or (m,α) = (0, 2/3).

We consider the boundary conditions

q|x=0 = 0, θ|x=M = θΓ, (4)

for t > 0, with θΓ > 0, and initial conditions

θ|t=0 = θ0(x) on Ω. (5)
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We study weak solutions for the above problem with properties

θ ∈ L∞([0, T ], L2(Ω)),
√

ρ θx ∈ L∞([0, T ], L2(Ω)). (6)

where QT := Ω× (0, T ).
We also assume the following conditions on the data:

θ0 ∈ L2(Ω), inf
Ω

θ0 > 0. (7)

We look for a weak solution θ such that, for any test function φ ∈ L2([0, T ],H1(Ω)) with φt ∈
L1([0, T ], L2(Ω)) such that φ(·, T ) = 0∫

QT

[
φte +

κr4θx

η
φx

]
dx dt =

∫
Ω

φ(0, x) θ0(x) dx. (8)

Then our first result is the following

Theorem 1 Suppose that the initial data satisfy (7) and that T is an arbitrary positive number.
Then the problem (1)(4)(5) possesses at least one global weak solution satisfying (6) together

with properties (8). Moreover, the solution is unique.

For that purpose, we first prove a classical existence result in the Hölder category. We denote by
Cα(Ω) the Banach space of real-valued functions on Ω which are uniformly Hölder continuous with
exponent α ∈ (0, 1), and Cα,α/2(QT ) the Banach space of real-valued functions on QT := Ω×(0, T )
which are uniformly Hölder continuous with exponent α in x and α/2 in t. The norms of Cα(Ω)
(resp. Cα,α/2(QT )) will be denoted by ‖ · ‖α (resp. ||| · |||α).

Theorem 2 Suppose that the initial data satisfy(
θ0, θ0

x, θ0
xx

)
∈ (Cα(Ω))3 ,

for some α ∈ (0, 1). Suppose also that θ0(x) > 0 on Ω, and that the compatibility conditions

θ0
x(0) = 0 and θ0(M) = θΓ,

hold. Then, there exists a unique solution θ(x, t) with θ(x, t) > 0 to the initial-boundary value
problem (1)(4)(5) on Q = Ω× R+ such that for any T > 0

(θ, θx, θt, θxx) ∈ (Cα(QT ))4 , and θxt ∈ L2(QT ).

Then Theorem 1 will be obtained from Theorem 2 through a regularization process.
Finally we prove

Theorem 3 Suppose that the initial data satisfy (7). Then the solution of the problem (1)(4)(5)
follows the following large time behavior:

1. There exist positive constants Tas, C and λ such that for t > Tas

‖θ − θΓ‖C(Ω) 6 Ce−λt. (9)

2. Let m ∈ [0, 1]. There exists Tm > 0 a positive constant Cm and a function Um such that for
any t > Tm

lim
t→∞

∥∥θ − θΓ − Cme−λmtUm(y)
∥∥

H1
0 (ω)

= 0. (10)

After the previous result, we get a pointwise (rough) estimate of the cooling time Tc as the inverse
of the constant λ in (9), which is of qualitative nature as it depends on the initial data and the
physical constants of the problem. The major improvement shown in (10) is to get a more precise
behaviour of the type θ − θS − Cme−λmtUm → 0, with a constant λm independent of the initial
data. Moreover the pair (λm, Um) is obtained as the solution of a precise eigenvalue problem (see
Propositions 3 and 4 below).

2



Remark 1 In a more general setting, it is also interesting to consider the complete problem where
temperature is coupled to density and velocity fluctuations through a thermo-mechanical system and
to solve the associated compressible Navier-Stokes system. The simplest description of such a model
is achieved in [2] in which asymptotic stability is proved. Unfortunately more severe constraints on
the growth of the thermal conductivity are required.

The plan of the article is as follows: in section 2 we give a priori estimates sufficient to prove
in section 3 global existence of a unique solution, then we give in section 4 the precised asymptotic
behaviour of the solution for large time, leading to a plausible notion of “thermalization time”.

2 A priori estimates

We first suppose that the solution is classical in the following sense

θ ∈ C1([0, T ], C0(Ω)) ∩ C0([0, T ], C2(Ω)), θ > 0. (11)

Our first task is to prove the following regularity result

Theorem 4 Suppose that the initial-boundary value problem (1)(4)(5) has a classical solution
described by Theorem 2. Then the solution (θ, θx) is bounded in the Hölder space C1/3,1/6(QT )

|||θ|||1/3 + |||θx|||1/3 6 C(T ),

where C depends on T , the physical data of the problem and the initial data. Moreover there exist
two positive numbers θ and θ such that

0 < θ 6 θ 6 θ.

Let N and T be arbitrary positive numbers. In all the following, we denote by C = C(N) or
K = K(N) various positive non-decreasing functions of N , which may possibly depend on the
physical constants but not on T .

Lemma 1 Under the following condition on the data∥∥θ0
∥∥

L1(Ω)
6 N, (12)

1. The following energy-entropy identity holds

d

dt

∫
Ω

A

2(β − 1)
ηβ−1 (θ − θΓ)2 dx +

∫
Ω

κ(θ)r4

ηθ2
θ2

xdx = 0. (13)

2. The following estimate holds∥∥∥∥ (θ − θΓ)2

η1−β

∥∥∥∥
L∞(0,T ;L1(Ω))

6 K(N), (14)

Proof: Adding (1) to the same equation multiplied by − θΓ
θ and integrating by parts on Ω, we get

d

dt

∫
Ω

A

2(β − 1)
ηβ−1 (θ2 − 2θθΓ) dx =

∫
Ω

(
1− θΓ

θ

)(
κ

r4

η
θx

)
x

dx = −θΓ

∫
Ω

κ
r4

ηθ2
θ2

xdx, (15)

which gives (13), from which (14) follows �

Proposition 1 Under the previous condition on the data, there exists positive constants η and η
depending only on N such that

0 < θ 6 θ(x, t) 6 θ for (t, x) ∈ QT . (16)
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Proof: Let us consider the symmetrized problem

e(θ̃)t = q(θ̃, θ̃x)x, (17)

in the symmetric domain Ω̃ := (−M,M).
We consider the boundary conditions

θ̃
∣∣∣
x=±M

= θΓ, (18)

for t > 0, with θΓ > 0, and initial conditions

θ̃
∣∣∣
t=0

= θ̃0(x) on Ω̃, (19)

with θ̃0(x) = θ0(x) if x > 0 and θ̃0(x) = θ0(−x) if x 6 0.
Applying the maximum principle to this problem, we find

0 < θ := min{θΓ, inf
x∈Ω

θ0(x)} 6 θ(x, t) 6 max{θΓ, sup
x∈Ω

θ0(x)} =: θ,

which is (16) �

Now, following [2], let us define the positive quantities

Y (t) := max
06s6t

∫
Ω

θ2
x dx and X(t) :=

∫
Qt

θ2
s dx ds.

Lemma 2 The following inequality holds

X(t) + Y (t) 6 C, for any t ∈ [0, T ]. (20)

Proof: Defining K(θ) :=
∫ θ

1
r4κ(s)

η ds, multiplying (1) by Kt and integrating by parts on Ω, we
get ∫

Ω

r4

η
κ2θ2

t ds =
∫

Ω

KxxKt dx = −
∫

Ω

KxtKx dx = − d

dt

∫
Ω

K2
x dx.

Integrating on (0, T ), we get

sup
(0,T )

∫
Ω

eθ(θ)
r4

η
κ(θ) θ2

t dx +
∫

QT

r8

η2
κ2(θ) θ2

x dx dt 6 C.

As r, η and θ are bounded after (2) and Proposition 1, the estimate (20) follows �

Corollary 1 For any T > 0

max
[0,T ]

∫
Ω

θ2
x dx 6 K and max

Ω
θ2

x ∈ L1(0, T ). (21)

Proof: From Lemma 2, we see that X(t) 6 C, for any t 6 T . The first inequality (21) follows
directly. The second estimate is a direct consequence of Lemma 2 �

Proposition 2 The following bounds hold

max
[0,T ]

‖θt‖L2(Ω) 6 C(T ), ‖θxt‖L2(QT ) 6 C(T ), max
[0,T ]

‖θxx‖L2(Ω) 6 C(T ). (22)

max
QT

θ2
x 6 C(T ). (23)
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Proof:
1. Rewriting the equation (1) as

eθθt = qx,

differentiating this equation with respect to t (this can be made rigorous as previously), and
multiplying by eθθt, we get ∫

Ω

(
1
2

e2
θθ

2
t

)
t

dx =
∫

Ω

eθθtqxt dx

= −
∫

Ω

(eθηηxθt + eθθθxθt + eθθtx)
(

κθ
r4

η
θtθx +

κr4

η
θxt

)
dx

= −
∫

Ω

eθηκθ
r4

η
ηxθ2

t θx dx−
∫

Ω

eθη
κr4

η
ηxθtθxt dx−

∫
Ω

eθθκθ
r4

η
θ2

xθ2
t dx

−
∫

Ω

eθθ
κr4

η
θxθtθxt dx−

∫
Ω

eθκθ
r4

η
θxθtθtx dx−

∫
Ω

eθ
κr4

η
θ2

xt dx =: A.

Integrating on (0, t) for 0 6 t 6 T , we find that, for two positive constant α and β

α max
[0,T ]

∫
Ω

θ2
t dx + β

∫
QT

θ2
txdx dt 6

∫
Ω

(
1
2

e2
θθ

2
t

)
t

(x, 0) dx +
5∑

k=1

Ek, (24)

where the Ek correspond to the various contributions corresponding to the integrand in A.
Let us estimate all of these terms, using previous bounds (see (2) and (20)) and Cauchy-Schwarz

inequality.

|E1| 6 C

∫
QT

|θ2
t θx| dx dt 6 C

∫ T

0

max
Ω

θ2
t

(
1 +

∫
Ω

θ2
xdx

)
dt

6 C

∫ T

0

max
Ω

θ2
t dt 6 C

(∫
QT

θ2
xtdx dt

)1/2

.

|E2| 6 C

∫
QT

|θtθxt| dx dt 6 ε

∫
QT

θ2
xtdx dt + Cε

∫
QT

θ2
t dx dt

|E3| 6 C

∫
QT

|θ2
t θ2

x| dx dt 6 C

∫ T

0

max
Ω

θ2
t dt 6 C + C

(∫
QT

θ2
xtdx dt

)1/2

.

|E4| 6 C

∫
QT

|θtθxt| dx dt 6 ε

∫
QT

θ2
xtdx dt + Cε

∫
QT

θ2
t dx dt.

|E5| 6 ε

∫
QT

θ2
xtdx dt + Cε

(
1 +

(∫
QT

θ2
xt dx dt

)1/2
)

.

Finally, plugging all these estimate into (24) for ε small enough, we get

α max
[0,T ]

∫
Ω

θ2
t dx +

1
2

β

∫
QT

θ2
txdx dt 6 C + C

(∫
QT

θ2
xtdx dt

)1/2

,

which implies the first two estimates (22).
2. Equation (1) rewrites

θxx =
4η

r3
θx +

η

κr4
eθθt +

1
η

ηxθx −
ηκ

′

κ
θ2

x.

Taking the square and integrating on Ω, we get∫
Ω

θ2
xx dx 6 C

∫
Ω

(
θ4

x + θ2
x + θ2

t + θ2
x

)
dx.
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Using Corollary 1, together with the first bound (22), we can bound the right-hand side, which
provide us with the last estimate (22).

3. The inequality (23) follows after (22) �

Proof of Theorem 4
From Proposition 2 we have

|θ(x, t)− θ(x, t′)| 6 |t− t′|1/2

(∫ T

0

θ2
t dt

)1/2

6 C|t− t′|1/2

(∫ T

0

∫
Ω

θ2
xt dx dt

)1/2

6 C|t− t′|1/2,

and after Proposition 2

|θ(x, t)− θ(x′, t)| 6 C|x− x′|1/2

(
T ·max

[0,T ]

∫
Ω

θ2
t dx +

∫ T

0

∫
Ω

θ2
xt dx

)
6 C|x− x′|1/2,

so we find that θ ∈ C1/2,1/4(QT ). As we have also after Propositions 2

|θx(x, t)− θx(x′, t)| 6 |x− x′|1/2

(∫
Ω

θ2
xx dt

)1/2

6 |x− x′|1/2,

we conclude using an interpolation argument of [6], that θx ∈ C1/3,1/6(QT ), which ends the proof
of Theorem 4 �

3 Existence and uniqueness of a solution

1. We recall the classical Leray- Schauder fixed point theorem

Theorem 5 Let B be a banach space and suppose that P : [0, 1] × B → B has the following
properties:

• i) For any fixed λ ∈ [0, 1] the map P (λ, .) : B → B is completely continuous.

• ii) For every bounded subset S ⊂ B the family of maps P (., χ) : [0, 1] → B, χ ∈ S is uniformly
equicontinuous.

• iii) There is a bounded subset S of B such that any fixed point in B of P (λ, .), λ ∈ [0, 1] is
contained in S.

• iv) P (0, .) has precisely one fixed point in B.

Then, P (1, .) has at least one fixed point in B.

In our case B will be Banach space of functions θ ∈ B on QT with θ, θx ∈ C1/3,1/6(QT ) with the
norm

|‖θ‖|B := |||θ|||1/3 + |||θx|||1/3.

For λ ∈ [0, 1] we define P (λ, .) as the map which carries {θ̃} ∈ B into {θ} ∈ B by solving the
problem

ẽθ(ũ, θ̃)θt −
κ̃(η̃, θ̃)r̃4

η̃
θxx =

(
κ̃(η̃, θ̃)r̃4

η̃

)
η

θ̃xηx +
κ̃θ(η̃, θ̃)

η̃
θ̃2

x, (25)

together with the boundary conditions

θx|x=0 = 0, θ|x=M = θΓ, (26)

for t > 0, and initial conditions

θ(x, 0) = (1− λ)θΓ + λθ0(x). (27)
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We can consider the parabolic equation (64) and apply the classical Schauder-Friedmann estimates

‖θx‖1/3 + ‖θ‖1/3 6 C‖θ̃x‖1/3.

It implies that P (λ, .) : B → B is well defined and continuous.
Using a priori estimates from Section 2 it follows that for any θ̃ from any fixed bounded subset

the family P (., {θ̃}) : [0, 1] → B of mappings is uniformly equicontinuous.
Now, in order to verify (iii), we observe that any fixed point of P will initially satisfy original

problem, therefore θ cannot escape from [θ, θ] up to time T . This fact follows clearly from Theorem
4. To check (iv) we see by inspection that the unique fixed point of P (0, .) is given by θ(x, t) = θΓ.

All the previous facts allow us to apply Theorem 5, which imply the existence of classical
solutions of (1)(4)(5) in Ω× (0, t∗). This ends the existence part of the proof of Theorem 2.

2. Let us now prove the existence of a weak solution. From previous results it follows

• θk converge to θ in L2(0, t∗, C0(Ω)) strongly and in L2(0, t∗,H1(Ω)) weakly ,

• θk → θ a.e. in Ω× [0, t∗] and in L∞(0, t∗;L2(Ω)) weakly,

Then from the previous computations, it follows that

κkr2
k(θk)x

ηk
→ A4 weakly in L2(0, t∗,H1(Ω)).

Then applying similar technique as in [3] it follows that

A4 =
κr2(θ)x

η
in L2(0, t∗,H1(Ω)),

which ends the proof of existence.

3. Finally let us prove uniqueness of the solution. Let θi, i = 1, 2 be two solutions of (1), and
let us consider the differences: T = θ1 − θ2. Dividing the equation (1) by eθ, we can rewrite it as

θt =
qx

eθ
=
(

κr4

ηeθ
θx

)
x

+
κr4eθθ

ηe2
θ

θ2
x =: (a1(θ)θx)x + a2(θ)θ2

x,

where one checks easily that the coefficients aj satisfy |aj(θ1)− aj(θ2)| 6 C|T |, for j = 1, 2.
Subtracting this equation written for θ1 from the same for θ2 multiplying by T and integrating

by parts we obtain

1
2

d

dt

∫
Ω

T 2dx +
∫

Ω

a1(θ1)T 2
x dx 6 C

∫
Ω

(T 2 + |TTx|)dx 6 ε

∫
Ω

T 2
x dx + Cε

∫
Ω

T 2dx.

Choosing ε small enough, we get
d

dt

∫
Ω

T 2dx 6 C‖T‖2
2,

which clearly implies uniqueness and ends the proof of Theorem 2..

4 Asymptotic behaviour

4.1 Asymptotic stability

Let us begin with the very simple proof of the first part of Theorem 3.
From (13), we have

d

dt

∫
Ω

ηβ−1 (θ − θΓ)2 dx +
2(β − 1)

A
inf
Ω

κ(θ)r4

ηβθ2

∫
Ω

ηβ−1θ2
xdx = 0. (28)
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Using the estimate (θ − θΓ)2 6 M
∫
Ω

θ2
xdx we have

d

dt
X(t) +

2(β − 1)
A

inf
Ω

κ(θ)r4

ηβθ2
X(t) 6 0, (29)

where X(t) :=
∫
Ω

ηβ−1 (θ − θΓ)2 dx.
This implies

X(t) 6 X(0) e−λt,

with λ = 2M(β−1)
A infΩ

κ(θ)r4

ηβθ2 , and finally

‖θ − θΓ‖L2(Ω) 6 C e−λt.

Going back to (28), we have

2(β − 1)
A

inf
Ω

κ(θ)r4

ηβθ2

∫
Ω

ηβ−1θ2
xdx 6

∣∣∣∣ d

dt
X(t)

∣∣∣∣ ,
then using (29) ∫

Ω

θ2
xdx 6 C

∣∣∣∣ d

dt
X(t)

∣∣∣∣ 6 C e−λt.

We conclude that ‖θ − θΓ‖H1
0 (Ω) 6 C e−λt and the pointwise estimate (9) follows, which ends the

proof of Theorem 3.

4.2 Precised asymptotics

We split the second part of Theorem 3 in two parts, depending the value of m.
We consider the problem (1), with

e(θ) =
A

2(1− β)
θ2

η1−β
, κ(θ) =

Am

θmηα
,

for A,Am > 0, with the two possibilities considered by Lattimer et al. in [7]:

(β, m, α) = (2/3, 1, 1) (Case I), or (β, m, α) = (2/3, 0, 2/3) (Case II).

Depending the value of m, we consider two cases for the (known) variable coefficients in 1. We
note

a(x) :=
A

4(β − 1)η1−β(x)
,

and

bm(x) :=

∣∣∣∣∣∣∣∣
Amr4(x)

(1−m)η1+α
if m 6= 1,

2A1r
4(x)

η1+α
if m = 1.

Setting u := θ2, uΓ ≡ θ2
Γ, u0(x) ≡ (θ0)2(x) and using the previous symmetry x → y = −x, (

with a(x) = a(−x), bm(x) = bm(−x) and u0(x) = u0(−x) for x ∈ (−M, 0)), the previous problem
rewrites on ω ≡ (−M,M) 

a(y)ut =
(

bm(y)
(
u

1−m
2

)
y

)
x

,

ux|y=−M = uΓ, u|y=M = uΓ,

u|t=0 = u0(y) for y ∈ ω,

(30)
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for m 6= 1, and 

a(y)ut =
(
b1(y) (log u)y

)
y
,

uy|y=−M = uΓ, u|y=M = uΓ,

u|t=0 = u0(y) for y ∈ ω,

(31)

for m = 1.
The following conditions on the data:

u0 ∈ L2(ω), inf
ω

u0 > 0 (32)

4.3 Precised symptotics in the case m = 1

Using the transformation v = log
(

u
uΓ

)
, problem (31) becomes

a(y) (ev)t = (b1(y)vy)y ,

v|y=−M = v|y=M = 0,
v|t=0 = v0(y) for y ∈ (ω),

(33)

with v0 = log
(

u0

uΓ

)
. If one expects as in [1], that v is small for large time, a plausible guess for

the asymptotic behavior is v(y, t) ∼ Ce−λ1tU1(y), where the eigenpair (λ1, U1(y)) is the solution
of the eigenvalue problem { −

(
b1(y)U1y

)
y

= λ1a(y)U1,

U1|y=−M = U1|y=M = 0,
(34)

where λ1 > 0 is the smallest eigenvalue of the operator −a−1 d
dy

(
b1

d
dy ·
)
, with zero boundary

conditions.

Proposition 3 There exists T > 0 and a positive constant C1 such that for any t > T and any
ε > 0, the solution v of the problem (33) satisfies

lim
t→∞

∥∥v(y, t)− Ce−λ1tU1(y)
∥∥

H1
0 (ω)

= 0.

Moreover, one has the upper bound

C 6

[∫ 0

−M
b−1
1 dy

∫M

0
b−1
1 dx∫

ω
b−1
1 dy

∫
ω

b1(v0
y)2 dy∫

ω
b1U1

2
y dy

]1/2

,

and, provided that v0 6 1, the lower bound

C >

∫
ω

a(ev0 − 1)U1 dy∫
ω

aU1 dy
.

Proof: The proof essentially follows the arguments of [1], so we only sketch the main steps.
1. Using v|y=−M = v|y=M = 0 and Cauchy-Schwarz inequality, one has

v2(y, t) =
(∫ y

−M

b
1/2
1 b

−1/2
1 vy dy

)2

6
∫ y

−M

b−1
1 dy

∫ y

−M

b1v
2
ydy,

and also

v2(y, t) =

(∫ M

y

b
1/2
1 b

−1/2
1 vydy

)2

6
∫ M

y

b−1
1 dy

∫ y

−M

b1v
2
y dy.

9



Adding these inequalities, we obtain

v2(y, t) 6 ζ2(t) := C1

∫
ω

b1v
2
y dy, (35)

where C1 =
R

ω
b−1
1 dy

R M
0 b−1

1 dy
R

ω
b−1
1 dy

.

¿From (35), we see that v 6 ζ, uniformly in t, or ev−ζ 6 1, so

e−ζ

∫
ω

av2ev dy 6
∫

ω

av2 dy,

and using once more (35) ∫
ω

Av2 dy 6 C2

∫
ω

b1v
2
y dy, (36)

where C2 := C1

∫
ω

a dy.
But, after Courant-Fisher theorem

λ1 6

∫
ω

b1v
2
y dy∫

ω
av2 dy

,

so we get

λ1 6 eζ

∫
ω

b1v
2
y dy∫

ω
av2ev dy

. (37)

Now, integrating by parts and using Cauchy-Schwarz, we see that(∫
ω

b1v
2
y dy

)2

6

(∫
ω

(b1vy)y v dy

)2

6

(∫
ω

va1/2e
v
2 (b1vy)y a−1/2e−

v
2 dy

)2

6
∫

ω

av2ev dy ×
∫

ω

[
(b1vy)y

]2
a−1e−v dy.

Plugging into (37)

λ1 6 C1
eζ

ζ2

∫
ω

[
(b1vy)y

]2
a−1e−v dy. (38)

As a direct computation gives

d

dt
ζ2(t) = 2C1

∫
ω

b1vyvyt dy = −2C1

∫
ω

(b1vy)y vt dy,

we have finally
dζ

dt
= −2C1

ζ

∫
ω

[
(b1vy)y

]2
a−1e−v dy. (39)

Putting into (38), we get the differential inequality

−eζ ζ ′

ζ
> λ1,

which, as in [1] can be integrated and provides the estimate

|ζ(t)| 6 ζ(0)e−λ1t. (40)

2. Changing v into u = eλ1tv gives the following equation satisfied by u

ut = λ1u + a−1e−v (b1uy)y . (41)

As we know that v → 0 as t →∞, it is sufficient to prove that ut → 0 as t →∞ in order to prove
that u ∼ Cte× U1 for large time.

10



Multiplying (41) by aevu and integrating by parts, we get∫
ω

aevuut dx =
∫

ω

Aevu2 dy − λ1

∫
ω

b1u
2
ydy =: −J(u).

As the second contribution in the right-hand side is bounded by C−1
1 ζ(0), after (40) and the first

one is bounded by eζ(0)C−1
1 ζ(0), after (36), we find that The functional J(u) is bounded.

Computing the derivative of J gives

d

dt
J(u) = 2λ1e

−λ1t

∫
ω

uu2
y dy − 2

∫
ω

aevu2
t dy, (42)

where the first integral in the right-hand side is bounded by a K > 0 after (40).
Supposing that ‖ut‖L2(ω) does not tend to zero as t → ∞ amounts to have, for a c > 0, the

inequality

2
∫

ω

aevu2
t dy > c > 0,

which implies, after (42)
d

dt
J 6 −c + 2λ1e

−λ1tK,

and after integrating
J 6 −ct + 2K,

which contradicts the boundedness of J . Thus we have proved that

lim
t→∞

‖ut‖L2(ω) = 0.

Then finally, as t →∞
u ∼ CU1, in H1(ω).

3. In the same way as [1], we can give rough estimates for the constant C.
After (35), we have

ζ(t) = C
1/2
1

(∫
ω

b1v
2
y dy

)1/2

∼ C
1/2
1 e−λ1tC

(∫ 1

−1

b1U1
2
y dy

)1/2

,

then

eλ1tζ(t) → C
(∫

ω

b1U1
2
y dy

)1/2

6 ζ(0),

which gives the upper bound

C 6 ζ(0)
(∫

ω

b1U1
2
y dy

)−1/2

.

To get a lower bound, we multiply (33) by U1, integrate by parts and use (34). We get

d

dt

∫
ω

a(ev − 1)U1 dy =
∫

ω

U1(b1vy)y dy =
∫

ω

v(b1U1y)y dy = −λ1

∫
ω

aU1v dy

> −λ1

∫
ω

aU1(ev − 1) dy,

which can be integrated, giving ∫
ω

a(ev − 1)U1 dy > C0e
−λ1t,

where C0 :=
∫

ω
a(ev0 − 1)U1 dy.

Replacing v by its asymptotic form, we get the required lower bound, which ends the proof of
Proposition 3 �
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4.4 Precised asymptotics in the case m 6= 1

Let us consider problem (30). As we know after Theorem 3 that u− uΓ is small for large time, we
set

u(y, t)− uΓ = z(y, t) + large order terms,

where z is small in a suitable sense.
Plugging in (30), we see that z satisfies approximately the linear problem

a(y)zt = (Bm(y)zy)y ,

z|y=−M = 0, z|y=M = 0,

z|t=0 = u0(y)− uΓ for y ∈ ω,

(43)

up to small corrections, where Bm(y) := 1−m
2 u

1−m
2

Γ bm(y).
So we expect that the asymptotic behavior of u is |u(y, t) − uΓ| ∼ Ce−λmtUm(y), where the

eigenpair (λm, Um(y)) is a solution of the eigenvalue problem{ −
(
Bm(y)Umy

)
y

= λma(y)Um,

Um|y=−M = Um|y=M = 0.
(44)

It is well known (see for example [4]) that this problem admits an increasing sequence of eigenvalues
0 < λ

(1)
m < λ

(2)
m < · · · < λ

(n)
m < · · · tending to +∞ for n →∞, then z(y, t) ∼ Cme−λ(1)

m tUm(y) for t
large.

The precise result is as follows

Proposition 4 There exists a positive constant Cm such that the solution v of the problem (30)
satisfies

lim
t→∞

∥∥∥v(y, t)− vΓ − Cme−λ(1)
m tUm(y)

∥∥∥
H1

0 (ω)
= 0.

Proof:
As the method is in the same style as in the case m = 1, we only sketch the proof.
1. We use the transformation v = u

1−m
2 − u

1−m
2

Γ , the problem (30) becomes
a(y)φ(v)vt = (bm(y)vy)y ,

v|y=−M = v|y=M = 0,

v|t=0 = v0(y) for y ∈ (ω),
(45)

where φ(v) := 2
1−m (v + vΓ)

1+m
1−m , vΓ := u

1−m
2

Γ and v0(y) = (u0(y))
1−m

2 − u
1−m

2
Γ .

Defining the function ζm(t) :=
∫

ω
bmv2

y dy with (negative) derivative ζ ′m(t) := 2
∫

ω
bmvyvyt dy,

integrating by parts and using (45) we get

ζ ′m(t) := −2
∫

ω

a−1(φ(v))−1
[
(bmvy)y

]2
dy. (46)

Using Cauchy-Schwarz inequality, we have also

ζ2
m(t) 6

∫
ω

a−1(φ(v))−1
[
(bmvy)y

]2
dy ×

∫
ω

aφ(v) v2 dy.

Using Taylor’s formula, we modify the last integral∫
ω

aφ(v) v2 dy = φ(0)
∫

ω

av2 dy +
∫

ω

∫ 1

0

av3φ′(sv) ds dy.

12



After Proposition 1, v is uniformly bounded, then using once more Cauchy-Schwarz, we have∫
ω

aφ(v) v2 dy 6 φ(0)
∫

ω

av2 dy + Cζ1/2
m (t).

Plugging into (46) and using the Courant-Fisher’s bound

λ(1)
m = inf

w∈H1
0 (ω)

∫
ω

Bmw2
y dy∫

ω
aw2 dy

,

we get the inequality

ζm 6 −ζ ′m
2

[
1

λ
(1)
m

+ Cζ1/2
m

]
.

Integrating this differential inequality, and using the boundedness of ζm (see Lemma 2), we obtain
the estimate

|ζm(t)| 6 Ke−λ(1)
m t. (47)

2. Changing v into u = eλ(1)
m tv gives the following equation satisfied by u

ut = λ(1)
m u + a−1φ−1 (bmuy)y . (48)

As we know that v → 0 as t →∞, it is sufficient to prove that ut → 0 as t →∞ in order to prove
that u ∼ Cte× Um for large time.

Defining the following functional on H1
0 (ω)

Jm(u) := λ(1)
m

∫
ω

aφ(v) u2 dy −
∫

ω

bmu2
y dy ≡

∫
ω

aφ(v) uut dx,

and computing its derivative, one get

d

dt
Jm(u) :=

∫
ω

aφ(v) u2
t dy − 2λ(1)

m

∫
ω

bmuu2
y dy.

One checks that Jm is bounded, by a K > 0 after (47). Studying the derivative d
dt Jm(u) we

conclude as in the case m = 1 that

lim
t→∞

‖ut‖L2(ω) = 0.

Then finally, as t →∞
u ∼ CUm, in H1(ω).
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calorifère avec la surface libre, Annali di Matematica pura ed applicata 1995; 168:75–117

[4] K. Jörgens: Spectral theory of second-order ordinary differential operators. Matematisk Insti-
tut, Aarhus University, Lecture Notes Series N0. 2, 1962/63

13



[5] R. Kippenhahn, A. Weigert: Stellar structure and evolution. Springer Verlag, Berlin-
Heidelberg. 1994
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