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Abstract

The Balancing Domain Decomposition by Constraints (BDDC)
method has evolved quite fast since its introduction in 2003, as the primal
counterpart to the earlier FETI-DP method. Recent results have shown
close connection of these methods and theoretically supported equivalent
rate of convergence. In both methods, a fundamental role is played by
the coarse space. Optimal choice of constraints on continuity of the
coarse space is still not a satisfactorily solved problem. The usual basic
choice is a ‘minimal’ set of coarse nodes (sometimes called corners), that
assures invertibility of local subdomain problems and also of the global
coarse problem. However, this set alone does not suffice for optimal
preconditioning in 3D. For this reason, continuity of some generalized
degrees of freedom, such as average values on edges or faces of subdomains,
have to be added. While theoretically correct, this approach does not
easily offer a flexible size of desired coarse problem. In our contribution,
we compare this approach with adding more coarse nodes into the coarse
problem, which is technically simpler and allows flexible setting of desired
approximation.

1 Introduction

The Balancing Domain Decomposition based on Constraints (BDDC) is
a numerically scalable, nonoverlapping (substructuring), primary domain
decomposition method introduced in 2003 by Dohrmann [4]. Its algebraic theory
developed by Mandel, Dohrmann and Tezaur in [14] demonstrates close relation
to FETI-DP introduced by Farhat, Lesoinne and Pierson [5]: the eigenvalues of
the preconditioned problem in BDDC and FETI-DP are nearly the same (see
also [2], [13] and [16] for simplified proofs). Thus the performance of BDDC
and FETI-DP is in principle the same, and some theoretical results obtained
for one method apply readily to the other.

The coarse space, defined by continuity constraints across the interface
(or coarse degrees of freedom), is essential for performance of both methods.
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A historical overview of an evolution of the concept of the coarse space is
presented by Widlund in [21]. The easiest choice of coarse degrees of freedom are
node constraints and the usual basic choice is a set of coarse nodes (sometimes
called corners), ‘minimal’ in the sense that it assures invertibility of local
subdomain problems and also the global coarse problem. For 2D problems
this choice ensures good convergence properties. However, an efficient BDDC
method for 3D elliptic problems requires also constraints on some generalized
degrees of freedom, such as average values on edges or faces of subdomains.
This fact was first discovered for FETI-DP: experimentally observed in Farhat,
Lesoinne and Pierson [5] and theoretically supported by Klawonn, Widlund and
Dryja in [11]. These observations apply also to BDDC because of the equivalence
between the methods.

Optimal choice of constraints on continuity of the coarse space is still
not a satisfactorily solved problem. Related work on choice of the coarse
degrees of freedom has focused on selecting a small and effective coarse space.
An algorithm for selecting the smallest set of coarse nodes to avoid coarse
mechanism is described by Lesoinne in [12]. Another algorithm based already
on pairs of subdomains was given by Dohrmann in [4]. This task has been
recently further discussed by Brož and Kruis in [3] for 2D case. Klawonn and
Widlund in [9] and [10] minimize a set of more general coarse degrees of freedom
(like weighted averages over edges and faces) to achieve optimal convergence
estimates, introducing concept of an acceptable path. Adaptive selection of
coarse degrees of freedom based on local estimates using eigenvectors associated
with faces is described by Mandel and Soused́ık in [15].

In this paper, we explore the potential of adding more coarse nodes into
the coarse problem, which is technically simpler, easily parallelizable and allows
flexible setting of desired approximation. The main contribution is proposing
a new algorithm for selection of corners. It is based on the idea of loosening
the requirement of ‘minimal’ selection and motivated by the observation that
although the earlier selection algorithms lead to invertible subdomain problems
and the coarse problem, the performance of the BDDC preconditioner may be
cheaply but considerably improved by selecting more corners, as presented by
Š́ıstek et al. in [19]. Numerical experiments on industrial 3D elasticity problems
show that this approach is able to considerably speed up the computation.

2 BDDC method

After a discretization of a linearized partial differential equation of elliptic type
in a given domain Ω by means of finite element method (FEM), a system of
linear algebraic equations

Ax = f (1)

with a symmetric positive definite matrix A and a right-hand side f is solved
for the unknown vector x. Components of x represent function values at mesh
nodes and they are often called degrees of freedom. In 3D linear elasticity, there
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are 3 unknown values of displacement (3 degrees of freedom) at every mesh
node.

The first step in BDDC method is the reduction of the problem to the
interface. This is quite standard and described in the literature, e.g., Toselli
and Widlund [20]: the underlying discretized (meshed) domain Ω is split into
N nonoverlapping subdomains (also called substructures) Ωi, i = 1, . . . , N
with common interface Γ and problem (1) is reduced to the Schur complement
problem with respect to interface

Su = g (2)

with a symmetric positive definite matrix S. The vector u now represents the
subset of degrees of freedom in x that are on the interface Γ. Solution u of the
problem (2) can be also represented as the minimum of the functional

1
2
uTSu− uTg → min , u ∈ Ŵ (3)

on the space Ŵ of unknowns on the interface Γ. The space Ŵ can be identified
with the space of discrete harmonic functions, that are fully determined by
their values of unknowns on the interface Γ and have minimal energy on every
subdomain.

The problem (2) is then solved by the preconditioned conjugate gradient
(PCG) method, for which BDDC acts as the preconditioner. The main idea
of the BDDC method is shortly described bellow. More details, together with
connection to FETI-DP, can be found in Mandel, Dohrmann and Tezaur [14] or
Mandel and Soused́ık [16].

A preconditioner M of a system (2) should be some approximation of S−1

such that obtaining a preconditioned residual p = Mr can be considerably easier
than solving the original problem (2). Construction of the BDDC preconditioner
is based on the idea that instead of minimizing (3) on the space Ŵ , which
represents solving the system (2), the minimization is performed on some larger
space W̃ such that Ŵ ⊂ W̃ :

1
2
ũTS̃ũ− ũTg̃ → min , ũ ∈ W̃ , (4)

where S̃ is a symmetric positive definite extension of S to W̃ and g̃ is an
extension of g. The space W̃ has to be chosen so that the symmetric positive
definite extension S̃ on W̃ exists, that solving the problem (4) is considerably
easier than solving the original problem (3) and at the same time the solution of
(4) is still a good approximation of the solution of the problem (3). The BDDC
preconditioner is then defined as

M = ES̃−1ET , (5)

where E represents a projection from W̃ onto Ŵ realized by a kind of averaging.
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3 Coarse degrees of freedom

In BDDC, the space W̃ is specified by relaxing the requirement of the continuity
of discrete harmonic functions across the interface. The functions of W̃ are
forced to be continuous at selected degrees of freedom only, called coarse degrees
of freedom. In this paper, we focus on the simplest choice of coarse degrees of
freedom, which is a function value at a selected node on the interface. Such node
is then called coarse node or corner. More general coarse degrees of freedom are
commented at the end of this section and are considered in computations.

In terms of mechanics, the transition from Ŵ to W̃ can be interpreted
as making incisions into the continuous function along the interface, leaving
the function continuous across the interface only at the corners. A schematic
illustration of the continuity constraints is depicted in Figure 1: functions from
Ŵ are continuous across the interface, functions from W̃ are continuous only at
selected coarse nodes.

The space W̃ can be decomposed as S̃-orthogonal direct sum

W̃ = W̃1 ⊕ · · · ⊕ W̃N ⊕ W̃C , (6)

where W̃i are local, subdomain spaces and W̃C is the global coarse space, defined
as the S̃-orthogonal complement of all spaces W̃i, i.e.
wC ∈ W̃C ⇔ wT

C S̃w = 0 ∀w ∈ W̃i, i = 1, . . . , N .
Functions from W̃i can have nonzero values only in Ωi except for coarse

degrees of freedom. They have zero values at coarse degrees of freedom and
they are fully determined by degrees of freedom on Γ and a discrete harmonic
condition in interiors of subdomains. Similarly, functions from W̃C are fully
determined by their values at coarse degrees of freedom (where they are
continuous) and by a discrete harmonic condition in interiors of subdomains
and on the rest of the interface (i.e. everywhere apart from the coarse nodes).
Functions from the spaces W̃C and W̃i are generally discontinuous across Γ
outside the corners.

According to decomposition (6), solution of the problem (4) can now be
split into solution of N local subdomain problems on the spaces W̃i and one
global coarse problem on the coarse space W̃C . All these problems are mutually
independent and so can be naturally parallelized.

Coarse degrees of freedom have to be selected so that stable invertibility of
both the coarse problem and the local problems is assured. Important role of
the coarse space is to assure scalability by global error propagation over the
whole domain. It was shown that while for 2D elasticity problems the BDDC
(or FETI-DP) preconditioner is scalable for coarse space defined by coarse nodes
(corners) only, in 3D elasticity problems more general coarse degrees of freedom,
such as (weighted) average values over edges and faces, need to be used in order
to achieve the scalability, see e.g. Toselli and Widlund [20].

Choice of the coarse degrees of freedom has a great impact on the
performance of the preconditioner M. The more coarse degrees of freedom are
chosen, the more difficult is to obtain the solution of (4), which, on the other
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hand, is then closer to the solution of the original problem (3). In the extreme
case of selecting all interface nodes as coarse, W̃C ≡ W̃ ≡ Ŵ , coarse problem
becomes the original problem (3) and M ≡ S−1. In the opposite extreme, if no
coarse degrees of freedom are selected, W̃C is empty and solution of (4) splits
to N local problems only, some of which might not be invertible. Thus, the
optimal choice of the coarse space lies somewhere in-between.

4 Geometry and selection of the coarse space in
3D

The interface Γ in 3 dimensions can be specified as a set of nodes belonging to
at least two subdomains (subdomains are considered as closed sets). It consists
of subdomain faces, edges and vertices. While there is an intuitive geometric
notion what these three entities mean in a simple case of a cubic domain divided
into cubic subdomains, there is no unique exact classification in more general
case of domain with complicated geometry and subdomains obtained by a graph
partitioning tool. We use a classification presented by Klawonn and Rheinbach
in [8] in a little simplified form, which does not assume knowledge of boundary
of the domain and is easy to implement:

Definition 1

• a face contains all nodes shared by the same two subdomains,

• an edge contains nodes shared by the same more than two subdomains,

• a vertex is a degenerated edge with only one node.

Then every node of the interface belongs to just one of the entities defined
above. Note that all faces and edges are open sets in the sense that a face
does not contain its boundary and an edge does not contain its endpoints. Two
subdomains are called adjacent if they share a face.

However, this classification does not reproduce our intuition in the case of
cubic subdomains, as can be seen in Figure 2: for instance the interface of
a domain consisting of two cubic subdomains has neither vertex nor edge, just
one face (the leftmost case in Figure 2). Different definitions of faces and edges
are discussed by Klawonn and Rheinbach in [7, Section 2].

In practice, there are often not enough vertices, edges or faces for satisfactory
number of constraints. We have found it useful to introduce one additional
entity:

Definition 2

• a corner is any interface node selected as coarse.

In implementations of the BDDC method, it is often customary to
distinguish between the following two kinds of constraints on continuity across
interface.
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Node constraints - corners
The most obvious choice of coarse degrees of freedom are node constraints (at
corners). The basic choice is a set of corners, that assures invertibility of local
subdomain problems and also the global coarse problem. This is often put as
a requirement on their selection (e.g. in [4], [19]).

Although vertices provide a good initial set of corners, they often do not
suffice for assuring invertibility of subdomain problems and/or of the coarse
problem (cf. Figure 2), and other constraints need to be added. When other
nodes are selected as corners, they have to be excluded from corresponding faces
or edges, so that every interface node is either a corner, or belongs to a face or
an edge.

Corner constraints are not as efficient as constraints on averages on edges
or faces, nevertheless they can be used as a substitute for these constraints, if
enough corners are employed. Figure 6 left illustrates the typical dependence
of the condition number of the preconditioned problem on number of corners
randomly selected from the interface, starting from some basic set. For small
numbers of corners, we can observe poor performance of the preconditioner even
though all system matrices are invertible. Then, after a typical sudden drop,
the condition number improves only slightly with adding more corners. Number
of iterations reproduce this dependence, see Figure 6 centre.

Improving convergence by adding more corners leads to a larger coarse
problem than adding averages on faces or edges, on the other hand, its
implementation is straightforward and its scaling is easy to maintain.

For 2D problems, the basic set of corner constraints already ensures good
convergence properties. Although an efficient BDDC method for 3D elliptic
problems requires also constraints on some generalized degrees of freedom, such
as average values on edges or faces of subdomains described below, for many
industrial problems this simple approach also leads to good results.

Constraints on averages over edges and faces
General coarse degrees of freedom beside corners can be constructed as any
linear combinations of function values at nodes belonging to one face or one edge.
This type of constraints is required for both BDDC and FETI-DP methods in
three dimensions, if one expects the optimal polylogarithmic bound on condition
number κ of the preconditioned operator

κ(MS) ≤ const.
(

1 + log
H

h

)2

, (7)

where H is the subdomain size and h is the finite element size (see [11]).
One of the standard choices is an arithmetic average over unknowns

separately for each component of displacement leading to three constraints in 3D
elasticity. We have tested this standard choice applied to all edges, to all faces,
or both. More sophisticated methods of weighted averaging were developed by
Mandel and Soused́ık [15] or Klawonn and Widlund [10].
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5 Selection of the basic set of corners

In this section, we concentrate on the selection of the basic set of corners that
leads to positive definiteness of matrix S̃ in (4). This task is equivalent to
assuring invertibility of both local subdomain problems and the global coarse
problem only by corner constraints, which is often required by implementations
(cf. [4], [19]). Therefore, we investigate selection of corners independently of
enforcing constraints on general coarse degrees of freedom.

From the mechanical point of view, the question of assuring invertibility of
local subdomain problems corresponds to enforcing enough boundary conditions
on a body to fix rigid body modes, with subdomain playing the role of the body.
This goal is easily attained by selecting three nodes (not in a line) of the interface
of a subdomain as corners.

It turns out, that the more difficult task is assuring invertibility of the coarse
matrix since selection with respect to subdomain problems only may still lead to
mechanisms in the coarse problem (see [12]). To see this, one can simply think
of a domain divided into subdomains in a linear fashion. Figure 3 illustrates this
on a 2D case, where two corners for each subdomain are sufficient for invertibility
of subdomain stiffness matrices.

An algorithm attempting to select the smallest set of coarse nodes to avoid
coarse mechanisms was given by Lesoinne in [12]. Minimization of the number
of corners is obtained mainly by favouring already selected corners. Thus, it is
serial in its nature.

Another algorithm for selecting corners was described already by Dohrmann
in [4]. It is based on the investigation of all possible neighbourings between
substructures and selecting three corners from each such set, that maximize
the area of a triangle with corners at its vertices. However, this algorithm is
based on an incomplete classification of interface into vertices, edges and faces,
which does not differentiate between the last two groups. Also this algorithm
favourizes already selected corners by selecting vertices in the interface as the
initial vertices of the triangle to be maximized. Nevertheless, it has provided a
good starting point for the new proposed algorithm.

The third algorithm, which is based on selection of corners along edges, was
described in [18]. This idea is inspired by the definition of corners as end-points
of edges by Klawonn and Widlund [9]. Although it was successfully used in
a number of practical computations, it may fail to produce a mechanism-free
coarse problem in the case of divisions where no edges are present (cf. the
leftmost case in Figure 2).

The pressure on low number of corners inherent to all these algorithms is
motivated by the fact, that low number of corners results in turn in a small size
of the matrix of the coarse problem and its cheap factorization. However, it has
been observed on a number of experiments (e.g. [19], also Section 7 in this paper)
that this motivation may be misleading, and in fact, larger sets are preferable
for the performance of the preconditioner often resulting in much lower number
of PCG iterations. It has been also shown, that using more corners may lead to
a considerable reduction of the computational time in spite of the longer time
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spent in factorization of the larger matrix of the coarse problem, even in the
case of considering averages on edges and faces.

Based on these observations and experience with the algorithms, we see
several ideas that the new proposed algorithm should reflect:

1. selection with respect to faces (by Definition 1) as these are the basic
building blocks of interface in 3D structures (Figure 2),

2. provide larger set of corners than the previous algorithms as this usually
leads to much better preconditioning,

3. independence of selection subdomain by subdomain and of order of going
through subdomains (better parallelization).

Points 2. and 3. are attained simply by not favouring already selected
corners and selecting optimal distribution of at least three corners between each
pair of substructures sharing a face, i.e. adjacent substructures, independently.

Let us now formalize this algorithm. For this, denote the set of faces of
subdomain Ωi as F(Ωi) and recall that N denotes the number of subdomains.
A face Fij between subdomains Ωi and Ωj is present in both sets F(Ωi) and
F(Ωj).

Algorithm 1 (Selection of corners for 3D elasticity problems)

1. Classify interface according to Definition 1 and use all vertices as corners.

2. For subdomain Ωi, i = 1, . . . , N ,

For face Fij ∈ F(Ωi), j = 1, size(F(Ωi)),

• find the set of all nodes shared with the adjacent subdomain (generally
larger set than the face under consideration, as it may contain also
edges and/or vertices),

• select (in 3D) three corners within each such set as:

(a) pick an arbitrary node of the set,
(b) find the first corner as the most remote node from the arbitrary

node,
(c) find the second corner as the most remote node from the first

corner,
(d) find the third corner as the node maximizing the area of the

triangle,

end,

end.

3. Select corners as the union of vertices and face-based selection above.

4. Remove selected corners from edges and faces.
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The algorithm assures that at least three corners are selected in an optimal
way with respect to each face. This situation is often not obtained by favouring
already selected corners, since corners optimally distributed for one face may be
far from optimal distribution with respect to another face. Presented algorithm
has also better potential for parallelization than algorithms favouring already
selected corners, as step 2 is inherently parallel. It typically provides more
corners than algorithms mentioned above, which we consider as an advantage
rather than a drawback.

Remark 1 A modification of Algorithm 1 favouring already selected corners is
simply possible by entering the face-based selection in any point (a), (b), (c),
or (d), depending on how many corners are already selected between adjacent
substructures. This modification leads to selection that is very similar to the
algorithm by Dohrmann in [4]. In our experience, this modification, referred to
as ‘minimal’, leads to lower number of corners, but also usually to worse results.
Thus, we recommend using the (full) version as stated in Algorithm 1.

Remark 2 A modification of Algorithm 1 for 2D problems (where no edges are
present) is simply possible by finishing the face-based selection with point (c).

6 Implementation

The BDDC method has been implemented on top of common components of
existing finite element codes, namely the frontal solver and the element stiffness
matrix generation. Such implementation requires only a minimal amount of
additional code. In our case, most of the program is written in Fortran 77, with
some parts in Fortran 90. The MPI library is used for parallelization.

The implementation relies on the separation of node constraints and
enforcing the rest by Lagrange multipliers, as suggested already in
Dohrmann [4]. One new aspect of the implementation is the use of reactions,
which come naturally from the frontal solver, to avoid custom coding.
An external parallel multifrontal solver MUMPS [1] is used for the solution
of the coarse problem, instead of the serial frontal solver, as dimension of the
coarse space could become a bottleneck.

Detailed description of the implementation can be found in [19], and some
more experiments were presented in [18].

7 Numerical results

Presented numerical results were computed on SGI Altix 4700 computer with
1.5 GHz Intel Itanium 2 processors (OS Linux) in Czech Technical University
Supercomputing Centre, Prague. For decompositions, we use the METIS graph
partitioner [6].

Three different industrial problems have been tested. The first one is
a problem of elasticity analysis of a turbine nozzle, through which the steam
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enters the turbine blades (Figure 4). The geometry is discretized using 2 696
quadratic elements, which leads to 40 254 unknowns. The second one is
a problem of elasticity analysis of a hip joint replacement which is loaded by
pressure from human body weight. This mesh consists of 33 186 quadratic
elements resulting in 544 734 unknowns. Both meshes are divided into 36
subdomains by METIS. The turbine nozzle problem was computed using 12
processors, for hip joint replacement 36 processors were used. The third problem
is stress analysis of a mine reel loaded by its own weight and the weight of the
steel rope (Figure 5). The mesh consists of 140 816 quadratic elements and
1 739 211 unknowns. It was divided into 1 024 subdomains by METIS. Problem
was computed using 32 processors. Decomposition characteristics of the three
industrial problems are summarized in Table 1.

Three algorithms for selecting the basic set of corners are tested: Algorithm 1
from Section 5 referred to as full, modified Algorithm 1 described in Remark 1
in Section 5 referred to as minimal, and the edge-based algorithm mentioned
in Section 5, inspired by [9] and described in [18], referred to as edge. The
number of PCG iterations was chosen as a measure of quality of the BDDC
preconditioning. Numbers of the basic sets of corners obtained by the three
algorithms for the three problems are recorded in Table 2 and corresponding
number of PCG iterations are summarized in Table 3. For the two smaller
problems (turbine nozzle and hip joint replacement), either constraints on
corners only (referred to as C ), or constraints on corners and all averages (over
all edges and faces) referred to as C+E+F are tested. For the larger problem
of mine reel, corner constraints alone turned out to be too weak to achieve a
reasonable convergence and the results are marked as ‘n/a’. The edge-based
algorithm did not work properly for hip joint replacement problem in the case
of the basic set of corners only, so the results are missing too.

As the basic sets of corners selected by different algorithms have different
numbers of corners, for a fair comparison of the algorithms we added more
corners selected randomly from the interface to the smaller sets in order to
achieve the same number of corners. Comparison of the algorithms using the
same number of corner constraints is summarized in Table 4.

Interesting results are obtained by adding more randomly selected corners
to the basic set in order to improve convergence (see Figures 7 – 9 left): it seems
that the initial choice of the basic set influences the convergence properties even
when many more randomly selected corners are added. Graphs on the right side
of these figures show that the best computational time is achieved for higher
numbers of corners than the basic sets for all problems tested and all algorithms
for selecting the basic set used.

It can be observed especially at the most difficult problem of mine reel
(Fig. 9), that the basic set of corners provided by the new algorithm in its
full version is much more efficient than the basic sets provided by the earlier
approaches and considerably reduces the computational time.
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8 Conclusion

It has been observed on a number of practical computations by the BDDC
method, that the effort to find the minimal set of corners might be misleading
and selecting more corners often considerably improves the performance of the
preconditioner and reduces the computational time.

This has been the main motivation for presenting a new approach to selecting
the basic set of corners, which is proposed in Section 5. It attempts to
combine advantages of previous algorithms and it is based on selection of corners
independently for each face, so it can be naturally parallelized. It does not aspire
to minimizing the number of selected corners that assure the invertibility of all
problems in BDDC and typically produces larger initial set of coarse nodes
than the other algorithms. We have seen this to be beneficial for all performed
computations.

Numerical experiments on three industrial problems show that for basic sets
of corners, this approach gives better results than the other two algorithms used
for comparison in all three tested problems. When more corners are added,
better results are obtained in two of the problems (turbine nozzle and mine
reel) and comparable results in the third case (hip joint replacement).

We are aware that for very large problems the solution of the coarse problem
might eventually dominate the computation and another approach than a
(parallel) direct solver could be necessary. In such cases, multilevel extension
of the BDDC method (e.g. [17]) seems to be a promising way. However, we
could have observed even for the largest test problem of the mine reel, that we
have not reached this computational bottleneck when adding more corners into
the coarse problem, and the curve of computational time with respect to the
number of corners is still decreasing. This bottleneck is also pushed farther by
the everlasting advances in parallel direct solvers.
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Ŵ W̃

Figure 1: A schematic illustration of the continuity constraints: functions from
Ŵ are continuous across the interface (left), functions from W̃ are continuous
only at corners, marked by circles (centre and right, for two different choices of
W̃ ).

1 face
4 faces
1 edge

12 faces
6 edges
1 vertex

Figure 2: Examples of classification of the interface nodes as faces, edges and
vertices according to Definition 1.

problem subd. vertices edges faces intf. nodes all nodes
Turbine nozzle 36 6 60 101 2 714 13 418

Hip replacement 36 1 19 78 9 222 181 578
Mine reel 1 024 2 451 1 209 4 164 117 113 579 737

Table 1: Decomposition characteristics of the tested problems.
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Figure 3: A 2D example of mechanism in the coarse problem for serial division
into four subdomains, red dots denote corners.

Figure 4: Turbine nozzle problem, 36 subdomains, initial set of 218 corners
selected by the full version of Algorithm 1 marked by balls.

problem full min edge
Turbine nozzle 218 145 115

Hip replacement 227 189 66
Mine reel 7 864 6 183 4 152

Table 2: Number of corners in the basic set selected by different algorithms.
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Figure 5: Mine reel problem, finite element mesh (left) and a detail of the steel
rope with division into subdomains (right).
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Figure 6: Typical dependence of the condition number (left), the number of
iterations of the PCG (centre) and the total computational time (right) on the
number of corner constraints. Dashed line - corner constraints only, full line -
corner constraints and all face and edge averages. Hip joint replacement, 33 186
quadratic elements, 36 subdomains.

C C+E+F
full min edge full min edge

Turbine nozzle 38 49 73 24 27 29
Hip replacement 95 99 n/a 50 52 n/a

Mine reel n/a n/a n/a 935 1 841 4 637

Table 3: Number of PCG iterations needed for convergence for different
algorithms of selecting the basic set of corners and different constraint type.
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C C+E+F
full min edge full min edge

Turbine nozzle 38 41 42 24 25 26
Hip replacement 95 91 > 138 50 50 61

Mine reel n/a n/a n/a 935 1 674 ≈1 800

Table 4: Number of PCG iterations needed for convergence for different
algorithms of selecting the basic set of corners and different constraint type.
For every problem, different basic sets were completed to the same number of
corners by adding randomly selected corners.
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Figure 7: Turbine nozzle problem, 36 subdomains, corner constraints only.
Dependence of the number of iterations (left) and the total computational
time (right) on the number of corner constraints. Full line - full version of
the Algorithm 1, dash-dotted line - minimalistic version, dashed line - the edge
based algorithm.
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Figure 8: Hip joint replacement problem, 36 subdomains, corner constraints
only. Dependence of the number of iterations (left) and the total computational
time (right) on the number of corner constraints. Full line - full version of
the Algorithm 1, dash-dotted line - minimalistic version, dashed line - the edge
based algorithm.

0 1 2 3 4

x 10
4

0

1000

2000

3000

4000

5000

number of corners

nu
m

be
r 

of
 it

er
at

io
ns

 

 

full
min
edge−based

0 1 2 3 4

x 10
4

1000

2000

3000

4000

5000

6000

7000

8000

number of corners

to
ta

l t
im

e

 

 

full
min
edge−based

Figure 9: Mine reel problem, 1024 subdomains, corner and all edge and face
constraints. A dependence of the number of iterations (left) and the total
computational time (right) on the number of corner constraints. Full line -
full version of the Algorithm 1, dash-dotted line - minimalistic version, dashed
line - the edge based algorithm.
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