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Abstract

We show that the trajectories of a conserved phase-field model with memory
are compact in the space of continuous functions and, for an exponential re-
laxation kernel, we establish the convergence of solutions to a single stationary
state as time goes to infinity. In the latter case, we also estimate rate of decay
to equilibrium.

1 Introduction

This paper is devoted to the study of asymptotic properties and convergence to equi-
libria of conserved phase-field systems of Caginalp type, where the classical Fourier
law q = −k0∇ϑ (k0 > 0 is a so called instantaneous heat conductivity coefficient) is
replaced by the following nonlocal condition

q(t,x) = −
∫ t

−∞
k(t− s)∇ϑ(s, x). (1.1)

The relation (1.1) states that the heat flux depends only on the temporal history
of the temperature gradient; this turns out to be compatible with classical thermody-
namical laws, and entails that ϑ propagates with a finite speed, cf. Gurtin and Pipkin
[17], Joseph and Preziosi [20]. We will study a fourth order conserved system, which
reads as follows:

∂t

(
ϑ + λ(χ)

)
+ div q = f, (1.2)

τ∂tχ = −ξ2∆(ξ2∆χ−W ′(χ) + λ′(χ)ϑ). (1.3)

Here ϑ and χ designate the (relative) temperature and the order parameter (phase
variable) respectively, W is typically a double-well potential, λ′ represents the latent
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heat, f is a heat source, τ > 0 and ξ > 0 stand for a relaxation time and correlation
length, respectively, and the heat flux q is given by (1.1).

The material occupies a bounded domain Ω ⊂ R3, with a sufficiently smooth
boundary ∂Ω, and the system (1.1) - (1.3) is complemented by a homogeneous Neu-
mann boundary condition for both χ, ϑ, and also for the so called chemical potential
−ξ2∆χ + W ′(χ)− λ′(χ)ϑ, which can be expressed by

∇χ · n|∂Ω = ∇ϑ · n|∂Ω = ∇(∆χ) · n|∂Ω = 0, (1.4)

with n, the outer normal vector. For the sake of simplicity, we set the constants and
the measure of the set Ω equal to 1:

τ = ξ = 1, |Ω| = 1. (1.5)

Systems of the same or comparable type, conserved or nonconserved, with or
without memory terms, have been studied by many authors. See [1-5, 8, 10-14, 20,
23]. The questions of well-posedness and existence of finite dimension attractors
were considered in [14], [15], and the dissipativity of the system was studied in [24].
In particular, the long-time behavior of solutions seems to be well understood and
the equilibrium (stationary) solutions have been identified as the only candidates to
belong to the ω−limit set of each individual trajectory (cf. [10, Theorem 2.2]). More
specifically, for W ′(χ) = χ3 − χ, λ′(χ) = const = λ0, the functions (ϑ∞, χ∞) in the
ω-limit set ω(ϑ0, χ0) satisfy the following equations:

ϑ∞ =
∫

Ω

ϑ(0) dx +
∫ ∞

0

∫

Ω

g dx dt, (1.6)

−∆χ∞ + W ′(χ∞)− λ0ϑ∞ = w∞, n · ∇χ∞
∣∣∣
∂Ω

= 0, (1.7)
∫

Ω

χ∞ dx =
∫

Ω

χ(0) dx, w∞ =
∫

Ω

W ′(χ∞) dx− λ0ϑ∞, (1.8)

where g(t, x) = f(t, x) +
∫ 0

−∞ k(t− s)∆ϑ(s) ds.
If the ω-limit set consists of only a finite number of solutions, then the compactness

of trajectories implies that any solution (χ(t), ϑ(t)) converges, as t → ∞, to a single
stationary state. See, e.g., [1] for such a result for a non-conserved system in the
one-dimensional case. However, the structure of the set of stationary solutions for
a general domain may be quite complicated; in particular, the set in question may
contain a continuum of nonradial solutions if Ω is a ball or an annulus. If this is the
case, it seems highly nontrivial to decide whether or not the solutions converge to a
single stationary state. It is well-known that nonconvergent trajectories may occur
even in finite-dimensional dynamical systems (cf. Aulbach [6]). Similar examples for
semilinear parabolic equations were derived by Poláčik and Rybakowski [22]. Positive
convergence results for the phase-field system (1.2), (1.3) and its nonconserved variant,
with the heat flux given by

q = −kI∇ϑ−
∫ ∞

0

k(s)∇ϑ(t− s) ds

were proved in [3], [4], [5] and [2], respectively. The positive instantaneous heat
conductivity coefficient kI was crucial in the proofs. The compactness of trajectories
and the ω−limit sets for a heat law of the form (1.1), with a positive type kernel were
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studied by Colli and Laurençot [11] in the non-conserved case, and Colli et al. [10]
for (1.1)-(1.3). Convergence for the Cattaneo-Maxwel heat conduction law with an
additional inertial term χtt and a strong dissipative term α∆χt, α > 0, but without
a heat source was proved in [16].

In the present paper, we extend the asymptotic compactness result obtained in
[10] to a broader class of nonlinearities, and show that the trajectories of the order
parameter are precompact even in the space of continuous functions. Moreover, for a
constant latent heat (which implies that limit temperature is uniquely defined), and
an exponential kernel k, we prove the convergence of the whole trajectory to a single
stationary state.

The paper is organized as follows. In Section 2, we list our assumptions and
state the main results. In Section 3, we derive some a priori estimates and prove the
compactness result. The decay of the temperature and the heat flux, together with
uniform bounds of solutions are established in Section 4. Finally, the convergence of
the order parameter is proved in Section 5, and its convergence rate is estimated in
Section 6.

2 Preliminaries and main results

Let H = L2(Ω), H = L2(Ω)3, V = W 1,2(Ω), V = W1,2(Ω)3, U = W 2,2(Ω). We
denote by (·, ·) the inner product in H, by 〈·, ·〉 the duality pairing between V and
its dual V ′, and by ‖ · ‖ the norm in H or H. We will also use V0 to designate the
subspace of all functions v ∈ V with null average, i.e.,

∫
Ω

v dx = 0.
We start with the homogeneous Neumann problem associated with the Laplace

equation. For all 1 < q < ∞, define a linear operator Aq on the Banach space Lq(Ω)
by

D(Aq) = {v ∈ W 2,q(Ω) | ∇v · n = 0 on ∂Ω}, Aqv = −∆v. (2.1)

The unique solution v of the problem



−∆v = l in Ω,

∇v · ~n = 0 on ∂Ω,
∫
Ω

v dx = 0,
(2.2)

for l ∈ Lq(Ω),
∫
Ω

l = 0 will be denoted by v = A−1
q [l]. Note that (after a standard

extension), we may write

A−1
q Aqv = v −

∫

Ω

v for any v ∈ Lq(Ω). (2.3)

For simplicity, we will omit the subscript 2, and write A2 = A, A−1
2 = A−1. We also

have ∫

Ω

∇A−1[v] · ∇w ≤ c‖v‖V ′ ‖w‖V for all v ∈ V ′, w ∈ V0, (2.4)

∫

Ω

|∇A−1[v]|2 = 〈v,A−1[v]〉 is equivalent to ‖v‖2V ′ for all v ∈ V ′ satisfying 〈v, 1〉 = 0.

(2.5)
We will assume that the past history of the temperature, χ(0), and the heat source

are given such that
ϑ(0) ∈ H, χ(0) ∈ V, (2.6)
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h(t) =
∫ 0

−∞
k(t− s)∆ϑ(s) ds, g = h + f ∈ L1(0,+∞; H), (2.7)

and the kernel k satisfies

k ∈ L1(0,∞),
∫ ∞

0

k(s) ds 6= 0, (2.8)

k is of positive type, i.e.,
∫ T

0

∫ t

0

k(t− s)v(s) ds v(t) dt ≥ 0 for all v ∈ L2(0, T ) and all T > 0. (2.9)

The free energy function W : R 7→ R and the function λ will be supposed to satisfy
the following hypotheses:

W (z) ≥ 0 for all z ≥ 0, (2.10)

W ′(z)z > 0 for |z| > R > 0, (2.11)

W ′(z)z ≥ c1W (z)− c2, z ∈ R, (2.12)

W ′′(z) ≥ −c3, (2.13)

W ∈ C3+µ(R), |W ′′(z)| ≤ c4(1 + |z|p), 1 ≤ p < 4, (2.14)

λ ∈ C1(R), |λ′(z)| ≤ c5, (2.15)

where cj , j = 1, ...5 denote positive constants. Remark that the classical double-well
potential

W (z) = (z2 − 1)2/4 (2.16)

satisfies (2.10)-(2.14). The existence and uniqueness of global solutions in the class

ϑ ∈ H1(0, T ; U ′)∩L∞(0, T ;H), χ ∈ H1(0, T ; V ′)∩L∞(0, T ; V )∩L2(0, T ; U) (2.17)

was proved in [21], [10] for W as in (2.16) and λ′(z) = const using Faedo-Galerkin
approximations. It will be clear from our a priori estimates that these results can also
be achieved for the potentials and nonlinear latent heat satisfying (2.10)-(2.15). In
what follows, we use (ϑ, χ) to designate a solution of (1.2)-(1.4) that satisfies (2.17).

The compactness of trajectories of the order parameter χ in the space C(Ω) is
stated below:

Theorem 2.1 Let (2.6)-(2.15) be satisfied. Then, the trajectory ∪t≥1χ(t) is pre-
compact in the space C(Ω) ∩ V , and ∪t≥1ϑ(t) is precompact in L2

weak(Ω).

The proof of this theorem is given in Section 3.
To derive the convergence of the order parameter to a single stationary state, we

need an exponential kernel, a constant latent heat (which we set to be 1 for simplicity),
and a stronger assumption on the forcing term f , namely:

k(t) = e−at, a > 0, (2.18)

λ(χ) = χ (2.19)
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sup
t≥T

t1+δ

∫ ∞

t

‖f(s)‖2 ds < ∞ for some T > 0 and δ > 0. (2.20)

In addition, we require f ∈ L2
loc([0,∞); V ) with

∫ t+1

t

‖f(s)‖2V ds ≤ cf , t > 0. (2.21)

Now, we can formulate the main result of our paper:

Theorem 2.2 Let assumptions (2.7), (2.10)-(2.14), (2.18)-(2.21) be satisfied. More-
over, suppose that W is real analytic, ϑ(0) ∈ V, χ(0) ∈ U, q(0) ∈ V and q(0) ·n = 0
on ∂Ω. Then q(t) → 0 in H, and

ϑ(t) → ϑ∞ in H, (2.22)

χ(t) → χ∞ in C(Ω), (2.23)

as t →∞, where ϑ∞, χ∞ satisfy (1.6)-(1.8).

The proof of this result is carried out in Sections 4 and 5.

3 A priori estimates. Asymptotic compactness

In this section we prove Theorem 2.1. From now on, C will denote a generic positive
constant, which may vary from line to line. As the integral mean of χ is a conserved
quantity, we normalize the initial value χ(0) such that

∫
Ω

χ(0) dx = 0. Then
∫

Ω

χ(t) dx = 0 for all t ≥ 0. (3.1)

Multiplying equation (1.3) by A−1[χt] and integrating the resulting expression by
parts, we get

d
dt

( ∫

Ω

1
2
|∇χ|2 + W (χ) dx

)
+

∫

Ω

|A− 1
2 [χt]|2 dx−

∫

Ω

ϑλ(χ)t dx = 0. (3.2)

Then we test (1.2) by ϑ, to obtain:

d
dt

1
2
‖ϑ‖2L2(Ω) +

∫

Ω

∫ t

0

k(s)∇ϑ(t− s) ds∇ϑ(t) dx +
∫

Ω

ϑλ(χ)t dx =
∫

Ω

gϑ dx, (3.3)

where g = f + h. If we add (3.2) and (3.3), integrate with respect to t and take (2.9)
into account, we obtain the energy inequality

1
2
‖∇χ(t)‖2 +

1
2
‖ϑ(t)‖2 +

∫

Ω

W (χ(t)) +
∫ t

0

‖χt(s) ds‖2V ′

≤
∫ t

0

∫

Ω

g(s)ϑ(s) ds +
1
2
‖ϑ(0)‖2 +

1
2
‖∇χ(0)‖2 +

∫

Ω

W (χ(0)). (3.4)

Now, applying a suitable version of Gronwall’s Lemma ([7, Lemme A4]) we arrive
at:
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Lemma 3.1 Let W, λ, k and g satisfy (2.7)-(2.15). Then, there exists E0 depending
only on the quantities

‖∇χ(0)‖, ‖ϑ(0)‖, ‖g‖L1(0,∞;H)

such that
sup
t>0

‖ϑ(t)‖+ sup
t>0

‖∇χ(t)‖ ≤ E0, (3.5)

∫ ∞

0

‖χt(t)‖2V ′ dt ≤ E0. (3.6)

Next, we multiply (1.4) by χ to obtain

d
dt

1
2
‖χ‖2 + ‖∆χ‖2 +

∫

Ω

W ′′(χ)|∇χ|2 dx = −
∫

Ω

λ′(χ)ϑ∆χ dx.

Consequently, (3.5),(2.13),(2.15), and the Poincaré and Young inequalities imply
∫ t+1

t

‖∆χ‖2 dτ ≤ E0 for any t ≥ 0. (3.7)

To improve estimates on χ, we write (1.3) as an evolutionary equation

∂χ

∂t
+ ∆2χ = ∆[W ′(χ)]−∆[λ′(χ)ϑ], (3.8)

and use maximal regularity and a bootstrap type argument, as in [4]. We sketch the
reasoning here for the reader’s convenience.

Let p ∈ [1, 4) and let W satisfy (2.14). We prove first that

χ ∈ Lr(t, t + 1; W 2,q1(Ω)), t ≥ 0, for any 1 ≤ r < ∞, q1 = min{2, 6/p}.

For this, we rewrite (3.8) in the abstract form

χt + A2
qχ = l; l = l1 + l2,

where
l1 = ∆[W ′(χ)]; l2 = −∆(λ′(χ)ϑ).

From (3.5) we know that l2 is bounded in L∞(t, t + 1;D(A−1)), uniformly for all
t ≥ 0. On the other hand, using (3.5) and the Sobolev imbedding V ⊂ L6(Ω), we
have χ ∈ L∞(0, τ ; L6(Ω)) for all τ > 0. From (2.14) we get W ′(χ) ∈ L∞(0, τ ;L

6
p (Ω)).

Hence, for q1 = min{2, 6
p}, we have, recalling (2.3),

‖l‖D(A−1
q1 ) = ‖A−1

q1
[l]‖Lq1 (Ω) = ‖[W ′(χ)− λ′(χ)ϑ]− 1

|Ω|
∫

Ω

[W ′(χ)− λ′(χ)ϑ] dx‖Lq1 (Ω)

≤ C
(
‖W ′(χ)‖Lq1 (Ω) + ‖ϑ‖Lq1 (Ω)

)
.

This implies that χ ∈ Lr(t, t + 1; W 2,q1(Ω)), r ≥ 1. Consequently, by the Sobolev
embedding theorem,

χ ∈ Lr(t, t + 1; Lq2(Ω)) with q2 =
3q1

3− 2q1
if 2q1 < 3, q2 = ∞ otherwise.

6



Next we argue by induction (bootstrap argument). We deduce from (2.14) that

W ′(χ) ∈ L
r
p (t, t + 1; L

q2
p (Ω)).

Remark that we have
q2

p
− q1 =

6
p(p− 4)

− 6
p

> 0

if p ∈ (4, 5), q2 = ∞ if p ≤ 4. Hence, after a finite number of steps we find that
χ ∈ Lr(t, t + 1; W 2,2(Ω)) = Lr(t, t + 1; U). Consequently,

χ ∈ Lr(t, t + 1; U) ⊂ Lr(t, t + 1; L∞(Ω)), t ≥ 0, for any 1 ≤ r < ∞. (3.9)

Also, by (3.8), χt ∈ Lr(t, t + 1; U ′) which implies

χ ∈ C
(
[t, t + 1];

(
U,U ′

)
θ

)
, with θ satisfying θ(1− 1

r
) >

1− θ

r
,

(that is, θ > 1
r ), where (., .)θ denotes the interpolation space (see, e.g., [23, Corollary 8,

page 90]). As r > 1 is arbitrary, we can choose θ small enough such that
(
U,U ′

)
θ

↪→
C(Ω), and the embedding is compact. Therefore

sup
t>0

‖χ(t)‖C(Ω) ≤ C∞. (3.10)

This implies that W ′′(χ), W ′′′(χ) are bounded, and ∇χ is bounded in Lr(t, t +
1; L6(Ω)) for all r, independently of t > 0. Then (cf. also (3.7)),

∫ t+1

t

‖∆W ′(χ(s))‖2 ds < C for all t > 0. (3.11)

The conclusion of Theorem 2.1 now follows on account of (3.9)-(3.11) and Lemma
3.1.

4 Decay and uniform bounds of solutions

To prove the convergence of solutions to problem (1.1)-(1.4), we take an exponential
kernel k and also consider a linear latent heat λ(χ) = λ0χ where, for simplicity, we
set λ0 = 1, i.e.,

k(t) = e−at (a > 0), λ(χ) = χ. (4.1)

The choice of a linear latent heat implies that the stationary temperature ϑ∞ is
uniquely defined by the initial datum and the heat source.

Then, we have

q(t, x) = −
∫ t

−∞
e−a(t−s)∇ϑ(s, x) ds,

and we can rewrite (1.1)-(1.3) as:

ϑt + χt +∇ · q = f, (4.2)

qt + aq +∇ϑ = 0, (4.3)
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χt + ∆
(
∆χ−W ′(χ) + ϑ

)
= 0. (4.4)

We will also assume that the boundary conditions (1.4) hold for t > 0 and

q(0) · n = 0 on ∂Ω. (4.5)

Taking advantage of equation (4.3), we get additional estimates. Our procedure
is just formal at this stage, but could be made rigorous by a density argument, e.g.,
via a Galerkin approximation scheme.

By (4.2), (4.3), we have

d
dt

∫

Ω

q · ∇ϑ dx =
∫

Ω

qt · ∇ϑ dx +
∫

Ω

q · ∇ϑt dx

= −a

∫

Ω

q · ∇ϑ dx− ‖∇ϑ‖2 −
∫

Ω

q · ∇χt dx + ‖∇ · q‖2 +
∫

Ω

q · ∇f dx.

An integration by parts and Young’s inequality yield

d
dt

∫

Ω

q · ∇ϑ dx + a

∫

Ω

q · ∇ϑ dx− 2‖∇ ·q‖2 + ‖∇ϑ‖2− 1
2
‖χt‖2− 1

2
‖f‖2 ≤ 0. (4.6)

Now, we test (4.2) by (−∆ϑ), (4.3) by (−∇∇ · q), and (4.4) by χt to obtain

d
dt

1
2
‖∇ϑ‖2 −

∫

Ω

χt∆ϑ dx−
∫

Ω

∇ · q∆ϑ dx =
∫

Ω

∇ϑ · ∇f dx, (4.7)

d
dt

1
2
‖∇ · q‖2 + a‖∇ · q‖2 +

∫

Ω

∇ · q∆ϑ dx = 0, (4.8)

d
dt

1
2
‖∆χ‖2 + ‖χt‖2 −

∫

Ω

∆W ′(χ)χt dx +
∫

Ω

χt∆ϑ dx = 0. (4.9)

Next, we chose α such that α < min( 1
2 , a − 2), multiply (4.6) by α, and add the

result to the sum of (4.7), (4.8) and (4.9) to get the following estimate:

1
2

d
dt

(
‖∇ϑ‖2+‖∇·q‖2+‖∆χ‖2+α

∫

Ω

q·∇ϑ dx
)
+C1

(
‖∇ϑ‖2+‖∇·q‖2+‖∆χ‖2+

∫

Ω

q·∇ϑ dx
)

≤ ‖∆W ′(χ)‖2 + ‖∆χ‖2 + C2‖f‖2V , (4.10)

where C1, C2 are suitable constants. On account to (3.7), (3.11), and (2.21) we derive
the boundedness of the function F , given by

F (t) = ‖∇ϑ(t)‖2 + ‖∇ · q(t)‖2 + ‖∆χ(t)‖2 + 2α

∫

Ω

q(t) · ∇ϑ(t) dx.

Noting that
1
2

(
‖∇ϑ(t)‖2 + ‖∇ · q(t)‖2 + ‖∆χ(t)‖2

)
≤ F (t),

we arrive at
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Lemma 4.1 Let the assumptions of Theorem 2 be satisfied. Moreover, let the initial
data satisfy ∇ϑ(0) ∈ H, ∇ · q(0) ∈ H, q(0) · n = 0, ∆χ(0) ∈ H. Then there exists a
constant E1 depending only on the quantities ‖∇ϑ(0)‖, ‖∇ ·q(0)‖ and ‖∆χ(0)‖ such
that

sup
t>0

‖∇ϑ(t)‖ ≤ E1, (4.11)

sup
t>0

‖∇ · q(t)‖ ≤ E1, (4.12)

sup
t>0

‖∆χ(t)‖ ≤ E1. (4.13)

Now, we can use the result proved in [10, Theorem 2.2], namely that

ϑ(t) → ϑ∞ weakly in H and strongly in V ′ as t →∞, (4.14)

where
v∞ =

∫

Ω

ϑ(0) +
∫ ∞

0

∫

Ω

g. (4.15)

This, together with Lemma 4.1 and (3.5), yields the strong convergence of ϑ in
H. Taking into account that

q(t, x) = −
∫ t

0

e−(t−s)∇ϑ(s, x) ds− e−tq(0), (4.16)

and applying (4.12), we get the strong convergence of q in H as well. Also, (4.13)
enables us to show that χ ∈ Lr(t, t+1; W 3,2(Ω)) for all t ≥ 1, with the norm bounded
independently of t > 1, and, as above, to conclude that the trajectory of χ is precom-
pact in U .

Lemma 4.2 Let the assumptions of Lemma 4.1 be satisfied. Then

ϑ → ϑ∞ in H, q → 0 in H as t →∞, (4.17)

∪t>1χ(t) is precompact in U. (4.18)

5 Convergence of the order parameter

In this section, we show that the time derivative of χ is integrable on some interval
(T, +∞), which will imply the convergence stated in Theorem 2.2. To this end, we
derive an energy inequality and apply a version of the ÃLojasiewicz inequality.

Denoting the integral mean of a function z by z =
∫
Ω

z dx, we can write (4.2) as:

(ϑ− ϑ)t + χt +∇q = f − f (5.1)

Reasoning as in the proof of the inequality (4.6), we deduce

d
dt

∫

Ω

q · ∇A−1[ϑ− ϑ] dx

+a

∫

Ω

q · ∇A−1[ϑ− ϑ] dx− 2‖q‖2 + ‖ϑ− ϑ‖2 − 1
2
‖χt‖2V ′ −

1
2
‖f − f‖2 ≤ 0. (5.2)
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Now, we multiply (5.1) by ϑ − ϑ, (4.3) by q, (4.4) by A−1[χt], (5.2) by a suitable
small constant α, and add the results to obtain:

d
dt

( ∫

Ω

1
2
|∇χ|2 + W (χ) dx +

1
2
(‖ϑ− ϑ‖2 + ‖q‖2)− α

∫

Ω

q · ∇A−1[ϑ− ϑ] dx
)

+C1

(
‖ϑ− ϑ‖2 + ‖q‖2 + ‖χt‖2V ′

)
≤ C2‖f − f‖2, (5.3)

with some constants C1, C2. At this point, we denote by I(z) the functional

I(z) =
∫

Ω

1
2
|∇z(x)|2 + W (z) dx, z ∈ V0,

take α small enough and, taking into account (4.17) and (2.20), we infer that I(χ(t)) →
I∞, and the limit I∞ = I(χ∞) for any element χ∞ in the ω−limit set of χ.

Integrating (5.3) from t to infinity, and employing Young’s inequality and Lemma
4.2 yields ∫ ∞

t

‖ϑ(s)− ϑ(s)‖2 + ‖q(s)‖2 + ‖χt(s)‖2V ′ ds

≤ C
(
I(χ(t))− I(χ∞) + ‖ϑ(t)− ϑ(t)‖2 + ‖q(t)‖2) +

∫ ∞

t

‖f(s)− f(s)‖2 ds
)
. (5.4)

Set

M1 = {t > T ; ‖χt(t)‖γ
V ′ ≤

∫ ∞

t

‖f(s)− f(s)‖2 ds}, M2 = (T,∞)\M1 (5.5)

for some
1 < γ < min{2, 1 + δ} (5.6)

and T, δ as in (2.20). Then
∫

M1

‖χt(t)‖V ′ dt ≤
∫

M1

(
2

∫ ∞

t

‖f(s)‖2 ds
) 1

γ

dt ≤ C

∫

M1

t−
1+δ

γ dt < ∞. (5.7)

Next, we prove that there exists τ ≥ T such that ‖χt‖V ′ is also integrable over
M2 ∩ (τ, +∞). To accomplish this, we need the following result, which is proved in
[13, Lemma 7.1]:

Lemma 5.1 Let Z ≥ 0 be a Lebesgue measurable function on (0,∞) such that

Z ∈ L2(0,∞), ‖Z‖L2(0,∞) ≤ Y,

and there exist β ∈ (1, 2), ξ > 0 and an open set M⊂ (0,∞) such that

(
∫ ∞

t

Z2(s) ds)β ≤ ξ Z2(t) for a.a. t ∈M. (5.8)

Then Z ∈ L1(M) and there exists a constant c = c(ξ, α, Y ) independent of M
such that ∫

M
Z(t) dt ≤ c.
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We take
Z2(s) = ‖ϑ(s)− ϑ(s)‖2 + ‖q(s)‖2 + ‖χt(s)‖2V ′ ,

and show that (5.8) holds for t ∈ M2 ∩ (τ, +∞), for a sufficiently large τ . Since the
trajectory of χ is uniformly bounded, we may suppose that W has been modified
outside the interval [−L,L], where |χ(t, x)| ≤ L

2 in such a way that

|W ′(z)|, |W ′′(z)| are uniformly bounded for z ∈ R. (5.9)

Moreover,
W (z) is real analytic on (−L,L). (5.10)

The proof of following version of the ÃLojasiewicz inequality may be performed in
the same way as in [13, Proposition 6.1]; for a general setting see [9, Corollary 3.11].

Proposition 5.1 (ÃLojasiewicz inequality). Let W satisfy the hypotheses (5.9), (5.10).
Let w ∈ U ∩ V0,∇w · n = 0 on ∂Ω,

−L/2 < w(x) < L/2 for all x ∈ Ω.

Then, for any P > 0, there exist constants ρ ∈ (0, 1/2), M(P ), ε(P ) such that

|I(v)− I(w)|1−ρ ≤ M‖ −∆v + W ′(v)‖V ′ , (5.11)

for any v ∈ V0, satisfying

‖v − w‖H < ε, |I(v)− I(w)| < P. (5.12)

Let
M3 = {t ∈ (0,∞) | ‖χ(t)− χ∞‖H < ε}.

For t ∈ M2 ∩M3 we can apply Proposition 5.1 and estimate the right-hand side of
(5.4) as follows:

|I(χ(t)− I(χ∞)|+ ‖ϑ(t)− ϑ(t)‖2 + ‖q(t)‖2 + ‖χt(t)‖2V ′
)

+
∫ ∞

t

‖f − f‖2 ds

≤ C
(
‖ −∆χ(t) + W ′(χ(t))‖

1
1−ρ

V ′ + ‖ϑ− ϑ(t)‖2 + ‖q‖2 + ‖χ(t)‖γ
V ′

)

≤ C
(
‖A−1[χt(t)]− (ϑ(t)− ϑ(t))‖

1
1−ρ

V ′ + ‖ϑ(t)− ϑ(t)‖2 + ‖q(t)‖2 + ‖χ(t)‖γ
V ′

)
.

Let η = min(γ, 1
1−ρ ) and T1 ≥ T be such that

‖ϑ(t)− ϑ(t)‖2 ≤ ‖ϑ(t)− ϑ(t)‖η, ‖q(t)‖2 ≤ ‖q(t)‖η for all t ≥ T1.

Such a T1 exists due to (4.17). We also realize that if the ÃLojasiewicz inequality holds
with some ρ, then it is also true with ρ1 < ρ. Consequently,

∫ ∞

t

Z2(s) ds =
∫ ∞

t

‖ϑ(s)− ϑ(s)‖2 + ‖q(s)‖2 + ‖χt(s)‖2V ′ ds

≤ C
(
‖ϑ(t)− ϑ(t)‖η + ‖q(t)‖η + ‖χt(t)‖η

V ′

)

11



≤ C
(
‖ϑ(t)− ϑ(t)‖2 + ‖q(t)‖2 + ‖χt(t)‖2V ′

) η
2

= CZ(t)η, (5.13)

and Lemma 5.1 implies the integrability of ‖χt‖V ′ on M2 ∩ M3 ∩ (T1, +∞). A
simple contradiction argument (cf., e.g., [3]) yields the existence of τ ≥ T1 such
that M2 ∩ M3 ∩ (τ, +∞) = M2 ∩ (τ, +∞). It follows that the function Z, and
therefore, ‖χt‖V ′ is integrable over the set (τ, +∞), which yields the convergence of
the trajectory of χ to χ∞ in the space V ′. On the other hand, the compactness of
the trajectory in the space C(Ω), proved in Theorem 2.1, yields the convergence of
the whole trajectory in this space, which concludes the proof of Theorem 2.2.

6 Rate of convergence

In some cases, namely if we can estimate the exponent in the ÃLojasiewicz inequality,
we can also give the rate of convergence of the order parameter to the corresponding
stationary state. Our approach follows the procedure performed in [18], where also
some examples of the rate of decay to equilibria for solutions of parabolic equations
can be found.

We are going to estimate the L1− norm of ‖χt‖V ′ . To begin, we assume that
(τ, +∞) ⊂M2 (where τ is as in the proof of Theorem 2.2, cf. Section 5), and deduce
from Lemma 5.1 that ∫ ∞

t

‖χt‖2V ′ ≤ Kt−2µ−1 for all t ≥ τ, (6.1)

where
µ =

η − 1
2− η

. (6.2)

In fact, according to (5.13),

d
dt

( ∫ ∞

t

Z2(s) ds
)1−β

=
Z2(t)( ∫∞

t
Z2(s) ds

)β
≥ C,

with β = η
2 . Integrating with respect to t, we get

∫ ∞

t

Z2(s) ds ≤
( 1

C(β − 1)

) 1
β−1

t−
1

β−1 .

We obtain the same estimate for general M2 as defined in (5.5), if we follow the proof
of Lemma 7.1 in [13]. With β = 2

η and µ as in (6.2), we infer that
∫ ∞

t

‖χt‖2V ′ ≤
∫ ∞

t

|Z(t)|2 ≤ t−2µ−1 for all t ≥ τ. (6.3)

Now, we apply the following simple result, the proof of which can be found in [18,
Lemma 3.3].

Lemma 6.1 Assume that for some µ > 0,
∫ ∞

t

‖χt‖2V ′ ≤ Ct−2µ−1 for all t ≥ τ.

Then ∫ ∞

t

‖χt‖V ′ ≤ Ct−µ, t ≥ τ. (6.4)
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For t ∈M1, we have the estimate (5.7). This, together with (6.3) and (6.4) gives
∫ ∞

t

‖χt‖V ′ ≤ Ct−ω, ω = min
{ ρ

1− 2ρ
,
1 + δ − γ

γ

}
. (6.5)

Hence, we can estimate the distance between χ(t) and χ∞ in H. Using the bounded-
ness of χ in the V−norm, and (6.5), we can interpolate to get:

‖χ(t)− χ∞‖ ≤ C
( ∫ ∞

t

‖χt(s)‖V ′ ds
) 1

2 · ‖χ(t)− χ∞‖
1
2
V ≤ Ct−

ω
2 .

With (3.10) and (4.13) at hand, we can further interpolate between H and U to
deduce:

‖χ(t)− χ∞‖Hs ≤ ‖χ(t)− χ∞‖1−θ
U ‖χ(t)− χ∞‖θ

H , s = 2(1− θ), θ ∈ (0, 1).

We thereby arrive at:

Proposition 6.1 Let χ be a solution of (4.2)-(4.5), (1.4), and let χ∞ be the limit
solution. Then, for each θ ∈ (0, 1), there exists a constant C depending on θ and
supt≥0 ‖χ(t)‖U such that the following estimate holds:

‖χ(t)− χ∞‖Hs ≤ Ct−
ωθ
2 , t > 0, (6.6)

where s = 2(1− θ) and ω is given by (6.5).

Remark. Taking θ < 1
4 in (6.6), we get the rate of convergence of χ(t) to χ∞ in the

space C(Ω).
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