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Abstract. In this paper we characterize the validity of the inequalities
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for non-negative measurable functions on Rn, where 0 < p ≤ 1, 0 < q ≤ +∞,
ω and υ are a weight functions on Rn and (0,∞) respectively.

1. Introduction

The classical Hardy inequality∫ ∞
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x
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f(t)dt

)p
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)∫ ∞

0
fp(x)dx, 1 < p < ∞, (1.1)

for functions f ≥ 0 defined on (0,∞) is equivalent to the inequality∫ +∞

−∞

(
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∫ +|x|

−|x|
f(t)dt

)p

dx ≤
(

p

p− 1

)∫ +∞

−∞
fp(x)dx (1.2)

for functions f ≥ 0 defined on (−∞,+∞).
Now, let us denote, for x ∈ Rn, by B(x) the ball {y ∈ Rn : |y| ≤ |x|}

and by |B(x)| its volume. In M.Christ, L.Grafakos [4], it is shown that the
”n-dimensional Hardy operator” Hn defined by

(Hnf)(x) =
1

|B(x)|

∫
B(x)

f(y)dy, x ∈ Rn,

satisfies ∫
Rn

|Hnf(x)|pdx ≤
(

p

p− 1

)p ∫
Rn

|f(x)|pdx, 1 < p < ∞,
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the constant
(

p
p−1

)p
being again the best possible. In P.Drábek, H.P.Heinig,

A.Kufner [7], this ”Hardy inequality” was extended to general n-dimensional
weights u, υ and to the whole range of parameters p, q, 1 < p < ∞, 0 < q < ∞.
The necessary and sufficient conditions for the validity of the inequality(∫

Rn

|Hnf(x)|qu(x)dx

) 1
q

≤ c

(∫
Rn

|f(x)|pυ(x)dx

) 1
p

are exactly analogous of the corresponding conditions for dimension one; hence,
for 1 < p ≤ q < ∞ this condition reads

sup
x∈Rn

(∫
Rn\B(x)

u(y)dy

) 1
q
(∫

B(x)
υ1−p′(y)dy

) 1
p′

< ∞.

In [11] G.H. Hardy proved the following celebrated inequality: Let 1 < p <
+∞ and f a non-negative measurable function on (0,+∞). Then, if ε < 1/p′ =
1− 1/p, ∫ +∞

0

(
xε−1

∫ x

0
f(t) dt

)p

dx ≤ c

∫ +∞

0

(
xεf(x)

)p
dx (1.3)

for some constant c independent of f . If ε > 1/p′, the inequality takes the form∫ +∞

0

(
xε−1

∫ +∞

x
f(t) dt

)p

dx ≤ c

∫ +∞

0

(
xεf(x)

)p
dx. (1.4)

The best possible constants c in (1.3) and (1.4) are equal and this common
value was determined by E. Landau in [14] as

c = |ε− 1/p′|−p. (1.5)

In [3] G.A. Bliss established the inequality(∫ +∞

0

(
x
− 1

q
− 1

p′

∫ x

0
f(t) dt

)q

dx

) 1
q

≤ c

(∫ +∞

0
f(x)p dx

) 1
p

for 1 < p < q < +∞ and proved that the best possible constant is

c =
(

p′rr

q

)1/q [
B

(
1
r
,
q − 1

r

)]−r/q

,

where r = q/p− 1 and B is the classical beta function.
During the last two decades, many authors have considered extensions of the

form (∫ b

a

(
w(x)

∫ x

a
f(t) dt

)q

dx

) 1
q

≤ c

(∫ b

a
(v(x)f(x))p dx

) 1
p

(1.6)

and (∫ b

a

(
w(x)

∫ b

x
f(t) dt

)q

dx

) 1
q

≤ c

(∫ b

a
(v(x)f(x))p dx

) 1
p

, (1.7)

with −∞ ≤ a < b ≤ +∞ , w, v weights on (a, b), 0 < q ≤ +∞, 1 ≤ p ≤ +∞.
The weights w and v for which (1.6) and (1.7) hold for all non-negative f have
been completely characterized. The solution of this problem (under different
assumptions on p and q) is associated with the names M. Artola, J.S. Bradley,
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V. Kokilashvili, V.G. Maz’ja, B. Muckenhoupt, A.L. Rozin, E. Sawyer, G. Sin-
namon, G. Talenti, G. Tomaselli and others. We refer to [17] and [13] for
a survey of results.

In [19] E. Sawyer noted that if 0 < p < 1, then the inequalities (1.6) and (1.7)
hold only for trivial weights. This observations led to a study of the so-called
reverse Hardy inequalities(∫ b

a

(
w(x)

∫ x

a
f(t) dt

)q

dx

) 1
q

≥ c

(∫ b

a
(v(x)f(x))p dx

) 1
p

(1.8)

and (∫ b

a

(
w(x)

∫ b

x
f(t) dt

)q

dx

) 1
q

≥ c

(∫ b

a
(v(x)f(x))p dx

) 1
p

(1.9)

in the case 0 < p ≤ 1.
However, these are integral forms of inequalities first considered by E.T. Cop-

son in [5, 6] for infinite series; such reverse inequalities for infinite series were
also investigated by G. Bennett [2] and K.-G. Grosse-Erdmann [10]. Condi-
tions on the weights w, v, which are either necessary or sufficient for (1.8) and
(1.9) to hold when 0 < q ≤ p ≤ 1 were established by P. R. Beesack and H.
P. Heinig [1]. Discrete analogues of (1.8) and (1.9) were proved in [10], where
it is also remarked that the techniques used in the proofs may be applicable
to the continuous versions of the inequalities, namely to (1.8) and (1.9). No
estimates of the constants c are mentioned in [10].

In [8] W.D.Evans, A.Gogatishvili and B.Opic have characterized the validity
of inequalities

‖g‖p,(a,b),λ ≤ c

∥∥∥∥∥u(x)
∫

(a,x)
g(y) dµ

∥∥∥∥∥
q,(a,b),ν

and

‖g‖p,(a,b),λ ≤ c

∥∥∥∥∥u(x)
∫

(x,b)
g(y) dµ

∥∥∥∥∥
q,(a,b),ν

for every non-negative Borel measurable functions g on the interval (a, b)⊆R,
where 0 < p ≤ 1, 0 < q ≤ +∞, λ, µ and ν are non-negative Borel measures on
(a, b), and u is a weight function on (a, b).

By motivation of study Morrey-type spaces it is very important to get mul-
tidimensional analogous of reverse Hardy inequalities. In this paper we make a
comprehensive study of general inequalities of the form

‖gω‖Lp(Rn) ≤ C

∥∥∥∥∥υ(t)
∫

B(0,t)
g(y)dy

∥∥∥∥∥
Lq(0,∞)

and

‖gω‖Lp(Rn) ≤ C

∥∥∥∥∥υ(t)
∫

{
B(0,t)

g(y)dy

∥∥∥∥∥
Lq(0,∞)

with complete proofs and estimates for c, using technique from [8].
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2. Notation and Preliminaries

For x ∈ Rn and r > 0, let B(x, r) := {y ∈ Rn : |x− y| ≤ r} be the closed ball
centered at x of radius r and

{
B(x, r) := Rn\B(x, r).

Let µ be a non-negative Borel measure on Rn and ν be a non-negative Borel
measure on (0,+∞). We denote by B+(0,∞) and B+(Rn) the set of all non-
negative Borel measurable function on (0,∞) and Rn accordingly. If E is a
nonempty Borel measurable subset on Rn and f is a Borel measurable function
on E, then we put

‖g‖Lp(E,µ) :=
(∫

E
|f(y)|pdµ

) 1
p

, 0 < p < +∞,

‖f‖L∞(E,µ) := sup{α : µ{y ∈ E : |f(y)| ≥ α} > 0}.

If I a nonempty Borel measurable subset on (0,+∞) and g is a Borel measurable
function on I, then we define ‖g‖Lp(I,ν) and ‖g‖L∞(I,ν) correspondingly. In the
notation ‖f‖Lp(E,µ), 0 < p ≤ +∞, we omit the symbol µ if µ is the Lebesgue
measure.

By A . B we mean that A ≤ CB with some positive constant C independent
of appropriate quantities. If A . B and B . A, we write A ≈ B and say that
A and B are equivalent.

We put

p′ :=


p

1−p if 0 < p < 1,

+∞ if p = 1,
p

p−1 if 1 < p < +∞,

1 if p = +∞,

and 1/(+∞) = 0, 0/0 = 0, 0 · (±∞) = 0 and Z = Z ∪ {−∞,+∞}.

Definition 2.1. Let N,M ∈ Z, N < M . A positive non-increasing sequence
{τk}M

k=N is called almost geometrically decreasing if there are α ∈ (1,+∞) and
L ∈ N such that

τk ≤
1
α

τk−L for all k ∈ {N + L, . . . , M}.

A positive non-decreasing sequence {σk}M
k=N is called almost geometrically in-

creasing if there are α ∈ (1,+∞) and L ∈ N such that

σk ≥ ασk−L for all k ∈ {N + L, . . . , M}.

Remark 2.2. Definition 2.1 implies that if 0 < q < +∞, then following three
statements are equivalent:

(i) {τk}M
k=N is an almost geometrically decreasing sequence;

(ii) {τ q
k}

M
k=N is an almost geometrically decreasing sequence;

(iii) {τ−q
k }M

k=N is an almost geometrically increasing sequence.

Let ∅ 6= Z ⊆ Z, 0 < q ≤ +∞ and let {wk} = {wk}k∈Z be a sequence of
positive numbers. We denote by `q({wk},Z) the following discrete analogue of
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a weighted Lebesgue space: if 0 < q < +∞, then

`q({wk},Z) =
{
{ak}k∈Z : ‖ak‖`q({wk},Z) :=

(∑
k∈Z

|akwk|q
) 1

q < +∞
}

and

`∞({wk},Z) =
{
{ak}k∈Z : ‖ak‖`∞({wk},Z) := sup

k∈Z
|akwk| < +∞

}
.

If wk = 1 for all k ∈ Z, we write simply `q(Z) instead of `q({wk},Z).

We quote some known results. Proofs can be found in [15] and [16].

Lemma 2.3. Let N,M ∈ Z, N ≤ M . Then, for any positive sequence {τk}M
k=N

and all m ∈ Z satisfying N < m < M ,
M∑

k=m

τk . τm (2.1)

or
m∑

k=N

τk . τm (2.2)

if and only if the sequence {τk}M
k=N is almost geometrically decreasing or in-

creasing, respectively.

Lemma 2.4. Let q ∈ (0,+∞], N,M ∈ Z, N ≤ M , Z = {N,N + 1, . . . ,M −
1,M} and let {τk}M

k=N be an almost geometrically decreasing sequence. Then∥∥∥∥∥τk

k∑
m=N

am

∥∥∥∥∥
`q(Z)

≈ ‖τkak‖`q(Z) (2.3)

and

‖τk sup
N≤m≤k

am‖`q(Z) ≈ ‖τkak‖`q(Z) (2.4)

for all non-negative sequences {ak}M
k=N .

Lemma 2.5. Let q ∈ (0,+∞], N ≤ M , N,M ∈ Z, Z = {N,N + 1, . . . ,M −
1,M} and let {σk}M

k=N be an almost geometrically increasing sequence. Then∥∥∥∥∥σk

M∑
m=k

am

∥∥∥∥∥
`q(Z)

≈ ‖σkak‖`q(Z) (2.5)

and

‖σk sup
k≤m≤M

am‖`q(Z) ≈ ‖σkak‖`q(Z) (2.6)

for all non-negative sequences {ak}M
k=N .

The following two lemmas are discrete version of the classical Landau reso-
nance theorems. Proofs can be found, for example, in [9].
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Lemma 2.6. Let 0 < p ≤ q ≤ +∞, ∅ 6= Z ⊆ Z and let {vk}k∈Z and {wk}k∈Z
be two sequences of positive numbers. Assume that

`p({vk},Z) ↪→ `q({wk},Z). (2.7)
Then

‖{wkv
−1
k }‖`∞(Z) ≤ C, (2.8)

where C stands for the norm of the embedding (2.7).

Lemma 2.7. Let 0 < q < p ≤ +∞, ∅ 6= Z ⊆ Z and let {vk}k∈Z and {wk}k∈Z
be two sequences of positive numbers. Assume that (2.7) holds. Then

‖{wkv
−1
k }‖`r(Z) ≤ C, (2.9)

where 1/r := 1/q − 1/p and C stands for the norm of the embedding (2.7).

3. Discretization of function norms

In this section we define a discretizing sequence for a non-negative, non-
decreasing, finite and right-continuous function ϕ on (a, b) ⊆ R. We use this
sequence to discretize function norms, more precisely, we find discrete norms
equivalent to the original ones.

If ϕ is a non-negative and monotone function on (a, b), then by ϕ(a) and
ϕ(b) we mean the values ϕ(a+) := limt→a+ ϕ(t) and ϕ(b−) := limt→b− ϕ(t),
respectively.

Lemma 3.1. ([8]) Let ϕ be a non-negative, non-decreasing, finite and right-
continuous function on (a, b). There is a strictly increasing sequence {xk}M+1

k=N ,
−∞ ≤ N ≤ M ≤ +∞, with elements from the closure of the interval (a, b),
such that:

(i) if N > −∞, then ϕ(xN ) > 0 and ϕ(x) = 0 for every x ∈ (a, xN ); if
M < +∞, then xM+1 = b;

(ii) ϕ(xk+1−) ≤ 2ϕ(xk) if N ≤ k ≤ M ;
(iii) 2ϕ(xk−) ≤ ϕ(xk+1) if N < k < M .

Definition 3.2. ([8]) Let ϕ be a non-negative, non-decreasing, finite and right-
continuous function on (a, b). A strictly increasing sequence {xk}M+1

k=N , −∞ ≤
N < M ≤ +∞, is said to be a discretizing sequence of the function ϕ if it
satisfies the conditions (i) – (iii) of Lemma 3.1.

Remark 3.3. ([8]) We shall use the following convention: if N = −∞, then we
put xN = limk→−∞ xk. It is clear that if N = −∞ and xN > a, then ϕ(x) = 0
for all x ∈ (a, xN ) (cf. condition (i) of Lemma 3.1).

Theorem 3.4. ([8]) Let ν be a non-negative Borel measure on I = (a, b) such
that the function ϕ(t) = ν(a, t] is finite on I. If {xk}M+1

k=N is a discretizing
sequence of the function ϕ, then∫

(a,b)
h(t) dν(t) ≈

M∑
k=N

h(xk)ν(a, xk] (3.1)

for all non-negative and non-increasing functions h on I.
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We shall need an analogue of Theorem 3.4, where L1(ν)-norm is replaced
by a weighted L∞(ν)-norm. But there is a substantial difference between these
two cases. While the function ϕ(t) := ν(a, t], t ∈ I, corresponding to the former
case is right-continuous on I, the function

ϕ(t) := ‖u‖L∞((a,t],ν), t ∈ I, with u ∈ B+(I), (3.2)

cannot be right-continuous on I. (To see it, let I = (0, 2), u = χ(0,1] + 2χ(1,2)

and let ν be the Lebesgue measure on I. Then ϕ(1) = 1 but ϕ(1+) = 2).
Therefore, in the following theorem we consider the function ϕ defined by

ϕ(t) = ‖u‖L∞((a,t+],ν) := lim
s→t+

‖u‖L∞((a,s],ν), t ∈ I, (3.3)

instead of ϕ given by (3.2). Note also that the assumptions on h are more
restrictive there.

Theorem 3.5. ([8]) Let ν be a non-negative Borel measure on I = (a, b) and
let u ∈ B+(I) be such that the function ‖u‖∞,(a,t],ν < +∞ for all t ∈ I. If
{xk}M+1

k=N is a discretizing sequence of the function ϕ(t) = ‖u‖L∞((a,t+],ν), t ∈ I,
then

‖hu‖L∞((a,b),ν) ≈ sup
N≤k≤M

h(xk)‖u‖L∞((a,xk+],ν) (3.4)

for all non-negative, non-increasing and right-continuous functions h on I.

Let ϕ be a non-negative, non-decreasing, finite and right-continuous function
on (0,∞). Using a discretizing sequence {xk}M+1

k=N of ϕ, we define the sequence
{Jk}M

k=N and {Sk}M
k=N as follows:

Ji = (xi, xi+1], if N ≤ i < M, and JM = (xM ,∞) if M < +∞.
(3.5)

Si = B(0, xi+1)\B(0, xi), if N ≤ i < M, and

SM = Rn\B(0, xM ) if M < +∞.
(3.6)

Corollary 3.6. Let 0 < q < +∞. Suppose that υ be a weight function on
(0,∞). Let υ be such that the function ϕ(t) = ‖υ‖q

Lq(0,t) is finite on (0,∞). If

{xk}M+1
k=N is a discretizing sequence of ϕ, then∥∥∥∥∥υ(t)

∫
{B(0,t)

g(y) dy

∥∥∥∥∥
Lq(0,∞)

≈

(
M∑

k=N

(∫
Sk

g(y) dy

)q

‖υ‖q
Lq(0,xk)

) 1
q

(3.7)

and ∥∥∥υ(t)‖g‖
L∞( {B(0,t))

∥∥∥
Lq(0,∞)

≈

(
M∑

k=N

‖g‖q
L∞(Sk) ‖υ‖

q
Lq(0,xk)

) 1
q

(3.8)

for all non-negative measurable g on Rn, where {Sk}M
k=N is defined by (3.6).

Proof. We prove (3.7) only (the proof of (3.8) is analogous). By Theorem 3.4,∥∥∥∥∥υ(t)
∫

{B(0,t)
g(y) dy

∥∥∥∥∥
Lq(0,∞)

≈

(
M∑

k=N

(∫
{B(0,xk)

g(y) dy

)q

‖υ‖q
Lq(0,xk)

) 1
q
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=

(
M∑

k=N

(
M∑
i=k

∫
Sk

g(y) dy

)q

‖υ‖q
Lq(0,xk)

) 1
q

.

The condition (iii) of Lemma 3.1 implies that {‖υ‖q
Lq(0,xk)}

M
k=N is an al-

most geometrically increasing sequence. (We can take α = L = 2 in Defini-
tion 2.1. Indeed, by the monotonicity of ϕ and the condition (iii) of Lemma 3.1,
2ϕ(xk−1) ≤ 2ϕ(xk−) ≤ ϕ(xk+1) if N < k < M , and, on putting k− 1 = m− 2,
we arrive at 2ϕ(xm−2) ≤ ϕ(xm) if N + 2 ≤ m ≤ M .) Thus {‖υ‖Lq(0,xk)}M

k=N is
also an almost geometrically increasing sequence and (3.7) follows on applying
Lemma 2.5. �

Corollary 3.7. Suppose that υ be a weight function on (0,∞). Let υ be such
that the function ϕ(t) = ‖υ‖L∞(0,t) is finite on (0,∞). If {xk}M+1

k=N is a dis-
cretizing sequence of the function ϕ(t) = ‖υ‖L∞(a,t+) = lims→t+ ‖υ‖L∞(a,s),
t ∈ (0,∞), then∥∥∥∥∥υ(t)

∫
{B(0,t)

g(y) dy

∥∥∥∥∥
L∞(0,∞)

≈ sup
N≤k≤M

(∫
Sk

g(y) dy

)
‖υ‖L∞(0,xk+) (3.9)

and ∥∥∥υ(t)‖g‖
L∞( {B(0,t))

∥∥∥
L∞(0,∞)

≈ sup
N≤k≤M

‖g‖L∞(Sk)‖υ‖L∞(0,xk+) (3.10)

for all non-negative measurable g on Rn, where {Sk}M
k=N is defined by (3.6).

Proof. This follows from Theorem 3.5 and Lemma 2.5. �

4. The multidimensional reverse Hardy inequality

In this section we characterize the validity of the inequality

‖gw‖Lp(Rn) ≤ c

∥∥∥∥∥υ(t)
∫

{B(0,t)
g(y) dy

∥∥∥∥∥
Lq(0,∞)

. (4.1)

for all non-negative measurable g on Rn. Our first result concerns the case
when 0 < q ≤ p ≤ 1.

Theorem 4.1. Assume that 0 < q ≤ p ≤ 1. Let ω and υ be a weight functions
on Rn and (0,∞) respectively. Let ‖υ‖Lq(0,t) < +∞ for all t ∈ (0,∞). Then
the inequality (4.1) holds for all non-negative measurable g if and only if

A1 := sup
t∈(0,∞)

‖w‖Lp′ (B(0,t))‖υ‖−1
Lq(0,t) < +∞.

The best possible constant c in (4.1) satisfies c ≈ A1.

Proof. Let 0 < q ≤ 1. By Corollary 3.6,∥∥∥∥∥υ(t)
∫

{
B(0,t)

g(y) dy

∥∥∥∥∥
Lq(0,∞)

≈

(
M∑

k=N

(∫
Sk

g(y) dy

)q

‖υ‖q
Lq(0,xk)

) 1
q

(4.2)
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for all non-negative measurable g on Rn, where {xk}M+1
k=N is a discretizing se-

quence of the function ϕ(t) = ‖υ‖q
Lq(0,t), t ∈ (0,∞), and {Sk}M

k=N is defined
by (3.6). By Lemma 3.1 (cf. also Remark 3.3),

if xN > 0, then ‖υ‖Lq(0,xN ) = 0; (4.3)
if M < +∞, then xM+1 = ∞;

‖υ‖q
Lq(0,xk+1) ≤ 2‖υ‖q

Lq(0,xk) if N ≤ k ≤ M ; (4.4)

2‖υ‖q
Lq(0,xk) ≤ ‖υ‖q

Lq(0,xk+1) if N < k < M. (4.5)

Assume that A1 < +∞. This condition and (4.3) imply that

‖w‖L′p(B(0,xN )) = 0 if xN > 0. (4.6)

If E is a measurable subset of (0,∞) and g is a non-negative measurable
function on (0,∞), then by Hőlder’s inequality (with the exponents 1/p and
p′/p),

‖gw‖p
Lp(E) ≤ ‖g‖p

L1(E)‖w‖
p
Lp′(E). (4.7)

Taking here g ≡ 1 and E = B(0, xN ), we obtain from (4.6) that ‖w‖Lp(B(0,xN )) =
0 if xN > 0. Therefore,

‖gw‖Lp(Rn) =

(
M∑

k=N

‖gw‖p
Lp(Sk)

) 1
p

(4.8)

for any non-negative measurable g on Rn.
This identity and (4.7) (with E = Sk, N ≤ k ≤ M) give

‖gw‖Lp(Rn) ≤

(
M∑

k=N

‖g‖p
L1(Sk)‖w‖

p
Lp′ (Sk)

) 1
p

≤

(
sup

N≤k≤M
‖w‖Lp′ (Sk)‖υ‖−1

Lq(0,xk)

)(
M∑

k=N

‖g‖p
L1(Sk)‖υ‖

p
Lq(0,xk)

) 1
p

.

Moreover, using the inequality 0 < q/p ≤ 1 and (4.2), we arrive at

‖gw‖Lp(Rn)

≤

(
sup

N≤k≤M
‖w‖Lp′ (Sk)‖υ‖−1

Lq(0,xk)

)(
M∑

k=N

‖g‖q
L1(Sk)‖υ‖

q
Lq(0,xk)

) 1
q

≈

(
sup

N≤k≤M
‖w‖Lp′ (Sk)‖υ‖−1

Lq(0,xk)

)∥∥∥∥∥υ(x)
∫

{B(0,x)
g(y) dy

∥∥∥∥∥
Lq(0,∞)

. (4.9)

Applying (4.4), we get

sup
N≤k≤M

‖w‖Lp′ (Sk)‖υ‖−1
Lq(0,xk)

≤ 2
1
q sup

N≤k≤M
‖w‖Lp′(B(0,xk+1))‖υ‖−1

Lq(0,xk+1) ≤ 2
1
q A1. (4.10)
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The inequality (4.1) (with c . A1) follows from (4.9) and (4.10).
We now prove necessity. The validity of the inequality (4.1) and (4.2) imply

that

(
M∑

k=N

‖gw‖p
Lp(Sk)

) 1
p

. c

(
M∑

k=N

(∫
Sk

g(y) dy

)q

‖υ‖q
Lq(0,xk)

) 1
q

(4.11)

for all non-negative measurable g on Rn.
Let gk, N ≤ k ≤ M , be non-negative measurable functions that saturate

Hőlder’s inequality (4.7) with E = Sk, N ≤ k ≤ M , that is, functions satisfying

supp gk ⊂ Sk, ‖gk‖L1(Sk) = 1 and ‖gkw‖p
Lp(Sk) ≥

1
2
‖w‖p

Lp′ (Sk). (4.12)

Then we define the test function g by

g =
M∑

k=N

ak gk, (4.13)

where {ak} is a sequence of non-negative numbers. Consequently, (4.11) yields(
M∑

k=N

ap
k‖w‖

p
Lp′ (Sk)

) 1
p

. c

(
M∑

k=N

aq
k‖υ‖

q
Lq(0,xk)

) 1
q

, (4.14)

and, by Lemma 2.6,

sup
N≤k≤M

‖w‖Lp′ (Sk)‖υ‖−1
Lq(0,xk) . c. (4.15)

Assuming that xN > 0, testing (4.1) with g = χB(0,xN ) and using (4.3), we
arrive at ‖w‖Lp(B(0,xN )) = 0. This implies that |B(0, xN )| = 0 or w = 0 a.e. in
B(0, xN ). Consequently, (4.6) holds.

Therefore,
A1 = sup

N≤k≤M
sup
x∈Jk

‖w‖Lp′ (B(0,x))‖υ‖−1
Lq(0,x)

and, on using (3.5), we obtain that

A1 ≤ sup
N≤k≤M

‖w‖Lp′ (B(0,xk+1))‖υ‖−1
Lq(0,xk).

Applying (4.6) and (3.6) again, we arrive at

A1 ≤ sup
N≤k≤M

(
k∑

i=N

‖w‖p′

Lp′ (Si)

) 1
p′

‖υ‖−1
Lq(0,xk) if 0 < p < 1

and

A1 ≤ sup
N≤k≤M

(
sup

N≤i≤k
‖w‖Lp′ (Si)

)
‖υ‖−1

Lq(0,xk) if p = 1.

Now, the fact that {‖υ‖−1
Lq(0,xk)}

M
k=N is almost geometrically decreasing (cf. (4.5))

and Lemma 2.4 imply that
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A1 . sup
N≤k≤M

‖w‖Lp′ (Sk)‖υ‖−1
Lq(0,xk),

which, together with (4.15), yields A1 . c. �

Remark 4.2. Let A1 be the number defined in Theorem 4.1. If p = 1, then

A1 =
∥∥∥w(x)‖υ‖−1

Lq(0,|x|)

∥∥∥
L∞(Rn)

.

Indeed, exchanging essential suprema, we obtain

A1 =
∥∥∥‖w‖L∞(B(0,t))‖υ‖−1

Lq(0,t)

∥∥∥
L∞(0,∞)

=
∥∥∥∥∥∥∥w(x)‖υ‖−1

Lq(0,t)

∥∥∥
L∞(B(0,t))

∥∥∥∥
L∞(0,∞)

=
∥∥∥∥∥∥∥w(x)χB(0,t)(x)‖υ‖−1

Lq(0,t)

∥∥∥
L∞(Rn)

∥∥∥∥
L∞(0,∞)

=
∥∥∥∥∥∥∥w(x)‖υ‖−1

Lq(0,t)

∥∥∥
L∞[|x|,∞)

∥∥∥∥
L∞(Rn)

=
∥∥∥w(x)‖υ‖−1

Lq(0,|x|)

∥∥∥
L∞(Rn)

.

In the rest of the paper we shall need the Lebesgue-Stieltjes integral. To this
end, we recall some basic facts.

Let ϕ be non-decreasing and finite function on the interval I := (a, b) ⊆ R.
We assign to ϕ the function λ defined on subintervals of I by

λ([α, β]) = ϕ(β+)− ϕ(α−), (4.16)

λ([α, β)) = ϕ(β−)− ϕ(α−), (4.17)

λ((α, β]) = ϕ(β+)− ϕ(α+), (4.18)

λ((α, β)) = ϕ(β−)− ϕ(α+). (4.19)

The function λ is a non-negative, additive and regular function of intervals.
Thus (cf. [18]), it admits a unique extension to a non-negative Borel measure
λ on I. The Lebesgue-Stieltjes integral

∫
I f dϕ is defined as

∫
I f dλ.

In this section the role of the function ϕ will be played by a function h which
will be non-decreasing and right-continuous on I. Consequently, the associated
Borel measure λ will be determined by (cf. (4.18))

λ((α, β]) = h(β)− h(α) for any (α, β] ⊂ I (4.20)

(since the Borel subsets of I can be generated by subintervals (α, β] ⊂ I).
Consider now the inequality (4.1) in the case when 0 < p ≤ 1, p < q ≤ +∞

and define r by
1
r

=
1
p
− 1

q
. (4.21)

In such a case we shall write a condition characterizing the validity of inequal-
ity (4.1) in a compact form involving

∫
(0,∞) f dh, where f(t) = ‖w‖r

Lp′ (B(0,t))
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and h(t) = −‖u‖−r
Lq(0,t+), t ∈ (0,∞). (Hence, the Lebesgue-Stieltjes integral∫

(0,∞) f dh is defined by the non-decreasing and right-continuous function h on
(0,∞)). However, it can happen that ‖u‖Lq(0,t+) = 0 for all t ∈ (0, c) with
a convenient c ∈ (0,∞) (provided that we omit the trivial case when u = 0
a.e. on (0,∞)). Then we have to explain what is the meaning of the Lebesgue-
Stieltjes integral since in such a case the function h = −∞ on (0, c). To this
end, we adopt the following convention.

Convention 4.3. Let I = (a, b) ⊆ R, f : I → [0,+∞] and h : I → [−∞, 0].
Assume that h is non-decreasing and right-continuous on I. If h : I → (−∞, 0],
then the symbol

∫
I f dh means the usual Lebesgue-Stieltjes integral. However,

if h = −∞ on some subinterval (a, c) with c ∈ I, then we define
∫
I f dh only if

f = 0 on (a, c] and we put ∫
I
f dh =

∫
(c,b)

f dh.

In the proof of the next theorem we shall use frequently the Lebesgue-Stieltjes
integral

∫
J dϕ, where ϕ is a non-decreasing, finite and right-continuous function

on I = (a, b) and J is a subinterval of I of the form (α, β), [α, β) or (α, β]. The
formulae (4.19), (4.17) and (4.18) imply that∫

(α,β)
dϕ = ϕ(β−)− ϕ(α), (4.22)∫

[α,β)
dϕ = ϕ(β−)− ϕ(α−), (4.23)∫

(α,β]
dϕ = ϕ(β)− ϕ(α). (4.24)

Theorem 4.4. Assume that 0 < p ≤ 1, p < q ≤ +∞ and r is given by
(4.21). Let ω and υ be a weight functions on Rn and (0,∞) respectively. Let υ
satisfy ‖υ‖Lq(0,t) < +∞ for all t ∈ (0,∞) and υ 6= 0 a.e. on (0,∞). Then the
inequality (4.1) holds for all non-negative measurable g on Rn if and only if

A2 :=

(∫
(0,∞)

‖w‖r
Lp′ (B(0,t)) d

(
−‖υ‖−r

Lq(0,t+)

)) 1
r

+
‖w‖Lp′ (Rn)

‖υ‖Lq(0,∞)
< +∞.

The best possible constant c in (4.1) satisfies c ≈ A2.

Remark 4.5. Let q < +∞ in Theorem 4.4. Then

‖u‖Lq(0,t+) = ‖u‖Lq(0,t) for all t ∈ (0,∞),

which implies that

A2 =

(∫
(0,∞)

‖w‖r
Lp′ (B(0,t)) d

(
−‖υ‖−r

Lq(0,t)

)) 1
r

+
‖w‖Lp′ (Rn)

‖υ‖Lq(0,∞)
.

Proof of Theorem 4.4. Let 0 < p ≤ 1 and p < q ≤ +∞.



13

(i) Suppose first that q < +∞. Let {xk}M+1
k=N be the discretizing sequence

of the function ϕ(t) = ‖υ‖q
Lq(0,t), t ∈ (0,∞). Then (4.3)–(4.5) are satisfied.

Moreover, by Corollary 3.6, (4.2) holds, where {Sk}M
k=N is given by (3.6).

Assume that A2 < +∞. This condition, (4.3) and Convention 4.3 imply that
(4.6) holds and, as in the proof of Theorem 4.1, we arrive at (4.8). Thus, using
(4.7) (with E = Sk, N ≤ k ≤ M), the discrete version of Hőlder’s inequality
(with the exponents q/p and r/p) and (4.2), we obtain

‖gw‖Lp(Rn)

≤

(
M∑

k=N

‖g‖p
L1(Sk)‖w‖

p
Lp′ (Sk)

) 1
p

≤

(
M∑

k=N

‖g‖q
L1(Sk)‖υ‖

q
Lq(0,xk)

) 1
q
(

M∑
k=N

‖w‖r
Lp′ (Sk)‖υ‖

−r
Lq(0,xk)

) 1
r

≈

∥∥∥∥∥υ(t)
∫

{B(0,t)
g(y) dy

∥∥∥∥∥
Lq(0,∞)

(
M∑

k=N

‖w‖r
Lp′ (Sk)‖υ‖

−r
Lq(0,xk)

) 1
r

. (4.25)

By (4.5),

2‖υ‖q
Lq(0,xk+1) ≤ ‖υ‖q

Lq(0,xk+2) ≤ ‖υ‖q
Lq(0,xk+3) if N < k + 1 < M.

Therefore,

‖υ‖−r
Lq(0,xk+3) ≤ 2−

r
q ‖υ‖−r

Lq(0,xk+1),

which yields

‖υ‖−r
Lq(0,xk+1) − ‖υ‖

−r
Lq(0,xk+3) ≥ (1− 2−

r
q )‖υ‖−r

Lq(0,xk+1) if N ≤ k ≤ M − 2.

Assume that N ≤ M − 2. On using (4.4) and the last estimate, we arrive at

M∑
k=N

‖w‖r
Lp′ (Sk)‖υ‖

−r
Lq(0,xk)

.
M∑

k=N

‖w‖r
Lp′ (Sk)‖υ‖

−r
Lq(0,xk+1)

.
M−2∑
k=N

‖w‖r
Lp′ (Sk)

(
‖υ‖−r

Lq(0,xk+1) − ‖υ‖
−r
Lq(0,xk+3)

)
+ ‖w‖r

Lp′ (SM−1)

(
‖υ‖−r

Lq(0,xM ) − ‖υ‖
−r
Lq(0,∞)

)
+ ‖w‖r

Lp′ (SM−1)‖υ‖
−r
Lq(0,∞) + ‖w‖r

Lp′ (SM )‖υ‖
−r
Lq(0,∞). (4.26)

Now, by (4.23) with ϕ(t) = −‖υ‖−r
Lq(0,t), t ∈ (0,∞), and [α, β) = [xk+1, xk+3),

N ≤ k ≤ M − 2, or [α, β) = [xM ,∞), we obtain that
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M∑
k=N

‖w‖r
Lp′ (Sk)‖υ‖

−r
Lq(0,xk)

≤
M−2∑
k=N

‖w‖r
Lp′ (Sk)

∫
[xk+1,xk+3)

d
(
−‖υ‖−r

Lq(0,t)

)
+ ‖w‖r

Lp′ (SM−1)

∫
[xM ,∞)

d
(
−‖υ‖−r

Lq(0,t)

)
+ 2‖w‖r

Lp′ (Rn)‖υ‖
−r
Lq(0,∞)

≤
M−2∑
k=N

∫
[xk+1,xk+3)

‖w‖r
Lp′ (B(0,t)) d

(
−‖υ‖−r

Lq(0,t)

)
+
∫

[xM ,∞)
‖w‖r

Lp′ (B(0,t)) d
(
−‖υ‖−r

Lq(0,t)

)
+ 2‖w‖r

Lp′ (Rn)‖υ‖
−r
Lq(0,∞)

≤ 2
∫

(0,∞)
‖w‖r

Lp′ (B(0,t)) d
(
−‖υ‖−r

Lq(0,t)

)
+ 2‖w‖r

Lp′ (Rn)‖υ‖
−r
Lq(0,∞)

. Ar
2

(note that we have used (4.6) and Convention 4.3), that is,

M∑
k=N

‖w‖r
Lp′ (Sk)‖υ‖

−r
Lq(0,xk) . Ar

2. (4.27)

If N > M − 2, then (4.27) can be proved analogously. The inequality (4.1)
(with c ≤ A2) follows from (4.25) and (4.27).

For necessity we apply the same argument as in the proof of Theorem 4.1 to
get (4.14). Next, by Lemma 2.7,(

M∑
k=N

‖w‖r
Lp′ (Sk)‖υ‖

−r
Lq(0,xk)

) 1
r

. c. (4.28)

As in the necessity part of the proof of the Theorem 4.1, we can show that (4.6)
holds. Together with (3.5), (4.24) and (4.22), this yields

Ar
2 ≈

M∑
k=N

∫
Jk

‖w‖r
Lp′ (B(0,t)) d

(
−‖υ‖−r

Lq(0,t)

)
+ ‖w‖r

Lp′ (Rn)‖υ‖
−r
Lq(0,∞)

≤
M−1∑
k=N

‖w‖r
Lp′ (B(0,xk+1))

∫
Jk

d
(
−‖υ‖−r

Lq(0,t)

)
+ ‖w‖r

Lp′ (Rn)

∫
(xM ,∞)

d
(
−‖υ‖−r

Lq(0,t)

)
+ ‖w‖r

Lp′ (Rn)‖υ‖
−r
Lq(0,∞)

.
M−1∑
k=N

‖w‖r
L′p(B(0,xk+1))‖υ‖

−r
Lq(0,xk) + ‖w‖r

Lp′ (Rn)‖υ‖
−r
Lq(0,xM ). (4.29)
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Thus, using (4.6) and (3.5) again, we arrive at

Ar
2 .

M∑
k=N

(
k∑

i=N

‖w‖p′

Lp′(Si)

) r
p′

‖υ‖−r
Lq(0,xk) if 0 < p < 1

and

Ar
2 .

M∑
k=N

(
sup

N≤i≤k
‖w‖Lp′ (Si)

)r

‖υ‖−r
Lq(0,xk) if p = 1.

Now, the fact that {‖υ‖−r
Lq(0,xk)}

M
k=N is almost geometrically decreasing (cf. (4.5))

and Lemma 2.4 imply that

Ar
2 .

M∑
k=N

‖w‖r
Lp′ (Sk)‖υ‖

−r
Lq(0,xk), (4.30)

which, together with (4.28), yields A2 . c.
(ii) Suppose now that q = +∞. Let {xk}M+1

k=N be a discretizing sequence of the
function ϕ(t) = ‖υ‖L∞(0,t+), t ∈ (0,∞). By Lemma 3.1 (cf. also Remark 3.3),

if xN > 0, then ‖υ‖L∞(0,xN ) = 0; (4.31)
if M < +∞, then xM+1 = ∞;

‖υ‖L∞(0,xk+1) ≤ 2‖υ‖L∞(0,xk+) if N ≤ k ≤ M ; (4.32)

2‖υ‖L∞(0,xk) ≤ ‖υ‖L∞(0,xk+1+) if N < k < M. (4.33)

Moreover, by Corollary 3.7,∥∥∥∥∥υ(t)
∫

{B(0,t)
g(y) dy

∥∥∥∥∥
L∞(0,∞)

≈ sup
N≤k≤M

(∫
Sk

g(y) dy

)
‖υ‖L∞(0,xk+) (4.34)

for all non-negative measurable g on Rn, where {Sk}M
k=N is given by (3.6).

Assume that A2 < +∞. This condition, (4.31) and Convention 4.3 imply
that (4.6) holds, and, as in the proof of Theorem 4.1, we arrive at (4.8). Thus,
using (4.7) (with E = Sk, N ≤ k ≤ M) and (4.34), we obtain

‖gw‖Lp(Rn)

≤

(
M∑

k=N

‖g‖p
L1(Sk)‖w‖

p
Lp′ (Sk)

) 1
p

≤

(
sup

N≤k≤M
‖g‖L1(Sk)‖υ‖L∞(0,xk+)

)(
M∑

k=N

‖w‖p
Lp′ (Sk)‖υ‖

−p
L∞(0,xk+)

) 1
p

≈

∥∥∥∥∥u(t)
∫

{B(0,t)
g(y) dy

∥∥∥∥∥
L∞(0,∞)

(
M∑

k=N

‖w‖p
Lp′ (Sk)‖υ‖

−p
L∞(0,xk+)

) 1
p

. (4.35)
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Analogously as in the case (i), we arrive at(
M∑

k=N

‖w‖p
Lp′ (Sk)‖υ‖

−p
L∞(0,xk+)

) 1
p

. A2. (4.36)

Therefore, (4.1) (with c . A2) follows from (4.35) and (4.36).
Now, we prove necessity part. The validity of the inequality (4.1) and (4.34)

imply that(
M∑

k=N

‖gw‖p
Lp(Sk)

) 1
p

. c sup
N≤k≤M

(∫
Sk

g(y) dy

)
‖υ‖L∞(0,xk+) (4.37)

for all non-negative measurable g on Rn. Let gk, N ≤ k ≤ M , be non-negative
measurable functions satisfying (4.12) and define the test function g by (4.13).
Consequently, (4.37) yields(

M∑
k=N

ap
k‖w‖

p
Lp′ (Sk)

) 1
p

. sup
N≤k≤M

ak‖υ‖L∞(0,xk+),

and, by Lemma 2.7,

(
M∑

k=N

‖w‖p
Lp′ (Sk)‖υ‖

−p
L∞(0,xk+)

) 1
p

. c. (4.38)

The same idea as that used in part (i) shows that (cf. (4.29)–(4.30))

Ap
2 .

M∑
k=N

‖w‖p
Lp′ (Sk)‖υ‖

−p
L∞(0,xk+), (4.39)

which, together with (4.38), yields A2 . c. �

5. The reverse Hardy inequality for the dual operator

The aim of this section is to characterize the validity of the reverse Hardy
inequality involving the operator H∗ given by

(H∗g)(t) :=
∫

B(0,t)
g(y) dy, t ∈ (0,∞),

which is the dual operator to that one given by

(Hg)(t) :=
∫

{B(0,t)
g(y) dy, x ∈ I,

where g is a non-negative measurable g on Rn. To this end, we are going to
make use of the results for the Hardy operator H proved in Section 4. Our next
assertion is a counterpart of Theorem 4.1.
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Theorem 5.1. Assume that 0 < q ≤ p ≤ 1. Let ω and υ be a weight functions
on Rn and (0,∞) respectively. Let ‖υ‖Lq(t,∞) < +∞ for all t ∈ (0,∞). Then
the inequality

‖gw‖Lp(Rn) ≤ c

∥∥∥∥∥υ(t)
∫

B(0,t)
g(y) dy

∥∥∥∥∥
Lq(0,∞)

(5.1)

holds for all non-negative measurable g on Rn if and only if

B1 := sup
t∈(0,∞)

‖w‖
Lp′ (

{B(0,t))
‖υ‖−1

Lq(t,∞) < +∞. (5.2)

The best possible constant c in (5.1) satisfies c ≈ B1.

Proof. By writing the inequality (5.1) for |y|−2ng( y
|y|2 ) instead of g and using

the substitutions x = y
|y|2 on the left-hand side and x = y

|y|2 and τ = 1
t on the

right-hand side we obtain(∫
Rn

g(x)p

(
ω

(
x

|x|2

)
|x|−

2n
p′

)p

dx

) 1
p

≤ c

(∫ ∞

0
v

(
1
τ

)q 1
τ2

(∫
{B(0,τ)

g(x)dx

)q

dτ

) 1
q

. (5.3)

Consequently, the inequality (5.1) holds for all non-negative measurable g on
Rn if and only if the inequality (5.3) holds for all non-negative measurable g
on Rn. We deduce from Theorem 4.1 that the inequality (5.1) holds for all
non-negative measurable g on Rn if and only if

sup
t∈(0,∞)

(∫
B(0,t)

(
ω

(
x

|x|2

)
|x|−

2n
p′

)p′

dx

) 1
p′ (∫ t

0
v

(
1
τ

)q 1
τ2

dτ

)− 1
q

< +∞,

that is,
sup

t∈(0,∞)
‖w‖

Lp′ (
{B(0,t))

‖υ‖−1
Lq(t,∞) < +∞. (5.4)

�

Remark 5.2. Let B1 be the number defined in Theorem 5.1. If p = 1, then

B1 =
∥∥∥w(x)‖u‖−1

Lq(|x|,∞)

∥∥∥
L∞(Rn)

.

Indeed, using the idea of the proof of Theorem 5.1, we obtain the result from
Remark 4.2.

Consider now the inequality (5.1) in the case when 0 < p ≤ 1, p < q ≤ +∞
and define r by

1
r

=
1
p
− 1

q
. (5.5)

As in Section 4, in such a case we shall write a condition characterizing the va-
lidity of the inequality (5.1) in a compact form involving the Lebesgue-Stieltjes
integral

∫
(a,b) f dh, say. In contrast to Section 4, now the Lebesgue-Stieltjes
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integral
∫
(a,b) f dh will be defined by a non-decreasing and left-continuous func-

tion h on I. We shall see in our next theorem that f(t) = ‖w‖r

Lp′ (
{B(0,t))

and

h(t) = ‖u‖−r
q,(t−,b),ν := lims→t− ‖u‖−r

Lq(s,∞), t ∈ (0,∞). However, it can happen
that ‖u‖Lq(t−,b) = 0 for all t ∈ (c, b) with some c ∈ (a, b) (provided that we omit
the trivial case when u = 0 a.e. on (a, b)). Then we have to explain what is
the meaning of the Lebesgue-Stieltjes integral since in such a case the function
h = +∞ on (c, b). To this end, we adopt the following convention.

Convention 5.3. Let I = (a, b) ⊆ R, f : I → [0,+∞] and h : I → [0,+∞].
Assume that h is non-decreasing and left-continuous on I. If h : I → [0,+∞),
then the symbol

∫
I f dh means the usual Lebesgue-Stieltjes integral (the mea-

sure λ associated to h is given by λ([α, β)) = h(β) − h(α) if [α, β) ⊂ (a, b) –
cf. (4.17)). However, if h = +∞ on some subinterval (c, b) with c ∈ I, then we
define

∫
I f dh only if f = 0 on [c, b) and we put∫

I
f dh =

∫
(a,c)

f dh.

Theorem 5.4. Assume that 0 < p ≤ 1, p < q ≤ +∞ and r is given by (5.5).
Let ω and u be a weight functions on Rn and (0,∞) respectively. Let u satisfy
‖u‖Lq(t,∞) < +∞ for all t ∈ (0,∞) and u 6= 0 a.e. on (0,∞). Then the
inequality (5.1) holds for all non-negative measurable if and only if

B2 :=

(∫
(0,∞)

‖w‖r

Lp′ (
{B(0,t))

d
(
‖u‖−r

Lq(t−,∞)

)) 1
r

+
‖w‖Lp′ (Rn)

‖u‖Lq(0,∞)
< +∞.

The best possible constant c in (5.1) satisfies c ≈ B2.

Remark 5.5. Let q < +∞ in Theorem 5.4. Then

‖u‖Lq(t−,∞) = ‖u‖Lq(t,∞) for all t ∈ (0,∞),

which implies that

B2 =

(∫
(a,b)

‖w‖r

Lp′ (
{B(0,t))

d
(
‖u‖−r

Lq(t,∞)

)) 1
r

+
‖w‖Lp′ (Rn)

‖u‖Lq(0,∞)
.

Proof of Theorem 5.4. As in the proof of Theorem 5.1, one can show that the
inequality (5.1) holds if and only if the inequality (5.3) is satisfied for all non-
negative measurable g on Rn. Thus, by Theorem 4.4, the inequality (5.1) holds
if and only if∫

(0,∞)

(∫
B(0,t)

(
ω

(
x

|x|2

)
|x|−

2n
p′

)p′

dx

) r
p′

d

(
−
∫

(0,t)
v

(
1
τ

)q 1
τ2

dτ

)− r
q

 1
r

+

(∫
Rn

(
ω
(

x
|x|2

)
|x|−

2n
p′
)p′

dx

) 1
p′

(∫∞
0 v

(
1
τ

)q 1
τ2 dτ

) 1
q

< ∞,
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that is, (∫
(0,∞)

‖w‖r

Lp′ (
{B(0,t))

d
(
‖u‖−r

Lq(t−,∞)

)) 1
r

+
‖w‖Lp′ (Rn)

‖u‖Lq(0,∞)
< +∞.

�
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