
Akademie věd České republiky
Ústav teorie informace a automatizace

Academy of Sciences of the Czech Republic
Institute of Information Theory and Automation

RESEARCH REPORT

Nedoma P., Kárný M., Böhm J., Guy T.V. , Tesǎr L.

Mixtools

Interactive User’s Guide

No. 2143 November 2005

Projects GA ČR 102/03/0049
and AV ČR S1075351

ÚTIA AV ČR, P. O. Box 18, 182 08 Prague, Czech Republic

Fax: (+420)286890378, http://www.utia.cz, E-mail: utia@utia.cz



ÚTIA AV ČR, P. O. Box 18, 182 08 Prague, Czech Republic
Fax: (+420)286890378, http://www.utia.cz, E-mail: utia@utia.cz

E-mail: utia@utia.cas.cz

This report constitutes an unrefereed software description. Any opinions and conclusions expressed
in this report are those of the author(s) and do not necessarily represent the views of the Institute.



Contents

1 Introduction 3

2 Bridge between theory and software 5
2.1 Common theoretical notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Coding agreements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Basic learning scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Basic scenario for design and advising . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5 Theory and its software images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.6 Dirichlet pdf for estimating mixture weights . . . . . . . . . . . . . . . . . . . . . . . . 9
2.7 Normal parameterized factor and conjugate prior . . . . . . . . . . . . . . . . . . . . . 9
2.8 Prediction with normal parameterized factor and conjugate prior . . . . . . . . . . . . 10
2.9 Conditional KL divergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Software representations 11
3.1 Software representation of mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.1 Types related to normal ARX mixtures . . . . . . . . . . . . . . . . . . . . . . 11
3.1.2 Creating of mixture elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1.3 Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.4 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.5 Mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.6 Conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Software representation of advisory mixtures . . . . . . . . . . . . . . . . . . . . . . . 18

4 Data management 19
4.1 Access to data sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Huge data sample processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 Data preprocessing 21
5.1 Preprocessing requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2 Preprocessing algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.3 Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.4 Case studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6 Mixtools functions 25
6.1 Function arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.2 Mixtools user’s functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.3 Design base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.4 Tutorial examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.4.1 Case study: static mixture learning and prediction . . . . . . . . . . . . . . . . 33
6.4.2 Case study: dynamic mixture learning and prediction . . . . . . . . . . . . . . 33

3



4 CONTENTS

7 Construction of prior estimate (initialization) 35
7.1 Processing logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.2 Initialization options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.3 Case studies in initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7.3.1 Computational Efficiency of Static Mixture Initialization . . . . . . . . . . . . . 37
7.3.2 Dynamic Mixture Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.3.3 Static Mixture Initialization: “Banana Shape” Benchmark . . . . . . . . . . . . 37
7.3.4 BMTB Algorithm of Mixture Initialization . . . . . . . . . . . . . . . . . . . . 37
7.3.5 Initialization of Static Onedimensional Mixture . . . . . . . . . . . . . . . . . . 38

8 Approximate parameter estimation 39
8.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

8.1.1 Estimation statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
8.1.2 Forgetting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

8.2 Case studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
8.2.1 Quasi-Bayes Mixture Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 41
8.2.2 Comparison of Mixture Estimation Algorithms: Static Case . . . . . . . . . . . 41
8.2.3 Comparison of Mixture Estimation Algorithms: Dynamic Case . . . . . . . . . 41
8.2.4 Computational Efficiency of Mixture Estimation Algorithms . . . . . . . . . . . 41
8.2.5 Mixture Estimation Based on Batch Quasi-Bayes Algorithm (BQB) . . . . . . 41
8.2.6 Mixture Estimation Based on Branching by Forgetting (BFRG) . . . . . . . . . 41

9 Prediction with normal mixture 43
9.1 Projection and prediction with mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . 43

9.1.1 Mixture projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
9.1.2 Reduction of data space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
9.1.3 Prediction with mixture projection . . . . . . . . . . . . . . . . . . . . . . . . . 44
9.1.4 Prediction with mixture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
9.1.5 Multi-step prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
9.1.6 Prediction error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

9.2 Case studies in projection and prediction . . . . . . . . . . . . . . . . . . . . . . . . . 46
9.2.1 Prediction with Static Mixtures - scaled data . . . . . . . . . . . . . . . . . . . 46
9.2.2 Prediction with SISO dynamic component . . . . . . . . . . . . . . . . . . . . . 46
9.2.3 Prediction with Mixture of Two Dynamic SISO Components . . . . . . . . . . 46
9.2.4 Multi-Step Prediction with Static Mixture . . . . . . . . . . . . . . . . . . . . . 46
9.2.5 Multi-step Prediction with Mixture of Two Dynamic SISO Components . . . . 46
9.2.6 Multi-step Prediction with SISO Dynamic Model . . . . . . . . . . . . . . . . . 46
9.2.7 Prediction with Mixture on Grouped Data . . . . . . . . . . . . . . . . . . . . . 46
9.2.8 Prediction with Static mixture . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

10 Simulation 47
10.1 ARX mixture simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
10.2 Simulation case studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

10.2.1 Case study: Markov jumps, scalling and noise type in simulation . . . . . . . . 49
10.2.2 Case study: use of covariance of regression coefficients . . . . . . . . . . . . . . 49
10.2.3 Case study: simulation with projection . . . . . . . . . . . . . . . . . . . . . . . 49

11 Visualization 51

12 Stopping rules 53
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
12.2 Learning with normal ARX factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

12.2.1 Case study: Stopping rules in factor estimation . . . . . . . . . . . . . . . . . . 53
12.2.2 Case study: Stopping based on a statistics . . . . . . . . . . . . . . . . . . . . . 54

12.3 Estimation of credibility intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54



CONTENTS 1

12.3.1 Case study: Stopping and credibility intervals . . . . . . . . . . . . . . . . . . . 54
12.4 Mixture estimation with stopping rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

12.4.1 Case study: use of basic estimation functions with stopping . . . . . . . . . . . 55
12.4.2 Case study: repetitive estimation with stopping . . . . . . . . . . . . . . . . . . 55
12.4.3 Case study: Comparison of estimation functions with and without stopping . . 55
12.4.4 Case study: mixture initialization using stopping rules . . . . . . . . . . . . . . 55

12.5 Model characteristics based on simulations with stopping rules . . . . . . . . . . . . . 56
12.5.1 Case sstudy: SISO model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

13 Stabilization of mixture estimate 57
13.1 Supporting functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

13.1.1 Case study: Mixture stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . 57

14 Structure estimation and prior knowledge 59
14.1 Estimation of structure of mixture factors . . . . . . . . . . . . . . . . . . . . . . . . . 59

14.1.1 Case study: Factor structure estimation . . . . . . . . . . . . . . . . . . . . . . 60
14.2 Prior knowledge in ARX models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

14.2.1 Prior knowledge coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
14.2.2 Channel specific prior knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . 60
14.2.3 Conversion of the prior knowledge into fictitious factors . . . . . . . . . . . . . 61
14.2.4 Prior knowledge processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

14.3 Case studies with prior knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
14.3.1 Case study: Prior knowledge in structure estimation . . . . . . . . . . . . . . . 63
14.3.2 Case study: Prior knowledge sources . . . . . . . . . . . . . . . . . . . . . . . . 63

15 Model validation 65
15.1 Case studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

15.1.1 Static Mixture Checking via Simulation . . . . . . . . . . . . . . . . . . . . . . 65
15.1.2 Model validation by learning results . . . . . . . . . . . . . . . . . . . . . . . . 65
15.1.3 Forgetting based model validation . . . . . . . . . . . . . . . . . . . . . . . . . 65
15.1.4 Model validation by prediction error . . . . . . . . . . . . . . . . . . . . . . . . 65
15.1.5 Model Validation by Cross-Validation of Learning Results . . . . . . . . . . . . 65

16 References to Mixtools Guide 67
16.1 Channels description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
16.2 Design and advising . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
16.3 Tutorial on design and advising . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
16.4 Mex and API functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

17 Appendices 69
17.1 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
17.2 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
17.3 Recommended identifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74



2 CONTENTS



Chapter 1

Introduction

This guide deals with software aspects of learning with normal probability mixtures. References are
made to design of probabilistic advisory system.

Underlying theory is described in [1]. A bridge between theory and software is in Section 2.
This guide is designed as an interactive one but, in can be used in this paper version. The inter-

active knobs provided are:

name of function lead to help on the function (without invoking MATLAB)

function argument lead to description of arguments

reference to [1] display section number and page in the book

references to .pdf files open them on a page

Run example button invokes .pdf description of a case study

the study allows to run an interactive MATLAB script with other knops

Mixtools Guide opens User’s Guide e.g. on a commented case studies, etc

intro.tex, MK, PN November 3, 2005

3



4 CHAPTER 1. INTRODUCTION



Chapter 2

Bridge between theory and software

{scenarion}{scenario}
Here, a bridge between the learning part of the underlying theory and its software image is presented.
Theoretical background and toolbox are developed by the team whose communication is much sim-
plified by adopting common theoretical notation and coding agreements. Often, this guide uses them
without repeated explanation.

2.1 Common theoretical notation

The following common symbols used in the theoretical description [1] are useful here:

Symbol Meaning
x∗ means the set of all values of x
x̊ denotes cardinality of x∗

xt is x at discrete time t ∈ t∗ ≡ {1, . . . , t̊},
x(t) means the sequence x1, . . . , xt and xi;t is i-th entry of xt,
Θ ∈ Θ∗ denotes unknown model parameters,
f(·|·) is a common symbol for conditional pdfs: versions are distinguished by identifiers in arguments,
∝ means equality up to a normalizing factor.

2.2 Coding agreements
{coding}

The coding agreements are:

1. The functions to be converted to MEX-files are limited to use the following MATLAB entities:

• (1-by-1) structure, called structure,

• (1-by-n) cell list, called list,

• 1 or 2-dimensional numerical array, called vector or matrix, respectively.

2. Default values have to be located in the function ”defaults”.

3. Identifiers have to meet the following basic rules:

• Global variables have upper case identifiers. They should be eliminated from processing
with the exception of global matrices ( DATA , TIME , see Section 4.

• Structures and cell lists begin with an upper case letter, other identifiers are coded by lower
case letters;

• Identifiers used should be selected from a common list given in subsections 17.3.

• The function names have maximum length of 8 characters and consist of lower case letters
and digits.

5



6 CHAPTER 2. BRIDGE BETWEEN THEORY AND SOFTWARE

2.3 Basic learning scenario

A sequence d(̊t) of data records dt is observed and mutual relationships are searched for. They are
modeled by the joint pdf

f(d(̊t)|Θ) =
∏
t∈t∗

f(dt|d(t− 1),Θ)

conditioned on unknown parameters Θ. The considered parameterized mixture model has the form

f(dt|d(t− 1),Θ) =
∑
c∈c∗

αcf(dt|d(t− 1),Θc, c). (2.1){MKmixture}

The individual pdfs f(dt|d(t−1),Θc, c) are called parameterized components. The unknown parameter
Θ consists of probabilistic weights of components α ≡ (α1, . . . , αc̊) ∈ α∗ ≡ {αc ≥ 0,

∑
c∈c∗ αc = 1}

and by individual parameters Θc, c ∈ c∗, of components. The components are decomposed by the
chain rule

f(dt|d(t− 1),Θc, c) =
∏
i∈i∗

f(di;t|ψic;t,Θic, i, c), (2.2){MKfactors}

where f(di;t|ψic;t,Θic, i, c) are called parameterized factors. They predict scalar entries di;t of dt called
factor outputs. They are assumed to depend on regression vectors ψic;t that consist of current values
of other record entries dj;t, j > i and several delayed record values dt−k, k ≥ 1. The factorization
(2.2) allows us to combine entries of logical and continuous nature, to consider factors of different
types.

The adopted Bayesian estimation modifies a chosen prior pdf f(Θ) by applying Bayes rule [2] in
order get the posterior pdf f(Θ|d(̊t))

f(Θ|d(̊t)) ∝ f(d(̊t)|Θ)f(Θ). (2.3){MKpostpdf}

This pdf is the most general result of Bayesian estimation. From the software point of view, the
estimation transforms data sample d(̊t) into the statistic S ≡ S(d(̊t)) that compresses information
contained in historical data sample. It may serve for obtaining point estimates of the unknown Θ
and information about precision of these estimates. Some of its parts serve for judging quality of the
estimate. They are referred to as states. The collected statistics also serves for computing predictions

f(d|ψ, d(̊t)) =
∫
f(d|ψ,Θ)f(Θ|d(̊t)) dΘ. (2.4){MKpredict}

They have to be complemented by information that allows to select entries d to be predicted and
construct the value of the regression vector ψ.

2.4 Basic scenario for design and advising

Learning provides multiple-mode model f(d(̊t)) of the managed system. Design modifies the elements
of the model that are supposed under the operator control. The modification is designed so that the
resulting ideal pdf bIf(d(̊t)) is the closest to the user ideal pdf (user target) bUf(d(̊t)) reflecting
managing aims. Advising then reduces to presentation of properly selected low-dimensional projec-
tions of the designed ideal pdf. Three types of design are developed. Academic design optimizes
pointers to recommended components, industrial design optimizes recommended recognisable actions
and simultaneous design optimizes both pointers to recommended components and recommended
recognisable actions. From here onwards, if not defined more precisely, all types of designs are meant
under term design.

To evaluate the closeness of pair pdfs, Kulback-Leibler divergence (KLD) is employed. It can be
expressed as additive loss function summing conditional KLD

ω(at, d(t− 1)) ≡
∫

bIf(dt|at, d(t− 1)) ln
( bIf(dt|at, d(t− 1))

bUf(dt|at, d(t− 1))

)
ddt, (2.5){cKLD}



2.5. THEORY AND ITS SOFTWARE IMAGES 7

where bIf(dt|at, d(t− 1)) results from design. It is estimated model modified by advises at.

Advises, i.e. actions available to p-systems

at ≡ (ct, uo;t, st, pt) are interpreted as follows. (2.6){5pact}

Recommended pointers {ct}t∈t∗ , ct ∈ c∗ ≡ {1, . . . , c̊}, are pointers to the components that are
recommended to be kept active at respective time moments.

Recommended pointers are academic advises.

Recommended recognizable actions {uo;t}t∈t∗ guide the user in selecting recognizable actions.

These advises result either from the industrial or from simultaneous design.

Priority actions {pt}t∈t∗ select entries of {dt}t∈t∗ to be shown to the operator.

These advises are called assigning priorities.

Signaling actions {st}t∈t∗ , st ∈ s∗ ≡ {0, 1}, stimulate the operator to take some measures when
behavior of the o-system significantly differs from the desired one.

These advises are called signaling.

2.5 Theory and its software images

The software entities inherit names of the underlying parameterized notions. For instance, a (software)
factor represents relevant part of statistics describing its estimation together with information about
type of the factor, structural information on modeled output, regression vector and possibly state of
the estimation. The software entities serving for predictions are distinguished by prefix “p” whenever
necessary. They have to contain information necessary for constructing of the current regression vector
in addition to the information describing estimation results.

The theoretical entities are implemented as (software) structures or (1-by-n) cell lists referred to
as cell lists or just lists.

The (software) structures contain a field type. It contains numerical code of the structure type.
The type=0 means ”not specified”.

The structures can have a field ”states”. It contains an auxiliary information needed for convenient
processing of different tasks, e.g. statistics computed in mixture estimation. The content of states still
varies so that their detailed description is postponed.

The most important relationships of the basic software entities and their theoretical counterparts



8 CHAPTER 2. BRIDGE BETWEEN THEORY AND SOFTWARE

are summarized in the following table:

Basic software en-
tity

Software name (meaning) & represen-
tation

Theoretical counterpart

horizon
ndat, scalar t̊

number of chan-
nels

nchn, scalar d̊

data sample
DATA, (nchn,ndat) matrix d(̊t)

channel row number DATA, scalar index of di(̊t)
mixture Structure containing: f(Θ) or f(Θ|d(̊t))

mixture type
type, scalar code of the form and use of statistics

S(d(̊t)

list of factors
Facs, cell list labels of parameterized factors available

components coms, (ncom,nchn) matrix c-th row lists factors in c-th com-
ponent c ∈ c∗ ≡ {1, . . . , c̊ ≡
}ncom, i.e. f(dt|d(t−1),Θc, c) ≡

∏
i∈i∗

f(di;t|di+1;t, . . . , d̊i;td(t−1)) component
weights

degrees of freedom
of components

dfcs, vector statistics κ estimating component
weights α, see Section 2.6

factor Structure containing:

factor output
ychn, scalar index i of the modeled channel (of the

factor output di;t

factor type
type, scalar code distinguishes type of the factor

(normal, Markov chain), form of statis-
tics S (basic, least squares ( LS) form
(estimator or predictor)

factor structure
str, two-row matrix it describes structure of regression vec-

tor; list j∗ of channels dj;t−k in regres-
sors; 1st row contains channel numbers
j, the 2nd one their time delays k ∈ k∗
optional column [0; value] defines fac-
tor offset factor offset is θic ×“value”

factor statistics
fields containing statistics typically
“LD” matrix or vector “Eth”,matrix
“Cth”, scalar “cove”

statistics Si; form is implied by the
type: the first option basic, the second
one LS

degrees of freedom
of factor

dfm, scalar degrees of freedom ν − 2

regression vector psi0, vector description of regressor used in
prediction

states states, structure it contains initial conditions, statistics
used in tests . . . not stabilized yet



2.6. DIRICHLET PDF FOR ESTIMATING MIXTURE WEIGHTS 9

2.6 Dirichlet pdf for estimating mixture weights
{Dir}

Mixture weights form the probabilistic vector

α ∈ α∗ ≡

{
αc ≥ 0,

∑
c∈c∗

αc = 1

}

They are universally described by the Dirichlet pdf

f(α) ≡ Diα(κ) ∝
∏
c∈c∗

ακc−1
c . (2.7) {Diri}

This pdf is shaped by the c̊-vector statistic κ with positive entries κc. This prior form is preserved for
all considered approximate estimations.

The vector κ is stored under the name “dfcs”.

2.7 Normal parameterized factor and conjugate prior

The considered parameterized normal factors, called ARX factors (auto-regression with exogeneous
signals), have the form

f(d|ψ,Θ) = Nd(θ′ψ, r) = (2πr)−0.5 exp
{
− 1

2r
([−1, θ′]Ψ)2

}
, where (2.8) {MKnor}

′ denotes transposition,
Θ = [θ, r] = [regression coefficients, noise variance],
Ψ = [d, ψ′]′ = [regressand, regression vector].

The factor output d is coded by the channel number “ychn” pointing to row of global data matrix
“DATA”, see Section 4. Structure of the regression vector is coded by the two-row vector “str”.

The conjugate prior pdf f(Θ) that preserves its functional form during Bayes estimation of the
model (2.8) is Gauss-inverse-Wishart (GiW ) pdf [2]

f(Θ) = GiW[θ,r](L,D, ν) ∝ r−
ν
2 exp

{
− 1

2r
[−1, θ′]L′DL[−1, θ′]′

}
, where (2.9) {MKGiW}

ν > 0 is the number of degrees of freedom of f(Θ) that can be interpreted as an effective counter of
number of data used; it is coded by “dfm”=ν − 2,
L′DL is an extended information matrix in numerically advantageous L′DL decomposition in which
L is lower triangular matrix with a unit diagonal,
D is diagonal matrix with positive entries.

Both matrices are stored in the matrix “LD”, which coincides with L whose unit diagonal is
replaced by the diagonal of D.

The split version of L′DL decomposition

L ≡
[

1 0
Ldψ Lψ

]
, D = diag[Dd, Dψ], Dd is scalar (2.10) {MKsplitLD}

can be unambiguously transformed into well known least squares (LS) quantities

θ̂ = L−1
ψ Ldψ is LS estimate of θ, stored as “Eth” (2.11) {MKLS}

r̂ =
Dd

ν
is LS estimate of r stored as “cove” (2.12)

r̂L−1
ψ D−1

ψ (L′ψ)−1 is covariance matrix of the LS estimate of θ

L′DLdecomposition of L−1
ψ D−1

ψ (L′ψ)−1 is stored as “Cth”.



10 CHAPTER 2. BRIDGE BETWEEN THEORY AND SOFTWARE

Thus, ARX factor coincides with the description of the GiW pdf with the sufficient statistic Si;t =
[Li;t, Di;t, νi;t]. The factor is called ARX LS factor if the statistic Si;t = [θ̂i;t, r̂i;t, L−1

ψi;t, D
−1
ψi;t, νi;t]

represents it.
For communication purposes, factors in single components are described in a common matrix way

assuming that structure of their state. Then, matrix version

2.8 Prediction with normal parameterized factor and conju-
gate prior

{MKpredi}
The predictive (p-) factor – modeling i-th channel that corresponds to the normal parameterized factor
and GiW factor given by the sufficient statistics S = [L,D, ν] – can be shown to have Student pdf [2]
with moments

d̂i = E [di|ψ, S] = θ̂′ψ, r̂d = cov[di|ψ, S] = r̂(1 + ζ), ζ = ψ′L′DLψ. (2.13){MKstudent}

These moments together with degrees of freedom ν determine unambiguously the form of Student
distribution.

Note that for a higher ν, Student distribution is well approximated by the normal pdf with above
moments. In this case, it is also often possible to neglect the term ζ whose evaluation is computation-
ally expensive.

In addition to statistics obtained in estimation, predictor has to store the value “psi0” of regression
vector ψ used in its condition.

2.9 Conditional KL divergence
{coKLD}

Design with normal mixtures reduces to manipulations with conditional KL divergences that have
common form of so-called lifted quadratic forms

k + ψ′LDL′ψ, where (2.14){cKLDN}

L is lower triangular matrix with unit diagonal and D is positive diagonal matrix. ψt is regression
vector that reduces to the state vector φ′t−1 = [d′t−1, . . . , d

′
t−∂ , 1], ∂ ≥ 0 if there is no recognizable

action in the problem. The lifted quadratic forms (2.14), used in the description of individual factors,
components and its average counterpart, also describe approximate Bellman function.

User pf for recommended pointers is determined also in terms of a lifted quadratic form. For
instance, in the academic design

bUf(ct|d(t− 1)) ∝ bUf(ct) exp
[
−0.5( bUkct;t−1 + φ′t−1

bULct;t
bUDct;t

bUL′ct;tφ
′
t−1)

]
, (2.15){ufc}

where bUf(ct) eliminates pointers to the components, operation on that may lead to wrong behaviour
of the system (so-called dangerous components) while the used KLD in exponent of (2.15) defines
preferences among pointers to components.

scenario.tex, written by MK November 3, 2005



Chapter 3

Software representations

3.1 Software representation of mixtures
{represent}

The basic software entities are listed in Section 2 with relation to their mathematical counterpart.
This Section partially repeats their description and extend them to (derived) software entities like
matrix components or matrix mixtures.

The software entities are realized as structures and cell lists. The structures may have a field states
that contains an auxiliary fields explained in relevant sections. The software entities are summarized
and related to different types of normal ARX factors, components and mixtures. These forms are
distinguished by field ” type”.

We are oriented on dynamic mixtures containing dynamic factors. Regression vector of dynamic
factor contains some delayed values of the factor output or other channels. The structure of regression
vector is coded by (factor) structure, i.e. by 2-rows matrix. The 1st row lists the involved channels
and the 2nd one the corresponding time delays. For instance,

str = [1 1 2 2
1 2 0 1]

means that the regression vector at a time t is composed of the data value on the channel 1 with delays
1 and 2 (it means DATA(1, t-1) and DATA(1, t-2)) together with the data value on the channel 2
with delays 0 and 1 (DATA(2, t) and DATA(1, t-1)).

Optionally, str may contain the column

[0; value]
that introduces factor offset and the scaling ”value” (often 1).

The special case of static mixtures consisting of static factors. Their regression vectors contain
at most zero-delayed values of other channels and the value multiplying the offset. Thus, no delayed
data are considered.

3.1.1 Types related to normal ARX mixtures

Here, various types ARX mixtures are characterized. It has to be stressed that also mode of the
use of software entities has to be respected, i.e. the entities related to estimation or prediction are
distinguished by the “type” also.

Coding of estimation results

Estimation describes distribution of parameters, formally GiW pdf (2.9). Numerical values of various
statistics are updated by data sample.

The factors are structures. They are coded according to their software representation (e.g. basic
or LS ones):

1 ARX factor – corresponding to the form (2.9)
2 ARX LS factor – corresponding to the LS (least-squares) form (2.11)

11



12 CHAPTER 3. SOFTWARE REPRESENTATIONS

Note that the value of ”type” begins each line above.
A component is a list of factors. The factors listed can be of different forms. Then the component

type code is 0. Special cases are supported if all the factors are of the same type:
11 ARX component – all factors are ARX factors, the form 1
12 ARX LS component – all factors are ARX factors, the form 2

If moreover all ARX factors have a common regression vector, the matrix type of components are
also considered:

13 matrix ARX component – matrix version similar to ARX factor
14 matrix ARX LS component – matrix LS version similar to ARX LS factor but regression

coefficients and noise covariance estimates are matrices.
A mixture is a structure. It is realized as a list of components together with degrees of freedom

of components.
Mixture can contain components of different type – then the type code is 0. Special cases are

supported if all components are of the same type:
21 ARX mixture
22 ARX LS mixture
23 matrix ARX mixture
24 matrix ARX LS mixture

Coding of prediction results

Prediction describes distribution of data, formally Student distribution with moments (2.13). It does
not modify numerical values of the estimation statistics but exploits them for the current value of
regression vector.

Prediction counter-parts of estimation results are given the same names. In text, if there is a
danger of misunderstanding they are given prefix p-. So we have p-factors, p-components and p-
mixtures. Codes of p-elements are obtained by adding 100 to codes of estimation counterparts. Thus,
the following p-elements are considered:

101 ARX factor
102 ARX LS factor
111 ARX component
112 ARX LS component
113 matrix ARX component
114 matrix ARX LS component
121 ARX mixture
122 ARX LS mixture
123 matrix ARX mixture
124 matrix ARX LS mixture

The p-elements are obtained from corresponding estimation elements by mixture projection (mar-
ginalization, conditioning, regressor substitution), see Section 9. In the projection, the original states
are changed.

3.1.2 Creating of mixture elements

Estimation elements (factors, components, mixture) are created by:

• constructors with fields filled by defaults ( default factor,. . . ) and overridden by user so that
initial element ( initial factor,. . . ) arises;

• conversions from other existing form;

• operations from initial values through initialization, estimation etc. while processing data.

Prediction elements are created by:

• projection - transformation of estimation results while supplying information on predicted chan-
nels, channels in condition and their values, see Section 9;



3.1. SOFTWARE REPRESENTATION OF MIXTURES 13

• conversions from other existing p-forms.

3.1.3 Factors

The factors used in estimation are discussed. The corresponding p-factors are obtained from estimation
factors by projection.

The factors are elaborated for a specific modeled channel. Their regression vectors are described
by the factor structure. As static factors we refer to factors with modeled channel independent of
delayed data. Its structure either contains offset or is empty.

The factors are structures built by constructors. A constructor creates factor with default values
referred to as an default factor. The factor fields are filled later on by the user so that initial factor
is obtained.

ARX factor

The ARX factor is described by (2.9). It is created by the constructor ”facarx”, e.g.
ychn = 1; % modeled channel
str = [1 1 2 2 0; 1 2 0 1 1]; % dynamic factor structure
Fac = facarx(ychn, str) % build ARX factor

Fac =
ychn: 1 − > modeled channel
str: [2x5 double] − > factor structure
dfm: 1 − > degrees of freedom ν − 2
type: 1 − > type: ARX factor
LD: [6x6 double] − > L’DL decomposition of extended inf. matrix

The ”LD” field is the L′DL decomposition of the extended information matrix introduced in
(2.10), ”dfm” is the field used for degrees of freedom ν − 2. It represents the effective number of data
items processed.

The ”L” is a lower triangular matrix with units on diagonal. The diagonal matrix ”D” is held on
the ”L” diagonal. The extended information matrix is V = L′DL.

ARX LS factor

The least squares representation (LS) of an ARX factor, ARX LS factor, deals with the LS form of
the sufficient statistics (2.11). The factor is built by the constructor ”facarxls”:

ychn = 1; % modeled channel
str = [1 1 2 2 0; 1 2 0 1 1]; % dynamic factor structure
Fac = facarxls(ychn, str) % build ARX LS factor
Fac =

ychn: 1 − > modeled channel
str: [2x5 double] − > dynamic factor structure
dfm: 1 − > degrees of freedom ν − 2
type: 2 − > type: ARX LS factor
cove: 1.0000e-010 − > LS estimate r̂ of noise variance
Eth: [0 0 0 0 0] − > LS estimate θ̂ of regression coefficients
Cth: [5x5 double] − > LD decomposition of LS covariance

(L′DL)−1

The covariance matrix ”Cth” is held in the form of its L′DL decomposition, i.e. the lower triangular
”L” with its unit diagonal replaced by the diagonal of the matrix ”D”.

3.1.4 Components

A component describes parameter estimates related to multivariate pdf of selected channels. We refer
to the selection as modeled channels. The distribution of modeled channels may be influenced by



14 CHAPTER 3. SOFTWARE REPRESENTATIONS

data measured on channels whose distribution is not modeled. These channels are introduced by the
structures involved. We refer to them as not-modeled channels.

Components are of different forms described in subsections.

ARX components

As a basic form, the component is expressed as a list of individual factors. This form is used in
estimation.

The list of factors should be ordered according to mutual dependencies but the Mixtools functions
do not require to specify the correct order of factors – the sorting is done internally if needed be.

ARX LS components

This component consists of ARX LS factors only. This type (converted to predictor) is used in
simulation.

Matrix ARX components

The estimated parameterized component is a multivariate normal pdf that predicts the modeled
channels by a multivariate ARX model with a common regression vector. It and its estimates can be
written in the form similar to ARX factor.

The matrix ARX component has ”nchn” modeled channels. The common length of the regression
vector is ”npsi”. The ARX component is then described by the fields:

ychns (1-by-nchn) % ordered list of modeled channels: di;t depends on di+1;t, . . . , d̊i;t
str (2-by-npsi) % regression-vector structure common for all factors
dfm (1-by-1) % degrees of freedom ν − 2
LD (nLD-by-nLD) % L′DL decomposition of the extended information matrix, size nchn+npsi

The matrix ARX component is built by the constructor ”comarx”, e.g.
ychns = [3 2 1]; % modeled channels
str = [1 1 2 2 0; 1 2 1 2 1]; % common regressor structure
Com = comarx(ychns, str) % build matrix ARX component
Com =

ychns: [3 2 1] − > modeled channels
str: [2x5 double] − > component structure
dfm: 1 − > component degrees of freedom
type: 13 − > component type, matrix ARX
LD: [8x8 double] − > LD decomposition of extended inf. matrix

Matrix ARX LS component

The estimated parameterized component is multivariate normal pdf that describes the modeled chan-
nels by a multivariate ARX model.

It has a common regression vector and it is written in the form mimic to ARX LS factor. The
estimated regression coefficients and noise covariance only become matrices. The component structure
does not contain zero delays of the modeled channels - those dependencies are respected by non-
diagonal covariance whose estimate is non-diagonal matrix ”cove”.

This type of components is employed mainly in the problem formulation and interpretation of
results.

The matrix ARX LS component has ”nchn” modeled channels. The common length of the regres-
sion vector is ”npsi”. The ARX component is then described by the fields:



3.1. SOFTWARE REPRESENTATION OF MIXTURES 15

ychns (1-by-nchn) % list of modeled channels ordered
str (2-by-npsi) % regression-vector structure common one
dfm (1-by-1) % degrees of freedom of a factor
Eth (nchn-by-npsi) % point estimate of regression coefficients matrix E [θ|L,D, ν]
Cth (npsi-by-npsi) % covariance of regression coefficients the same as for single modeled chanel

L′DL version stored
cove (nchn-by-nchn) point estimate of noise covariance matrix E [r|L,D, ν]

L′DL version stored
The matrix ARX LS component is created by the constructor ”comarxls” e.g.

ychns = [3 2 1]; % modeled channels
str = [1 1 2 2 0; 1 2 1 2 1]; % common regressor structure
Com = comarxls(ychns, str) % build matrix ARX LD component
Com =

ychns: [3 2 1] − > modeled channels
str: [2x5 double] − > component structure
dfm: 1 − > component degree of freedom
type: 14 − > component type, matrix ARX LS
cove: [3x3 double] − > point estimate of noise covariance
Eth: [3x5 double] − > point estimate of regression coefficients
Cth: [5x5 double] − > covariance of regression coefficients

The covariance matrix ”Cth” and the point estimate of noise variance ”cove” are held in the form
of its L′DL decomposition introduced in (2.10), i.e. the lower triangular ”L” with its unit diagonal
replaced by the diagonal of the matrix ”D”.

The field ”dfm” holds degrees of freedom ν − 2. It represents the effective number of data items
processed.

3.1.5 Mixtures

A Mixtools mixture is formed by an array of components and degrees of freedom of components.
The degrees of freedom of components ”dfcs”, equal to κ in (2.7), are proportional to point esti-

mates of the mixing probabilities defining the mixture weights (α). They also determine uncertainty
of these estimates. The attempt to fix these estimate sufficiently in mixture estimation led us to the
recommended initial values of ”dfcs” to be close to 10 % of the data sample length.

The mixture is build by mixture constructor in the form:
Mix = mixconst(Facs, coms, dfcs) % forms 21 22
Mix = mixconst(Coms, dfcs) % forms 23 24

The first possibility is explained in the next subsection. The second one is equivalent.
The list of components ”Coms” can have different forms. The components must have the same

selection of the modeled channels.
The constructor analyzes the components, specifies the mixture ”type” and writes a descriptive

information into the field ”states”.

ARX mixture – basic estimation form

The ARX mixture is based on an array of factors ”Facs”. Each factor is represented by its position
in the array – by an integer index. A component lists its factors as integers pointing to ”Facs”. The
array of components is then a matrix where each row represents a component. It has the dimension
ncom-by-nchn where ”ncom” is the number of components and ”nchn” is the number of modeled
channels.

In texts and examples, we use the term estimator for this special mixture form in order to stress
its dominant use.
Notes:



16 CHAPTER 3. SOFTWARE REPRESENTATIONS

• a factor can be used by more than one component – in this case we speak about the common
factor

• the field of factors ”Facs” may contain factors that are not included in any considered component

• the factors define the modeled and not-modeled channels of the mixture.

The non-modeled channels are used factor structures but they are not listed among the modeled
channels.

The ARX mixture is build by the constructor ”mixconst” with 3 arguments:

Mix = mixconst(Facs, coms, dfcs)

The ARX mixture estimator was designed with respect to easy estimation. It represents the only
mean how to specify and support common factors.

An example of a mixture estimator building follows. The mixture has two components. The
components contain the dynamic factors Fac1 and Fac2 for the 1st channel and a common static
factor Fac4. The Fac1 and Fac2 depend on 1st and 2nd modeled channels and on the not-modeled
channel 4. The factor Fac3 is not used in processing.
The diary of building the mixture:

Facs{1} = facarx(1,[1 1 2 2 4; 1 2 0 1 0]); % build 1st ARX factor
Facs{2} = facarx(1,[1 2 ; 1 0]); % build 2nd ARX factor
Facs{3} = facarx(2,[1 0; 1 1]); % build 3rd ARX factor (not used)
Facs{4} = facarx(2, []); % build 4th ARX factor
coms = [1 4; 2 4]; % build components
dfcs = [10 40]; % degrees of freedom of components
[Mix, maxtd] = mixconst(Facs, coms, dfcs); % build mixture
maxtd
maxtd =

2 − > maximum time delay in the mixture

The mixture consists of the following fields:
Mix
Mix =

Facs: {[1x1 struct] [1x1 struct] [1x1 struct] [1x1 struct]}
coms: [2x2 double] − > description of components
dfcs: [10 40] − > degrees of freedom of components
type: 21 − > mixture type: ARX mixture

states: [1x1 struct] − > states for estimation

ARX LS mixture

In the same way, ARX LS mixture is build. The only difference is that the factors used are ARX LS
factors. This form of mixture is used for simulation.

Matrix ARX mixture

The components are specified as a list of matrix ARX components.
We use this forms when we gain no advantages from use of the corresponding factorized form.
Example: 3 matrix ARX LS components ”Com1, Com2, Com3” and a ”dfcs” are supposed to be

available. The mixture is build as:



3.1. SOFTWARE REPRESENTATION OF MIXTURES 17

dfcs = [10 40 20];
Mixc = mixconst({Com1 Com2 Com3}, dfcs)
Mixc =

Coms: {[1x1 struct] [1x1 struct] [1x1 struct]}
dfcs: [10 40 20] − > degrees of freedom of components
type: 24 − > mixture type: matrix ARX mixture

states: [1x1 struct] − > states

Matrix ARX LS mixture

This form is similar to matrix ARX mixture but the components are specified as a list of matrix ARX
LS components.

Summary of coding
{codingsum}

1 ARX factor
2 ARX LS factor
11 ARX component
12 ARX LS component
13 matrix ARX component
14 matrix ARX LS component
21 ARX mixture
22 ARX LS mixture
23 matrix ARX mixture
24 matrix ARX LS mixture
+100 predictor types

3.1.6 Conversions

There are 2 functions for conversion into any specified form:
Com = com2com(Com, type) % convert component to the type specified
Mix = mix2mix(Mix, type) % convert mixture to the type specified

where ”type” is coded element type.
Use of ”mix2mix” is documented on an example. Let us have a ARX mixture estimator ”Mix” .

First, marginalization by the function ”mix2mixm”, see Section 9, is performed. By this, mixture is
converted to mixture predictor:

pMix = mix2mixm(Mix) % build p-ARX LS mixture (predictor)
Facs: {[1x1 struct] [1x1 struct] [1x1 struct] [1x1 struct]}
coms: [2x2 double] − > description of components
dfcs: [0.3000 0.7000] − > degrees of freedom of components
type: 122 − > mixture type: ARX LS predictor

states: [1x1 struct] − > states for prediction

Then, the p-mixture ”pMix” is converted to p-ARX LS mixture:
pMix = mix2mix(pMix, 124) % p-matrix ARX LS mixture
pMix =

Coms: {[1x1 struct] [1x1 struct]} − > mixture components
dfcs: [0.3000 0.7000] − > degrees of freedom of components

reserved: 0 − > for later use
type: 124 − > mixture type: matrix ARX LS prediction

states: [1x1 struct]

mixrepr.tex by MK, PN November 3, 2005



18 CHAPTER 3. SOFTWARE REPRESENTATIONS

3.2 Software representation of advisory mixtures
{representa}

Mixtools implements algorithms that transform user’s aims bUf(d(̊t)) and data d into the ideal mix-
tures bIf(d(̊t)) that are presented to the user. Mixtures are learned from the data [3]. The estimated
mixtures are converted into predictors, namely, p-mixtures. They contain information necessary for
constructing of the current regression vector in addition to the information from estimation. Design
converts predictors (p-mixtures) and management aims (expressed by one component mixture) into
advisory type mixture (a-mixtures). In addition to the information describing estimation results, a-
mixtures store description of user’s aims and states related to the design. Thus, a-mixtures represent
a slight extension of p-mixtures, so that majority of notions related to p-mixtures is preserved.

Advise describes the ideal pdf of data, which is constructed such that, if followed, the system
behaviour be close to the user target (given by the user ideal pdf bUf(d)).

The advising results are represented by a-mixture which is similar to p-mixture, but have additional
states ( advisory states) used in design of advises. Mixture projection (marginalization, conditioning,
regression vector substitution, see Section prediction) operations can be applied to a-mixture as well.

Design converts result of learning (e-mixture) into predictor (p-mixture) and then into advisory
mixture a-mixture. The last is used for advising and represents the ideal pdf. Basic information stored
in individual factors and components are identical with those of corresponding p-mixture, except of:
i) field dfcs, which contains probabilistic weights of components α gained from advisory design and
ii) advisory states used in advises design. Thus the state of a-mixtures contains the following fields:

• strc - common structure of data vectors used in design

• ufc - vector qualifying components: dangerous component (0), not dangerous (positive number)

• kc - user lifts of quadratic forms

• UDc - cell vector of U ′DU decompositions of the user KLD kernels

• udca - U ′DU decomposition of the average KLD kernel made of UDc

• kca - average lift of quadratic forms made of kc

• outs - list of channels with innovations

• uchn - list of channels with recognisably actions

• pochn - list of channels with o-innovations

Beside that, a new factor state Mixc.Facs{·}.states.pEth is defined. This state is a pointer table
enabling expanding of Facs{·}.Eth to a common structure strc used by a-mixture.

The only way to get a-mixture is to construct it from the estimated mixture and user target by
using mixture constructor ”inisyn”. The function ”inisyn” is called in the following way:

[aMix,aMixu] = inisyn(Mix,Mixu,Chns) % converts Mix and Mixu to advisory type
or

[aMix,aMixu] = inisyn(Mix,Mixu,pochn,uchn)

The arguments of the function are:

aMix constructed a-mixture
aMixu user target Mixu, converted to advisory type
Mix learnt ARX mixture
Mixu user target (one component ARX mixture)
Chns cell vector with channels descriptions
pochn list of channels with o-innovations
uchn list of channels with recognisably actions (can be omitted for academic design).

mixrepra.tex by TG November 3, 2005



Chapter 4

Data management

{dataman}{dataman}
Management of data samples is discussed.

4.1 Access to data sample

The Mixtools uses simple data management based on two global matrices:

• DATA – data sample

• TIME - processing ”time”

The DATA matrix must be allocated before processing (mixture simulation and/or estimation) starts.
Data vectors should not be accessed directly, but via an interface function ”getdvect”. In such a way,
nothing needs to be changed when the file management changes (e.g. the processing is done outside
MATLAB).

The function ”getdvect” returns data vector or regression vector according to the form how it is
called:

Get data or regression vector

psi = getdvect(str) get regression vector
Psi = getdvect(Fac) get data vector

Note 1: data vector is the regression vector preceded by the current data value on the modelled
channel.

Note 2: the ”TIME” must be specified greater then the maximum time delay ”maxtd” in the
relevant structure.

4.2 Huge data sample processing
{huge}

When we process an extremely huge data sample, we are forced to use buffered estimation because
such data sample is hardly manageable in the MATLAB workspace. This possibility is available with
any estimation function.
The data matrix is held on disk in similar form as in MATALB workspace. Instead of the usual
argument ndat, the cell list

Ndat = {’filename’,mdat} % argument ”ndat” replacement
is used. Here, ’filename’ is the name of file where data are stored and ”mdat” specifies the number
of rows. The global matrix DATA is then used as a buffer for the buffered estimation. The matrix
DATA can have any reasonable number of columns.

data.tex by PN November 3, 2005

19



20 CHAPTER 4. DATA MANAGEMENT



Chapter 5

Data preprocessing

{preprocessing}
The data sample should be preprocessed for subsequent data analysis. It is done either as batch data
preprocessing or recursive data preprocessing.

Data preprocessing implies the necessity of backwards transformation of processing results to the
user’s levels.

5.1 Preprocessing requirements

The preprocessing requirements are encoded as a cell list - a cell vector consisting of pairs of cells.
The cells carry the information:

• the first one is a character string that identifies the preprocessing operation to be done;

• the second one is a matrix that contains the quantitative values (often again a cell list) needed
for performing this operation. This matrix is referred to as operation ”parameters”.

The preprocessing operations are carried out in the order of operations defined by the preprocessing
requirements.

The processing requirements are modified during preprocessing - they usually contain ”states”.
The modified preprocessing cell list is referred to as run-time preprocessing requirements. This list is
obtained by initialization of preprocessing. In the batch data preprocessing, it is modified internally
and a final state is returned.

The preprocessed data sampleare located in the global matrix ”DATA”.
The identifier used for the preprocessing list is pre.
The preprocessing operations are:

Data preprocessing

pre = preproc(pre) batch preprocess data
pre = preinit(pre) initialize preprocessing
pre = prestep(pre) preprocessing step
out = filoutm(ord) outlier filtration by mixture estimation

The recursive preprocessing consists of two steps. The first one is calling preiniti and then the
prestep is to be called in the cycle of ”time”. Note that the the run-time preprocessing list can be
modified at each processing step.

5.2 Preprocessing algorithms

Algorithms available and corresponding list of (preprocessing) requirements are discussed.
The channels that are accessed by an algorithm are introduced by the construct

21



22 CHAPTER 5. DATA PREPROCESSING

{ ’c’, [channels]}

This construct can appear among requirements or among specifications. If it appears among
requirements, they are interpreted as default set of channels that is valid till a next specification. At
the beginning of processing, the default channels are all channels.

If the channels are defined in the specification, the set of channels is used only for the current
operation.

The frequently used preprocessing fast algorithms are

option meaning parameters
limit limit signal [minimum, maximum] or

{’limits’, [minimum; maximum]}
scale scale signal [add; mult] or

{’scaling’, [add; mult]}
Re - sampling

group re-sample by group data extent of data grouping
lsfi0 re-sample by constant fit over a window [window size]
lsfit re-sample by least squares fited line [window size]

Description:

limit
If the data value is outside limits, the value of the limit violated is substituted. Use of inf or
−inf is possible in the parameters. The possible forms of the requirement:

1) pre = {’limit’, [-1;+1] }
2) pre = {’limit’, {’c’, [1 3], ’limits’, [-1; 1] } }
3) pre = {{’c’, [1 3], ’limit’, [-1; 1] } }
4) pre = {’limit’, {’c’, [1 3], ’limits’, [-1 -2; 1 2] } }
5) pre = {’limit’, {’c’, 1, ’limits’, [-inf; 5] } };

The meaning is:
1) the same limit for all channels;
2) the same limit for the channels specified;
3) change of default channels, the limits as in 2);
4) different limits for the channels specified;
5) only upper limit for the 1st channel.

scale
The specification consists of a column vector of 2 elements. The 1st line is added to signal, the
result is multiplied by the 2nd row of the vector. The specification can be empty see below -
then the data are normalized through the sample moments. If more channels are defined, the
specification contains corresponding number of columns.

The possible forms of the requirement:
1) pre1 ={’c’, 2, ’scale’, [] }
2) pre2 ={’c’, 2, ’scale’, [-mean(DATA(2,:)); 1/std(DATA(2,:))]}
3) pre = {’scale’, [] }
4) pre = { ’scale’, {’c’, [1, 3] } }
5) pre = { ’scale’, {’c’, 1, ’scaling’, [10; 2] } }
6) pre = { ’scale’, {’scaling’, [0.1,0.2 0.3; 1.1 1.2 1.3] } }

The meaning is:
1, 2) the requirements are identical;
3) all channels are normalized;
4) channels 1,3 are normalized;
5) general form - 10 is added to the channel 1 data and then multiplied by 2;
6) for more channels, the scalling is matrix.



5.3. FILTERS 23

group
An example of data grouping:

DATA = [1:10; 11:20]
DATA =

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20

nsk = 2; % extent of data grouping
pre = { ’group’, nsk}; % preprocessing requirement
pre = preproc(pre); % preprocessing
DATA
DATA =

2 4 6 8 10
12 14 16 18 20
1 3 5 7 9

11 13 15 17 19

lsfit0
Data are re-sampled by a constant fitting. The original samples within the window of the
specified length are replaced by a single value equal to the average of the processed samples.

lsfit
Data are re-sampled by fitting least-squares straight line. The original samples within the
window of the specified length are replaced by a single value equal to the end point of the fitted
line.

5.3 Filters

Preprocessing algorithms are described in [4].
The following selected filters are discussed here.

olymean, olymedian, olymeanf, olymedianf
serve as outlier removal filters. They preserve majority of data and substitute a new value (mean
or median based) the outlier is detected.

’mean’ ’median’ ’meanf’ ’medianf’
are mean, median, and forgetting based filters itself. All data are influenced by these filters, no
re-sampling is done.

The algorithms use the arguments:

‘c’ describes channels to be preprocessed by this algorithm (vector);

startup period is scalar to adjust the initial period of algorithm, where the DATA matrix is not
modified at all, to allow clean startup of the algorithm;

window size determines size of the window for olymean, olymedian, mean and median algorithms;

forgetting rate is proportion of information from current data item and filtered data, for olymeanf,
olymedianf, meanf and medianf algorithms;

level is threshold for the amplitude of outlier and the standard deviation of underlying signal noise;

m0 is the initial value of mean/median for forgetting-based algorithms;

s0 is the initial value of standard deviation for forgetting-based algorithms.

Short description of algorithms:



24 CHAPTER 5. DATA PREPROCESSING

option meaning
olymean mean outlier removal filter (window based)
olymedian median outlier removal filter (window based)
olymeanf mean outlier removal filter (forgetting based)
olymedianf median outlier removal fiter (forgetting based)
mean simple mean filter (window based)
median simple median filter (window based)
meanf simple mean filter (forgetting based)
medianf simple median filter (forgetting based)

Input parameters c and startup period are used by all filters, default values are substituted if they
are not specified. Other parameters needed for respective algorithms are:

option input parameters
olymean window size, level, m0, s0
olymedian window size level m0 s0
olymeanf forgetting rate level m0 s0
olymedianf forgetting rate level m0 s0 importance threshold
mean window size m0 s0
median window size m0 s0
meanf forgetting rate m0 s0
medianf forgetting rate m0 s0 importance threshold

Remark to filter usage The temporal correlation is introduced into the data if filters mean, median,
meanf, and medianf are used. It may cause troubles in the closed control or advising loop.

The outlier removal algorithms influence only data detected as outliers, thus correlate only a very
few data items. It should not make any damage compared to the negative influence of outliers itself,
thus benefiting in the closed control loop enormously.

5.4 Case studies

Diaries of case studies are in Mixtools Guide

preproc.tex, zpre2.m zpre3.m PN, November 3, 2005



Chapter 6

Mixtools functions

{functions}
Mixtools functions can be roughly divided in the group of Mixtools user’s functions that are used by
an ordinary designer user). The rest of the Mixtools auxiliary functions form a Mixtools design base.

The user’s functions can be used for batch and recursive processing. When applicable, the versions
are distinguished by presence or absence of the argument ”ndat”.

The data sample must be located in the global matrix ”DATA”, the processing time is controlled
by the global scalar ”TIME”.

Some functions can be run in debugging mode. It is controlled by the global matrix DEBUG used
for debugging prints, plots etc. If it is set to zero, no information is displayed. A positive value leads
to the information display according to the function design.

6.1 Function arguments

The list of all arguments can be found in Appendix A.
The following arguments are used in learning and prediction.

Com component
Coms array of components
Fac factor
Mix mixture
Mix0 initial mixture
Sim mixture simulator
cchns channels in condition
coms array of components
dfcs vector of degrees of freedom of components
frg forgetting rate
ndat length of data
niter number of iterations
opt processing options
pMix mixture predictor
pchns predicted channels
pre preprocessing requirements
psi0 value of zero-delayed regressor
str structure of regression vector
ychn modeled channel
ychns modeled channels in component

The following arguments are used in design of advisory system.

25



26 CHAPTER 6. MIXTOOLS FUNCTIONS

aMix advised mixture of the type ARX LS + control states
aMixu desired mixture of the type ARX LS + control states
strc common control structure
ufc normalized vector qualifying components
kc lift of quadratic forms
UDc cell vector of u’du decompositions of KLD kernels
udca u’du decomposition of average KLD kernel in UDc
kca average lift of quadratic forms kc
strc common control structure
uchn list of channels with recognisably actions
pochn list of channels with o-innovations
outs list of channels with innovations
npochn number of channels with o-innovations
chis strategy of control design

6.2 Mixtools user’s functions

This subsection summarizes the Mixtools user’s functions in the form of the functions prototypes.

Constructors

Fac = facarx(ychn, str) build ARX factor
Fac = facarxls(ychn, str) build ARX LS factor
Com = comarxls(ychns, str) build matrix ARX LS component
Com = comarx(ychns, str) build matrix ARX component
Mix = mixconst(Facs, coms, dfcs) build ARX or ARX LS mixture
Mix = mixconst(Coms, dfcs) build mixture of any type

Initialization of estimation

Mix = ... initialization of mixture estimation
mixinit(Mix0,frg,ndat,niter,opt,belief)

Mix = comdel(Mix, com) cancel specified component
Mix = commerge(Mix, Mix0, com) merge mixture components
Mix = mixcut(Mix) cancel components that explain low amount of data
Mix0 = ... generate initial mixture

genmixe(ncom,ychns,str,ndat)

Estimation operations



6.2. MIXTOOLS USER’S FUNCTIONS 27

Mix = ... iterative mixture estimation
mixest(Mix0, frg, niter, opt)

Mix = mixestim(Mix0, frg, ndat) quasi-Bayes mixture estimation
Mix = mixestim(Mix0, frg) recursive quasi-Bayes mixture estimation
Mix = mixestimp(Mix0, frg, ndat) projection based quasi-Bayes estimation
Mix = mixestimp(Mix0, frg) projection based recursive quasi-Bayes estimation
Mix0 = mixflat(Mix) mixture flattening
Mix = mixstats(Mix, ndat) compute estimation statistics
Mix = mixstats(Mix) compute statistics recursively
Mix0 = genmixe(ncom, ychns, str) generate initial mixture for estimation
[Mix,tstop,Qs] = ... quasi-Bayes estimation of ARX mixture with stopping

mixestims(Mix, frg, ndat, Mixa,thr)
[Mix,tstop, Qs] = ... projection based estimation with stopping

mixestimps(Mix, frg, ndat, Mixa,thr)
[Mix, tstops] =... projection based estimation with stopping

mixestpbs(Mix0,frg,ndat,niter,thr)
[Mix, tstops] = repetitive quasi-Bayes estimation with stopping

mixestqbs(Mix0,frg,ndat,niter,thr)
[Mix, tstops] =... repetitive projection based estimation with stopping

mixestpbs(Mix0,frg,ndat,niter,thr)
[Mix, tstops] =... repetitive quasi-Bayes estimation with stopping

mixestqbs(Mix0,frg,ndat,niter,thr)
[Mix,frg,mixlls,frgs] = estimate forgetting rate

estfrg(Mix0,frgs,ndat,niter,method,Mixa)

Prediction operations

pMix = mix2mixm(Mix, pchns) mixture flattening
pMix = mix2pro(Mix, pchns, cchns) mixture flattening
pMix = profix(pMix, psi0, pre) build mixture prediction from projector
pMix = ... build mixture projection

mixpro(Mix0,pchns,cchns,psi0,pre)
[pMix, weights] = ... build mixture projection

profixn(pMix, psi0, pre, nstep)
[Eths, coves, scales] = ... alternative prediction n-steps ahead (by fixing data)

profixna(pMix, psi0, pre, nstep)
Eth = getth(Eth) parameter estimates from profix outputs

Visualization



28 CHAPTER 6. MIXTOOLS FUNCTIONS

mixplot (Mix,pchns,cchns,psi0,pre)mixture plot (shaded)
mixplotc(Mix,pchns,cchns,psi0,pre)mixture plot (contours, components)
mixplots(Mix) plot of mixture colormap(summer)
mixplotsl(Mix) plot of mixture, displays mixlls, ncomp
[x,y,z] =... coordinates for mixture plot

mixgrid(Mix,pchns,cchns,psi0,pre)
[x,y,z] = datagrid(Mix) coordinates for data plot
datascan(chns) scan data for 2 dim clusters
mixmesh(Mix,pchns,cchns,psi0,pre) mixture mesh plot
mixscan(Mix,chns,pre) scan mixture for 2 dim. clusters
setaxis(list, ax) set global axis in subplots a

sigscan(chns) scan signal
fullscreen set full screen for current plot
resizefig() set plot position

alist is list of subplots, ax a scaling see axis function

Interactive visualization
mixshow(Mix) interactive plot of mixture
mixbrow(Mix) interactive display of mixture attributes
setdbg(’function’) interactive setting of ”dbstop”

Data preprocessing

pre = preproc(pre) preprocess data
pre = preinit(pre) initialize preprocessing
pre = prestep(pre) preprocessing step
out = filoutm(ord) outlier filtration by mixture estimation

Structure estimation
Mix = ... estimate mixture structure

mixstrid(Mix,Mix0,belief,nruns)
MAPstr = ... estimate structure of a factor

facstr(Fac,Fac0,belief,nbest,nruns)
[...] = straux1(...) structure estimation based on LD decomposition
[...] = strmax(...) structure estimation based on UD decomposition

Mixture simulation
mixsimul(Sim, ndat) batch mixture simulation
mixsimul(Sim) recursive mixture simulation
Sim = statsim((ndat, ncom, cove) create static mixture with components on unit circle
Sim = setsim(Sim, list) set simulation options
[res, tstop] = repeated simulation characteristics

simeval(Sim, chns, nrep, ndat, thr)
tab = gentab(dim, dia) Markov transition table for Metropolis algorithm

Model verification
[Fac, Res] = bisect(Fac0, nseg) estimate length of learning segment
[Mix, Res ,pH0s] = ... validation test by temporal segmentation

valseg(Mix0, n, flag)
pen = relep(Mix, ndat) prediction errors norm
pen = relepn(Mix, nstep) multi-step prediction error norm

Support of stopping rules



6.2. MIXTOOLS USER’S FUNCTIONS 29

[Fac, Q] = stopstac(Fac,dvect) stopping of a time series at stationary mode
[Cl,Cu,Chat] = credit(C,beta) evaluation of an credibility interval
[Cl,Cu,Chat,flag,st] = ... evaluation of an credibility interval with stopping

credits(C, beta, epsi)

Basic conversion functions

LD = ltdl(V) decompose positive definite matrix to L’DL
Mix = mix2mix(Mix, form) decompose positive definite matrix to L’DL
Com = com2com(Com, form) decompose positive definite matrix to L’DL
X = arx2arx(X) decompose positive definite matrix to L’DL

Design of advisory system

[aMix, aMixu] = ... initialize advisory design for normal mixture
inisyn(Mix,Mixu,pochn,uchn)

[aMix, aMixu] = ...
inisyn(Mix,Mixu,Chns) call with channel descriptions

aMix = ... make academic advisory design for normal mixture
aloptim(aMix,aMixu,ufc,nstep,chis)

ufc = ufcgen(Mixc, Mixc0) vector of unstable components
aMix = ... perform simulaneous advisory design

soptim(aMix,aMixu,ufc,nstep,chis)
aMix = ... simultaneous advisory design for normal mixture

uoptim(aMix, aMixu, ufc, nstep, chis)
aMix = algen(aMix,aMixu,ufc) compute of probabilistic weights for advisory design
[Mixu, ychns] = target(Chns) create user’s target mixture
[Mixu,Chns,ychns] = targeti(Chns) create target mixture according to user’s wishes
Mix = mixcopy(Mix1, Mix2) copy of ARX or ARX LS statistics
[chn,mean,std] = meandisp(Chns) momentsof the user-given signal ranges

Channel descriptions

Chns = chnconst(chns) build channel descriptions
Chns = chnset(Chns,chns,fld, val) set channel descriptions field
val = chnget(Chns,chns,fld) get values of channel descriptions fields

General purpose functions

prodini standard Mixtools session beginning
ashelp(funname, helpfile) get help
prt(X) debugging prints
is = equal(X1,X2, eps) test of equivalence up to a small difference
str = genstr(order, nchn, td) generation of model structure of given order
is = streq(str1, str2) compare two structures
is = isstatic(Mix) test whether mixture is static
is = isdimeq(X1,X2) test of equality of dimensions
is = streq(str1,str2) test of equality of dimensions
Mix = mixreorg(Mix, chns) reorganize mixture estimator
nu = getnu(R,prec) solve equation log(0.5*nu)-psi(0.5*nu)=R
[Mix, Mixs, Mixs1] = ... auxiliary estimation for factor splitting
maxtd = mixmaxtd(Mix) maximum time delay in mixture
mixpaths sets paths for mixtools toolboxes

Dialog functions



30 CHAPTER 6. MIXTOOLS FUNCTIONS

dial1, dial2, dial3 dialogue units for case studies
testassign script used in dial1.m

funlistu.tex by PN November 3, 2005

6.3 Design base

Prior knowledge processing

Facs = prior(Facs0, pri) prior knowledge processing
lhs = ... structure estimation with prior knowledge

pristr(Facs0, pri, beliefs, nbest, nrep)
pristrd(Fac, Fac0, vll, sub) display results of structure estimation
pri = scalepri(pri, pre, ychn) scale prior knowledge list
prtstr(lhs, str) auxiliary print results of facstr

Estimation related operations

[Mix, faclls] = ... one step of mixture update
mixupdt(Mix, flag, weight)

Mix = mixupdtp(Mix, flag) mixture update for projection based estimation
Mix = mixestpb(Mix,frg,ndat,niter) iterative estimation by projection
Mix = mixestqb(Mix,frg,ndat,niter) iterative quasi-Bayes mixture estimation
Mix = mixestbq(Mix,frg,ndat,niter) iterative batch quasi-Bayes mixture estimation
Mix = ...

mixestbb(Mix,frg,ndat,niter,nstep) iterative estimation by forgetting branching
Mix = mixestmt(Mix0,frg,ndat,niter)iterative batch quasi-Bayes mixture estimation
Mix = mixestem(Mix0, ndat, niter)estimation by EM algorithm
Mix = mixfrg(Mix ,frg) mixture forgetting
[Mix0,handle] = ... mixture flattening with variable rate}

mixflatv(Mix,niter,ndat,frg)
[Mix, Mixs, Mixs1] = ... mixture and filtration error estimate

mixestfe(Mix0, frg, ndat, Mixs, Mixs1)
ndat=tukinit(Ndat) auxiliary function for buffered processing

Auxiliary estimation operations

Mix = mixgmean(weights,Mix1,... ) geometric means of mixtures
dvec = getdvect(Fac) get data or regression vector
lls = facdpred(Mix) compute trial factor predictions
[s,s0] = mixdfms(Mix) sum degrees of freedom of the mixture
Mix0 = mix2mix0(Mix) sum degrees of freedom of the mixture
lls = loglik(LD,dfm,LD0, dfm0) increment of loglikelihood
Sim = sim2pdf(Sim, ndat) sum degrees of freedom of the mixture

Prediction related operations

Facs = fac2marg(Facs, pchns) sum degrees of freedom of the mixture
Com = com2pro(Facs, pchns, cchns) sum degrees of freedom of the mixture
[typ, ychns,...] = comunpk(...) get information about component
Com = pro2pre(Facs, comaux, psi0) convert predictor to prediction component
protest(Mix, pchns, cchns) check projection arguments

Pre-processing and data scaling



6.3. DESIGN BASE 31

data = scaledata(data, pre) scale data
data = scalepsi(data, pre) scale data vector
data = rescalepsi(data, pre) unscale data
pre = invprescal(pre) re-scaling information in list
Chns = scaledescription(Chns,pre) scale description
Pre = preaux1(method, time, Pre) auxiliary function for data pre-processing

Basic square root algorithms

[....] = dydrs(...) transformation of sum of 2 dyads
[LD, D] =ldform(AD, D0) decomposition A ’D0 A -¿ L’DL decomposition
[Eth, cove] = udform(Eth, cove) restore matrix factorized ARX component

Factor oriented operations

[Fac, ep] = facupdt(Fac, weight) update factor statistics
[Fac, ep] = ... update factor statistics using PB estimation

facupdt(Fac, w, ep, zeta, dvect)
Fac = facfrg(Fac, rate, Faca) factor forgetting
Fac = facflat(Fac, rate, Faca) factor flattening
Fac = facgmean(Fac1, Fac2,weight) geometric mean of factors
Fac = ... merge factors

facmerge(Fac1, Fac2, weight, weight1)
[LH,FSC] = facpred(Fac,w,Psi) compute logarithm of factor prediction
vll = facvll(Fac, Fac0) compute factor v-log-likelihood

Design of advisory system

Com = arx2ful(Com, str) weights needed for advisory system design
Com = canarxls(ychns, str) build matrix ARX LS component
pMix = facchng(pMix, com, Fac) auxiliary changes of mixture factors
Mix = pro2str(Mix, str) additional pointers to external structure
... = ricexp(....) auxiliary function for computing of expectation
... = ricpen(....) auxiliary function for computing of penalisation
... = ricpenu(....) computing of penalisation in simultal design
... = ricshift(....) shift of matrices and vectors
aMix = synmixi(Mix, uchn, strc) convert mixture to control form aMix

Kullback-Leibler divergence

dist = kldist(fac, Mix, Mix0) divergence of a factor in parameter space
dist = kldist( 0, Mix, Mix0) divergence of all factors
dist = kldist(Mix, Mix0) divergence of all components
[d1,d2,d3,d4] = kldist(Mix1, Mix2) divergence of mixtures a

dist = kldiscom(Mix, ndat) distance of components in data space
dist = kldcom(Mix, Mix0) KL distance of components from initial ones
kld = kldisdir(s, s0) Kulback-Leibler distance of Dirichlet pdfs
kld = kldistc(Mix) KL distance of components in normal mixture

a distances: d1 - overall distance, d2 - distances of factors, d3 - distance of components, d4 - distance of component
weights

Conversion functions



32 CHAPTER 6. MIXTOOLS FUNCTIONS

Conversion of an array of ARX components to the mixture and back

Sim = arxc2mix(Coms, dfcs) convert ARX components to simulator
Coms = mix2arxc(Mix) KL distance of components in normal mixture
Facs = arxc2fac(Com) KL distance of components in normal mixture
Com = fac2arxc(Facs) KL distance of components in normal mixture

Conversions of L’DL decompositions

V = ld2v(LD) KL distance of components in normal mixture
LD = ld2ld(L, D) replace diagonal unit of L by D
[L,D]= ld2ld(LD) extract D from diagonal LD and replace it by D
LD1 = ldchng(LD, str, LD1, str1)change part of L’DL decomposition

Conversion of L’DL to LS representations and back

[Eth,Cth,cove,dfm] = fac2ls(Fac) change part of L’DL decomposition
LD = ls2ld(Eth,Cth,cove,dfm) change part of L’DL decomposition
[Eth,Cth,cove]=ld2ls(LD,dfm,nychn)change part of L’DL decomposition

Subselection from an L’DL decomposition

LD = ld2ld(LD,str1,str2) marginal L’DL decomposition a

LD = ldperm(LD, i) permute L’DL decomposition: i-th row to 1st row
astr1 is source and str2 target LD structure, str2 has to be contained in str1

Operations over triangular matrices

UD = ld2ud(LD) permute L’DL decomposition: i-th row to 1st row a

UD = utdu(X) upper triangular U’DU sym. matrix decomposition
UD = ld2ud(LD) permute L’DL decomposition: i-th row to 1st row
LD = ud2ld(UD) permute L’DL decomposition: i-th row to 1st row
LDi = ldinv(LD) invert L’DL decomposition
ut = udinv(ut) invert upper triangular matrix
LD = ldupdt(LD , dvect, weight) update L’DL decomposition by weighted data vector
UD = udupdt(UD , dvect, weight) update U’DU decomposition by weighted data vector
UD = utinv(UD) upper triangle matrix inversion

athe decomposition U’DU, U is upper triangular with unit diagonal, V = U’DU. ”UD” is the upper triangular matrix
with ”D” on diagonal

Factorized matrix ARX and matrix LS components

Can = arxc2can(Com) restore matrix factorized ARX component
Com = can2arxc(Can, n) a convert ”Can” into matrix ARX LS component
Can = can2marg(Can) restore matrix factorized ARX component
Facs = can2fac(Can, eps) convert matrix factorized component to matrix form
[Can, ok] = com2can(Facs) convert component into matrix factorized component
Facs = can2ls(Can,eps) convert matrix factorized component to matrix form

a”n” is number of marginal channels

Visualisation



6.4. TUTORIAL EXAMPLES 33

statmesh(Mix) interactive mesh plot of static mixture or data
statplot(Mix) plot components of static mixture components
[x,y,z] = statgrid(Mix) coordinates grid for 3-D display
complot(Mix, com) plot of component of a mixture
iterplot(Mix0, Mix, iter) plot initial and resulting mixture of an iteration step
setfig(number) set figures windows
fixerr(Mix) interactive set TIME for plots

Dump/restore of MATLAB array

savearray(X, filename) dump MATLAB array X to the disk file
X = loadarray(filename) restore saved MATLAB array

General purpose functions

val = defaults(’item’) get values from database of defaults
val = gauss1(dvect,Eth,cove) value of one dimentional Gaus pdf
val = gaussn(dvect,Eth,cove) value of Gaussian pdf
setfig(n) set figures windows
val = getflds(cell,member) set figures windows
val = betaln(p,q) logarithm of Euler’s beta function
fac = facsort(Facs) sort factors of a component
list= cellcat(LIST) concatenate complex cell lists

Random trajectory generation

rnd = noise(etyp) generate a random number with a ”etyp” distribution
rnd = dirrnd(dfcs, n) samples from dirichlet distribution
rnd = gamrnd(a, b) returns a matrix of random numbers chosen
[r,theta] = giwrnd(Fac,n) samples from Gauss-inverse-Wishart distribution
[...] = rndcheck(...) checks arguments of the random number generators
rnd = randun sample from uniform distribution
rnd = randnm sample from Normal distribution

6.4 Tutorial examples
{tutorial}

Commented examples can be found in Mixtools case studies

6.4.1 Case study: static mixture learning and prediction

Run example

6.4.2 Case study: dynamic mixture learning and prediction

Run example



34 CHAPTER 6. MIXTOOLS FUNCTIONS



Chapter 7

Construction of prior estimate
(initialization)

{mixinit}
The initialization searches for mixture model structure that maximizes v-log-likelihood evaluated for
the respective structures and data observed on the system considered.

The initialization is done by the functions mixinit. An article describes the processing logic.
Detailed examples are available.

List of references to [1]: 6.4{122}, 8.4{275}, 6.4.4{125}, 6.4.5{125}, 6.4.21{137}, 6.4.24{138},
6.4.26{139}, 6.4.30{141}, 6.4.34{143}, 6.4.46{151}, 8.4.5{277}, 8.4.7{278}, 8.4.9{279}, 8.4.12{281},
8.4.15{283}, 6.6{167}, 6.6.3{168}, 6.6.5{169}, 8.6{300}, 8.6.1{300}, 8.6.8{304}.

The function mixinit is called as

Mixture initialization

Mix = ... initialization of mixture estimation
mixinit(Mix0,frg,ndat,niter,opt,belief)

The arguments are (defaults are discussed below):

Mix initialized estimated mixture
Mix0 initial mixture
frg forgetting rate
ndat length of data
niter number of iterations
options processing options
belief belief on a guess of richest structure

Meaning of the input arguments with defaults follow.

Mix0 is an pre-prior or flattened mixture. It should be created using all prior information available
(e.g. static or order of dynamic mixture etc.). It is recommended to use the function genmixe
for the purpose.

frg is a forgetting rate. Usually it is one or a default forgetting rate. The only exception is the case
of the estimation based on forgetting branching where a very low forgetting is recommended
(e.g. 0.6).

niter is a number of iterations. A low number of iterations is sufficient, the default value is 5.

options specifies processing options. They are coded as characters optionally followed by numbers.
The options are discussed in the next subsection.

35



36 CHAPTER 7. CONSTRUCTION OF PRIOR ESTIMATE (INITIALIZATION)

belief is an user’s guess about the richest structure considered. As default, no belief is used. The
detailed description is available.

The recommended practice is to estimate the initialized mixture by an iterative mixture estimation
with many iterations.

Long processing and huge data size support is available.

7.1 Processing logic

One iteration of ”mixinit” consists of the steps:

1. The mixture from previous step is flattened.

2. The initial mixture is estimated by a single pass of ”mixestim”. During the estimation, a pair
of two-component static mixtures is fitted to prediction errors of the factors. The result is used
for recognizing whether each factor consists just of a single ”hill” or whether it covers several
hills. The factors that result in multiple hills are candidates for splitting.

3. All components containing a candidate for splitting are split. During the split, the structure of
factors is estimated.

4. The split mixture is flattened and estimated.

5. Splitting of components may lead to an excessive number of components so that an attempt is
made to reduce the number of components by merging and cancelling them.

6. The resulting mixture is split and estimated. The ”best mixture” (in the sense of maximum
v-likelihood) is maintained during all iterations.

When number of iterations is exhausted or no other factors can be selected for split, the initialization
ends. The last step is mixture structure estimation and a reduction of number of components.

7.2 Initialization options

The process of initialization can be modified by initialization options. The options are described
below. For each of them, the processing without the option is described and marked by bullet. The
alternative processing introduced by the options is described below. The comments and suggestions
are presented in italic.

The options are:

• Mixture estimation inside ”mixinit” is done by non-iterative quasi-Bayes estimation
’p’: by iterative mixture based on projection
’q’: by iterative quasi-Bayes mixture estimation
’b’: by iterative batch quasi-Bayes mixture estimation
’f ’: by iterative mixture estimation based on forgetting branching
Comment: the iterative estimation leads to a better mixture quality. The price paid for quality
is a higher requirement on computing time.

• If the iterative estimation is selected, the default number of iterations in estimation is 10
’n’: the number that follows specify number of iterations in estimation

• The structure estimation of the mixture factors is based on 10 searches differing in initial con-
ditions
’h’: number that follows specify the number of searches, e.g. ’h100’ specifies that 100 searches
differing in initial guesses of the structure are done

Comment: this option can lead to better structure estimation and higher quality of the result but,
the processing time visibly increases.



7.3. CASE STUDIES IN INITIALIZATION 37

• There are two tuning knobs that can modify processing substantially - the default value is 3
iterations
’g’: number of initial iterations when all factors are split
’k’: number of iterations when components are not merged or erased

Comment: the first option is to be specified when the initialization results in excessively small
number of components. Note that each iteration increases the number of factors twice.

The option ’k’ is recommended if the merging process is an excessive one, e.g. when number of
components during initialization does not increase.

• If no factor can be selected for split or the number of iterations is exhausted, the initialization
ends. The last step is mixture structure estimation and reduction of number of components
’c’: this housekeeping is skipped

This option is used when the user wants to make the structure estimation by different means.

• Other character among options are ignored, e.g. the option ’0’ implies that defaults are used.

Summary of options
options for estimation

q iterative quasi-Bayes mixture estimation
b iterative batch quasi-Bayes mixture estimation
f iterative mixture estimation based on forgetting branching
n number of iterations for iterative estimation, a number follows

option for structure estimation
h number of runs for structure estimation (integer follows)

option that modify processing
c do not make the final housekeeping
g number of initial steps when all factors are split (2)
k umber of steps when components are not merged or erased (2)

7.3 Case studies in initialization

Commented examples of mixinit are are available.

7.3.1 Computational Efficiency of Static Mixture Initialization

Run example

7.3.2 Dynamic Mixture Initialization

Run example

7.3.3 Static Mixture Initialization: “Banana Shape” Benchmark

Run example

7.3.4 BMTB Algorithm of Mixture Initialization

Run example



38 CHAPTER 7. CONSTRUCTION OF PRIOR ESTIMATE (INITIALIZATION)

7.3.5 Initialization of Static Onedimensional Mixture

Run example

mixinit.tex zinit.m by PN November 3, 2005



Chapter 8

Approximate parameter estimation

{mixestim}
The approximate parameter estimation of ARX mixtures (shortly mixture estimation) is the topic
discussed in this section, refer to 6.5{157} and 8.5{294}.

8.1 Implementation

Common rules:

Estimation methods implemented are:
• projection based algorithm;
• quasi-Bayes algorithm;
• batch quasi-Bayes algorithm.

branching by forgetting algorithm (see 6.4.30{141}) is implemented for quasi-Bayes algorithm;

recursive processing is available for the projection and quasi-Bayes estimation algorithm;

iterative estimation is available for all algorithms 6.4.26{139};

generic estimation function mixest calls the iterative algorithms defined by an argument opt ;

estimation using stopping rules is available for projection and quasi-Bayes estimation;

forgetting during estimation can be introduced as:
forgetting rate for all estimation functions;
alternative forgetting rate in projection and quasi-Bayes estimation.

The estimation functions have the following arguments: The functions input arguments with
together with defaults are:

argument meaning defaults
Mix output estimated mixture
Mix0 initial mixture to be estimated must be specified
frg forgetting rate default forgetting rate
ndat size of data sample length of ”DATA”
niter number of iterations 10
Mixa mixture used for stabilized forgetting no stabilized forgetting is used
opt coded method for the generic function ’p’
thr threshold for stopping rules 0.0025

The opt is coded as
’p’: iterative projection based estimation (default);
’q’: iterative quasi-Bayes estimation (default);
’b’: iterative batch quasi-Bayes estimation;
’f’: iterative estimation based on branching by forgetting

39



40 CHAPTER 8. APPROXIMATE PARAMETER ESTIMATION

Mixture estimation

— Basic functions
Mix = mixestim(Mix0,frg,ndat,Mixa)quasi-Bayes mixture estimation
Mix = mixestim(Mix0, frg) recursive quasi-Bayes mixture estimation
Mix = mixestimp(Mix0, frg, ndat,Mixa)projection based quasi-Bayes estimation
Mix = mixestimp(Mix0, frg) projection based recursive quasi-Bayes estimation
— iterative functions
Mix = mixestpb(Mix,frg,ndat,niter) iterative estimation by projection
Mix = mixestqb(Mix,frg,ndat,niter) iterative quasi-Bayes mixture estimation
Mix = mixestbq(Mix,frg,ndat,niter) iterative batch quasi-Bayes mixture estimation
Mix = mixestbb(Mix,frg,ndat,niter,nstep) xxxxx
— generic function
Mix = ... iterative mixture estimation

mixest(Mix0, frg, niter, opt)
— estimation functions with stopping rules
[Mix,tstop,Qs] = ... quasi-Bayes estimation of ARX mixture with stopping

mixestims(Mix, frg, ndat, Mixa,threshold)
[Mix,tstop, Qs] = ... projection based estimation with stopping

mixestimps(Mix, frg, ndat, Mixa,threshold)
[Mix, tstops] =... projection based estimation with stopping

mixestpbs(Mix0,frg,ndat,niter,thr)
[Mix, tstops] = repetitive quasi-Bayes estimation with stopping

mixestqbs(Mix0,frg,ndat,niter,thr)
[Mix, tstops] =... repetitive projection based estimation with stopping

mixestpbs(Mix0,frg,ndat,niter,thr)
[Mix, tstops] =... repetitive quasi-Bayes estimation with stopping

mixestqbs(Mix0,frg,ndat,niter,thr)

Mixture flattenning and forgetting

Mix0 = mixflat(Mix) mixture flattening
Mix = mixfrg(Mix ,frg) mixture forgetting

8.1.1 Estimation statistics

The quality of the estimated mixture can be judged from the value of v-log-likelihood. This statistic
offers the possibility of comparison of different mixtures estimated with the same data sample.

In the quasi-Bayes mixture estimation, the statistics are computed recursivelly and are held in the
mixture states.

facllds trial factor predictions determining factor weights
comlls component predictions
mixll posterior data likelihood (mixture prediction)
comwgs component weights
facwgs factor weights

The letters ”ll” in the name means that logarithms of the statistics are computed. Details, how
the statistics are evaluated can be found in function ”mixupdt.m” (m-version of ”mixestim”).
The computed statistics are:
• actual values in recursive data processing
• summed values in batch data processing.

The statistics are computed in estimation. They can be computed by the function:

Estimation statistics



8.2. CASE STUDIES 41

Mix = mixstats(Mix, ndat) compute estimation statistics
Mix = mixstats(Mix) compute statistics recursively

8.1.2 Forgetting

The value of forgetting rate should be close to 1 but, a small value (default 0.6) is to be selected for
quasi-Bayes algorithm and forgetting branching.

The optimum forgetting rate can be computed:
Estimation of forgetting

[Mix,frg,mixlls,frgs] = estimate forgetting rate
estfrg(Mix0,frgs,ndat,niter,method,Mixa)

8.2 Case studies

8.2.1 Quasi-Bayes Mixture Estimation

Run example

8.2.2 Comparison of Mixture Estimation Algorithms: Static Case

Run example

8.2.3 Comparison of Mixture Estimation Algorithms: Dynamic Case

Run example

8.2.4 Computational Efficiency of Mixture Estimation Algorithms

Run example

8.2.5 Mixture Estimation Based on Batch Quasi-Bayes Algorithm (BQB)

Run example

8.2.6 Mixture Estimation Based on Branching by Forgetting (BFRG)

Run example



42 CHAPTER 8. APPROXIMATE PARAMETER ESTIMATION



Chapter 9

Prediction with normal mixture

{prediction}

9.1 Projection and prediction with mixtures

There are two basic operations related to prediction with normal mixture:

• mixture projection
means marginalization and conditioning, see [1]. The result of these operations is referred to as
mixture projector.

• mixture prediction
arises from the mixture projection by substitution of a specific regression vector into it. The
result is referred to as mixture predictor.

More detailed text is available in Mixtools.

9.1.1 Mixture projection

The projection converts mixture estimator into mixture projector. It provides description of Student
pdf (2.13) mostly approximated by normal pdf (2.8). The projection is conditional pdf on a set of
modelled channels referred to as predicted channels. It is conditioned by another set of modelled
channels referred to as channels in condition. The projector can be re-built for a new selection of
those channels.

The mixture projection is done by the function:

Mixture projection

pMix = mix2pro(Mix, pchns, cchns) build mixture projection

The argument together with defaults are:

argument meaning defaults
Mix mixture estimator or projector must be specified

pchns predicted channels all channels
cchns channels in condition no channels in condition
pMix output mixture projector

9.1.2 Reduction of data space

The marginalization by mix2mixm preserves in the p-mixture all factors for original channels so that
the re-building operation can be done.

The function mix2mix makes the marginalization but it builds a new p-mixture without unused
factors. It reduces the data space before prediction and consequently reduces computing time.

43



44 CHAPTER 9. PREDICTION WITH NORMAL MIXTURE

Data-marginal projection

pMix = mix2mixm(Mix, pchns) build data-marginal projector

9.1.3 Prediction with mixture projection
{propred}

The mixture prediction with mixture projector is done as:

Prediction with projector

lhs = profix(pMix, psi0, pre) mixture prediction

The input arguments with defaults are listed and some explained below:

argument meaning defaults
pMix mixture projector must be specified
psi0 zero-delayed regression vector extracted from DATA
pre prediction scaling no prediction scaling is done

The outputs ”lhs” arguments are specified as

pMix [ Eths, coves, alphas ]
[ pMix , weights] [ Eths, coves, alphas , weights].

The meaning of the arguments is:

pMix mixture prediction (static matrix ARX LS p-mixture)
Eths vector or cell vector of means of individual components
coves vector or cell vector of noise covariances
alphas weights of individual components corresponding to normalized dfcs

modified due to conditioning
weights data-dependent approximate component weights

Comments on arguments:

Zero-delayed regression vector
The projector is converted into predictor by substituting a data vector at a specific time t. The
vector consists of data values up to the time t−1 and the current values of channels in condition
as well as the values of not-predicted channels with zero delay. The data vector is referred to as
zero-delayed regression vector.

The historical values are implicitly extracted from the signal database – global matrix DATA.
The zero-delayed entries of the regression vector can be specified; if not fully specified, the values
are extracted from the signal database, too.

The zero-delayed regression vector has 2 rows, the first row contains values, the second one the
corresponding channels; the second row can be omitted if there is only one item in the vector.

Prediction scaling
Use of scaled data is recommended in learning with mixtures. In this case, the mixture prediction
must be re-scaled to the original data scaling. This is done by the argument pre that contains
record about the data scaling, see section ”Data preprocessing”. The zero-delayed regression
vector is returned in the original data scaling.

Diaries available: conditional prediction marginal prediction



9.1. PROJECTION AND PREDICTION WITH MIXTURES 45

9.1.4 Prediction with mixture

Joined mixture projection and prediction done by one function is available:

Mixture prediction

lhs = mixpro(Mix,pchns,cchns,psi0,pre) mixture prediction

The meaning of input and output arguments is the same as in the section 9.1.3.

9.1.5 Multi-step prediction

The prediction can be done for a number of processing steps ahead:

Prediction n-steps ahead

lhs = profixn(Mix, psi0, pre, nsteps) prediction nsteps ahead
lhs = profixna(Mix, psi, pre, nsteps) prediction nsteps ahead with data specified

Meaning of the arguments and defaults are the same as above.
The argument psi contains specification of data that temporarily preplaces data in the DATA

matrix in each prediction step. The form specification is:
psi = [values; channels; time delays]

The time delays are relative to the current TIME value and can have any sign.
Diaries of case studies are available. The profixn function was modified that it show the data

internally generated.
Diaries available: prediction details

different projetors
prediction with fixed data

9.1.6 Prediction error

Prediction error norm and multi-step prediction error norm are convenient characteristics that express
quality of estimated mixtures.

Prediction error norm
[epn,yp,dd]=relep(pMix,ndat) prediction error norm
[epn,yp,dd]=relepn(pMix,ndat,nstep) multi-step prediction error norm

The meanings of the arguments are:

Mix mixture predictor or projector
ndat length of data to be processed
step number of steps of multi-step prediction
epn value of prediction error-norm
yp trajectory of prediction
dd corresponding data

Note: both functions contain and additional argument that allow to compute data-dependent
prediction error in the case of static mixture. Up to now, the option is not sufficiently tested.

The normalization is done inside the functions:
ep = dd-yp; prediction error
sy = std(dd’);
er = std(ep’) + abs(mean(ep’));
epn = (er./sy)’;



46 CHAPTER 9. PREDICTION WITH NORMAL MIXTURE

The prediction error norm expresses the portion of standard deviation of data that can be explained
by the linear model behind.

9.2 Case studies in projection and prediction

Commented examples of mixinit are are available.

9.2.1 Prediction with Static Mixtures - scaled data

Run example

9.2.2 Prediction with SISO dynamic component

Run example

9.2.3 Prediction with Mixture of Two Dynamic SISO Components

Run example

9.2.4 Multi-Step Prediction with Static Mixture

Run example

9.2.5 Multi-step Prediction with Mixture of Two Dynamic SISO Compo-
nents

Run example

9.2.6 Multi-step Prediction with SISO Dynamic Model

Run example

9.2.7 Prediction with Mixture on Grouped Data

Run example

9.2.8 Prediction with Static mixture

Run example



Chapter 10

Simulation

{mixsimul}

10.1 ARX mixture simulation

Mixture simulation serves for development of algorithms, debugging and case studies. Mixture of any
type Sim can be used for the simulation. Two simulation modes are available:

Simulation
Sim = mixsimul(Sim,ndat) batch simulation
Sim = mixsimul(Sim) recursive simulation

The simulation fills modeled channels the global matrix DATA by simulated data. The matrix
must be allocated (pre-allocated) before the simulation starts. The obligatory pre-allocation makes
it possible to fill DATA channels by different simulators and/or use specific channels e.g. for control
values.
There are several simulation options:
• Markov jumps among components
• data scaling
• changes of internal simulation states
• use of covariance of regression coefficients
• different type of noise

The simulation options can be set by the function setsim:

Setting simulation options

Sim = setsim(Sim, list) set simulation option

Examples of setting simulation options follow.

Markov jumps among components
the probability transition table is specified:

table = ... % probability of transitions among components
Sim = setsim(Sim, table, table) } % set the option

This option has a global character, does not refer to individual components. The table can be
generated by:

tab = gentab(dim, dia) % generate the table

The table has diagonal filled by dia, other entries are calculated.

data scaling
The mixture learning is done using scaled data. The preprocessing list is Pre. The simulator

47



48 CHAPTER 10. SIMULATION

generates data in original data ranges by

Pre = preproc({scale, []}); % data scaling
Sim = setsim(Sim, pre, Pre); % set scaling option

changes of internal simulation states during recursive simulation
The internal simulation states are held in states that are generated at the first simulation step.
If the mixture changes, the states must be reset.

use of covariance of regression coefficients Cth in simulation

Sim = setsim(Sim, useCth 1); % use of covariance of coefficients

Different noise type

Sim = setsim(Sim, noise, 3); % use log-normal noise

The noise type is coded:

1 Gaussian
2 uniform
3 lognormal
4 Cauchy

The process noise is normalized to zero mean and standard deviation one (with exception of the
Cauchy distribution that have no mean and standard deviation).

selection of factors
The options above are set for a selection of factors. The selection is marked by 0 or 1 in a
matrix coms that has the same dimension as Sim.coms. The factor numbers are extracted from
Sim.coms. The selection is valid to a next change, the default selection is 1+0 ∗Sim.coms. For
example, the setting of factors that model the 3rd channel:

coms = 0*Sim.coms;
coms(:,3) = coms(:,3) + 1
coms =

0 0 1 0
0 0 1 0
0 0 1 0
0 0 1 0
0 0 1 0

Sim = simset(Sim, {coms, coms}); % set selection of factors

Note: The global matrix DATA is processed by MEX functions. In this case, the matrix must not be
defined by reference:

DATA = zeros(nchn, ndat); % correct definition
DATA = data; % incorrect definition by reference
DATA = 1*data; % correct definition



10.2. SIMULATION CASE STUDIES 49

10.2 Simulation case studies

10.2.1 Case study: Markov jumps, scalling and noise type in simulation

Run example

10.2.2 Case study: use of covariance of regression coefficients

Run example

10.2.3 Case study: simulation with projection

Run example



50 CHAPTER 10. SIMULATION



Chapter 11

Visualization

{visual}
The visualization functions implemented are

Visualization

mixplot (Mix,pchns,cchns,psi0,pre)mixture plot (shaded)
mixplotc(Mix,pchns,cchns,psi0,pre)mixture plot (contours, components)
mixplots(pMix) plot of mixture colormap(summer)
mixplotsl(pMix) plot of mixture, displays mixlls, ncomp
[x,y,z] =... coordinates for mixture plot

mixgrid(Mix,pchns,cchns,psi0,pre)
[x,y,z] = datagrid(Mix) coordinates for data plot
datascan(chns) scan data for 2 dim clusters
mixmesh(Mix,pchns,cchns,psi0,pre) mixture mesh plot
mixscan(Mix,chns,pre) scan mixture for 2 dim. clusters
setaxis(list, ax) set global axis in subplots a

sigscan(chns) scan signal
fullscreen set full screen for current plot
resizefig() set plot position

alist is list of subplots, ax a scaling see axis function

Mixture predictions are displayed so that the mixture visualization is closely related to mixture pre-
diction. The visualization functions uses the same arguments as the function ”mixpro” (that is called
internally, see Section 9). Other arguments refer to coordinates, grid densities and ranges.

The arguments are:

Mix mixture, any mixture form
pMix mixture projector or prediction
pchns predicted channels, default is 1st and 2nd channel
cchns channels in condition, default is no channels
psi0 zero-delayed data vector, by default taken from DATA

x, y, z plot coordinates
n grid density or vector of densities

default is 100 for 1 dimension and 50 for 2 dimensions
r is range of x,y coordinates or vector of 4 elements

the default is a convenient range from components ranges

For dynamic mixture projection, the user must specify TIME and supply the global matrix DATA.
The same is valid for the case of conditional projection of a static mixture. But, in the later case the
zero-delayed data vector can be specified by psi0.

It is recommended to use the mixture argument in the form of mixture projection or prediction.
Examples of the function usage are in are in Mixtools guidel

51



52 CHAPTER 11. VISUALIZATION



Chapter 12

Stopping rules

{stopping}
12.1 Introduction

{stac-intro}
Each learning process contains a transient period followed by a stationary part. The stopping rules
determine when the stationary part begins. It means that a stopping statistic Q is computed and
compared with a threshold value view a summary paper.

12.2 Learning with normal ARX factors
{stac-factor}

The stopping rules based on recursive estimation of a factor are presented. In recursive estimation,
the factor is feeded by a relevant statistics, in the case of mixture estimation by v-log-likelihood.
The function stopstac supports application of stopping rules:

Stopping of a time series at stationary mode

Fac, Q] = stopstac(Fac , dvect) update and compute statistics

where is

xFacx the recursively updated factor;
xQ the stopping statistics;
xdvect data vector used for updating of Fac

When dvect is missing, the data vector is extracted from signal database using Fac.str.
When in recursive estimation Q falls below the treshold value, the stationary behavior begins.
The statistics Q has an exponential shape overlayed by noise. It can lead to false determina-

tion of the beginning of stationary behavior. It is recommended to estimate it using the model
log(Q) = k ∗ log(t) + c.

Examples follows.

12.2.1 Case study: Stopping rules in factor estimation

In this case study:
• observed data are generated by a SISO ARX dynamic component in open loop;
• in recursive estimation, the stopping statistics is computed and displayed together with the thresh-

old value and trajectory of parameters estimate.

Run example

53



54 CHAPTER 12. STOPPING RULES

12.2.2 Case study: Stopping based on a statistics
{mixll}

In this case study:
• static mixture with several components generates data sample;
• static factor is estimated using v-log-likelihood;
• the stationarity of the factor estimate implies the stationarity of the mixture estimate.

Run example

12.3 Estimation of credibility intervals
{stac-credit}

The function credits makes the estimation of credibility intervals. It computes the stopping statistics
and stops processing when the stationary behavior is reached:

Estimation of credibility intervals and stopping

[Cl,Cu,Chat,flag,Q] = ... credibility intervals
credits(C, beta, threshold)

where is

Cl lower credibility bound
Cu upper credibility bound
Chat center of the credibility interval
flag stopping flag 1 - stop, 0 - do not stop data acqusition
Q value of the stopping statistics
C vector of independent realizations
beta credibility level in (0,1)
threshold upper bound on relative error

Note: the useful function credit evaluates a credibility interval without stopping:

Credibility interval

[Cl,Cu,Chat] = credit(C,beta) evaluate credibility interval
where is

Cl lower credibility bound
Cu upper credibility bound
Chat center of the credibility interval
C no-vector of independent realizations
beta credibility level in (0,1)

12.3.1 Case study: Stopping and credibility intervals

In this case study:
• static mixture of several components generates data;
• simulation and estimation tasks are carried out in a repetitions; stopping time is recorded;
• the repetitions are stopped when the stopping times trajectory shows stationarity

Run example

12.4 Mixture estimation with stopping rules
{stac-estim}

An argument of the relevant functions is added - a threshold thr. Its presence forces the function
to use the stopping algorithms. The argument may be empty - then a default is used (see defaults(’E’)).



12.4. MIXTURE ESTIMATION WITH STOPPING RULES 55

Basic estimation methods with stopping rules

[Mix, tstops] = projection based estimation with stopping
mixestpbs(Mix0,frg,ndat,niter,thr)

[Mix, tstops] = repetitive quasi-Bayes estimation with stopping
mixestqbs(Mix0,frg,ndat,niter,thr)

Note: the argument tstop contain the stopping time. The Mixa is usually empty.
The repetitive estimation is done by functions

Repetitive estimation with stopping rules

[Mix, tstops] = projection based estimation with stopping
mixestpbs(Mix0,frg,ndat,niter,thr)

[Mix, tstops] = repetitive quasi-Bayes estimation with stopping
mixestqbs(Mix0,frg,ndat,niter,thr)

Notes:
• the function mixest options are extended by ’P’ and ’Q’ for usage of stopping rules;
• the function mixinit can used the options
• the argument tstops contains stoping times of individual iterations.
• individual iterations are stopped by the functions credits.

12.4.1 Case study: use of basic estimation functions with stopping

In this case study:
• static mixture of several components generates data;
• estimation is done either by mixestims or mixestimps;
• trajectory of log(Q) is recorded and displayed.

Run example

12.4.2 Case study: repetitive estimation with stopping

In this case study:
• static mixture of several components generates data;
• estimation is done either by mixestims or mixestimps;
• trajectory of stoping times is recorded and displayed.

Run example

12.4.3 Case study: Comparison of estimation functions with and without
stopping

{zeststop}
In this case study:
• static mixture of several components generates data;
• estimation is done either by mixestims or mixestimps;
• trajectory of stoping times is recorded and displayed.

Run example

12.4.4 Case study: mixture initialization using stopping rules

The stopping rules are applied as mixest options. In this case study:
• static mixture of several components generates data;
• initialization is done;
• result of each iteration is displayed.



56 CHAPTER 12. STOPPING RULES

Run example

12.5 Model characteristics based on simulations with stopping
rules

{stacsimul}
Estimated model characteristics are often obtained by repeated simulations. This is usually demanding
and time-consuming task. The function simeval is designed to collect basic confidence intervals and
to record repeated trajectories effectively with the use of stopping rules.
Two benefits of the using simeval are:
• individual simulation runs are stopped when stationary state is reached (the function stopstac is

used);
• the repetitive simulation runs are finished when stationarity is reached (the function credits is

employed);
• MEX function solution makes experiments in acceptable computing time.

The function simeval makes the simulations:

Model characteristics via simulation
[res,tstop] = get model characteristics and trajectories

simeval(Sim,chns,nrep,ndat,thr)

where

res cell vector containing results
tstop stop time of individual trajectories
Sim simulator or a task, see below
chns list of relevant channels or Facs - cell array of factors
nrep maximum number simulation runs
ndat maximum length of trajectories
thr threshold value for stopping

The processing results are held in a cell vector. Each cell contains results related to a individual
channels. The result fields are:

stats confidence interval for range and increments
tra trajectories of individual simulation runs

Notes:
• the confidence intervals are presented as (low border - mean - high border) – the evaluation is done

by the function credit;
• the trajectories recorded can be used for any type of analysis;
• instead of the argument Sim in simeval call, a task can be used. It consists of a function handle h

and an argument states. The function is called in the repetitive simulation in simeval as task{2}
= feval(h, task{2}); In this case, the ndat argument of must be a vector of initial and terminal
processing time.

12.5.1 Case sstudy: SISO model

In this case study:
• dynamic mixture of one component generates data;
• model characteristic are collected and displayed.

Run example



Chapter 13

Stabilization of mixture estimate

{stabil}

13.1 Supporting functions
{stabil}

The estimated mixture can be unstable. With respect to control design, the mixture should be
stabilized before used. The stabilization is an iterative process with stopping rules employed.

The stabilized mixture should be close to the unstable one in respect of prediction error.
The function stabmix makes the stabilization:

Mixture stabilization
[Mix,m,Qs]= stabmix(Mix,g,no,thr) mixture stabilization

where the arguments are:

Mix output mixture of original type with stabilized components
m number of stable iterations
Qs stopping statistics

Mix input mixture of any type
g radius of the circle of stable eigenvalues, g in (0,1]
no upper bound on the number of Monte-Carlo samples
thr threshold for stopping

The test of stability is solved by:

Test of mixture stability

[is, eigs] = isstable(Mix) test of mixture stability

where

is 1 if stable, 0 if not
eigs absolute value of eigenvectors of components
Mix mixture of any type

13.1.1 Case study: Mixture stabilization

Run example

57



58 CHAPTER 13. STABILIZATION OF MIXTURE ESTIMATE



Chapter 14

Structure estimation and prior
knowledge

{prior}
14.1 Estimation of structure of mixture factors

During initialization, estimation of structure of factors, i.e., the selection of significant entries within
a richest regression vector containing all potential regressors, must be estimated,

With presence of a prior knowledge about the structure, this task can be advantageously solved
by the structure pristr, see section ”Prior knowledge incorporation”.

The function facstr is designed for estimation of structure of mixture factors. It searches for the
factor structure that has the highest posterior probability in a space of competitive factor structures
[5].

The user specifies the space of competitors in the form of the richest (maximum possible) factor
structure.

The structures of factors are estimated inside the mixinit function so that no explicit estimation
of factors is necessary after the mixture initialization. Nevertheless, the structure estimation is used
for detailed analysis, experiments or correction of mixinit results.
The function structure estimation is done by:

Structure estimation of factors
[MAPstr,lhs] = ... estimate structure of a factor

facstr(Fac,Fac0,belief,nbest,nruns)
Mix = ... estimate mixture structure

mixstrid(Mix,Mix0,belief,nruns)

The function arguments are:

MAPstr the MAP estimated factor structure
lhs likelihoods and best structures found
Fac the estimated factor
Fac0 the corresponding initial factor
belief specifies user’s belief on a guess of richest structure about the MAP structure
nbest specifies the number of ”best” structures held in estimation
nrep specifies number of repetitive search with random starts

THe function mixstrid estimate the initial mixture and calls facstr for all factors.
The belief is a vector of the same length as the iprichest factor. Its elements specify that the corre-
sponding items (the pairs of channel and delay) of the richest factor:

1 surely present 2 probably present
3 probably not present 4 surely not present

59



60 CHAPTER 14. STRUCTURE ESTIMATION AND PRIOR KNOWLEDGE

Commented example can be found in Mixtools Guide.

14.1.1 Case study: Factor structure estimation

The case study demonstrates dependence of factor structure estimation on initial model settings and
to inspects time evolution of point estimates.

Run example

14.2 Prior knowledge in ARX models

The prior knowledge is a useful tool in demanding learning tasks, e.g. in the task of ARX model
structure estimation. As a rule, data available are usually poorly informative in this case and use of
prior knowledge is the only possibility to derive a usable model. Underlying philosophy and processing
algorithms are described in [6, 7, 8, 9, 10, 11].

14.2.1 Prior knowledge coding

The prior knowledge is coded in the form of a cell list that means as a cell vector of pairs of cells.
The first one of each pair specifies the type of the prior knowledge, the second one (often again cell
vector) contains numerical characteristics.

Individual prior knowledge types are exposed. The first two types refers to all outputs.

Data sample
can contain historical data not fully consistent with the current data sample, e.g. not sufficiently
excited or recorded in another working point. The data collected on simulated system has this
character, too.

The data are processed with a forgetting rate or with a grid of forgetting rates. If the forgetting
rates are not specified, the prior function adds a default grid of rates (from ”defaults.m”). For
the data sample recorded in the matrix data, the respective coding is:

{’data’ {data frgs} } or
{’data’ data}

Data envelope
are two data matrices representing data ranges datalow and datahigh. The coding is:

{’fdata’ {datalow datahigh}}

14.2.2 Channel specific prior knowledge

The prior knowledge pieces that follow are responses observed on an output channel caused by a
special signal applied to an input channel. All frequencies specified are in Hertz, the phases are in
degrees. With the exception of system static gain, it is necessary to specify also the sampling time
(in seconds) in any position in the prior knowledge list:

{’stime’ sampling time }

The identifiers used are:

xychn output channel
xuchn input channel
xst sampling time

The relevant prior knowledge pieces are discussed.



14.2. PRIOR KNOWLEDGE IN ARX MODELS 61

System static gain
is change of an output in steady state due to unit change of an input. It is specified in range of
values:

{’gain’ [uchn gainlow gainhigh] }

Frequency response
means amplitude and phase of output when a sinusoidal signal of a frequency and amplitude
one is applied to an input. The amplitude is expected in a range of values (alow, ahigh). The
coding is:

{’ampl’ [uchn frequency alow ahigh phase]}

The phase can be specified as a vector of values. If it is empty, the prior function adds a default
grid of phases.

Cut–off frequency
is the frequency of the signal applied to an input that is not reflected by the output:

{’cut’ [uchn frequency]}

The frequencies allow multiple specification. If not specified, the function prior adds a default
grid of values (multiples of the frequency specified).

Dominant time constants
are implemented by modelling lower and upper envelope of the impulse response generated by
the first or second order model with time constants equal to the specified bounds (tclow, tchigh)
on the time constant. It is specified in range of values:

{’tc’ [uchn tclow tchigh]}

The prior knowledge list can contain specification related to several output channels. In the case,
the sub-lists must be separated by output specification that is valid till a new specification:

{’ychn’ ychn }

14.2.3 Conversion of the prior knowledge into fictitious factors

Generally, it is strongly recommended to scale data sample. At the case, the prior knowledge must
be scaled, too. The scaling of data supplies scale of individual channels. It is used in scaling of prior
knowledge pieces:

pre = preproc( {’scale’ [ ]} ); % scale data
pri = scalepri( pri, pre); % scale prior knowledge

Scaling of prior knowledge

pri = scalepri( pri, pre); scale prior knowledge

14.2.4 Prior knowledge processing

The prior knowledge is converted into fictitious factor(s) by:



62 CHAPTER 14. STRUCTURE ESTIMATION AND PRIOR KNOWLEDGE

prior

Prior knowledge processing

Facs = prior(Facs0, pri) prior knowledge processing

The arguments are:

Facs fictitious factor or array of factors for individual outputs
Facs0 initial ARX factor or array of factors for individual outputs
pri prior knowledge list

The results of prior data processing must be weighted and merged with data sample. The merger
is used in structure estimation and as the alternative model for stabilized forgetting. The merging is
done by:

primerge

Merging of fictitious factors with data

[Fac, vll, Fac0] = ...merging of ficticious factors
primerge(FacD, Fac0, Facs)

The arguments are:

Fac merged posterior factor with prior knowledge
vll v-log-likelihood
Fac0 merge prior factors
FacD estimated factor with very flat initial factor
Fac0 initial fictitious factor
Facs fictitious factor or cell vector of the factors reflection prior knowledge

pristr

The function pristr is designed for estimation of structure of factors. It searches for the factor
structure that has the highest posterior probability in a space of competitive factor structures.

Structure estimation with use of prior knowledge is done by:
Factor structure estimation with use of prior knowledge

[Facs,vlls]=... structure estimation with prior knowledge
pristr(Facs0,pri,belifs,nbest,nrep)

The arguments are:

Facs resulting estimated factor or cell vector of factors
vlls cell vector of information or cell vector of the information
Facs0 richest initial factor or cell vector of factors
pri prior knowledge list (can be empty)
beliefs belief of cell vector of belifs or empty matrix
nbest number of ”best” regressor maintained
nrep number of repetitions of search in space of regressors

The argument vlls contains information about v-log-likelihood:

vlls1 v-log-likelihood, nested prior
vlls2 v-log-likelihood with prior
vlls3 ”best” structures in cell array
vlls4 structures in a block{Xoldprior}

Commented diaries are available.



14.3. CASE STUDIES WITH PRIOR KNOWLEDGE 63

14.3 Case studies with prior knowledge

14.3.1 Case study: Prior knowledge in structure estimation

The case study shows influence of prior knowledge model in factor structure estimation. The prior
knowledge is static gain.

Run example

14.3.2 Case study: Prior knowledge sources

The case study shows influence of prior knowledge of different types in estimation and structure
estimation

Run example



64 CHAPTER 14. STRUCTURE ESTIMATION AND PRIOR KNOWLEDGE



Chapter 15

Model validation

{validate}
Complexity of mixture estimation makes a model validation a necessary part of the model design.
Several validation case studies show the basic algorithms described in [1], sections 6.7{185}, 8.7{306},
6.7.3{191}, 8.7.3{309}.

A selection of methods is exposed in the form of case studies. Commented diaries of the methods
discussed are available.

15.1 Case studies

15.1.1 Static Mixture Checking via Simulation
{zversim}

Run example

15.1.2 Model validation by learning results
{zverres}

Run example

15.1.3 Forgetting based model validation
{zverfrg}

Run example

15.1.4 Model validation by prediction error
{zverep}

Run example

15.1.5 Model Validation by Cross-Validation of Learning Results
{zverseg}

Run example

65



66 CHAPTER 15. MODEL VALIDATION



Chapter 16

References to Mixtools Guide

This chapter summarises the sections of Mixtools Guide that remains unchanged.

16.1 Channels description

Reference to Mixtools Guide.

16.2 Design and advising

Reference to Mixtools Guide.

16.3 Tutorial on design and advising

Reference to Mixtools Guide.

16.4 Mex and API functions

Reference to Mixtools Guide.

67



68 CHAPTER 16. REFERENCES TO MIXTOOLS GUIDE



Chapter 17

Appendices

17.1 References

69



70 CHAPTER 17. APPENDICES



Bibliography

[1] M. Kárný, J. Böhm, T.V. Guy, L. Jirsa, I. Nagy, P. Nedoma, and L. Tesař, Optimized Bayesian
Dynamic Advising: Theory and Algorithms, Springer, London, 2005, ISBN 1-85233-928-4, pp.
552.

[2] V. Peterka, “Bayesian system identification”, in Trends and Progress in System Identification,
P. Eykhoff, Ed., pp. 239–304. Pergamon Press, Oxford, 1981.

[3] P. Nedoma, M. Kárný, I. Nagy, and M. Valečková, “Mixtools. MATLAB Toolbox for Mixtures”,
Tech. Rep. 1995, ÚTIA AV ČR, Prague, 2000.

[4] L. Tesař, “Data preprocessing manual”, Tech. Rep.

[5] L. Berec, Model Structure Identification: Global and Local Views. Bayesian Solution, Ph.D.
Thesis, Czech Technical University, Faculty of Nuclear Sciences and Physical Engineering, Prague,
Czech Republic, 1998.

[6] P. Nedoma, M. Kárný, and J. Böhm, “Software tools for use of prior knowledge in design of LQG
adaptive controllers”, in The preprints of IFAC workshop ACASP’98, pp. 425–429. Glasgow,
1998.

[7] Kárný M. and Nedoma P., “Automatic processing of prior information with application to
identification of regression model”, Kybernetika, 1999, submitted.

[8] Kárný M., Khailova N., Nedoma P., and Bohm J., “Quantificaton of prior information revised”,
Adaptive Control and Signal Processing, vol. 15, no. 1, pp. 67–84, 1999.

[9] M. Kárný, N. Khailova, P. Nedoma, and J. Böhm, “Quantification of prior information revised”,
International Journal of Adaptive Control and Signal Processing, vol. 15, no. 1, pp. 65–84, 2001.

[10] N. Khailova, M. Kárný, P. Nedoma, and J. Bůcha, “Apriorńı znalost pro poč́ıtačový návrh
adaptivńıho ř́ızeńı”, Automa, vol. 8, no. 10, pp. 45–49, 2002.

[11] N. Khailova, Exploitation of Prior Knowledge in Adaptive Control Design. Ph.D. Thesis, PhD
thesis, 2002.

17.2 Index

71



Index

weights, 44
v-log-likelihood, 35, 40
Eths, 44
Mix0, 39
Mixa, 39
Mix, 39, 43, 45
alphas, 44
branching by forgetting, 39
cchns, 43
comlls, 40
comwgs, 40
coves, 44
dd, 45
epn, 45
facllds, 40
facwgs, 40
forgetting rate, 39, 41
frg, 39
mixll, 40
model structure, 35
ndat, 39, 45
niter, 39
opt, 39
pMix, 43, 44
pchns, 43
pre, 44
psi0, 44
step, 45
system, 35
thr, 39
vlls, 62
weights, 44
yp, 45

degrees of freedom of components, 8

a-mixture, 18
academic advises, 7
Academic design, 6
actions available to p-system, 7
Advise, 18
Advises, 7
advisory states, 18
approximate parameter estimation, 39
array of components, 15
array of factors, 15

ARX components, 14
ARX factor, 9, 10, 13
ARX LS components, 14
ARX LS factor, 10, 13
ARX LS mixture, 16
ARX mixture – basic estimation form, 15
assigning priorities, 7

backwards transformation, 21
basic software entities, 11
batch and recursive processing, 25
batch data preprocessing, 21
belief on a guess of richest structure, 59
buffered estimation, 19

cell list, 7, 21, 60
channel, 8
channels in condition, 43
coding agreements, 5
common factor, 16
common theoretical notation, 5
component, 12
component weights, 8
components, 8
constructors, 12
conversions, 12, 13

dangerous components, 10
DATA, 5, 19
data sample, 8
default factor, 12, 13
Default values, 5
degrees of freedom of components, 12, 15
degrees of freedom of factor, 8
design, 6
dynamic factors, 11
dynamic mixtures, 11

entities inherit names, 7
Estimation, 11
Estimation methods, 39
estimator, 15
extended information matrix, 13

factor, 8
factor offset, 8, 11

72



INDEX 73

factor output, 6, 8
factor statistics, 8
factor structure, 8, 13
factor type, 8
factors, 11
function names, 5
functions to be converted to MEX-files, 5

generic estimation function, 39
global matrices, 5
Global variables, 5

horizon, 8
huge data sample, 19

ideal pdf, 6
Identifiers, 5
industrial design, 6
initial factor, 12, 13
initialization of preprocessing, 21
initialization options, 36
input channel, 60
iterative estimation, 39

KLD, 10
Kulback-Leibler divergence (KLD), 6

lifted quadratic forms, 10
list, 5, 7
list of factors, 8
LS, 8

matrix, 5
Matrix ARX components, 14
Matrix ARX LS component, 14
Matrix ARX mixture, 16
matrix type, 12
Mixtools, 25
Mixtools design base, 25
Mixtools user’s functions, 25
mixture, 8, 12, 15
mixture constructor, 15, 18
mixture estimation, 39
mixture prediction, 43
mixture predictor, 43
mixture projection, 43
mixture projector, 43
mixture type, 8
modeled channel, 8, 13
modeled channels, 13

normalized, 22
not-modeled channels, 14
number of channels, 8

operation, 21

operations, 12
output channel, 60

p-components, 12
p-factors, 12
p-mixtures, 12
parameterized components, 6
parameterized factor, 6
parameterized mixture, 6
parameters—hyperpage, 21
predicted channels, 43
Prediction, 12
Prediction scaling, 44
predictor, 44
preprocessing requirements, 21
projection, 12, 18
projector, 43

recursive data preprocessing, 21
recursive processing, 39
regression vector, 8
run-time preprocessing requirements, 21

sampling time, 60
scaling, 11
signaling, 7
simultaneous design, 6
state vector, 10
states, 6, 8, 11
static factors, 11, 13
static mixtures, 11
stopping rules, 39
stopping statistic, 53
structure, 5, 11
structure of regression vector, 11
Structures and cell lists, 5

task, 56
The coding agreements, 5
threshold value, 53
TIME, 5, 19
type, 7, 11
type=0, 7

user ideal pdf, 6

vector, 5

Zero-delayed regression vector, 44
zero-delayed regression vector, 44



74 INDEX

17.3 Recommended identifiers

{cryptony}

Data management

TIME processing time
DATA data sample
ndat length of data
psi create regression vector
Psi length of data
npsi length of regression vector
nPsi length of data vector
str structure of regression vector

Factors

Fac factor
Facs array of factors
fac position of a factor in an array of factors
ychn modeled channel
str structure of regression vector
dfm degrees of freedom of a factor

standard ARX factors
LD degrees of freedom of a factor
L degrees of freedom of a factor
D degrees of freedom of a factor
V information matrix

ARX factors in least squares representation
Eth point estimate of regression coefficients
Cth covariance of regression coefficients
cove point estimate of noise covariance

Components

com component
coms array of components
dfcs vector of degrees of freedom of components
dfcs0 vector of degrees of freedom of components
alphas normalized vector of degrees of freedom of components
Com matrix ARX or ARX LS component
Coms array of matrix ARX or ARX LS components
Can component in matrix factorized ARX LS form
Cans array of components in matrix factorized ARX LS form
ychns modeled channels in component
nychn number of modelled channels

Mixtures



17.3. RECOMMENDED IDENTIFIERS 75

Mix mixture estimate
Sim mixture simulator
pMix mixture predictor
pMixfix mixture prediction
facs list of factors
nfac number of active factors a

ncom number of components
nchn number of modeled channels

adimensions are computed as :
[ncom, nchn] = size(Mix.coms); nFacs = length(Mix.Facs); nfac = length(Mix.states.facs);

Mixture estimation

frg forgetting rate
frgd default forgetting rate
rate mixture flattening rate
maxtd maximum time delay of factors in a mixture
nruns number of runs in iterative mixture estimation
relerr relative error
maxerr maximum possible error

states in mixture estimation a

faclls trial factor predictions log(f(dt+1|fac, t+ 1))
comlls component predictions log(f(dt|com))
mixll mixture prediction log(f(dt|mix))
comwgs component weights
facwgs factor weights

arefer to mixupdt.m for meaning of the statistics

Mixture projection

pchns predicted channels
cchns channels in condition
psi0 channels in condition

Advisory system design

aMixc advised mixture of the type ARX LS + control states
aMixu desired mixture of the type ARX LS + control states
strc common control structure
kc lift of quadratic forms
UDc cell vector of u’du decompositions of KLD kernels
udca u’du decomposition of average KLD kernel in UDc
kca average lift of quadratic forms kc
uchn list of channels with recognisably actions
pochn list of channels with o-innovations
outs list of channels with innovations
npochn number of channels with o-innovations
udca u’du decomposition of average KLD kernel in UDc
ufc normalised vector qualifying components

Structure estimation



76 INDEX

maxstr guess of the richest structure
maxFac richest factor
maxMix richest mixture
belief belief on a guess of richest structure
chbelief belief on factors of a channel
nrep number of random starts
MAPstr MAP estimate of the factor structure

General cryptonyms

DEBUG global debugging flag
chn channel (data row)
std standard deviation
pdf probability density function
kld Kullback-Leibler distance
ll Kullback-Leibler distance
niter number of iterations
opt option
options computational options
seed seed of random generator
uchn list of channels with recognisably actions
sig standard deviation of output noise
CUMTAB transition table of components
ACTIVE active component

cryptony.tex by PN November 3, 2005



17.3. RECOMMENDED IDENTIFIERS 77

back

zpredict

prodini

echo off
ndat = 3;
DATA = [1:ndat; (1:ndat)/1000]
DATA =

1.0000 2.0000 3.0000
0.0010 0.0020 0.0030

% building mixture of one component
str = [1 2 2; 1 0 1];

Fac = facarxls(1, str);
Fac.cove = 1;
Fac.Eth = [10 10 10];
Facs{1} = Fac;

Fac = facarxls(2,[]);
Fac.cove = 1;
Facs{2} = Fac;

Mix = mixconst(Facs, 1:2, 1);
pMix = mix2pro(Mix, 1, 2);

% =========================
TIME = ndat;
psi0 = 100;

% prediction
[Eth, cove, dfcs] = profix(pMix);
Eth
Eth =

20.0500
10*DATA(1,TIME-1) + 10*DATA(2,TIME) + 10*DATA(2,TIME-1)
ans =

20.0500

% prediction, psi0 supplied
[Eth, cove, dfcs] = profix(pMix, psi0);
Eth
Eth =
1.0200e+003

10*DATA(1,TIME-1) + 10*psi0(1) + 10*DATA(2,TIME-1)
ans =
1.0200e+003

% preprocess data
pre = preproc({’scale’, [1 1; 2 2]});

[Eth, cove, dfcs] = profix(pMix);
Eth



78 INDEX

Eth =
100.1000

10*DATA(1,TIME-1) + 10*DATA(2,TIME) + 10*DATA(2,TIME-1)
ans =
100.1000

% psi0 is in user’s level
% transform it into current scale
psi1 = (psi0+1)*2
psi1 =

202

% make prediction
[Eth, cove, dfcs] = profix(pMix, psi1);
Eth
Eth =
2.1000e+003

10*DATA(1,TIME-1) + 10*psi1(1) + 10*DATA(2,TIME-1)
ans =
2.1000e+003

% transform to the user’s level
(Eth-1)/2
ans =
1.0495e+003

% equivalent
[Eth, cove, dfcs] = profix(pMix, psi0, pre);
Eth
Eth =
1.0490e+003



17.3. RECOMMENDED IDENTIFIERS 79

back

zpredict1
prodini

echo off
ndat = 3;
DATA = [1:ndat; (1:ndat)/1000];

prt(’DATA ’ , DATA);
DATA

1 2 3
0.001 0.002 0.003

% building mixture of one component for prediction
str = [1 2 2; 1 0 1];

Fac = facarxls(1, str);
Fac.cove = 1;
Fac.Eth = [10 10 10];
Facs{1} = Fac;

Fac = facarxls(2,[]);
Fac.cove = 1;
Facs{2} = Fac;

Mix = mixconst(Facs, 1:2, 1);
pMix = mix2pro(Mix, 1);

% ====================
TIME = ndat;

% prediction
[Eth, cove, dfcs] = profix(pMix);
Eth
Eth =

20.0200
10*DATA(1,TIME-1) + 10*DATA(2,TIME-1)
ans =

20.0200

% it has no sence to supply psi0
% preprocess data
pre = preproc({’scale’, [1 1; 2 2]});

[Eth, cove, dfcs] = profix(pMix);
Eth
Eth =

80.0400
10*DATA(1,TIME-1) + 10*DATA(2,TIME-1)
ans =

80.0400

% transform to the user’s level
Eth/2 - 1



80 INDEX

ans =
39.0200

% equivalent
[Eth, cove, dfcs] = profix(pMix, [], pre);
Eth
Eth =

39.0200



17.3. RECOMMENDED IDENTIFIERS 81

back

zpredictn
echo on
% === DATA ============================
ndat = 6;
DATA = [1:ndat; 0.1:0.1:0.1*ndat]
DATA =

1.0000 2.0000 3.0000 4.0000 5.0000 6.0000
0.1000 0.2000 0.3000 0.4000 0.5000 0.6000

data = DATA;

% === model ===========================
str = [1 2; 1 1];
Fac = facarxls(1, str);
Fac.cove = 1;
Fac.Eth = [10 10];
Facs{1} = Fac;

Fac = facarxls(2,[]);
Fac.cove = 1;
Facs{2} = Fac;

Mix = mixconst(Facs, 1:2, 1);

% =======
TIME = 3;
% =======
% === marginal pdf 1st channel =======
pMix = mix2pro(Mix,1);

[Eth, coves, dfcs] = profixn(pMix,[], [], 2);
generated data 22 223
Eth
Eth =

223

% --- internal processing -------------
[Eth,coves,dfcs] = profix(pMix);
Eth
Eth =

22
DATA(1,TIME) = Eth;

TIME = TIME+1;
[Eth,coves,dfcs] = profix(pMix);
Eth
Eth =

223

% --- more steps ----------------------
DATA=data; TIME=TIME-1;

[Eth, coves, dfcs] = profixn(pMix,[], [], 3);
generated data 22 223 2234



82 INDEX

Eth
Eth =

2234

% === marginal distribution ===========
pMix = mix2pro(Mix);

[Eth, coves, dfcs] = profixn(pMix,[], [], 2);
generated data 22 220
Eth{1}
ans =

220
0

% internal processing
[Eth,coves,dfcs] = profix(pMix);
Eth{1}
ans =

22
0

DATA(:,TIME) = Eth{1};

TIME = TIME+1;
[Eth,coves,dfcs] = profix(pMix);
Eth{1}
ans =

220
0

% --- more steps ----------------------
DATA=data; TIME=TIME-1;

[Eth, coves, dfcs] = profixn(pMix,[], [], 3);
generated data 22 220 2200
Eth
Eth =

[2x1 double]

% === pdf 1st channel conditioned by 2nd channel
pMix = mix2pro(Mix,1,2);

[Eth, coves, dfcs] = profixn(pMix,[], [], 2);
generated data 22 223
Eth
Eth =

223

% internal processing
[Eth,coves,dfcs] = profix(pMix);
Eth
Eth =

22
DATA(1,TIME) = Eth;



17.3. RECOMMENDED IDENTIFIERS 83

TIME = TIME+1;
[Eth,coves,dfcs] = profix(pMix);
Eth
Eth =

223
DATA(1,TIME) = Eth;

[Eth,coves,dfcs] = profix(pMix);
Eth
Eth =

223

% --- more steps ----------------------
DATA=data; TIME=TIME-1;

[Eth, coves, dfcs] = profixn(pMix,[], [], 3);
generated data 22 223 2234
Eth
Eth =

2234



84 INDEX

zpredictn1

back

zpredictn1

prodini

echo off

% === DATA ============================
ndat = 6;
DATA = [1:ndat; 0.1:0.1:0.1*ndat]
DATA =

1.0000 2.0000 3.0000 4.0000 5.0000 6.0000
0.1000 0.2000 0.3000 0.4000 0.5000 0.6000

data = DATA;

% === model ===========================
str = [1 2; 1 1];
Fac = facarxls(1, str);
Fac.cove = 1;
Fac.Eth = [10 10];
Facs{1} = Fac;

Fac = facarxls(2,[]);
Fac.cove = 1;
Facs{2} = Fac;

Mix = mixconst(Facs, 1:2, 1);

TIME = 3;

pMix = mix2pro(Mix);
[Eth, coves, dfcs] = profixn(pMix,[], [], 3);
generated data 22 220 2200
Eth{1}
ans =

2200
0

pMix = mix2pro(Mix,1);
[Eth, coves, dfcs] = profixn(pMix,[], [], 3);
generated data 22 223 2234
Eth
Eth =

2234

pMix = mix2pro(Mix,1, 2);
[Eth, coves, dfcs] = profixn(pMix,[], [], 3);
generated data 22 223 2234
Eth
Eth =

2234



17.3. RECOMMENDED IDENTIFIERS 85

back

zprofixna

prodini

% === DATA ============================
ndat = 6;
DATA = [1:ndat; 0.1:0.1:0.1*ndat]
DATA =

1.0000 2.0000 3.0000 4.0000 5.0000 6.0000
0.1000 0.2000 0.3000 0.4000 0.5000 0.6000

data = DATA;

% === model ===========================
str = [1 2; 1 1];
Fac = facarxls(1, str);
Fac.cove = 1;
Fac.Eth = [10 10];
Facs{1} = Fac;

Fac = facarxls(2,[]);
Fac.cove = 1;
Facs{2} = Fac;

Mix = mixconst(Facs, 1:2, 1);
% ===============
TIME = 3;
% ===============
pMix = mix2pro(Mix,1, 2);
[Eth, coves, dfcs] = profixn(pMix, [], [], 2);
generated data 22 223
Eth
Eth =

223

psi0 = [100; 2; 0]
psi0 =

100
2
0

[Eth, coves, dfcs] = profixna(pMix, psi0, [], 2);
generated data 22 1220
Eth
Eth =

1220

% --- internal processing -------------
DATA(2, TIME) = 100;
[Eth, coves, weights] = profix(pMix);
Eth
Eth =

22
DATA(1, TIME) = Eth;



86 INDEX

TIME = TIME+1;
[Eth, coves, weights] = profix(pMix);
Eth
Eth =

1220



17.3. RECOMMENDED IDENTIFIERS 87

back

Example of structure estimation, SISO case
Example of structure estimation follows. Dynamic SISO model is considered. Data are simulated for {oldprior}
insight into processing. The dynamic model is:

ychn = 1; % output channel
uchn = 2; % input channel
str = [ychn ychn uchn uchn; 1 2 0 1]; % factor structure
Eth = [1.81 -0.8187 0.00468 0.00438]; % regression coefficients
Fac = facarxls(ychn, str); % ARX LS factor
Fac.Eth = Eth;
Fac.cove = 0.0001; % noise covariance

The data sample is generated:
ndat = 300; % sample size
randn(’seed’, 7); % fix seed
DATA = [zeros(1, ndat) % pre-allocated data sample

0.4*randn(1, ndat)]; % output std = 0.4
Sim = mixconst(Fac, 1, 1); % build simulator
mixsimul(Sim, ndat); % get data sample

The task of structure estimation follows. The richest structure is expressed as the model of 6th order
and the initial factor is build:

maxstr = [ones(1,6), 1+ones(1,7), 0 % richest structure
1:6, 0:6, 1];

Fac0 = facarx(ychn, maxstr); % richest initial factor

The prior knowledge items considered are:
gain = [uchn 0.99 1.01]; % static gain
tc = [uchn 0.82 0.84 ]; % dominant time constant
load ... dlow dhigh % load data envelope
load ... data % load data sample

The data sample of the length 100 is generated by the model above with the regression coefficient
b0 = 0. The data envelope is average of 20 realizations of step response specified in two matrices
dlow, dhigh. The length considered was 150.
The basic prior knowledge items are:

pri = {’gain’ gain};
pri = {’data’ data};
pri = {’fdata’ {dlow dhigh} };
pri = {’st’ 0.1 ’tcons’ tc};

Data to be processed by the structure estimation algorithm should be scaled. Accordingly, the prior
knowledge must be scaled. This is done:

pre = preproc( {’scale’ []} ); % scale data
pri = scalepri( pri, pre, ychn); % scale prior knowledge

Now, the number of ”best” regressors considered and number of repetitive random starts is to be
specified:

nbest = 10; % number of ”best” regressors
nruns = 50; % number of estimation runs

Note: the values of 30 for nbest and 50 for nruns are current default values.
The structure estimation is done (the belief is omitted):

[Fac, vll] = pristr(Fac0, pri, [ ], nbest, nruns);



88 INDEX

The optional second output argument is designed for detailed analysis. The possible processing is
as follows:

wgs = vll{1}; % v-log-likelihood with nested prior
wgs1 = wgs/sum(wgs); % normalization

wgs = vll{2}; % v-log-likelihood with prior
wgs2 = wgs/sum(wgs);

plot(wgs1,’o’); hold on; % plot of v-log-likelihood
plot(wgs2,’*’);

ilh = vll{3}; % simplified plot of best structures
for i=1:nbest

fprintf(’%2i’,ilh(i,:)); disp(’ ’);
end

The display of ”best” regressors shows that the ”true” regressor is the 4th one:
1 1 1 1 1 1 2 2 2 2 2 2 2 0 structure
1 2 3 4 5 6 0 1 2 3 4 5 6 1 probability

------------------------------------------------------
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0.82800
1 1 0 0 0 0 0 1 0 0 0 0 0 0 0.15400
1 1 0 0 0 0 1 0 0 0 0 0 0 0 0.00685
1 1 0 0 0 0 1 1 0 0 0 0 0 0 0.00656
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0.00184
1 1 0 0 0 0 0 0 0 0 0 0 1 0 0.00171
1 1 0 1 0 0 0 0 0 0 0 0 0 0 0.00042
1 1 0 0 1 0 0 0 0 0 0 0 0 0 0.00029
1 1 0 0 0 1 0 0 0 0 0 0 0 0 0.00022
1 1 1 0 0 0 0 1 0 0 0 0 0 0 0.00020

The plots of v-log-likelihood is in Fig. 17.1 and 17.2. The numbers on x-axis coincide with rows
of the table above. The normalized v-log-likelihood is displayed on y-axis marked by character ’o’
for nested prior knowledge. The probabilities marked by ’*’ resulted from the use of prior knowledge
described in heading.

The simple conclusions can be drawn from the plots:

• static gain, data envelope and data increase probability of the true structure significantly

• time constant brings nothing in this case

• combination of knowledge items does not guarantee significant improvement

• combination of bad and good knowledge do not spoil the result.

Example of structure estimation, MIMO case

The example is extension of the example of previous subsection - two independent systems are
build on four channels. For simplicity, the data are: DATA = [DATA; DATA];

DATA = [DATA; DATA]; % data sample, 4 dimensions

The richest initial factors are build:
ychn1 = 1; % output channel
uchn1 = 2; % input channel
maxstr1 = [ones(1,6), 1+ones(1,7), 0 % richest structure, channel1

1:6, 0:6, 1];
Fac01 = facarx(ychn, maxstr1); % richest initial factor channel1



17.3. RECOMMENDED IDENTIFIERS 89

0 2 4 6 8 10
0.098

0.1

0.102

0.104
gain

 

 

0 2 4 6 8 10

0.1

0.102

data

 

 

0 2 4 6 8 10

0.1

0.102

data envelope

 

 

0 2 4 6 8 10
0.09

0.1

0.11

0.12
time constants

 

 

0 2 4 6 8 10

0.1

0.102

gain+data

 

 

0 2 4 6 8 10

0.1

0.102

gain+data envelope

 

 

Figure 17.1: Stucture estimation with prior knowledge{prior1}



90 INDEX

0 2 4 6 8 10
0.098

0.1

0.102

0.104
gain+time constant

 

 

0 2 4 6 8 10

0.1

0.102

data+data envelope

 

 

0 2 4 6 8 10

0.1

0.102

data+time constant

 

 

0 2 4 6 8 10

0.1

0.102

data envelope + time constant

 

 

Figure 17.2: Stucture estimation with prior knowledge{prior2}

ychn2 = 3;
uchn2 = 4;
maxstr2 = [2+ones(1,6), 3+ones(1,7), 0 % richest structure, channel 3

1:6, 0:6, 1];
Fac02 = facarx(ychn2, maxstr2); % richest initial factor, channel 3
Facs0 = {Fac01 Fac02}; % initial factors

The data sample is pre-processed:

pre = preproc( {’scale’ []} ); % data are preprocessed

The prior knowledge used is:
pri = {’ychn’ ychn1 ’gain’ [uchn1 gain] ...

’ychn’ ychn2 ’gain’ [uchn2 gain] ...
’fdat’ {dlow dhigh} };

The prior knowledge must be scaled. It is done simply by:

pri = scalepri(pri, pre); % preprocess prior knowledge

The structure is estimated and results displayed:
nbest = 10; % number of ”best” regressors, default is 30
nruns = 50; % number of estimation runs
[Facs, vlls] = pristr(Facs0, pri, [], nbest, nruns);



17.3. RECOMMENDED IDENTIFIERS 91

Facs = arx2arx(Facs);
Fac1 = Facs{1};
Fac1.str, Fac1.Eth
ans =

1 1 2 2
1 2 0 1

ans =
1.7624 -0.7731 0.0119 0.0146

Fac2 = Facs{2};
Fac2.str, Fac2.Eth
ans =

3 3 4 4
1 2 0 1

ans =
1.7624 -0.7731 0.0119 0.0146

Note: in simple cases, the structure estimation can be done channel-wise. The advantage of
processing outlined is that the data increment of initial factors is computed only ones.
Prior knowledge and channel description

A brief excursion into the channel description approach. The example of the previous section is
continued.

Before the structure estimation starts, the channel description is build

Chns = chnconst(1:4); % channel description

The scaling of individual channels is done and the scaling of individual channels is recorded:
pre = preproc( {’scale’ []} ); % data are preprocessed
Chns = chnset(Chns, ’scale’, pre); % set channel scaling

Prior knowledge is scaled and recorded in the channels structure:
pri = scalepri( pri, pre); % scale prior knowledge
Chns = chnset(Chns, ’prior’, pri);
Chns{1}.prior
ans =

’ychn’ [1] ’gain’ [1x3 double]
Chns{3}.prior
ans =

’ychn’ [3] ’gain’ [1x3 double] ’fdat’ {1x2 cell}

The structure estimation is done. The pri argument can be replaced by the channel description.
nbest = 10; % number of ”best” regressors
nruns = 15; % number of estimation runs
[Facs, vlls] = pristr(Facs0, Chns, [], nbest, nruns);
Facs = arx2arx(Facs);
Facs{1}.str
ans =

1 1 2 2
1 2 0 1

Facs{1}.Eth
ans =

1.7624 -0.7731 0.0119 0.0146

Note: in future design, the scaling of prior knowledge can be done automatically inside the function chnset.

It the pri argument is empty, it will be substituted by a global channel description.

back


	Introduction
	Bridge between theory and software
	Common theoretical notation
	Coding agreements
	Basic learning scenario
	Basic scenario for design and advising
	Theory and its software images
	Dirichlet pdf for estimating mixture weights
	Normal parameterized factor and conjugate prior
	Prediction with normal parameterized factor and conjugate prior
	Conditional KL divergence

	Software representations
	Software representation of mixtures
	Types related to normal ARX mixtures
	Creating of mixture elements
	Factors
	Components
	Mixtures
	Conversions

	Software representation of advisory mixtures

	Data management
	Access to data sample
	Huge data sample processing

	Data preprocessing
	Preprocessing requirements
	Preprocessing algorithms
	Filters
	Case studies

	Mixtools functions
	Function arguments
	Mixtools user's functions
	Design base
	Tutorial examples
	Case study: static mixture learning and prediction
	Case study: dynamic mixture learning and prediction


	Construction of prior estimate (initialization)
	Processing logic
	Initialization options
	Case studies in initialization
	Computational Efficiency of Static Mixture Initialization
	Dynamic Mixture Initialization
	Static Mixture Initialization: ``Banana Shape" Benchmark
	BMTB Algorithm of Mixture Initialization
	Initialization of Static Onedimensional Mixture


	Approximate parameter estimation
	Implementation
	Estimation statistics
	Forgetting

	Case studies
	Quasi-Bayes Mixture Estimation
	Comparison of Mixture Estimation Algorithms: Static Case
	Comparison of Mixture Estimation Algorithms: Dynamic Case
	Computational Efficiency of Mixture Estimation Algorithms
	Mixture Estimation Based on Batch Quasi-Bayes Algorithm (BQB)
	Mixture Estimation Based on Branching by Forgetting (BFRG)


	Prediction with normal mixture
	Projection and prediction with mixtures
	Mixture projection
	Reduction of data space
	Prediction with mixture projection
	Prediction with mixture
	Multi-step prediction
	Prediction error

	Case studies in projection and prediction
	Prediction with Static Mixtures - scaled data
	Prediction with SISO dynamic component
	Prediction with Mixture of Two Dynamic SISO Components
	Multi-Step Prediction with Static Mixture
	Multi-step Prediction with Mixture of Two Dynamic SISO Components
	Multi-step Prediction with SISO Dynamic Model
	Prediction with Mixture on Grouped Data
	Prediction with Static mixture


	Simulation
	ARX mixture simulation
	Simulation case studies
	Case study: Markov jumps, scalling and noise type in simulation
	Case study: use of covariance of regression coefficients
	Case study: simulation with projection


	Visualization
	Stopping rules
	Introduction
	Learning with normal ARX factors
	Case study: Stopping rules in factor estimation
	Case study: Stopping based on a statistics

	Estimation of credibility intervals
	Case study: Stopping and credibility intervals

	Mixture estimation with stopping rules
	Case study: use of basic estimation functions with stopping
	Case study: repetitive estimation with stopping
	Case study: Comparison of estimation functions with and without stopping
	Case study: mixture initialization using stopping rules

	Model characteristics based on simulations with stopping rules
	Case sstudy: SISO model


	Stabilization of mixture estimate
	Supporting functions
	Case study: Mixture stabilization


	Structure estimation and prior knowledge
	Estimation of structure of mixture factors
	Case study: Factor structure estimation

	Prior knowledge in ARX models
	Prior knowledge coding
	Channel specific prior knowledge
	Conversion of the prior knowledge into fictitious factors
	Prior knowledge processing

	Case studies with prior knowledge
	Case study: Prior knowledge in structure estimation
	Case study: Prior knowledge sources


	Model validation
	Case studies
	Static Mixture Checking via Simulation
	Model validation by learning results
	Forgetting based model validation
	Model validation by prediction error
	Model Validation by Cross-Validation of Learning Results


	References to Mixtools Guide
	Channels description
	Design and advising
	Tutorial on design and advising
	Mex and API functions

	Appendices
	References
	Index
	Recommended identifiers


