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Abstract. Every Lipschitz mapping from c0(Γ) into a Banach space Y can be uniformly approximated by Lipschitz
mappings that are simultaneously uniformly Gâteaux smooth and C∞-Fréchet smooth.

The main result of this note is a construction of uniform approximations of Lipschitz mappings from c0(Γ) into
a Banach space Y , by means of Lipschitz mappings that are also uniformly Gâteaux (UG) smooth and C∞-Fréchet
differentiable. We also construct an equivalent UG and C∞-Fréchet smooth renorming of c0(Γ). Finally, we construct
an example of a convex, even, Lipschitz and UG-smooth separating function, such that the Minkowski functional
of its sub-level set is not UG-smooth. The first two results answer problems posed in [FMZ]. An example of the
implicit function method violating UG smoothness was lacking in the literature. Its existence is not surprising to
the specialists, as the known constructions of UG renormings always take a detour around this otherwise standard
method of obtaining smooth renormings.

Let us recall that all Banach spaces admitting a UG-smooth bump function are in particular weak Asplund spaces
by a fundamental result of Preiss, Phelps and Namioka in [PPN] (see also [F] or [BL]). However, the additional
uniformity of the derivatives leads to a considerably stronger theory, with several characterisations of Banach spaces
admitting a UG bump function (or a renorming). In particular, a Banach space admits an equivalent UG renorming
if and only if its dual ball is a uniform Eberlein compact [FGZ]. For basic properties of UG smoothness we refer to
[DGZ] and [F-Z]. To shed some light on the significance of our results, let us briefly summarise some of the more
recent results concerning UG smoothness, defined below (for simplicity we assume that the domain is a whole Banach
space X).

It is shown in [LV] that a continuous UG-smooth real function on a Banach space X is locally Lipschitz. Moreover,
if the function is uniformly continuous (or bounded), then it is globally Lipschitz. Thus some uniformity (Lipschitz)
condition is in some sense also necessary for a mapping to be UG approximable. Tang [T] has shown that the
existence of a UG bump function on a Banach space implies the existence of an equivalent UG renorming (analogous
statement for Gâteaux smooth bumps is false [H]), and used this fact to show that every convex function on such a
space is uniformly approximable by convex and UG-smooth functions on bounded sets. The more general problem of
approximating all Lipschitz functions seems to be still open. One of the difficulties is that the standard approach to
constructing smooth approximations by using smooth partitions of unity appears to be failing (loss of uniformity). In
this regard let us mention that in the stronger uniformly Fréchet case it was shown by John, Toruńczyk and Zizler
[JTZ] that the UF-smooth partitions of unity always exist provided the space has a UF bump function. However, the
existence of UF approximations of Lipschitz functions seems to be open.

In the separable setting, Fabian and Zizler [FZ] were able to combine the best Fréchet smoothness of the space in
question together with the UG condition (recall that every separable Banach space has a UG renorming). Namely,
if a separable Banach space admits a Ck-Fréchet smooth norm, than it admits also a norm which is simultaneously
Ck-Fréchet smooth and UG. The techniques used in their paper are strongly separable in nature, which leads to the
natural question of what happens in the general case. This is the source of the questions asked in [FMZ], resolved in
our note. Let us now proceed with the preliminaries to our results.

For an arbitrary set A, we denote its cardinality by |A|. For n ∈ N, λn denotes the Lebesgue measure on Rn. B(x, r)
and U(x, r) are closed and open ball centred at x with diameter r. For F ⊂ Γ we denote the associated projection by
PF , i.e. PF x =

∑
γ∈F e∗γ(x)eγ where x ∈ c0(Γ). By c00(Γ) we denote the linear subspace of c0(Γ) consisting of finitely

supported vectors. The canonical supremum norm on c0(Γ) will be denoted by ‖·‖. We will say that a mapping f
defined on a vector space X is even, if f(αx) = f(x) for all x ∈ X and all scalars α such that |α| = 1.

Let X and Y be normed linear spaces, Ω ⊂ X be open and f : Ω → Y . We will denote the directional derivative
of f at x ∈ Ω in the direction h ∈ X by Dhf(x) = limt→0

1
t (f(x + th) − f(x)). If f is Gâteaux differentiable for all
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UNIFORMLY GÂTEAUX SMOOTH APPROXIMATIONS ON c0(Γ) 2

x ∈ Ω (i.e. Dhf(x) exists for all h ∈ X and h 7→ Dhf(x) is a bounded linear operator) and moreover for all fixed h
the limit defining Dhf(x) is uniform in x ∈ X we say that f is uniformly Gâteaux differentiable (UG) on Ω.

We denote by C∞(X, Y ) the space of all C∞-Fréchet smooth mappings from X into Y .
We are now ready to formulate the main results of our note.

Theorem 1. Let Γ be an arbitrary set, Y be a Banach space, f : c0(Γ) → Y be an L-Lipschitz mapping and let
ε > 0. Then there is an L-Lipschitz mapping g ∈ C∞(c0(Γ), Y ) which is uniformly Gâteaux differentiable and such
that supc0(Γ) ‖f(x)− g(x)‖ ≤ ε.

Theorem 2. For any set Γ, c0(Γ) admits an equivalent norm which is simultaneously C∞-smooth and uniformly
Gâteaux differentiable.

We will prove the theorems by using a few lemmata.

Lemma 3. Let X and Y be normed linear spaces, Ω ⊂ X be open and f : Ω → Y be a Gâteaux differentiable mapping.
Consider the following statements:

(i) For every h ∈ X, the directional derivative Dhf(x) is uniformly continuous on Ω.
(ii) For every h ∈ X and ε > 0, there is δ > 0 such that ‖Dhf(x + th)−Dhf(x)‖ < ε for all x ∈ Ω and

t ∈ (−δ, δ), such that x + th ∈ Ω.
(iii) The mapping f is uniformly Gâteaux differentiable.

Then (i)⇒(ii)⇔(iii). If f is moreover uniformly continuous on Ω, then (iii) implies that, for any h ∈ X, Dhf(x) is
uniformly continuous on any A ⊂ Ω such that dist(A,X \ Ω) > 0.

Proof. (i) trivially implies (ii).
(iii) follows from (ii) using the Mean Value Theorem for vector valued mappings: Choose h ∈ X and ε > 0, and

find δ > 0 such that ‖Dhf(x + th)−Dhf(x)‖ < ε for all x ∈ Ω and t ∈ (−δ, δ) such that x + th ∈ Ω. Fix x ∈ Ω
and let U ⊂ (−δ, δ) be a neighbourhood of 0 such that x + th ∈ Ω for all t ∈ U . Define a mapping g : U → Y by
g(t) = f(x + th) − tDhf(x). Notice that g′(t) = Dhf(x + th) − Dhf(x). By the assumption, ‖g′(t)‖ ≤ ε for t ∈ U ,
hence g is ε-Lipschitz on U , and so

∥∥ 1
t (f(x + th)− f(x))−Dhf(x)

∥∥ =
∥∥1

t (g(t)− g(0))
∥∥ ≤ ε for all t ∈ U .

Assume that (iii) holds. Let h ∈ X and ε > 0. Find δ > 0 such that
∥∥ 1

s (f(y + sh)− f(y))−Dhf(y)
∥∥ <

ε
2 for all y ∈ Ω and s ∈ (−δ, δ) such that y + sh ∈ Ω. Fix x ∈ Ω and t ∈ (−δ, δ) such that x + th ∈ Ω.
Then

∥∥ 1
t (f(x + th)− f(x))−Dhf(x)

∥∥ < ε
2 and

∥∥ 1
−t (f(x + th − th) − f(x + th)) − Dhf(x + th)

∥∥ < ε
2 , hence

‖Dhf(x + th)−Dhf(x)‖ < ε.
Now suppose f is UG and uniformly continuous on Ω. Choose h ∈ X, h 6= 0, a subset A ⊂ Ω for which dist(A,X \

Ω) > 0, and ε > 0. Find 0 < η < dist(A,X \Ω)/ ‖h‖ such that
∥∥(

f(x + ηh)− f(x)
)
/η −Dhf(x)

∥∥ < ε
4 for any x ∈ A.

Let δ > 0 be such that ‖f(x)− f(y)‖ < η ε
4 whenever x, y ∈ A are such that ‖x− y‖ < δ. Then, for such x, y, we have

‖Dhf(x)−Dhf(y)‖ <
ε

2
+

1
η
‖f(x + ηh)− f(x)− f(y + ηh) + f(y)‖ < ε.

ut
Lemma 4. Let X and Y be normed linear spaces, H be a dense subset of X, Ω ⊂ X be open and f : Ω → Y be
a Gâteaux differentiable Lipschitz mapping such that for any h ∈ H the directional derivative Dhf(x) is uniformly
continuous on Ω. Then Dhf(x) is uniformly continuous on Ω for any h ∈ X.

Proof. Let L be a Lipschitz constant of f . Pick an arbitrary h ∈ X and let ε > 0. Find h0 ∈ H such that ‖h− h0‖ < ε
4L .

By the uniform continuity of Dh0f(x) there is δ > 0 such that ‖Dh0f(x)−Dh0f(y)‖ < ε
2 whenever x, y ∈ Ω,

‖x− y‖ < δ. Then

‖Dhf(x)−Dhf(y)‖ ≤ ‖Dh0f(x)−Dh0f(y)‖+ ‖Dh−h0f(x)−Dh−h0f(y)‖ <
ε

2
+ 2L ‖h− h0‖ < ε,

whenever x, y ∈ Ω, ‖x− y‖ < δ.
ut

Lemma 5. Let X be a normed linear space, k ∈ N∪{∞}, g : X → R be a Ck-smooth, UG, Lipschitz, even and convex
function that is separating (i.e. there is an r > 0 such that infx∈rSX |g(x)− g(0)| > 0). Then X admits an equivalent
Ck-smooth UG norm.

Proof. As shown in the Example below, UG smoothness does not, in general, survive the standard use of the implicit
function theorem (Minkowski functional). To be able to use the Minkowski functional of some sub-level set of g, we
need to gain more control over g′(x)x. To this end we introduce a transformation, the idea of which comes from [FZ].
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Basically, we construct a function that is “primitive” to g in a sense, so that its derivative is g back again (more or
less), hence Lipschitz. (For a more detailed exposition of the method we refer to [FZ].) So, define f : X → R by

f(x) =
∫

[0,1]

g(tx) dλ(t).

Let L be the Lipschitz constant of g. It is easy to check that f is L/2-Lipschitz, even and convex.
Without loss of generality we may assume that g(0) = 0. By the convexity of g and the fact that g is even,

g(x) ≥ 0 for x ∈ X. Since g is separating, there are r > 0 and a > 0 such that g(x) ≥ a for all x ∈ rSX . Hence
g(tx) ≥ a− Lr(1− t) whenever t ∈ [0, 1] and ‖x‖ = r. It follows that

f(x) ≥
1∫

1−a/(Lr)

(
a− Lr(1− t)

)
dλ(t) =

a2

2Lr
= b for any x ∈ rSX . (1)

Let x ∈ X. Using the compactness of the set {tx; t ∈ [0, 1]} and the continuity of g′, we can find a neighbourhood
U of x such that g′(ty) is bounded for y ∈ U and t ∈ [0, 1]. Hence, using the theory of integration, we can check that
f ∈ C1(U) and

f ′(x)h =
∫

[0,1]

g′(tx)(th) dλ(t). (2)

By repeating the same argument it follows that f ∈ Ck(X).
Using Lemma 3 and (2) we can see that the function x 7→ f ′(x)h is uniformly continuous on X for any h ∈ X.
Moreover, the function x 7→ f ′(x)x is Lipschitz on X. Indeed, using the substitution t(1+τ) = s we get f(x+τx) =∫

[0,1]
g(tx + tτx) dλ(t) = 1

1+τ

∫
[0,1+τ ]

g(sx) dλ(s). Thus, using the continuity of g along the way,

f ′(x)x = lim
τ→0

1
τ

(
f(x + τx)− f(x)

)
= lim

τ→0

1
τ




(
1

1 + τ
− 1

) 1+τ∫

0

g(tx) dλ(t) +

1+τ∫

1

g(tx) dλ(t)




= lim
τ→0

−1
1 + τ

1+τ∫

0

g(tx) dλ(t) + lim
τ→0

1
τ

1+τ∫

1

g(tx) dλ(t) = g(x)−
1∫

0

g(tx) dλ(t) = g(x)− f(x),

Since both f and g are L-Lipschitz, the function x 7→ f ′(x)x is 2L-Lipschitz. Clearly, f(0) = 0. So, the convexity of
f implies

f ′(x)x ≥ f(x) for any x ∈ X. (3)

Using the convexity of f , the estimate (1) and the fact that f(0) = 0, we obtain that f(x) > b whenever ‖x‖ > r.
It follows that B = {x ∈ X : f(x) ≤ b} is a closed absolutely convex bounded set that contains a neighbourhood of 0.
The Minkowski functional ν of the set B is therefore an equivalent norm on X and ν(x) = 1 if and only if f(x) = b.

Put M = X × (0,+∞) and define F : M → R by F (x, y) = f(x
y ) − b. It is obvious that F ∈ Ck(M). Pick any

0 6= x ∈ X. Then (x, ν(x)) ∈ M , F (x, ν(x)) = 0, and

∂F

∂y
(x, ν(x)) = f ′

(
x

ν(x)

)(
− x

ν(x)2

)
= − 1

ν(x)
f ′

(
x

ν(x)

)(
x

ν(x)

)
.

From (3) it follows that ∂F
∂y (x, ν(x)) ≤ −b/ν(x). Therefore we can use the Implicit Function Theorem to conclude

that on some neighbourhood of x, ν is a Ck-smooth function. Hence ν is a Ck-smooth norm.
Finally, we claim that the function x 7→ ν′(x)h is uniformly continuous on AR = X \ B(0, R) for any h ∈ X and

any R > 0, which according to Lemma 3 means that the norm ν is UG.
Since F (x, ν(x)) = 0 for any 0 6= x ∈ X, it follows that

(
F (x, ν(x))

)′ = 0. A simple computation yields

ν′(x) =
f ′

(
x

ν(x)

)

f ′
(

x
ν(x)

)(
x

ν(x)

) .

Fix any R > 0 and h ∈ X. Denote S = {x ∈ X : ν(x) = 1}. As the mapping ψ : AR → S, ψ(x) = x/ν(x) is Lipschitz
and ν′(x) = ν′(ψ(x)), it is enough to show that x 7→ ν′(x)h is uniformly continuous on S. Let ε > 0. Find 0 < δ < ε
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such that |f ′(x)h− f ′(y)h| < ε whenever ‖x− y‖ < δ. Then, for any x, y ∈ S, ‖x− y‖ < δ we have

|ν′(x)h− ν′(y)h| =
∣∣∣∣
f ′(x)h
f ′(x)x

− f ′(y)h
f ′(y)y

∣∣∣∣

≤ 1
|f ′(x)x| |f

′(x)h− f ′(y)h|+ |f ′(y)h|
∣∣∣∣

1
f ′(x)x

− 1
f ′(y)y

∣∣∣∣

≤ ε

b
+

L

2
‖h‖ |f

′(x)x− f ′(y)y|
|f ′(x)x| |f ′(y)y| ≤

ε

b
+

L

2
‖h‖ 2L ‖x− y‖

b2
< ε

(
1
b

+
L2

b2
‖h‖

)
.

ut
Let X be a topological vector space, Ω ⊂ X an open subset, E be an arbitrary set, M ⊂ X∗ and g : Ω → E. We

say that g depends only on M on a set U ⊂ Ω if g(x) = g(y) whenever x, y ∈ U are such that f(x) = f(y) for all
f ∈ M . We say that g depends locally on finitely many coordinates from M (LFC-M for short) if for each x ∈ Ω there
are a neighbourhood U ⊂ Ω of x and a finite subset F ⊂ M such that g depends only on F on U . We say that g
depends locally on finitely many coordinates (LFC for short) if it is LFC-X∗.

Let U ∈ τ(0) be a neighbourhood of zero in X. We say that g depends U -uniformly locally on finitely many
coordinates from M (U -ULFC-M for short) if for each x ∈ Ω there is a finite subset F ⊂ M such that g depends only
on F on (x + U) ∩ Ω.

Lemma 6. Let Γ be an arbitrary set, Y be any Banach space, Φ: c0(Γ) → Y be an L-Lipschitz mapping that
is U(0, r)-ULFC-{e∗γ}γ∈Γ for some r > 0, and let ε > 0. Then there is a mapping Ψ ∈ C∞(c0(Γ), Y ) such that
supc0(Γ) ‖Φ(x)−Ψ(x)‖ ≤ ε, Ψ is L-Lipschitz and the mapping x 7→ Ψ′(x)h is uniformly continuous on c0(Γ) for any
h ∈ c0(Γ). If Φ is even, then so is Ψ. If moreover Y = R and Φ is convex, then so is Ψ.

Proof. Without loss of generality we may assume that ε < Lr/2. Choose ϕ to be an even C∞-smooth non-negative
function on R such that supp ϕ ⊂ [− ε

L , ε
L ] and

∫
R ϕ = 1. We denote C =

∫
R |ϕ′(t)| dλ.

Let F ⊂ 2Γ be a poset of finite subsets of Γ, ordered by inclusion. For any F ∈ F , we define the mapping
ΨF : c0(Γ) → Y by

ΨF (x) =
∫

R|F |

Φ
(

x−
∑

γ∈F

tγeγ

) ∏

γ∈F

ϕ(tγ) dλ|F |(t),

where we integrate in the Bochner sense.
The net {ΨF }F converges on c0(Γ) to a mapping Ψ: c0(Γ) → Y . In fact, we claim that for any x ∈ c0(Γ), there

is an F ∈ F such that ΨF (y) = ΨH(y) for any F ⊂ H ∈ F and any y ∈ U(x, r
2 ). Indeed, for a fixed x ∈ c0(Γ)

let F ∈ F be such that Φ depends only on {e∗γ}γ∈F on U(x, r) and ‖x− PF x‖ < r
2 . Choose any y ∈ U(x, r

2 ) and
H ∈ F , H ⊃ F . Suppose that tγ ∈ [− r

2 , r
2 ] for all γ ∈ H. Then

∥∥x − (
y − ∑

γ∈H tγeγ

)∥∥ < r and consequently

Φ
(

y −∑
γ∈H tγeγ

)
= Φ

(
y −∑

γ∈F tγeγ

)
. Thus, by Fubini’s theorem,

ΨH(y) =
∫

[− ε
L , ε

L ]|H|

Φ
(

y −
∑

γ∈H

tγeγ

) ∏

γ∈H

ϕ(tγ) dλ|H|(t)

=
∫

[− ε
L , ε

L ]|H|

Φ
(

y −
∑

γ∈F

tγeγ

) ∏

γ∈F

ϕ(tγ) dλ|F |(t)
∏

γ∈H\F

∫

[− ε
L , ε

L ]

ϕ(tγ) dλ = ΨF (y).

Moreover, ‖x− PF y‖ ≤ ‖x− PF x‖+‖PF ‖ ‖x− y‖ < r and so we can easily see that ΨF (y) = ΨF (PF y). The mapping
ΨF ¹PF c0(Γ) is in fact a finite-dimensional convolution with a smooth kernel on R|F |, and so ΨF is a C∞-smooth
mapping on U(x, r

2 ).
The mapping Ψ is therefore C∞ on c0(Γ), as for any x ∈ c0(Γ), Ψ = ΨF on U(x, r

2 ) for some F ∈ F . It is easy to
check that supc0(Γ) ‖Φ(x)−Ψ(x)‖ ≤ ε.

To see that Ψ is L-Lipschitz, choose x, y ∈ c0(Γ) and find F, H ∈ F such that Ψ(x) = ΨF (x) and Ψ(y) = ΨH(y).
Then for K = F ∪H we have Ψ(x) = ΨK(x) and Ψ(y) = ΨK(y), hence

‖Ψ(x)−Ψ(y)‖ = ‖ΨK(x)−ΨK(y)‖ ≤
∫

R|K|

∥∥∥∥Φ
(
x−

∑

γ∈K

tγeγ

)
− Φ

(
y −

∑

γ∈K

tγeγ

)∥∥∥∥
∏

γ∈K

ϕ(tγ) dλ|K|(t) ≤ L ‖x− y‖ .

Similarly we can check that Ψ is even if Φ is even and Ψ is convex under the additional assumptions that Y = R and
Φ is convex.
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We finish the proof by showing that the directional derivatives of Ψ are uniformly continuous. So first, choose any
α ∈ Γ. For x, y ∈ c0(Γ) find F, H ∈ F such that Ψ(x) = ΨF (x) on U(x, r

2 ) and Ψ(y) = ΨH(y) on U(y, r
2 ). Put

K = F ∪H ∪ {eα}. It is standard to show that

Ψ′K(x)eα =
∫

R|K|

Φ
(
x−

∑

γ∈K

tγeγ

)
ϕ′(tα)

∏

γ∈K\{α}
ϕ(tγ) dλ|K|(t).

Hence

‖Ψ′(x)eα −Ψ′(y)eα‖ ≤
∫

R|K|

∥∥∥∥Φ
(
x−

∑

γ∈K

tγeγ

)
− Φ

(
y −

∑

γ∈K

tγeγ

)∥∥∥∥ |ϕ′(tα)|
∏

γ∈K\{α}
ϕ(tγ) dλ|K|(t)

≤ L ‖x− y‖
∫

R

|ϕ′(t)| dλ = LC ‖x− y‖ .

(4)

Next, choose any h ∈ c00(Γ). It follows from (4) that

‖Ψ′(x)h−Ψ′(y)h‖ ≤
∑

γ∈supp h

∥∥Ψ′(x)(e∗γ(h)eγ)−Ψ′(y)(e∗γ(h)eγ)
∥∥ ≤ LC ‖x− y‖

∑

γ∈supp h

∣∣e∗γ(h)
∣∣ = LC ‖h‖`1

‖x− y‖ .

Now an application of Lemma 4 finishes the proof.
ut

Proof of Theorem 1. Put η = ε/(2L). Define a function ϕ : R → R by ϕ(t) = max{0, t − η} + min{0, t + η}. Then ϕ
is 1-Lipschitz and |ϕ(t)− t| ≤ η for all t ∈ R.

Further, define a mapping φ : c0(Γ) → c0(Γ) by φ(x) =
∑

γ∈Γ ϕ(e∗γ(x))eγ . (Notice that in fact φ maps into c00(Γ).)
Then φ is 1-Lipschitz and ‖φ(x)− x‖ ≤ η for all x ∈ c0(Γ). Moreover, we claim that φ is U(0, η

2 )-ULFC-{e∗γ}γ∈Γ.
Indeed, fix x ∈ c0(Γ) and find F ⊂ Γ, |F | < ∞ such that ‖x− PF x‖ < η

2 . Then for any y ∈ U(x, η
2 ) we have

‖y − PF y‖ < η. This means that if y, z ∈ U(x, η
2 ) are such that e∗γ(y) = e∗γ(z) for all γ ∈ F , then ϕ(e∗γ(y)) = 0 =

ϕ(e∗γ(z)) for all γ ∈ Γ \ F and of course ϕ(e∗γ(y)) = ϕ(e∗γ(z)) for all γ ∈ F . Hence φ(y) = φ(z), and so φ depends only
on {e∗γ}γ∈F on U(x, η

2 ).
We put Φ = f◦φ. Clearly, the mapping Φ is L-Lipschitz and U(0, η

2 )-ULFC-{e∗γ}γ∈Γ. Also, supc0(Γ) ‖f(x)− Φ(x)‖ ≤
L ‖x− φ(x)‖ ≤ Lη = ε

2 , and Lemma 6 together with Lemma 3 finishes the proof.
ut

Proof of Theorem 2. Define a function Φ: c0(Γ) → R by Φ(x) = max{0, ‖x‖ − 1}. Then Φ is a 1-Lipschitz convex
even function which is U(0, 1

2 )-ULFC-{e∗γ}γ∈Γ. (Notice that Φ = ‖·‖ ◦ φ as in the proof of Theorem 1 for η = 1.)
Let g ∈ C∞(c0(Γ)) be a 1-Lipschitz convex even function with uniformly continuous directional derivatives produced

by Lemma 6, such that |g(x)− Φ(x)| ≤ 1 for all x ∈ c0(Γ). Then g is separating, as g(0) ≤ 1 and g(x) ≥ 2 on 4SX .
The function g is also UG by Lemma 3, and so we can finish by using Lemma 5.

ut
The technique used in the above proof can be used to strengthen the main result in [FHZ] on the existence of

C∞-Fréchet smooth approximations of strongly lattice norms on c0(Γ), by placing the additional UG smoothness
requirement. We prefer to omit the details of the proof.

Example. We will sketch a construction of a UG, Lipschitz, even and convex function on c0 that is separating, but the
Minkowski functional of its sub-level set is an equivalent norm on c0 that is not UG-smooth. The existence of such
examples was since long suspected by specialists (e.g. [FZ], [T]), but no explicit construction seems to be available in
the literature.

For any n ∈ N, let fn : c0 → R and gn : c0 → R be defined as

fn = e∗1 + e∗2n − e∗2n+1,

gn = e∗1 +
(

2− 1
2n

)
e∗2n + e∗2n+1 − 1,

Let f̃n = fn − e∗2n/4, g̃n = gn − e∗2n/4, and further g(x) = supn{f̃n(x), g̃n(x), ‖x‖ /4} and f(x) = g(x) + g(−x). It is
easy to see that f(0) = 0, f is 8-Lipschitz, even, convex and separating. Further, for all n ∈ N and w ∈ c0, let

xn = e2n, yn = e2n +
1
2n

e2n+1,

Un(w) =
{

x ∈ c0 : |e∗2n(x− w)| < 1
16n

,
∣∣e∗2n+1(x− w)

∣∣ <
1

16n
,
∣∣e∗j (x− w)

∣∣ <
1
16

for j ∈ N \ {2n, 2n + 1}
}

.
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We can check that g(x) = f̃n(x) on Un(xn), g(x) = g̃n(x) on Un(yn), and g(−x) = ‖x‖ /4 = e∗2n(x)/4 on both Un(xn)
and Un(yn). Hence, f = fn on Un(xn) and f = gn on Un(yn).

Now for each n ∈ N let ϕn be an even C∞-smooth non-negative function on R such that
∫
R ϕn = 1. Moreover, let

supp ϕ1 ⊂ [− 1
32 , 1

32 ], supp ϕ2n ⊂ [− 1
32n , 1

32n ] and supp ϕ2n+1 ⊂ [− 1
32n , 1

32n ] for n ∈ N. Similarly as in [FZ] or [J] we
can show that the function

F (x) = lim
n→∞

∫

Rn

f

(
x−

n∑

j=1

tjej

) n∏

j=1

ϕj(tj) dλn(t),

is well defined for all x ∈ c0 and that it is Lipschitz, even, convex, separating and UG.
Furthermore, notice that for each n ∈ N, f is affine on both Un(xn) and Un(yn). Since the convolution of an affine

function with an even kernel is the same affine function again, there are neighbourhoods of xn and yn such that
F = fn (or F = gn respectively) on those neighbourhoods.

Let ν be the Minkowski functional of the set B = {x ∈ c0 : F (x) ≤ 1}. Then ν(xn) = 1 = ν(yn) for all n ∈ N,
limn→∞ ‖xn − yn‖ = 0, but

ν′(xn)e1 =
F ′(xn)e1

F ′(xn)xn
=

f ′n(xn)e1

f ′n(xn)xn
=

1
1

= 1 and ν′(yn)e1 =
F ′(yn)e1

F ′(yn)yn
=

g′n(yn)e1

g′n(yn)yn
=

1
2
.
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