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1 Introduction

In this chapter the identification problems are approached via Bayesian statistics. In Bayesian view the
concept of probability is not interpreted in terms of limits of relative frequencies but more generally as a
subjective measure of belief of a rationally and consistently reasoning person (here called the statistician)
which is used to describe quantitatively the uncertain relationship between the statistician and the ex-
ternal world. Originally, the concept of subjective probability was not introduced in the anticipation of
radical changes in statistical practice. Saying with [30] "the idea was, rather, that subjective probability
would lead to a better justification of statistics as it was then taught and practised, without having any
urgent practical consequences. However, it has since become more and more clear that the concept of
subjective probability is capable of suggesting and unifying important advances in statistical practice”.
It is one of the objectives of this chapter to show that the latter applies also to systems identification.

One has to agree with [2] that the field of systems identification, as it has naturally developed, ”appears
to look more like a bag of tricks than a unified subject” and that ”it seems to be highly desirable to achieve
some unification”. This is a natural reflection of a similar situation in the field of data analysis which was
characterized by [19] as ”a field in which bright ideas of a few clever men abound, but these ideas are,
because of the informality of the subject, difficult, if not impossible, to convey to the average statistical
practicioner”. It is another objective of this chapter to show that a systematic application of the Bayesian
approach is capable to make from systems identification a consistent theory with formal structure. Once
this status is reached one can be quite sure what it is we are talking about and the solutions of particular
identification problems can be obtained by deduction without any need of developing special methods.

The chapter is organized in the following manner. In Section 2 the main distinguishing features of the
Bayesian position are briefly recalled and compared to classical frequency interpretation of probability
commonly accepted in the present day statistics. For a more detailed discussion of Bayesian standpoint
the reader is referred to [19]. Fuller statement and justification can be found in [10], [18], [29], [6] and
[7]. An interesting discussion, including also the opposite opinions, is registered in [31].

In Section 2 also two basic operations on uncertainties are introduced. The understanding of these
two basic operations is actually all what is required to be able to solve, at least conceptually, a rather
wide spectrum of identification problems in a unique and consistent way.

In Section 3 the notion of a system model (or process model) is revised from Bayesian viewpoint.
The characteristic feature of the Bayesian position is that the final purpose of statistical inference is to
provide a rational basis for some kind of decision. This final goal has to be kept in mind right from
the formulation of any statistical problem. The purpose of system identification, consider throughout
the chapter, is its potential use for prediction and digital control of an uncertain process. As a matter
of fact, control is nothing else than sequential decision making and the ability of prediction is the most
important prerequisite for a rational control. Therefore, the problem of suitable process model is posed
as the question: What is required to be able to predict and control an uncertain process?

Once the model structure is chosen or given, the problem of system identification is reduced to the
problem of parameter estimation which is the main topic of Section 4. In Bayesian view the ”estimate”
is the probability distribution conditional on the given data and any point estimate is nothing else
than some (more or less suitable) partial description of this distribution. In Bayedsian statistics the
unknown parameters are actually not ”estimated” but the aposterior probability distribution for them is
calculated. Therefore, the problems like ”biasedness”,”efficiency”, ”confidence interval”, etc. disappear
or are irrelevant. Both one-shot and real-time parameter estimation are considered in Section 4. The
Bayesian approach is especially fruitful when the parameter estimation is a part (a sub-problem) of
adaptive control and is performed in closed control loop.

The problem of time-varying parameters is addressed in Section 5 where also a general Bayesian view
on adaptivity is given. The discussion includes the Kalman filtering, possibly performed in a closed control
loop, as a special case. In practical applications the case of "slowly varying” parameters is often handled
using the technique sometimes called exponential ” forgetting”, or ” age weighting”, or ”discounting”. The
Bayesian interpretation of this technique is presented and its possible extension is outlined.

In many practical cases the in internal mechanism or physics of the system is not understood enough



to be able to specify the model structure uniquely. Then, the following question arises: Which one of
the possible model structures has to be preferred when a finite set of input-output data is available?
As a matter of fact, in most practical situations this question should be answered as one of the first
steps towards system identification. Here, for didactic reasons, it is left to the last Section 6, where it
is answered again in terms of the aposterior probability distribution on the set of hypotheses. A special
case of this kind is the uncertain order of a linear model.

As it has been mentioned above, the role of Bayesian statistics is to provide a rational basis for some
kind of decision. Similarly, system identification is only a part of a more complex problem for instance of
control problem. Being limited by the scope of the monograph only to system identification the exposition
of the Bayesian approach inevitably must be able to apply the presented results in a proper way and to
complete the story according to his particular need if he understands the basis. Therefore, the emphasis
is given to the conceptual side of the exposition.

In the following sections the general Bayesian solutions of the identification problems outlined above
are accompanied by two kinds of examples: simple and practical ones. Th simple examples have to help
the reader to understand the principles on which the solution is based. In more complicated practical
examples the emphasis is given to explanation of how the given particular results can be obtained rather
than to technical details of their derivations which are often left to the reader as an exercise.

Not to promise too much, it should be said in advance that it is often not easy to apply the con-
ceptual case. Nevertheless, even when the exact Bayesian solution is practically not feasible, it clearly
shows the essence feasible, it clearly shows the essence of the problem and helps to construct reasonable
approximations.

2 Underlying Philosophy and Basic Relations

In Bayesian view random means uncertain. Any quantity the true value of which is not known to the
statistician, is a random variable. Thus, not only time-varying quantities, like input-output data, but
also unknown or uncertain constants, like model parameters, are random. Similarly, a hypothesis about
which the statistician, on the level of his knowledge, is not able to decide whether it is true or not, is a
random event.

A random variable can take on only one true value. If this true value is not known to the statistician,
he has to take into account the whole set of values which the random variable could possibly take. Dealing
with such a situation one has to distinguish a general possible value, say x, of a random variable from its
true but unknown value which will be denoted by z. The set of all possible values x will be denoted by
S If S, is an interval on a real axis, or more generally a connected space of vector valued quantities, the
random variable is said to be of continuous type. If S, countable set of discrete real numbers, or vectors
say Sg = {z1, %2, T3,. ..}, the random variable is of discrete type and z a general representant for any z;.

In the sense of higher credence, the statistician may prefer a particular possible value to another
possible value when, according to his knowledge or experience, the former is ”"more likely” than the
latter. To describe his system of preferences numerically the Bayesian statistician uses the notion of
subjective probability which can be introduced as one unit (i.e. 100%) of his belief distributed over the
set S, of the values which he considers as possible. In the case of discrete random variable the probability
assigned to the event z = x; is

Pr[z = z;] = P(z;) (1)
and P(z) means a function (real and nonnegative) defined on the set S;.

From the interpretation of subjective probability as distributed probability mass directly follows its
additivity property !,
Prjz =z; or z = z;] = P(x;) + P(zj), i £ J

1 For a thorough discussion of the question whether such a description of the system of statistician’s preferences is relevant
at all the reader is referred to [10].



As on the set S, the total statistician’s belief (the total unit of the probability mass) is distributed, the
following relation must hold.

Y P@)=1 (2)

TES,

The same notation can be used if S, is a set of elementary (mutually exclusive) events of non-numeric
character. For instance, if z means a side of a tossed coin, then S, = {"head”,’tail”} and according to
()

P("head”) + P( "tail”) =1

In the case when gz is a random variable of continuous type, the set S, contains uncountably many
elements and the probability Pr[z = z] = P(z) is zero in general, even when the event £ = z is not
impossible. In that case it is more suitable to describe the probability distribution by a probability
density function p(x) defined by the relation

Prjz € Q,] = / p(z) dx (3)

z€Q,

where Q, is any subset of S, Q, C S,. 2 Apparently, the probability density p(z) must fulfill the
relation

/ p(z)de =1 4)
S

£

If, for given two subsets 1 C S, and Q2 C &, it holds

/:E691 p(z)dr > /WEQ2 p(x) dz

then it means that the statistician may expect that the true value of the random variable z will lie (or
lies but it is not known to him) rather in the subset ; than in the subset Q5. For the moment let us
leave aside the question how such a probability distribution can be obtained. We shall come to it later
on. Notice that P(-) as well as p(-) do not have any meaning if it is not given what random variable they
concern. For instance, p(z) = f(z) is a function in general different from p(y) = g(y) and p(2) itself does
not say whether f(2) or ¢g(2) is meant. If we leave the arguments to identify the probability distribution
we also may use, for the sake of simplicity and generality, the same notation p(-) both for the probability
densities and probabilities P(-) letting the arguments indicate also which one of these two possibilities is
meant. In this way a significant simplification and unification of all formulas, we shall make use of, can
be achieved. One only has to keep in mind that the integration has to be replaced by regular summation
whenever the argument is discrete 3

If we have a reason to consider all or some of the components of a multi-dimensional random variable
separately we speak about joint (or simultaneous)probability distribution of two or more random variables.
For instance, if x = (a,b) and S, is the Cartesian product S, = S, X Sp, i.e. a set of ordered pairs (a, b)
where a € S, and b € Sy, then p(x) = p(a, b) is the joint probability distribution for two random variables
a and b. For illustration let us consider the case when a is continuous defined on the interval S, = (a1, a2)
while b is discrete with S, = (b1, ba,bs). Then p(a,b) is a set of three functions {p(a,b;) = fi(a), i =
1,2, 3}, sketched in Fig. 1 which fulfill the relation

3 as
fi(a)da =1

21n the integral (3) dr means an elementary subset of S, or, more precisely, dz = u(dz), where u(-) is a measure defined
on Sy

3A mathematically educated reader may employ the measure theory and operate in a uniform way with probability
densities generalized in Radon-Nikodym sense.The practical effect is the same and therefore it seems to us neither necessary
nor very helpful, at least for our purposes.
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Fig. 1 Joint probability distribution p(a,b) of mixed type: a continuous, b discrete

The concept of subjective probability distribution introduced above would be little practical value,
at least in engineering and natural sciences, if it were not given how experimental evidence can be
incorporated into it. In Bayesian view the statistical inference can be understood as correction of prior
subjective probability distribution by objective data. Put in other words, to provide a rational basis for
a decision means to provide the probability distribution conditional on data. This is the task of Bayesian
statistics. In performing this task Bayesian statistics rests on the fact that uncertainty has probability
structure. The meaning of this statement is that the mathematical discipline called probability theory, in
which the notion of probability is defined axiomatically without any relation to reality, can be employed
to operate with subjective probability distributions. This can be proved on the basis of a few simple and
sound principles which nobody of us would wish to violate when acting in the face of uncertainty. As an
example the ”sure-thing principle” [29]can be given. It says that”if A is preferred to B when C does not
obtain, then A is preferred to B when C obtains and also when C' does not obtain, then A is preferred
to B when one is uncertain about C” [19].

It is out of the scope of this presentation and also out of the author’s competence to go deeper into these
philosophical and logical fundaments. Following our practical objectives we feel it to be more appropriate
if we give a pertinent Bayesian interpretation of two basic operations on probability distributions. In
fact, the Bayesian solutions of identification problems, we shall deal with in the following sections, are
nothing else than systematic applications of these two basic operations and therefore their deeper-rooted
understanding is vital.

2.1 Two Basic Operations on Uncertainties

The first operation, we need to be able to solve our problems, can be stated as follows. Given the joint
probability distribution of two random variables a and b determine the probability distribution for b
without taking into account what value the random variable a may take. Expressed mathematically,
given p(a,b), a € S,, b € S, determine p(b) defined as

Prve )= [ o) (5)

for any Q. The answer to this question directly follows from the additivity property of subjective
probability. As a € S, is a certain event it holds

Pribe Q] =Pribe Q anda € S,] = (6)

/ / (a,b) dadb
Qp



and from comparison of (5) and (6) it follows
p0)= [ pla.t)da ™)

According to the convention accepted, the integration in (7) has to be replaced by regular summation if
a is discrete. The probability distribution p(b), when related to p(a,b), is sometimes called marginal. If
the range if integration in (7) is not given the entire set S, will be meant.

The second basic operation on uncertainties cannot be derived from the concept we have already
defined, but must be introduced exogenously on the basis of sound reasoning. Consider the situation when
the statistician is uncertain about two quantities, a and b, and somehow has determined his subjective
probability distribution p(a, b). Now, he obtains the information that the true value of the random variable
bis B, b = 8. The uncertainty of the quantity b disappeared but the uncertainty of the quantity a remains.
How has the statistician to recalculate his probability distribution to match this new situation? The
problem is: given p(a, b) determine the conditional distribution p(a|b = ). Apparently, the distribution
p(a, b) for b # B becomes irrelevant, but the statistician has no reason to change his system of preferences
in the direction of a for b = . Therefore, it is natural to determine p(a|b = ) as proportional to p(a,b)
forb=p

plalb = B) = kp(a, b) =g (8)

where  is the coefficient of proportionality. Obviously, for all a where p(a, b)|,=g = 0 also p(a|b = 8) = 0.
The coefficient k can be determined from the condition

[ plale=5)da =1

Hence

and using (7) we have

"= POl ©)
As we are interested in general relation for any 8 € S, i.e. in p(alb = ) as a function of §, it does not
have much sense to distinguish in notation the variables 8 and b. We also may write instead of p(alb = b)
more simply p(a|b). With this change in notation the relation described by (8) and (9) can be written as
follows.

_ p(a,b)
plalt) = 70 (10)
Rewritten as
p(a,b) = p(a|b)p(b) (11)

the relation can be understood as a rule how to construct joint probability distribution when conditional
p(a|b) and marginal p(b) distributions are given. For illustration consider again the simple example
pictured in Fig.1, where a is a continuous random variable while b is discrete with three possible values
b1, b2, bs. Suppose that the statistician is given the three probabilities p(b1), p(b2) and p(bs) and he
also knows how to distribute his subjective probability if it were b = b;, i.e. he knows the functions
p(alb;) = gi(a) for all three i’s. In order to be consistent with the two basic operations introduced above,
he has to determine the joint probability density p(a,b) in such a way that the functions p(a, b;) = fi(a),
see Fig. 1, are
fila) = p(bi)gi(a), i=1,2,3.

It is clear from the way how the two basic relations (7) and (11) have been introduced that they apply
also for conditional distributions. Actually, they determine the logical structure of the system called
Bayesian statistics and we shall register them for further references in the following form.

p(blc) / p(a,b]c) da (12)
p(abl) = plalb,p(ble) (13)



It should be recalled once more that the integral in (12) has to be replaced by a regular sum if a is
discrete, or by a sum of integrals if a is multivariate and mixed.

2.2 Independent Uncertain Quantities

We shall call the uncertain quantity a independent of the quantity b if the knowledge of the true value
of b does not bring any information about a and therefore

p(alb) = p(a) (14)
If the quantity b is also uncertain with probability distribution p(b) then from (11) and (14) follows
p(a,b) = p(a)p(b) (15)

Moreover, as
p(a,b) = p(bla)p(a)
it also holds
p(bla) = p(b)

It means that if an uncertain quantity does not depend on another uncertain quantity then they are
mutually independent.

In probability theory the independence of two random variables is usually defined by the relation (15).
We took as primary the relation (14) as it has a clear Bayesian interpretation.

It is useful to define also conditional independence. If the true value of an uncertain quantity c is
known and if the knowledge of the true value of the uncertain quantity b does not bring any additional
information about the uncertain quantity a then the uncertain quantities ¢ and b are called conditionally
independent, under the condition that ¢ is known. In this case it holds

p(alb,e) = p(alc) and consequently
plbla,e) = p(ble)

Note that conditional independence does not imply unconditional independence and also that p(alb,c) =
p(alc) in general does not imply p(alb, c) = p(alb).

2.3 Derived Relations

Solutions of all identification problems we shall deal with can be obtained by an appropriate application
of the two basic relations (12) and (13). However, some formulae appear so often that it is worth while
to derive them generally in advance and use them as standard.

First, we shall derive the famous Bayes formula which gave the name to the Bayesian statistics the
application of which we shall deal with. From (12) and (13) we have

Cpabld) | plablo)
Plalh: ) = =000 = Ta(ablo)a (16)

If we interchange the role of a and b in (13) we also have

p(a,blc) = p(bla, c)p(alc) (17)

Substitution of (17) into (16) gives the Bayes formula

_ p(bla,c)plalo)
Pl €) = 1 bla, Oplale) da (18)




The second standard formula, we shall often make use of, is the so-called chain rule. To derive this rule
consider the joint probability distribution of N random variables z;,z,,...,2x and apply successively
(11). After N steps the chain rule is obtained

N

plan,an—1,. ., 71) = [[ pl@rlzr-r,. .., 21) - pa:) (19)
k=2

2.4 Additional Remarks

We conclude this section with several general remarks.

Often, Bayesian statistics is not distinguished clearly enough from decision theory. Statistical inference
is only a part of decision making. Bayesian statistics provides probability distributions, conditional on
data as a rational basis for decisions. Decision theory adds the utility (or risk), calculates expectations
and performs maximization (or minimization). If one has a reason to choose some single value from the
set of possible values value from the set of possible values value from the set of possible values of an
uncertain quantity (or accept as true a single hypothesis from the set of mutually exclusive hypotheses
none of which is known to be certainly true) one has to solve a decision problem.

As a rule, system identification is only a part of a more complex decision problem (forecasting, control,
some kind of diagnosis, etc.) for which point estimates of model parameters are, actually, not required, at
least not directly as the final objective. It is true that some point estimates often appear as a natural (or
reasonable) inter-step in the exact or approximate solution of a given decision problem, but examples also
can be given where no point estimate can be chosen as a suitable representant for the unknown parameter
(see e.g. Peterka, 1977, par. 7.2). Therefore, when dealing solely with systems identification we shall give
the solutions of particular problems in the form of probability distributions. Not given a clearly defined
purpose for which the system identification is performed we have to provide this full information.

Frequency interpretation of probability (Von Mises) rests on the idea of repeated experiments per-
formed under ”similar” conditions. Outcomes of these trials are interpreted as different realizations of the
same random variable (or random event). In Bayesian view each random variable can take just one true
value. ”Act of observation changes the status of the quantity from a random variable to a number” [19].
Repeated trials are just a sequence of random events and all they have in common is that they can be
assumed to have the same probability distribution and to be conditional independent under the condition
that the common probability distribution is a priori given. However, this is in no contradiction with the
intuitive conception of probability as the limit of relative frequencies the stationarity of which may appear
to an outer observer (with a given observation ability) as an objective property of the external world. On
the contrary, the idea of existence of such limits can be very helpful in constructing probabilistic models
but by no means can be taken as a basic for a consistent theory. Bayesian statistics can serve as a means
for finding out what these ”objective” probabilities are but its applicability is much wider.

One may say that Bayesian statistics is nothing else than probability theory applied to statistical
problems.It is true when the above given interpretation of probability, conditioning and statistical in-
dependence is added. However, probability theory as such can only transform probability distributions,
it cannot create them. Similarly, Bayesian statistics requires the prior probability distribution which
the statistician has to assign to unknown quantities or uncertain events before the observed data are
incorporated into his knowledge. The prior probability distribution is a model of the statistician’s prior
uncertainty. Like any other mathematical model, for mathematics it is an input. It is the user, not the
theory, who is responsible for all models which make the link between mathematics and the true world.
One also cannot expect a reasonable answer to an ill-posed question. Man thinks, theory helps him to
think and to maintain his thinking consistent in complex situations. This is the role of any theory.



3 System Model, Reexamined from Bayesian Viewpoint

Throughout this chapter the term ”system” is understood very generally as a part of the external world
the statistician wishes to identify, i.e. to describe mathematically for a given purpose. To perform his
task the statistician has the possibility to observe on the system a time-oriented sequence of quantities
(a process), say

D(l),D(Q),D(S), . ,D(t), .

The values of these quantities, which are known to the statistician at a given time point, will be called
the data. In general, there are two kinds of quantities which can be observed on a system: inputs, which
will be denoted by w;), and outputs denoted by y )

Dy = (u(), Y(r)) (20)

The inputs are the quantities the values of which are enforced on the system, contingently by the
statistician himself, while the outputs can be observed only passively and if they can be influenced by
the statistician then only through the preceding inputs. The systems which have no observable inputs,
i.e. D) = y(y), are sometimes called autonomous.

If the model of the system has to be used for control purposes then it is essential to define what data
are available when the value of the particular input, say u) is decided. We choose the time-indexing
in such a way that by the output y; we denote a set of quantities the values of which are available
when the decision concerning u 1) is taken but are not yet known when u) is decided 5. Thus, in our
time-indexing the sequence of inputs and outputs ordered in the way how they become to be known to
the statistician, who is in the position of an outer observer and an actual or potential decision maker
controlling the system, is

U(]_), ?/(1); U(2), ZU(2) IR ’U/(t,]_) ’ y(t—l) ’ u(t)a y(t): T

where (u(1),ya)) = Dq1) is the first input-output pair observed. To shorten the writing when dealing
with sets of inputs and outputs the following notation will be used where x stands for either u or y or D.

o) = {2, 211y, 50 } (21)

For j < i the set (21) is empty. Clearly

(3 _ (4-1)
x(g) = {x(j),x(ﬁ) }

and (7 (-1

D(g) ={y),uy), D(ﬁ) } (22)
If the lower time index (4) is omitted then it means 4 = 1. This is used to denote the set of all data from
the beginning of observation, e.g.

D(t) = {D(1)7D(2)7'"7D(t—l)7D(t)} (23)

As it has been emphasized already, when approaching any modeling problem the purpose for which the
model will be used has to be considered right from the beginning. In this chapter it is assumed that the
purpose of modeling and identification of the given system is to provide a rational basis for the control of
the future course of the output. Therefore, the problem of a suitable system model is posed as a question:
What does the statistician need to know to be able to solve his control problem?

Assume that the input-output data up to and including the time-index tg, i.e. D) are known to
the statistician and his task is to design a control strategy for the next N steps, where N arbitrarily

4Saying quantities we may generally mean also events of non-numeric character.

5 As misunderstandings concerning this point are met in control literature it may be worth noting that the choice of
time-indexing is, to a certain extent, a question of convention. The output we denoted by y(;) could be equally well denoted
by y(¢—1)- This is not essential, but essential is to define whether this output is available or not when u(;41) is determined.



large but finite. If the statistician picked a particular strategy and performed the experiment he would
be able to judge the quality of his performance according to the actual values of inputs and outputs in
the time-interval considered, i.e. according to the true values of Dgoig) This is the full information
the experiment could yield to him as to an outer observer. As he has to choose in advance the control
strategy which is optimal in some sense, he must be able to forecast, before the input w1 is applied,
what the future input-output data would be for any control strategy he might apply. Hence what he

needs is the conditional probability distribution
(DG D) (24)

for any admissible control strategy. Applying the chain rule (19) to (34)

N
D(to+N) Dto) " (D pi-1
( (to+1) | H p ()| )
t=to+1

and making use of the basic relation (13)

(D] DY) = p(yesy, uy | DY) = p(yesylugey, D)p(ugy| DY)

we obtain N
o+
N _
p(DE D) = T plyg thuey, D¢ )plug D) (25)
t=to+1

The factors in (25) have the following interpretation. The conditional probability distribution
plugy| DY) (26)

describes the transformation, in general stochastic, by which the input ) is determined on the basis of
the known past history of the process. The set of functions (26) for t = to + 1,...,t0 + N is, actually,
the control strategy the statistician has to determine when he solves his control problem. If the control
strategy is deterministic®, i.e. uyy = f5)(D*~Y) then (26) is

p(ugy| DY) = 8(uy — f (DY)

where §(-) is either the Dirac -function when u( is of continuous type, or the Kronecker’s § (6(0) = 1
and d(z) = 0 for z # 0) when u(y is discrete. If the input is generated in open loop, i.e. independently
of the outputs, then

plugy| DY) = plug|[u®) (27)

Hence, the probability distribution (26) is a description of the feedback or of the input generator, not of
the system itself.

The remaining factors in (25), i.e. the set of conditional probability distributions

Py lugy, D) (28)

describe, for each t, the dependence of the output y;) on the known past history of the input-output
process including the last input. The set of conditional probability distributions (28) is the most general
description of the system from the viewpoint of an outer observer. It is this set of functions the statistician
needs to be able to design a control strategy or to forecast the outputs for a given control strategy.

By a system model (or process model) we shall mean any mathematical model which defines the set
of conditional probability distributions (28) for the time period required through o finite set of parameters.
By a parameter we mean here a time-invariant quantity, a constant.

Clearly, all models which define the same set of conditional probability distributions (28) are equivalent
from the viewpoint of an outer observer, they cannot be distinguished by him and,for the purpose of
forecasting and control of the future outputs, also do not need to be distinguished.

61t is possible to prove that under very general conditions optimal strategies are deterministic.
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Notice that the conditional probability distribution (28) can be considered as one-step-ahead predictor.
If the process model is not given directly in this form it has to be recalculated into this form when it has
to be used for the purpose of forecasting and control of the output.

Consider the situation when a finite set of some or all model parameters, say 6,is unknown or uncertain.
In such a case the model (its structure) does not fully define the distributions (28) but only distributions
conditional, in addition, on 6.

Py luwy, D4, 0) (29)

In (29) € has to be considered as a variable, in general multi-dimensional, ranging over the set Sy of all
possible values of the uncertain quantity (random variable) 8

Not knowing the true value of 8, the statistician cannot make a direct use of (29), he has to eliminate
the unknown parameters first. This can be done by application of the two basic operations (12) and (13)
in the following way.

P(y(t)|U(t),D(t—1)) = /p(y(t),0|u(t),p(t—1)) do — a0
/p(y(t)|u(t),D(t—1),g)p(0|u(t),D(t—1)) do

The first factor of the integrand in (26) is the distribution (29) defined by the model structure. The
second factor
p(8lugy, DY) (31)

is the probability distribution describing the uncertainty of the parameters at the given time point.

Hence, the system identification performed for the purpose of control or forecasting of the outputs
can be decomposed into two steps:

i) choice of model structure defining the conditional probability distributions (29)

ii) estimation of model parameters, i.e. the determination of the conditional probability distribution
(31).

The problem of parameter estimation will be considered in detail in the next Section 4 assuming that
the model structure is given. The problem the statistician is faced when he is uncertain also about the
model structure is called the system classification and will be solved in Section 6.

The following simple example may serve to illustrate the ideas.

Example 3.1 Consider an autonomous system (with no observable inputs) the output process of which
is a sequence of random events with just two possible outcomes, say A and A. Thus, either Y = A

or Y., = A but it is a priori not known which one of identities is true. Clearly, the set of all possible
outcomes of y ) consists of only two elements, S, = {A, A} and p(y()) = f)(Y(r)), which must fulfill the
relation f(;)(A) + fi)(A) = 1, determined by just one number o)

foyA) =, fod) =1-agy (32)

To construct a model of the process means to accept some assumptions. Let, in our example, these
assumptions be:

(a) The statistician who has determined on the basis of the prior information about the system modelled,
his probability distribution p(y(;) i.e. the number a(;, assumes, also on the basis of the prior
information, that the past history of the process cannot bring any additional information about the
expected output y(;). Therefore, he does not change his opinion when this information is given to
him

Pyl Y) =plye), t=1,2,... (33)
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(b) Considering the physical nature of the system (again prior information) the statistician assumes that
the number a(;) is the same for each ¢.

ap =a, t=1,2,...

Hence, the process model is

Pyl ) = aforyy = A and any y Y (34)
p(y(t))|y(t71)) = l-aforyy = A and any y(tfl)

and is fully defined by a single parameter 6 = a.

It should be emphasized that, actually, all probability distributions are conditional. However, it does
not make much sense to state explicitly and repeatedly all conditions which do not change during the
solution of a given problem. Moreover, some of these ”permanent” conditions are often difficult to express
in a simple way. For instance, in this example the model obtained is conditional on the prior information
which allows the statistician to determine both the simple structure and the single parameter . To be
more explicit let us consider that the process modelled is a ”fair” tossing of a ”fair” coin (A ="head”

A ="tail, or reversely). Because of symmetry and for ”insufficient reasons” for preferring some of the two
possible outcomes as more likely, the statistician can assume, p(A) = p(A) from which follows a = 1.

However, if the prior information does not allow the statistician to determine the parameter a (for
instance, he is sure about the fairness of the tossing but in doubt whether the coin is fair) he should

re-formulate the assumption (a) in the following way.

(a') If T knew more about the system and could determine the parameter a then the knowledge of the
past history of the process would not bring any additional information about the expected output
of the process y )

This means that the independence (33) has to be replaced by a weaker assumption of conditional
independence

plywly"~",a) = ply|e) (35)
and the unknown parameter has to be considered as a continuous random variable a the possible values
of which are real numbers between 0 and 1, S, = [0,1]. Instead of (34) we now have for any y*~1) and
a €S,

plywly*~V,a) = aforyy =A (36)
plywly™,a)

1—af0ry(t)=z

where « is not a constant but a variable.

As the past history of the process carries information about the unknown parameter a, (35) does not
imply (33). To predict the future output y ) the statistician can make use of the formula (30) which,

applied to this case, reads )
Py ly“") = /0 p(y|@)plaly*=") da
and particularly for y) = A:
plywly*™) = /01 ap(aly®=)da (37)
for y) = A:

Pyl V) = / (1 - a)plaly®D) da (38)

The conditional probability distribution p(a|y(t_1)) will be determined and the integrals evaluated in
Section 4 where we shall deal with parameter estimation.
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3.1 Discrete White Noise

If the output y ) is a random variable of continuous type it may be useful to introduce a related variable
€ as a difference between y ® and its mean value conditioned on the past history of the input-output
process. If the output y () 2 set v of quantities, is ordered into a column v -vector then we define €(t) as

follows.
) = Yy — Iy (u), DY) (39)
Gty (ugey, D) = Elyp lugey, DY) = /y(t)p(y(tﬂu(t),D(t*l)) dy(s) (40)

Clearly,
E[e(t)|u(t),D(t_1)] =0 (41)

But the sequence {e;); t =1,2,...} has also the following properties.

Elew] = 0 (42)
E[e(t)e(t z)] 0; i #£0, i<t (43)
[e(t)u(t z)] = 0,0<i<1t (45)

A sequence of random variables with zero unconditional mean (42),which are mutually uncorrelated, (43),
is often called a discrete white noise. We shall prove only (43), the remaining properties can be proved
in a very similar way.

Consider ¢ > 0 first. From the definition (39) of e it follows
Elewef;—i] = / e = 9o (g, D" Ne—iy = Ge—iy (u—ay, D )Tp(DV)dD®  (46)

Using the basic operation (13) we may write

p(DD) = p(ysylugey, D )p(ugy, D)

The substitution into (46) gives
Eleel, 3] =
= /[/ Yoy PYee luwy, D) dyy — G

[Y(t—i) — De—i) (W= D(t_l_i))]TP(U(t); DY) d(u, D)

which is a zero matrix due to the fact that the difference in the first brackets is a zero vector according
to the definition of §j(;) (40). This proves (43) for i > 0. For i < 0 shift the time index by introducing
T =t — 1 instead of ¢ and proceed similarly.

According to (39) the conditional mean value of €(y) is equal to zero independently of the past history
of the input-output process. A significant simplification can be assumed that not only this mean value
but also the entire form of the distribution of e is independent of the past input-output data and that
this form, say g(e()), is the same for each ¢.

plewlugy, DY) = plewy) = glew) (47)

Clearly, if g(-) is time-invariant then the covariance matrix of e is constant.

E[e(t)e(];)W(t),D(t_l)] = E[e(t)e(qg)] =R (48)
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For given u(;)) and D=1 the random variables Y() and e(y) are related by the one-to-one transformation
(39) the Jacobian of which is equal to one. Therefore

Py luwy, DY) = gy — G (uey, D). (49)

The relation (39) between random variables y ® and €(t) holds, of course, also for any pair of their possible
values and the process model can be given the form of a stochastic equation.

Yy = Gy (ugey, DY) + ey (50)

If, in addition to (47), it can be assumed that g(-) is normal (Gaussian)

v _1 1 —
glecw) = ) HRI exp |-l Roleq | G1)

or in shortened notation
glewy) ~N(O,R)

then the process model is fully defined if the covariance matrix R is given and if the conditional mean value
§¢) is expressed through a finite set of parameters as a (deterministic) function of the past input-output
data.

P gy, DY) ~ N (i), R) (52)

In this way the modelling problem is considerably reduced but it should be emphasized that the assump-
tions (47) and (51) may sometimes be rather restrictive.

The random variable e(;) defined by (39) is sometimes called innovation, see [13]. The decomposition
of the system description (50) into the deterministic term, the conditional mean of the output (40), and
the random term, innovation (39), is used in prediction error methods of systems identification, see [20].

In the following examples three most commonly used linear input-output models are introduced. The
purpose of these examples is to make clear the assumptions on which the model is based so that the
potential user can judge himself whether the model suits his particular case or whether he has to look for
another model more suitable for his need. For a case study on modelling of a nonlinear non-stationary
multi-output macro-economic process the reader is referred to [23].

Example 3.2 (linear regression model) Consider a system with g inputs and v outputs, both continuous in
magnitudes, u«;) € R¥, y;) € R”. Suppose that the probability distribution of the output y @ conditional
only on w;) and n previous input-output pairs DE::;)) is given or can be determined (including both
structure and parameters) on the basis of prior information about the system modelled. If the past
history considered in the condition is long enough (n is sufficiently large) it may be reasonable to assume
that the older input-output data D*~"~1 cannot bring any additional information about the expected

output y " Mathematically, it is assumed that
Py lue, D) = plywluw, D) (53)
Gt (uey, DY) = giypluy, D§§i3) (54)

If the conditional mean (54) is a linear function of its arguments
n
dw = Boyuw) + Y (s + Bitg_y)) +¢ (55)
i=1

and the assumption (47) is added the linear regression model of n-th order is obtained. Written in the
form (50) this model is

@ = Boyuw + Y (Aiga—iy + Biug_y) + ¢+ eq (56)

i=1
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where {e(;} is discrete white noise with constant covariance matrix R (48).

If also the normality (51) is assumed then the process model (52) is, for ¢ > n, fully specified by the
parameter set
QZ{A,(Z:].,,’I’L), B,(ZZO,].,,TL), C, R} (57)

The constant term ¢ in (55) and (56) can be eliminated by a proper choice of origins of the scales in
which inputs and/or outputs are measured. However, if the parameters (57) are not known and the
system describable by the regression model has to be identified then, in general, this term has to be
considered.

Example 3.3 (incremental regression model). The practical experience shows that often the real processes
are non-stationary. The nonstationarity usually follows from the fact that from time to time something
happens which causes that the constant c in the regression model (55) is, actually, not constant but varies
in a rather unpredictable way. In such situations it may be more appropriate to assume the conditional
mean §;)(u(, D) in the following form

Uty = Ye—1) + BoAuy + Z (AiAyu—iy + BilAug_y) (58)
=1
where
AYry = Yr) — Yr-1) (59)

The assumed form (58) of the conditional mean of the expected output y ., can be understood as a linear

extrapolation of the output process related to the last known output y;_1). The model can be written
also in the following form

n
Yty = Bou) + Z (Aiy(e—i) + Biug—s)) + ¢ (60)

i=1

where {c(;} is a stochastic process with independent increments

Cty = C—1) T E(1) (61)
i.e. a summed discrete white noise {eg }.

Example 3.4 (ARMA model). In the previous two examples the mean value §j;) has been assumed to
be a function only of the finite number of the foregoing inputs and outputs. However,in general, this
mean value can be a deterministic function of the entire past history of the input-output process. To
express this function through a finite number of parameters assume that ;) is defined recursively by the
following difference equation

n n
gy + Y Cifie—i) = Bouy + Y _ (Gitye—s) + Biug_y) +c¢ (62)
i=1 i=1
Of course, such a recursive definition of the conditional mean value §j;) makes sense only when the
homogenous part of the difference equation (62) is stable, i.e. when all roots §;, i = 1,...,nv of the
polynomial
n
11+ Gl (63)
i=1

lie outside the unit circle.

If 1) = y@) — e(y) is substituted into (62) the following popular form of this model is obtained

Yy + Z Aiy—i) = Bougy + Z Biug_; + €@ + Z Cie—iy + ¢ (64)
=1 =1 =1
where
A;=C; -Gy (65)



Usually, the model is considered without the constant term ¢ which can be eliminated by a proper shift of
the scales for u(;) and/or y(), however, only when the matrix coefficients are known. The model got its
name ARMA according to the autoregressive and moving-average parts in (64). We prefer the form (62)
to (64) as the former is directly related to the set of probability distribution p(y)|u(), D(=1) which are
required for the purpose of forecasting and control.

If the normality of e(;) (51) is assumed, then the model defines the distributions (28) for ¢ > n through
the following set of parameters

6={Gi(i=1,2,...,n), B;(i=0,1,...,n),

Ci(i: 1,2,...,n), C, R, gj(,)(z: 1,2,...,”)}

where §(;) (i = 1,2,...,n) are initial conditions for the difference equation (62). If the known past history
of the input-output process is long enough (i.e. tg >> n in (24) the influence of the initial conditions
Ui (i =1,2,...,n) may be negligible, they can be set to zero and considered as known. Nevertheless,

even then the estimation of parameters C; (i = 1,2,...,n) is technically difficult and therefore the ARMA
model is less suitable for real-time identification in adaptive control systems except when the parameters
C; are fixed as a priori known.

Example 3.5 (state space model in innovation from). Problem of system modeling, from our point of
view, can be understood as parameterization of the family of conditional probability distributions (28)
for t > tg9. In general, each member of this family is a scalar function defined on a set variables the
dimension of which is different for each ¢. If it is required that the entire family be described by a finite
set of parameters then it is appropriate to assume that there exists a finite dimensional quantity, say
8(1—1), into which the information about the known past history of the process D®=1) can be reduced.
This quantity s;_1) can be understood as a state of the system or, more precisely, as a sufficient statistic
7 for the output y4)-

Under this condition it holds

P luw, DY) = ywy, g, $¢-1)) (66)

and the deterministic relations for the updating of the sufficient statistics s;_;) completes the general
form of the model.
(1) = P(8(t—1)>U(r)> Y(z)) (67)

In this way the modeling problem is reduced to the choice of the dimension of s(;) and to the parametriza-
tion of one scalar function (-) and one multidimensional function ¢(-), both defined on he same set of
variables of fixed dimension. The simplest possible way how to perform this parametrization is to assume
linearity and normality as follows. The decomposition (50) in this case reads

Yo = 9o (), se-1) + €@ (68)
If linearity of both functions ) (-) and ¢(-) is assumed the relations (68) and (67) get the form
Y = Csa-1) + Du) +eq (69)

S(t) = HS(t_l) + Gy(t) + FU(t) (70)

If, in addition, the assumptions (47), (48) and (51), concerning the stochastic term e, are accepted
then

ple)lu), s¢-1)) = plewy) ~ N(O, R) (71)
together with (69) defines the function () in (66). Substitution of y(; from (69) into (70) gives
S() = A S—1) + B UGy + H e(t) (72)
where
A=H+GC, B=GD+F (73)

7Sufficient statistics will be discussed in more detail in Section 4
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The couple of equations (69) and (72) is sometimes called the innovation form of the state space model.
In some applications the form (70) may be more suitable because of its determinism. Notice, that the
stability of the matrix H is more important then the stability of the matrix A, if the model is constructed
for the purpose of prediction (opposed to system simulation when the stability A is crucial). Notice also
the parameter redundancy due to the invariance of the input-output relation with respect to any regular
transformation of sy).

To show the relations between different forms of models we shall bring the ARMA model from Example
3.4 to the state space form (69 - 70).

If we denote
n

Sk(t—k) = Z(_Cz’ G—iy + Gi y(t — i) + Bi u—y)) (74)
i=k

for 1 < k < n, then from (62), where we set ¢ = 0 for simplicity, we have

Yt = Bougy) + s1(t—1) + € (75)
From (74) it follows for 1 < k <n
seity = +Crle) + Grye) + Brug) + Skr1(e—1) = (76)
= —Cps1t—1) + Gry) + (Br — CrBo)u(s) + Sk41(¢—1)
Sn(t) = _Cnsl(t—l) + Gny(t) + (Bn — CnBO)U(t) (77)

The set of equations (76) and (77) written in the matrix form, is the canonical form of (70) with the
state defined as

Sa) = [31T(t): SzT(t)a ERE SZ(t)]

3.2 Measurable External Disturbances

When modeling a system the statistician, as a rationally reasoning person, has to use all prior information
in order to make the model as certain as possible. Some prior information is always available. No prior
information is a fallacy: an ignorant has no problems to solve. If, for instance, the statistician would not
know what variables can be manipulated on the system he would not be able to distinguish the inputs
from the outputs and neither would he be able to formulate the control problem.

An important prior information which is often available to the statistician trying to identify a given
system is that the output y(y), i.e.a set of quantities the statistician manipulate, can be decomposed into
two subsets

Yy = (W), Us(e)) (78)

where v(;) are measurable external disturbances which depend only on their own past history but not on
the present and past values of all other quantities observed on the system

P Ys(e)s ey, DY) = pluggy oY) (79)

External disturbances v(;) can be considered as a measurable output of an the external world sometimes
called the environment. The subset y,;) is the output of the system proper, i.e.,of the controlled part of
the external world. Every practicioner knows how useful it can be to introduce the measurable external
disturbances into the control algorithm.

Considering the decomposition (78) and applying the basic operation (13) we may write

P(y(t)|u(t),D(t—1)) = p(v(t)ays(tﬂu(t),D(t_l)) _
= p(v) Ys(e)> ey, D)oy lugey, DY)

and according to the definition of external disturbances (79)

P lu, D) = p(oey [0 )p(ys [uw, D). (80)
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In this way the process model is decomposed into two models. The first factor in (80) is the model
of measurable external disturbances (model of the autonomous and uncontrollable part of the external
world) while the second factor is the description of the system proper (controlled part of external world).
In the next section it will be shown that these two models can be identified separately, as one could
intuitively expect.

Notice, that the probability distribution (26)
plug| D) = plugy [u®Y,y¢ =Y, 01)

is a general description of the control law including the feed-forward from the measurable disturbances.

4 Parameter Estimation and Output Prediction

Suppose that the statistician knows the system model up to a finite set of parameter #. This means that
for a certain time interval, say 7 =tg + 1,%y + 2, ...,t,, the conditional probability distributions

p(y(T)|u(‘r)aD(T71)30) (81)

are given. The statistician had the possibility to observe the system up to and including the time index
(t), i.e. the data D® are known to him. The first question we shall consider is

1. How can the statistician extract the information about the unknown parameters which is contained
in the known input-output data? In Bayesian view the question reads: how to calculate the posterior
probability distribution

p(6|DY) (82)

This is what we call Bayesian estimation. We already mentioned that a point estimate of the
parameter set 6 is just a partial description of the distribution (82) and that to choose such a
point means to solve a decision problem. In a remark to Section 2 we also claimed that the system
identification is, as a rule, only an inter-step in the solution of a more complex problem for which
the point estimate of unknown parameters is, actually, not required. To demonstrate this fact we
shall consider together with the first question also the following related question.

2. How can the statistician predict, for any given input w1, the next output y(;41) using only the
known past history of the input-output process but not the parameter values which are not known
to him? In Bayesian view this means to calculate the probability distribution of the output y(41)

conditional on u(;41) and D but not 6.

Making use of the two basic operations (12) and (13) we obtain similarly to (30)

p(y(t+1)|u(t+1);D(t) = /p(y(t+1)|u(t+1);D(t);Q)P(9|U(t+1);D(t))d0 (83)

where the first factor is the conditional probability distribution (81) defined by the model structure.
Clearly, the second posed question will be answered when the first one is solved and the relation between
the posterior probability distribution (82) and the second factor of the integrated function (83), i.e.

pOlu(s1y, DY) (84)

is established. It may be useful to distinguish two situations which may occur in practical applications.
In the first case the amount of data is fixed and they have to be processed in one shot. In the other case
the data are growing and the estimation is required in real time for every ¢ as, for instance, in adaptive
control. In real-time estimation the problem is to update the probability distribution for 8 with respect
to the new input-output pair, i.e. to calculate p(§|D®) when p(f|D*~1)) and D are given. To solve
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both one-shot and real-time estimation at the same time let us formulate the problem as follows. Given
p(8|D®) = and the data DEQ 41y» b1 < t, determine p(8|D®). If we succeed to solve this problem then
for t; = 0 the formula for one-shot estimation will be obtained while setting ¢; = t—1 we get the recursive
relations for real-time estimation. Applying the Bayes formula (18) for a =6, b = DEQ 4 and ¢ = D(t)
we obtain

p(DYy) 1) [P, 6)p(6| D))

fp(Dggﬂ)|D(t1),9)p(0|D(t1))d9

p(6)DY) = (85)

To be able to use this formula we have to express the conditional probability distribution

p(DY

o1y |D™),6) (86)

through probability distributions which are known.

The following four cases can be distinguished with respect to the way how the inputs are generated.

(a) The system is autonomous - has no observable input. In this case D(,) = y(,) and instead of (81)
we have the set of conditional distributions

plynly . 6) (87)
which are given by the model structure.

(b) The input is deterministic, i.e. u(*) is a priori known before the experiment is performed. All

u(k), k=1,2,...,7 contained in (81) can be considered for each 7 as known constants (parameters)
of these functions and therefore can be omitted in (81) In this way the case is reduced to the case
(a)

(c) The sequence of inputs is stochastic, i.e., not a priori known, but it is generated in open loop, i.e.
independently of the outputs and of the unknown system parameters 6

p(u(| DTV, 0) = plu(r|ul™™Y) (88)

(d) The inputs are generated in closed control loop, possibly by an adaptive controller or by the statis-
tician himself during the experiment. They depend on the past outputs and through them also on
the unknown parameters 6.

As it will appear that, under very general conditions, all cases listed above can be solved in the same
way, we shall attack directly the most complex case (d)

4.1 Estimation in Closed Control Loop: Natural Conditions of Control

The joint probability distribution (86), which is required in (85), can be expressed, similarly to (25), as
follows.

t
(DY 10,0 = T pynluen, DT, 0)p(uc) DT, 0) (89)
T=t1+1
The first factor in (89) is the conditional probability distribution (81) defined, for 7 > to, by the model
structure, while the second factor, namely

p(u| D, 8) = plugn[ul™D, 51, 6) (90)

is a general description (from the statistician’s viewpoint) of the law by which the input is generated.

Before we substitute (89) into (85) we shall show first that, under rather general conditions, a signif-
icant simplification can be achieved.
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If the control strategy, generally described by (90), does not use more information about the unknown
parameters than the information contained in the past input-outputs data D{"~1) then 6 in the condition
part of (90) is redundant and it holds

p(uy| DTV, 0) = p(ugy| DY) (91)

Clearly, (91) holds when the statistician (observer) is at the same time also the decision maker (con-
troller) controlling the system as, for instance, in adaptive control. The relation (91) cannot be derived
mathematically, it must be introduced externally as a definition of conditions which will be called natural
conditions of control. To throw more light on these conditions consider the joint probability distribution
p(u(ry, 8|D{"=1)) which can be expressed, using the basic operation (13), in the following two ways.

p(ui| DT, 8)p(6] D7) = p(8u(ry, DTD)p(ui| DY)
From this identity follows that if (91) holds then also the following relation holds (and inversely).
p(6lu(r), DY) = p(6|D~Y) (92)

This relation can be used as a definition of natural conditions of control instead of (91). If says that the
distribution for # remains unchanged when the true value of the single u ;) is obtained. This is, under the
conditions discussed, self-evident as for decision concerning the input u(;) only that information about
the unknown parameters € could be used which could be extracted from the known past history of the
process and therefore the result of this decision u(,) cannot bring any additional information about §. As
it can be seen from (91) and (92), under natural conditions of control the random variables u, and 8

are conditionally independent when the past input-output data D("~1) are given. From (92) also follows
that the formula for one-step-ahead prediction (83) under natural conditions of control reads

P(y(t+1)|u(t+1)7D(t)) = /p(y<t+1)lua+1),D“),H)p(GID“’)dG (93)

It should be emphasized that the natural conditions of control defined by (91) or by (92) are not fulfilled
in all possible cases. Consider, for instance, the situation when the decision maker and the observer
are two different persons. If the decision maker had more information about the parameters § and the
observer knew his strategy then the observer could gain a new piece of information about 8 also from the
single w(,y. However, this is not the case of our interest. Throughout the rest of this chapter, when not
noted explicitly, it will be assumed that natural conditions of control are fulfilled.

Now we can return to our estimation problem. If the relation (89) is substituted into (85) then all
functions (91) can be brought in front of the integral in the denominator (they do not depend on §) and
cancelled with the same functions in the numerator.

[Tt 1 Py lucry, DT, 0)p(6| D))
S TTomsy1 Py lugry, DT, 8)p(6| D) df

Notice that the formula covers all cases we want to consider. If the input is generated in open loop (case
(c)) the natural conditions of control can be replaced by the stronger condition (88) which leads to the
same result. If the system has no observable inputs or when they are deterministic (cases (a) and (b)
then all u(, either can be omitted or enter the formula (94) as a priori given constants.

p(6|D®) = (94)

If external disturbances v,y can be observed on the system then, according to (80), the overall system
model can be decomposed into two models

p(y(‘r) |u(T)7 D(T_l) ) 0) = p(v(r) |U(T_1)a ov)p(ys('r) ‘U(T)’ D(T_l)a 03) (95)

where 0, is the set of unknown parameters in the model of external disturbances while 8, is the set of
unknown parameters in the model of the system proper, § = {6,,05}. Substitution of (95) into (94)
shows that if p(8| D)) = p(8,|v®))p(8,|D*?)) than also p(@|DD) = p(8,|v®)p(8,|DD) for any t > t;.
This means that the parameters of the two models can be estimated separately.
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For 65 we have

[T, 41 PWa(r) [y, D1, 0,)p(65| D))

p(6,|D®) =
STt 1 PWa(ry Uy, DT, 65)p(65| D)) b,

where
D(T—l) — {ygT_l),U(T_l),'U(T_l)}

For the sake of simplicity, we shall omit the index s in the sequel. In other words, we shall operate with
the general formula (94) and shall leave the reader to perform the decomposition outlined, if it appears
advantageous.

4.2 One-Shot Estimation

By setting t1 = 0 into (94) the following formula for one-shot parameter estimation of the set of unknown
parameters 6 is obtained
Ly (8, DY)p(8)

(0|D(t)) fL(t) D(t))p(g)dg

(97)

where

t
Ly ®,D9) = T p(yr)lucry, DTV, 6) (98)
T7=1
and p(#) is the probability distribution which models the statisticians prior uncertainty about the param-
eters 0 before the observed data D) are incorporated into his knowledge. The operation described by
the formula (97) can be understood as a correction of the prior subjective probability distribution p(f)
by objective data. The product (98), considered for given data D® as a function of possible values of
unknown parameters 8, will be called the likelihood function or simply likelihood. The likelihood function
reflects all what the experiment can say about the unknown parameters.

Some abuse of language should be noted. Usually, by likelihood function the prior joint probability
density for all observed data, considered as a function of unknown parameters 6, is meant. As the
factors p(u(T)|D(T_1), ) are missing in (98), one should, to be precise, call (98) the significant part of the
likelihood function for the case when the input-output data D are observed under natural conditions
of control.

As an introduction to more complex situation we give a simple example. This example may also help
to understand clearly the relation between subjective probability and relative frequencies.
Example 4.1 This example is a continuation of Example 3.1. We consider a sequence of random events

{y ;7 =1,2,...,t} with two possible outcomes, either y = = Aor y = = A. The model of the process is
fully deﬁned by a single parameter o € Sy, S, =< 0,1 > such that, accordlng to (36) for all 7 > 1, any
y D and a € S,

Pynly™ V) =a for y,) = (99)

Pyl Va)=1-a for yq =

SN S

Let t be the total number of observations made and let n be the number of observations the result of
which was y, = A, 1 <7 <t. Hence « appears n times as a factor in the likelihood function (98) while
(1 — ) enters this product (t —n) times.

Ly(a,y®) = a™(1 — )t (100)

Suppose that the statistician has no prior information about the parameter o and therefore he has to
consider, before the result of observation is known to him, all possible values a € S, as equally likely.
The model reflecting such a situation is

pl@)=1, 0<a<l (101)
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Substitution of (100) and (101) into (97) gives
plaly?) = ka™(1 - a)'~" (102)

where £ ;) is the normalizing factor not depending on «

" 1 _(t+ 1)!' . ”(D (103)

B Jy ar(1—a)t=nda nl(t —n)!

It is easy to find that the maximum of the aposterior probability distribution (102) lies in the point

. n
which is the maximum likelihood (ML) estimate of a well known from non-bayesian statistics. However,
the statistician does not need such an estimate when he wants to predict the next output. What he needs
is

1
Pl ®) = [ plue v, ap(aly®)da (105)
0
Substitution of (99) yields for
1
Yi+1) = A 3P(y(t+1)|y(t)) = PT[Q(HI) = A|Z/(t))] = /0 ap(a|y(t))da (106)

and using (102) we obtain

t ! 1 n+1
Prly .,y = Ay = '*(t)/o "1 - ) M = (107)
Similarly
— t—n+1
= (0 =
Prly .y = A7 = — 5 (108)

The conditional probability (107) can also be considered as a point estimate of a. It can be seen from
(106) that in this particular example the point estimate which is optimal for the purpose of prediction is
not the maximum of p(a|y®) but the mean value of this distribution. However, this observation must
not be generalized. In other cases other point estimates may be more suitable and, as mentioned earlier,
there exist also cases when no point estimate can be chosen as a suitable representant for the unknown
parameter.

Notice that for small ¢ (107) behaves much more reasonably than (104). Even for ¢ = n = 0, when
the ML-estimate (104) is not defined, the prediction (107) gives % which is logically correct.

Similarly for t = 1 and n = 0 (or n = 1)the prediction 3 (or 3

3 ) obtained from (100) is much more
reasonable then the ML-estimate &) = 0 (or 1). However, for large ¢ the difference is insignificant and
asymptotically for ¢ — oo the ”objective” (actually indiscernible) probability is formally obtained in both

cases as the limit of relative frequency,

.on o n+1
a= lim — = lim
t—oo t t—oo t 4+ 2

4.3 Problem of Initial Data

Often the conditional probability distributions (81) are not defined by the model structure right from the
beginning of observation, i.e. from 7 = 1 but only for 7 > tg > 0. For instance, the regression model

Y(r) = bu(r) + ay(r—1) +e(r)
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does not define (81) for 7 =1 (y(o)is missing, to = 1). In such cases the formula (97) cannot be directly
used as the first ¢ factors in the likelihood function (98) are not specified. This difficulty can be overcome
in different ways, according to the prior information available.

To make the situation more transparent let us write the formula (94) for ¢; = o

Ly (9, DV)p(6| D))
fL(t) 0 D(t))p(0|D(t0))d0

p(8|D) = (109)

where

Ly (6,DM) = H P(y(r)lu), DT, 6) (110)
T=to+1

Notice that the only difference between (110) and (98) is that in (110) the first to factors are missing.
When considered as a function of 6 for given D), (110) may be called the conditional likelihood function.
The adjective ” conditional” is added to the likelihood function (110) because it is obtained from the joint
probability distribution of all observed data except the initial data Do) which are left in the condition.
Often, see [17] and others, the conditional likelihood is introduced as the joint probability distribution of
y(t 1) |y(t°) u(®), §). However, it does

not make a clear sense if the inputs are allowed to be functions of previous outputs, not only of y(t),
Notice that only the systematic application of Bayesian interpretation of probability and introduction
of natural conditions of control fully justifies its usage. Moreover, it also shows that, except a small
correction we are going to discuss, nothing better can be found, under natural conditions of control, of
course.

observed outputs conditioned on initial outputs and all inputs, p(

According to the formula (109) the essence of our problem can be stated as follows: How the piece
of information about the unknown parameters 6, which is possibly contained in the initial data Do),
can be extracted? From practical point of view the question is not very important if the total amount of
data D® is large compared to the initial data D), i.e. if t >> to and the conditional likelihood (110)
dominates. Then the information contained in Do) can be neglected and the approximation

p(61D")) ~ p(9) (111)

is well acceptable.

To throw more light on the approximation (111), we shall make use of, let us consider the Bayes
formula relating the two probability distributions.

p(D")|9)p(6)
J p(D)|6)p(6)d(6)
Notice that the approximation (111) is an exact solution if the initial data D) can be considered as

initial conditions of a stochastic difference equation which have nothing to do with the parameters. Then
the probability distribution

(9|D(to))

(112)

p(D"|g) = p(D™)) (113)
can be brought out of the integral and cancelled in (112).

The Bayesian approach makes it possible to handle also the situations when the assumption (113) does
not suit the given case. Then the prior information about the foregoing input-output data, D,)(7 < 1),
which are not known but are required by the model for 7 < tg, must be employed. We shall not follow this
line as we consider it rather academic than of practical importance, at least in engineering and natural
sciences. Instead of that we feel more appropriate to give a simple example which clearly shows that not
much can be gained even when such a strong prior information, like stationarity of the process observed,
is available.

Example 4.2 Consider an autonomous system the output process of which is describable by the auto-
regression model of first order

Y(r) = aY(r—1) T €(r) (114)
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where the random component e, defined by (39), is assumed to be normal with constant and known
variance o2. The parameter a is unknown but it is a priori known that the system is stable and that at
the moment when the observation starts, i.e. for 7 = 1 the output process has reached its stationarity.
Hence, according to this prior information the parameter a must lie within the interval S, = (-1, +1)
and

Elyw)] = Ely] =0 (115)
2 2 2
Ely(yylal = Ely(g)la] = ﬁ

As no other prior information about the true value of the unknown parameter is available it is appropriate
to chose

(116)

pla) = % for a€ S, (117)

p(a) =0 for a¢ S,

The model structure (114) defines the conditional likelihood (110) for ¢ = 1 and for the estimation
formula we should know the probability distribution p(aly)). To investigate the relevancy of the ap-
proximation (111) we will calculate how the prior distribution (117) is modified by the single observation

of Yay-
According to (112) it holds
P(y)la) p(a)

plalya)) = (118)
) = Ty la) pla)da
The mean value (115) and the variance (116) together with the assumed normality define
1 V1-a? 1—-a? ,
__ _l=a 11
p(y(l)la) \/ﬂ 0. exp{ 20_3 y(l)} ( 9)
Substitution of (119) and (117) into (118) gives for a € S,
2
VI —aexp{—2p 127}
plalya)) = : (120)

2
fil Mexp{—i(—é) —1_2“2 }da

2
The probability density (120) is plotted for different ratios YQ) in Fig. 2

o-e
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Fig. 2 Probability distribution for the unknown parameter a in the model (114) after single observation
Yq) =90
(1)

4.4 Non-informative Prior and Principle of Stable Estimation

The statistician, applying the logical system called Bayesian statistics to system identification, has to
furnish the theory with three inputs:

(i) the structure of the system or process model defining, up to a finite set of parameters 6, the family
of conditional probability distributions

{p(yerluy, DT7Y,0),t0 < T < t} (121)
(ii) the data and

(iii) the model of prior uncertainty of the unknown parameters p(6) or more precisely p(§| D).

The latter has been, and still is, a matter of dispute and a heart of controversy between Bayesians
and their opponents. It is true that, rather often then not, it is not easy to specify numerically and
uniquely one’s own state of mind in terms of prior probability distribution and that a certain degree of
arbitrariness is present in any choice of this model. However, what mathematical model of a real world
is not arbitrary, at least to some extent?

Engineers and natural scientists have a natural tendency to base their conclusions and decisions rather
an objective measurements than on subjective and vague prior guess. This attitude is often expressed
by the slogan ”Let the data speak for themselves!”. The endeavaour to make the Bayesian statistics free
of prior and purely subjective probability distributions led to a number of studies on the so-called non-
informative prior distributions. However, it turns out that it is impossible to give a satisfactory definition
of "knowing nothing” and that a model of an” absolute ignorant”, in fact, does not exist. The expression
”non-informative” ( as well as the concept of information in general) always has only a relative meaning
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and all what can be done is to suggest a reasonable mathematical model of the situation when little is
known a priori” relatively to what the data can say and relatively to what they to speak about.

Fortunately, for large or medium length of observation, say for ¢ of order of several tens and more,
if the data carry the information about the unknown parameters § and the likelihood function is well
peaked, then even a rather drastic modification of the prior distribution p(f) does not significantly change
the aposterior distribution p(8|D®)). This favorable fact is sometimes referred to, following [8] and [30],
as the principle of ”stable estimation” or ”precise measurement” .

Consider, for instance, the likelihood function (100) from Example 4.1, L(a, D®) = a"(1 — a)t="
and two rather different prior distributions p(a) = 1 and p(a) = 2(1 — @). The resulting aposterior
distributions,both for ¢ = 30 and n = 18, are plotted in Fig. 3 for comparison.

P
0 N . s ot

0 as 10 15___ R/f 20

L A1)

Fig. 3 Demonstration of the principle of stable estimation

The practical implication of the principle of stable estimation is that one does not need to worry much
about the choice of the prior distribution and that any prior distribution which is flat relatively to the
likelihood function is good enough. From what has been said follows that the uniform distribution could
be recommended as a reasonable choice of prior distribution whenever the statistician’s prior information
about the unknown parameters is negligible relatively to the information which is expected to be provided
by the intended experiment. However, such a recommendation must not be applied mechanically. There
are two kinds of difficulties associated with uniform prior which have to be considered.

Strictly taken, the uniform probability distribution

p@®) =k, 0€Ss (122)

1

k= +—
s, 40

(123)

26



can be introduced only on sets Sy with a finite measure, i.e. when the integral in the denominator in (123)
is finite. On the other hand, it is often more convenient when the aposterior distribution (97) is defined
by a single formula on the entire Euclidian space R (here ) is the number of unknown parameters in the
set §) rather than on its subset Sy C R*. This difficulty is of technical nature and can be easily overcome
if the integral of the likelihood function is finite

/R . L8, D")d < oo (124)

Then, according to (97), it holds

L) (8,D®)k

)y — -

(125)

_ L(t) (0, D(t))
S L8, D)0 — [gs g, Ly (6, D0)db

and, as a limit for Sy — R*, the aposterior distribution is obtained in the form of the standardized
likelihood 0
Ly (6,DW)
g DW= W\ ) 126
[8] investigated the influence of modifications in the prior distribution on the aposterior distribution and
established a theorem (see also [7], par.10.4 which relates quantitatively the standardized likelihood (126)
to the aposterior distribution based on a more carefully chosen prior.

The second difficulty associated with the uniform prior distribution is more substantial. The param-
eterisation of the model defining the family of conditional probability distributions (121) is often not
unique and the same system can be equally well characterized by two different sets of parameters, say 6
and 6, which are related by a regular (one-to-one) transformation

éi =pui(0), i=1,2,..,A (127)

where 6; is the i-th member of the set 8. If the uncertainty of the parameters 8 is described by the
probability density ~ ~
p(0) = ¢;(0) (128)

then the probability density for the parameter set 6 is determined by the relation (see any course of
probability theory)

p(0) = ¢5(1u(0))],.(0)] (129)
where |J,(0)| is the absolute value of the determinant (Jacobian) of the transformation (127)
S e
Dy(8 S
J,(6) = Du(O) | _ : : (130)
De - -
dua(0) dua(0)
O I T N

The Jacobian is, in general, a function of the parameters 6 and therefore, as it is seen from the relation
(129) the prior probability density which is uniform with respect to 6, i.e. ¢(f) = k, is not neccessarily
uniform with respect to 8 and inversely. The statistician, who wants to model his ”knowing nothing” by
a uniform prior distribution, has to choose such a parameterisation of his model which corresponds to
his lack of prior information.

The case often met in practical applications, in which confusion may occur, is the unknown covariance
matrix of the normal distribution (51). Instead of the covariance matrix R it is equally well possible (and
usually more convenient) to consider the precision matrix [7]

Q=R"1 (131)
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In this parameterisation the probability density (51) reads

_v 1 ]-
ple|Q) = (2m) Q)% exp{— el e}

where v is the dimension of e(;). The symmetric matrices R and © consist of A\ = 1v(v + 1) distinct
elements and are related by the one-to-one transformation (131) the Jacobian of which is (see e.g. [4],
appendix A 8.1)

DR
Q) = |=—| = |-+ 132
J() =[5g1 =19 (132)
Hence, the probability densities p(R) = ¢r(R) and p(Q) = ¢pa(Q) are related as follows
$a(Q) = or(@ |0+
or(R) = ga(R™H)R|~¢+

and one may hesitate which one should be chosen as uniform if one wants to be ”objective”. The
compromise
w1 vt

p(Q) =107, p(R)=|R|" > (133)
is the most often made choice the justification of which can based on different grounds (see [4]; [16];
[26]. The Example 4.3 appended to this subsection may help the reader to get a quantitative idea how
the three different choices; p(R) uniform, p(Q2) uniform and the compromise (133) may influence the
aposterior distribution in the case of medium data size.

Summing up we can see that, in the lack of prior information, the basic formula for one-shot parameter
estimation (109) can be applied when formally, but only formally, the prior probability distribution
p(f| D)) is substituted by

p(0)| D) ~ p(6) ~ kJ,(6) (134)

where k is an arbitrary constant and J,,(6) is the Jacobian of the transformation (127) between the pa-
rameter space S; on which the probability is distributed uniformly and the parameter space Sy considered
in the estimation problem.

The probability densities of the type (134) usually do not fulfill the basic property of probability
distributions (4), i.e. they do not integrate to one over R*. Because of this deficiency they are sometimes
called improper prior distributions. However it should be emphasized that caution must be exercised
when dealing with improper prior. They can be employed in estimation problems only when the integral
in the denominator of (112) is finite and only in the sense of the limit we applied to obtain the formula
(126) from (125)

We will conclude this discussion on the arbitrariness in the choice of the prior distributions by quoting
two opinions which seem very reasonable. ”In applied (as opposed to pure) mathematics, arbitrariness is
in-admissible only in so far as it produces results outside acceptable limits of approximation”, [4]. ” Any
theory that pretends to produce exactness where it is unjustified is a false servant”, [31]. Perhaps, it
should be recalled that what has been said concerns only one of the inputs which has to be supplied to the
theory by the user. The logical structure of the theory itself does not leave any space for arbitrariness,
produces sensible results whenever the inputs are sensible and provides insight where common sense fails.
Nevertheless, in order to be able to exploit all potentialities of the Bayesian theory we have to learn more
how to construct models of our prior uncertainties in particular situations.

Example 4.3 The purpose of this example is to demonstrate how three different prior probability
distributions may influence the estimation of an unknown variance.

Consider discrete uni-variate and normal white noise with unknown variance 02 = R. The variance,
or equivalently Q = %, has to be estimated from ¢ = 50 samples.

If Q is considered as the unknown parameter, then the corresponding likelihood function reads

t

t .t Q
Ly (@,eY) = @m)~EQE exp{—5 > el)}

T=1
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and the maximum-likelihood point estimate is

1 t

Quirey = = =
® Ryrrqr PO e%f)

We shall consider the following three different prior distributions
(a) p(Q) uniform, p(R) = 7z
(b) p(R) uniform, p(?) = &
(@ p(@ =4, p(R)=1%

Application of the formula (97) gives the aposterior probability distribution for Q in the form of
gamma-distribution which can be brought into the following form

L) t+1-m

—~~
N

p(@le®) =yt I b omees (135)
MLOT(L +1— m)
where Q
£=
Qarre
and m = 0 in the case (a), m = 2 in the case (b) and m = 1 in the case (c)
Using the relation (129) we also have
p(RIE®) = gy <t (136)
MLOT(L +1—m)
where N
20,
=—x

The probability distributions (135) and (136) multiplied by L(t) and Ru L(¢t), respectively, are
plotted in Fig. 4 for ¢ = 50 and for the three priors considered m = 0,1, 2.

4.5 Redundant and Non-identifiable Parameters

It is necessary to emphasize that the principle of stable estimation is not a generally valid principle. It
applies only when the data really carry the information about the parameters which are to be estimated.
It does not apply in the cases of redundant, non-identifiable or weakly identifiable parameters which will
be discussed now.

Consider a regular transformation of parameters

0= H()

If the set of transformed parameters 6 can be decomposed into two subsets
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Fig. 4 Estimation of unknown variance R or precision measure 2 = R~! influence of different priors after
50 observations

64,05
o = Ha(0
Hy(6

—_

(137)

o
\/th_,

so that 3
P |u(ry, DT,60) = p(yrylu(ry, DT 1,8,), > to (138)
i.e. the conditional probability distribution (138) depends, for any wu(,) and D1, only on 8,, but not

on @, then the subset of 6, determined as the image of 8 defined by the mapping (137), will be called
input-output redundant, or simply redundant.

From (138) it follows that also the conditional likelihood (110) does not depend on the subset of
redundant parameters 6,

E(t) (H,D(t)) = E(t) (@a,D(t)) for any 6, (139)
and according to (109) it holds

L) (8a, DV)p(ba, 85| D))

2 D®
( | ) fL(t Ga,D(t) [fp 0 05|D(t0))d0b]d0

_ L(t)(eaaD(t))p(elM |D(t0))
J L()(a, DO)p(Ba, | D)) d8,

p(65164, D)

30



This shows that only the marginal prior distribution p(@,| D)) is corrected by the observed data

_ Ly (8,, Dp(@,, | D t)
p(0a|D(t)) - (t)(_ ) )p(_ y )_
fL(t) (ea,D(t))p(ea, |D(t0))d0a

while the conditional prior p(64|8,, D)) remains unchanged
p(05]8a, DY) = p(84/0., D)) (140)

Now we shall investigate how the redundancy in estimated parameters may influence the prediction. As
a regular transformation of variables does not change the integral, the prediction (93)

p(y(t+1)|u(t+1)aD(t)) = /P(y(t+1)|u(t+1):D(t)a9) p(9|D(t))d0 (141)

can be written as follows
p(y(t+1)|u(t+1);D(t)) = (142)

= /P(y(t+1)|u(t+1);D(t)7€) p@ID“’)[/p(ﬁ_bI%D“’)dﬁ_b]dE =

= /P(y(t+1)|u(t+1);D(t),Z) p@lD“))dE

The equality between (141) and (142) clearly shows that the redundancy in identified parameters does
not effect the Bayesian prediction. Put in other words, the same predictive probability distribution is
obtained whether the parameter set is reduced by excluding the redundant parameters after a suitable
transformation or when the redundancy is ignored. Practically it means that canonical and non-canonical
forms of input-output models are equally good for the purpose of prediction and control of the output.

This conclusion indicates that the similar can be expected when the set of parameters 6 contains some
subset on which the probability distribution p(y(-)|u(-), D(=1), ), and consequently also the conditional
likelihood, depends only weakly. In such a case the data carry only little information about this subset
of parameters, the subset is difficult to identify from medium data size and any point estimate of § may
be very unreliable. However, it does not necessarily mean that the prediction of the output is unreliable,
too.

Non-identifiability, or weak identifiability, of model parameters may be caused not only by the existence
of a redundant, or almost redundant subset of parameters but also by the way how the input of the system
is generated during the experiment.

Usually, the concept of identifiability is introduced and treated as the question of consistency of certain
point estimates of parameters. As pointed out by [20](Section 4.1) the sense of this concept is to test the
identification methods (i.e.different constructions of point estimators) on artificial systems which can be
exactly described by the given model. However, the test on consistency of point estimates is relevant only
for ¢ — oo and does not guarantee that the unknown parameter values can be replaced by their point
estimates also for the finite data size available. Bayesian approach does not operate with point estimates
and therefore does not rely on such a tool. By using the Bayesian approach that information about the
unknown quantities is extracted which is contained in the data - of course, also under the assumption that
the assumed model structure is a suitable representation of reality - and this information is presented in
the form of the aposterior distribution for further use. If the data do not carry information about some
subset of unknown parameters, then it can be recognized from the form of this distribution. Sometimes it
may be difficult to investigate the entire form of the aposterior distribution. Nevertheless, if the parameter
values are of final interest, it must be recommended to investigate at least the vicinity of the point in
which the distribution reaches its maximum (as outlined in Example 4.4 in order to check whether there
does not exist some ”ridge”in the aposterior distribution along which the system parameters have not
been identified or have been only weakly identified.

The formula (141) indicates under what conditions the unknown parameters can be simply replaced
by their point estimate. Consider the probability distribution p(ysy1|uss1, D®,8) as a function of @ for
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given y(;41) and any but fixed {u(41), D(t)}, as shown in Fig. 5a it is evident that at good approximation
of the integral (141) can be obtained if the variable in the first factor of the integrated function is simply

replaced by some reasonable point estimate 6,
(143)

P+ lucer), DY) = p(ygs lugesry, DO, 0) lo—o¢,,

b Ny (a- Gyt L b-By1 =0
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Fig. 5 Two extreme situation in Bayesian prediction - two factors in the integral (141) plotted as functions
of 6 for y(s41), u(s41) and DO fixed

However, if the situation is like Fig. 5b, the approximation (143) does not hold and the integration
in (141) has to be performed. Unfortunately, it is usually not easy to recognize what situation occurs
without a more detailed investigation. Moreover, due to an insufficient excitation of the system by the
input signal, it may well happen that for some w ;) the situation is like in Fig. 5a while for an other
u(g41) like in Fig. 5b (see Example 4.4) This is, in fact, the reason why the duality of control actions is
required when controlling a system with uncertain parameters.

Example 4.4 The purpose of this Example is to demonstrate on a simple case the influence of a time-
invariant feedback on the estimation of system parameters.

Consider a system describable by the normal regression model

Yr) = ay(r-1) + bugr) +eqr)
or equivalently by the conditional probability density

- 1 1
p(y(r)lu(r)aD(T 1)’0) = (27() 20, ! exp{_ﬁ(y(r) — aY(r-1) — bu('r))2} (144)

For the sake of simplicity let us assume that the variance of e(;), 02, is known and that only the regression
coefficients @ and b are unknown. Hence, the set of unknown parameters 8§ = {a, b}

Suppose that the input is derived from the previous output by the feedback

U(r) = CY(r-1) T V() (145)

where {v(;)} is sequence of random variables with zero mean and constant variance o2, which are un-

correlated with the foregoing inputs and outputs. The feedback gain ¢ as well as the variance o2 can be
known or unknown, but it is assumed that these parameters have no relation to the unknown parameters
b and a, which could be exploited by the statistician. Hence, then natural conditions of control are
satisfied for 7 > 1 and the formula (109) can be applied.

Suppose that the statistician identifying the system is very uncertain about the parameters ¢ and
b, he has no idea whether their true could be positive or negative, and therefore he chooses the prior
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distribution in the normal form with zero mean and very large variance

o2 =04 =0 (146)

p(Blyr)) = p(a,blyqy) = pla,b) = p(a)p(b) = (27) " o> exp{—%(a2 +0%)}

To obtain the conditional likelihood (110) in a convenient form it is suitable to rewrite the exponent of
the probability density (144) as follows

11" Y Y r 1

- () (1) -

W) — ayr—1) —bu)’ = | a Y(r—1) Y(r-1) a
b U(r) U(r) b

Then it is easily seen that

Ly(a,0, DD)p(a,bly)) = (21)F 0, ¢ Vg2 x (147)
_1 |1 Yoy  Vawy Vi -1
| @ Vay Vaawy Vabo) a |}
b Voey  Vasey  Vioo b
where
1 t
2
Vo = t—1 Zy(r) (148)
T=2
Vay = 77 Zy(r)wr n (149)
Vo) = Z Y(r)U(r) (150)
Vaa(t) = Zy(r byt € (151)
‘/bb(t) Z U(T) + G(t) (152)
1 t
1 > Y1yt (153)
T=2

2
Oe

2

Notice that e%t), appearing in (151) and (152), is a very small number due to large o3 and is getting
even smaller with growing ¢.

The required aposterior probability distribution is obtained by substitution of (147) into the general
formula (109), the evaluation of which requires some algebraic rearrangement of the exponent.

p(B| D) = k) exp{— = (‘9 Bi1) " Vaory (0 — b))} (155)

-3
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V. V.
V — aa(t) ab(t) :| 1 56
69(t) [ Vavey Vo) (156)

. Ta v,
o — [ aw ] _pt [ a(t) ] 157
(t) [ by 09 Vi) (157)
4t—1 1
Ky = (2m) " = Voo |2

Apparently, the maximum of the probability density (155) lies in the point 8 = é(t), ie. for a = ag,
. Vat)Vese) = Vase) Vor)

agr) = A (158)
5 Vo) Vaat)y = Vabe) Va()
by = (159)
A
Ay = Voo | = Vaaty Vese) = Vane) (160)

In order to characterize the shape of the aposterior distribution more fully it is appropriate to determine
also the eigenvalues and the directions of the corresponding eigenvectors of the matrix

[ 82p(a,b|D®)  8%p(a,b|DM) ]
2

82a ’ B8adb
8*p(a.b|D®)  9%p(a,b|DM))
dadb ) 82b

fora =ag, b= B(t).

In the given simple case this matrix is proportional to Vpg(), (156), its eigenvalues

1 .
A)1,2 = 5 [Vaa(t) + Vbb(t)i\/(Vaa(t) — Vine))? + 4Va2b(t) ] (161)
determine (by their reciprocal values) the main axes of the ellipse
@ - é(t))TVgg(t) @ - é(t)) = constant

and the eigenvector, corresponding to the smaller eigenvalue, determines the direction along which this
ellipse is situated.

b— B(t) = k(t) (a - &(t)) (162)
Viot) — Vaa(t) Vevt) — Vaa(e)
ko = 228 — Taalt) [ 706 T Taalt)yy | 4 1
® 2Van(t) ( 2Van(t) F (163)

Clearly, the straight line (162) and the ratio of the two eigenvalues (161) determine the possible ”ridge”
we are interested in.

The predictive probability distribution can be obtained by substitution of (144) and (155) into general
formula (93)

(y(t+1) - Z](t+1))2]

_1 _
Py lugr, DY) = (27) 2%(1+1) exp|[- 202 (164)
y(t+1)

where the conditional mean value is

ier1) = ayYe) + byt (165)
and the conditional variance is
‘712/(154-1) =021+ &ugy) (166)
Vig' [ Yt ]

= o), u = 167
S = W uernly—y o) (167)
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2
1 Yy Vaa(t) Van() 9
frd u S —
- ]-[Vaa(t) NG (u(et1) Voatt Yv)°]

Notice, that the variance of the prediction may strongly depend on the input u 1) applied.

Now, we shall evaluate these characteristics for the given feedback (145). Two distinct cases will be
considered in particular. First, the case a purely deterministic feedback, i.e. 02 = 0, will be analyzed for
any finite ¢. Second, it will be shown what happens if 02 > 0 and ¢ is relatively large.

Substitution of the deterministic feedback, i.e. (145) for v(,;) = 0, into the formulae (150), (152) and
(153) gives

Vo) = cdy)
Vi) = € py(r) + €y
Vab(t) = cPy(t)

where p, ;) is the sample variance of the output

t
1
Py(t) = —t 1 Zy(z‘r—l) (168)
T=2

and ¢, is the sample auto-correlation

1 t
Py =77 2 Un¥e- (169)
T=2

With the notation (168) and (169) we also have
Vat) = dy(t)

Vaaty = Py + 6%)

and the characteristics of the aposterior distribution for the unknown parameters g and b are

- Pyt)
Qg = 170
O~ @+ Dpyy + €y (170)
B(t) = cay) (171)

Ao = L+ )y + C%t)

Az = €y
1

ke =—7

Notice that the ratio % is extremely small and tends to zero with growing ¢. This means that the

aposterior probability is concentrated at the straight line (162), as sketched in Fig. 6, and is distributed
along this line almost uniformly. Any point on this line is practically equally probable as the point of
theoretical maximum (170) and (171).
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Fig. 6 Effect of a time-invariant feed-back on estimation of parameters

This fact has a drastic influence on the predictive distribution (164), the variance, of which, according
to (166) and (167), is (small terms of higher order neglected)

2
Yo

(t = Doy

This clearly shows that even a very small deviation from the deterministic feedback ;1) = ey will

cause an immense increase of variance in the prediction of the future output. However, for the feedback
fixed, as it was in the past, the prediction is still reliable.

ooy = 0o(1 ) + 05 (Uir1) — cy))’

Now, we shall briefly discuss the case when the variance of the feedback noise o2 is nonzero. For a

very flat prior distribution, i.e. for 7 — oo the point in which the maximum of the aposterior probability
density is located, is equal to the prediction-error least-square point estimate and at the same time to the
maximum likelihood estimate of the unknown parameters a and b. It can be shown that, for arbitrarily
small but nonzero o2, this point estimate is consistent, i.e. for ¢ — oo, ¢y — a, by — b with probability
one. However, this theoretical result is of little practical value if the variance of the feedback noise, o2, is
small relatively to the sample variance of the output p, ;). We shall show that in such a case the situation

is not much different from the previous one, even for a large data size.
From (145) it follows

t t t t
1 2 _ 2 1 2 1 2 1
T 2 U =Ty DV + o 2 v 20 D Y- (172)
T=2 T=2 T=2 T=2

For large t it holds with good approximation

t 2

t
1 2 2 1 2 O¢

— ~ — _ ~0 =—"2 0
120 F% T3 ;:2: Yr-1)V(r) R U, €y (t—1)o2

T=2

Then Voq(s), defined by (151), is equal to the sample variance of the output (166)

Vaa(t) = Py(t) (173)
and (172) can be written in the following way
Vav(t) = Py(ty(¢* + 8()) (174)
where )
o
6 t) — Y (175)
© Py(t)
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Similarly, from the equation of the feedback (145) follows

Vab(t) = cPy(t) (176)

Substitution of (173), (174) and (176) into the general formulae derived above gives

1— /1 (22w _y2

Aoty _ TF+6g,

Mo +y1- (1+ig('|t-)6(t))2

1
k(t) = 2_6(02 + 5(,5) —-1- \/(62 + é(t) + 1)2 — 45(t))

and for small ¢y

Aa(t) JORY:
220 (2O 177
e~ ) (177)

1 6(t)
ko~ =2 0- 110 (178)

The small ratio (177) indicates that the parameters are weakly identified along the line the direction of
which is determined by (178). The prediction variance (166) is given in this case for any d(;) by the
formula

2

40 (uein) — ),
(t = Dy (t—=1)o3
which again shows, that the prediction may be very uncertain when the input w1y deviates from the
feedback law applied during the identification experiment.

It may be recommended to compare this analysis with a similar example given by [20], Example 4.1

4.6 Real-Time Estimation and Prediction

The recursive relation for real-time estimation can be obtained by setting t; = ¢ — 1 into the general
formula (94)

p(OD®) = Py luw), D, 0) p(| DY)
S 2y lugy, DE=1,0) p(d|DE=1))do
According to (141), the denominator in (180) can be understood as Bayesian one-step-ahead prediction,

which shows that the real-time estimation of unknown parameters can be decomposed into the following
two steps.

(180)

Py luy, DY) = /P(y(t)|u(t),D(t71),9) p(6|D1)dg (181)

p(ywlue, D1, 0)
Py lue, DEY)
In the first step (181) the one-step-ahead prediction (probability distribution for the next output y(y)) is

p(6|DY) = p(6|D"Y) (182)

determined using the old ”estimate” of parameters p(8|D(*~1)). When the new input Uy is decided and
the true value of the new output y ® is obtained then this new data pair D ;) = {w),y ( t)} substituted

into the probability distribution p(y(t)|U(t),D(t_1)) gives just one number which is used to calculate, for
every possible value 6 of the unknown parameters 8 the factor

9 — p(yluw, D, 0)
(Y |uy, D)

(183)

Multiplication by this factor updates the probability distribution for the unknown parameters according
to the second step of the recursion (182).

37



The functional recursion (181) and (182) applies for any process model defining the conditional proba-
bility distribution p(y()|u(), D(t_l),ﬁ) but, in general, it may be very difficult to perform this calculation
numerically as the entire probability distribution over all possible values of the unknown parameters
(a numerical table which can be of very high dimension) has to be recalculated for each ¢. However, if
such a form of the probability distribution p(8|D*~1)) can be found that remains unchanged, up to a
finite set of its parameters, when ¢ is growing, then the functional recursion can be reduced to an alge-
braic recursion, performed only on the parameters of the distribution, which considerably simplifies the
calculation. The probability distributions having this property are sometimes called reproducing, or one
says that they form a conjugate family of distributions [27], [7]. This special, but practically important
class of probability distributions will be treated in the next subsection.

If the purpose of system identification is to predict the output and the model parameters are not
of direct interest, then it is natural to pose the question whether and under what conditions it would
be possible to omit the estimation of model parameters and to update directly the conditional proba-
bility distribution for the next output. To answer this question let us express p(8| D)) the probability
distribution for the output prediction (93) through the general formula (109)

_ fp(y(t+1)|u(t+1)aD(t)ae)ff(t) (eaD(t))p(‘9|D(t))d9
[ Ly(6, D®)p(6| D) )df

P(Ye+1) U 41, DW)y (184)

However, according to the definition of the conditional likelihood (110) it holds
P+ luer1), DY,8) Ly (6, DD) = Ly 1)(6, DY)

which suggests that the predictive probability distribution (184) can be expressed as a ratio of two
integrals

Iiy1y (D)
_ e+
P(y(t+1)|u(t+1),D(t)) = W (185)
(t)
where
Iy (DW) = / Lo (D®,6)p(6]D®))dp (186)

Of course, the upper integral in (185) has to be understood as a function of ;1) and wu(;41) which have
not been determined yet, and therefore it may be more appropriate to write (185) in the following form

L) Wes1) > wiet1), DY)
Ity (D®)

PY(e+1) U+, D(t)) = (187)

This clearly shows that, in order to be able to eliminate the parameter estimation in real time, we must
be able to express the integral (186) as a function of the last output y;) and uy. We shall show that
this can be done analytically for a certain class of models.

Later on, in Section 6, we shall see that the integrals (186) play a fundamental role system classification.

4.7 Sufficient Statistic and Self~-Reproducing Forms of Probability Distribu-
tions

When operating with large amount of data it may be advantageous, and sometimes even necessary, to
contract the data into a set of quantities of smaller dimension.

Vi = Vi (DY) (188)

Such a contraction is called a statistic and it is said that the statistic is sufficient for some random
quantity, say z, if it carries the same information about this quantity as the data themselves, i.e. if it
holds

p(«|DW) = p(z|Viy)) (189)
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Saying that there exists a sufficient statistic for the random variable £ we shall always mean that for the
given model relating the random variable z with the data D!, there exists a contraction (188) fulfilling
(189) the dimension of which remains fixed when ¢ is growing without limit.

As pointed out by [4] the likelihood function, and hence the aposterior probability distribution, often
can be calculated, for the given known (fixed) data, with almost the same ease when the sufficient statistic
does not exist as if it happened to exist. Therefore, the Bayesian analysis does not suffer so much from
this artificial constraint compared to other non-Bayesian methods. However, this is only partially true.
If the calculation has to be performed in real time, when the data set is persistently growing, then, due
to limitations on the computing time and the memory required (as in adaptive controllers), the existence
of a sufficient statistic may become a crucial question.

Dealing with system identification for the purpose of prediction and control, we are interested not
only in the sufficient statistic for the set of unknown parameters § but also in the sufficient statistic
for the predicted output y (b1 These two statistics are, in general, different and, as we shall see, the
existence of the former does not imply the existence of the latter. Fortunately, for a certain class of
system models both these sufficient statistics exist. For this type of models such functional forms of
probability distributions can be found, both for the unknown parameters and for the predicted output,
that are reproduced when they are updated according to the recursion (181) and (182). This makes
it possible to reduce the functional recursion to an algebraic recursion operating only on a finite set of
parameters of these self-reproducing probability distributions. Practically it means that in such cases it
is possible to design real-time identification algorithms which require only a finite and fixed size of the
memory and do not lose any useful information. In the sequel we shall consider a class of models which
fulfill this requirement.

4.8 Generalized Multi-variate Regression Model
Let us consider a class of models which can be given the following form
for)y = PTZ(T) +em)y, T>to (190)

where {e(,); T =1to+1,t0+2,...,t} is a sequence of v-dimensional normally distributed random variables

which are independent of the foregoing input u(;) and also of all past outputs and inputs D=1 and
can be assumed to have an unknown but constant covariance (v x v)-matrix R

T— -z 1 1 _
pleluiry, DY) = ple(r)) = (2m) 2 |R| 2 exp{—5e(nR e} (191)
The v-vector f(;y in (190) is a known vector-valued function of y(,y and possibly also of u(,) and D1

firy = F Wy u(ry, DY) = fry (DT) (192)

but it is assumed that, for fixed u(,) and D=1 the transformation (192) between the v-dimensional
output vector y(,y and f, is regular (one-to-one)with the Jacobian

Of(rn Of ()

Oy’ 777 0y
T5e)W(r)s urys DY) = Ty (D) = : : (193)

Of(r)1 Of(ryw

Yy’ T BY(ryw

The p-vector z(;y in (190) is a known vector-valued function of the input u(;) and of the known past
history of inputs and outputs D("—1)

2(r) = 2 (u(r), D7) (194)

The (p x v)-matrix P of regression coefficients is assumed to be unknown but constant.
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The form (190) covers a rather broad class of models. For instance, for the regression model from
Example 3.2 we have f;) = y(;) and if the regression coefficients are brought together into the single
matrix P and arranged as follows

PT =By, A1, By, ..., Ap, By, (] (195)
then the vector z(;) is
2 = [y Yr 1) U1+ Yy Uy 1] (196)

and tg = n.

Similarly, for the incremental regression model from Example 3.3 we have fr) = y(r) — y(r-1)
Pl =[Bo, A1, By, ..., A, By (197)

z(ﬂ;) = [Au(‘r)a Ay(‘r—l)a Au('r—l): ) Ay(r—n)a AU(T—TL)] (198)
and tg = n + 1.

A continuous, nonlinear and non-stationary process which, when sampled, falls into this class will be
given in Example 4.5

The model ARMA from Example 3.4 can also be converted into the form (190), but only when the
coefficients C;(i = 1,2, ...,n) and the initial conditions are known which is rarely a real case. However, it
is possible to choose a finite number of different values for these parameters, to consider them in parallel
as known and to calculate the aposterior probability distribution on this set of models as it will be shown
in Section 6 where we shall deal with Bayesian system classification.

It is slightly more convenient to consider the precision matrix (131), 2 = R~! as an unknown param-
eter instead of the covariance matrix R.Thus, the set of parameters in the model structure (190), which

will be considered as unknown, is
60 ={P,Q} (199)

As, for any but fixed u(;) and D=1 the transformation between the random variables e(ry and y(;y,
determined by (190) and (192), is regular, it holds

Py(r)luc), DTV, 0) = (200)

_vi L 1
= Jyry(DD)(2m) " %10 eXP{—§[f(r) —p 2] Uf oy — 2 2]}

For all models which can be brought into the form of the conditional probability density function (200) it
is possible to give explicit formulae for all aposterior probability distributions which might be of interest.
We shall present these results. Instead of going through all tedious technical details of their derivation
it will be, perhaps, more convenient for the reader if we only briefly outline how these results can be
obtained referring to general lemmas which are summarized in Appendix A. We also would like to stress
in advance that, whatever complex these analytical results may seem, they can be evaluated numerically
very easily using a square-root filter the FORTAN subroutine for which is given in Appendix B.

To obtain the conditional likelihood function in a compact form it is suitable to rewrite the exponent
in (200) as follows (apply Al from Lemma 1).

T
I, I,
[fir) =P 2] Qf () — T 2(n)] = d(;, [ —p ] Q [ ~ ] dr) = (201)
T
-1, T —I,
where
diry = [ ﬁg:; ] (202)

40



and I, is a unit matrix of dimension v.

The conditional likelihood function (110), obtained as a product of factors (200) for 7 =g + 1,...,¢
is (apply (A2) in reversed direction)

~ _ v(t—tg) t—t
Luy(P,Q, DY) = 21)~ "= || = x (203)
T ¢
1 -I, ~ -I, -
exp{—tr (Q [ P ] Vity [ P D} I 7D
T=to+1
where V(t) is a matrix of dimension (v + p) X (v + p) composed in the following way.
¢
y T
Vip = D dwd( (204)
T=tp+1
If the prior probability density for the unknown parameters is chosen in the form
(to) %t0) 1 _II/ T _Iu
p(P,Q|D ) = p(P, Q) = a(to)|Q| 2 exp{_itr Q P ‘/(to) P } (205)

then as it can be easily seen from the general formula (109), the aposterior probability distribution will
have the same form

(t) 0] 1 -1, 1" -1,
p(P, QDY) = a |2 exp{—§tr Q Vo P } (206)
where
G(t) = H(to) + (t — tO) = a(t—l) +1 (207)
Vity = Vito) + Viey = Vie—1) + diydy (208)

and a( is the normalizing factor which does not depend on the unknown model parameters P, (2.
Hence, the form (206) is self-reproducing with only two parameters ;) and V(;) which can be updated
according to the second equalities in (207) and (208)

If the matrix V), the sufficient statistic, is partitioned in the following way
Viey Vg
Vi = zf(t) 209
© [ Vary Ve (209

where V() is matrix of dimension v x v, V. ¢« of dimension p x v, V.4 of dimension p X p, then, using
the Lemma 3 in Appendix A, the aposterior probability density (206) can be given form

p(P,QDW) = a(t)|Q|S(Tt) exp{—%tr[ﬂ([P — Pyl" V[P — Pyl + Ay} (210)
where )
Py = CyVerwy (211)
City = Vo (212)
Ay = Vi) = Vi ConVero (213)

The maximum of the aposterior probability density (210) lies in the point P = 15(,5), Q = G(t)A(;)l
(Lemma 7). This density can be written also in the following factorized form.

p(P,QDW) = p(P|Q, DV)p(Q|DD)
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where )
p(P|Q, D®) = ng,) Q|2 exp{—5tr(Q[P ~ Pyl" V[P — Py} (214)

b =r 1
p(QIDD) = 4|0 exp{—5tr(A)} (215)
The normalizing factors 7 and ~(;), when required can be determined using Lemmas 8 and 9

My = (2m) 7 |V, (| (216)

Oy —p+v+1
2

Yy = A . (217)
P e R L § (R Y (A
By n() and 7 also the normalizing factor a(;) in (206) and (210) is determined
o = o (18)

The marginal probability distribution for the unknown precision matrix €, (215) is the so-called Wishart
distribution ([7], par.5.5).The marginal distribution for the unknown matrix P of regression coefficients
can be obtained by integrating out the unknown matrix Q according to Lemma 9

mpwm)zfmanwwmnz (219)

MO} 1 . .
a@)/lﬂl 2 eXp{_itr[Q([P_P(t)]TVz(t)[P_P(t)] + A))]}dQ

by trtt

p(PIDY) = By |L, + AG [P = Py Ve [P = Pry)]| ™~

where the normalizing factor () is

v Oy +v+2—j v
Hj:l F(()fj) Vael?

% [, TR0ty Ay

By = (220)

Now, we shall derive recursive relations, which make it possible to update the characteristics ]3(,5), Cw
and A(y), directly, instead of calculating them for each ¢ according to formulae (211) to (213).

From the relations (208) and (204), which define the matrix V{4), it is easy to see that for the evolution
of its sub-matrices the following relations hold.

Vi = Vi) + fay fy (221)
Vz(t) = Vz(t—l) + Z(t)z(q;) (222)
Vary = Vasa—) + 20 f (223)

From (211) and (223) we have
Puy = Cay(Vage—1y + 20y i) = C(t)(c(_til)ﬁ)(tfl) + 20 flp) (224)
but from (212) and (222) we also have
1 —1 T
Clem1) = Gy 2020

which, substituted into (224) where

By = Pu-1) + Ciyz( €y (225)
where X
&y = fioy = Plo—1y2) (226)
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As C(;) has been introduced as the inverse of V,y), the recursion for this characteristic can be obtained
by application of (412) from Lemma 4 to (222)

Ciey =Cs—1) — Cri-1)2(1) 20 Coe 227
0 = Ce-v ~ 7¢ Ce-n2070 Ce-n (227)
where
S = 2 Cre-v &) (228)
Multiplying (227) by z(;) we obtain
¢(t) 1
Czn = Co-nzw( - 757¢5) = T em Cev2 (229)

Substitution of (229) into (225) gives an alternative recursion for P(t)

P(t) = p(t71) + T C( )C(t 1)z(t)e(t) (230)
In a similar way it is also possible to derive the recursion for the characteristic A

Ay = Moy + ——— 8wy (231)

1
N
where €4 is defined by (226).

The recursion (230) accompanied by (227) and (228) is well known from recursive least-square esti-
mation. The above given Bayesian interpretation clearly shows its probabilistic meaning.

The matrix V), or equivalently the triad {P(t), C#), A}, is the sufficient statistic for the unknown
parameters. Unfortunately, it does not mean yet that it is not necessary to keep the entire past input-
output history in the memory of the computing device. To update this sufficient statistic according to
(208) or (230), (227) and (231) the values of functions fy, (192) and z(, (194), must be determined
which, in general, may depend on all past input-output data. Hence, if the requirement of a finite and
fixed memory size has to be met and no information is allowed to be lost, then an additional condition
must be fulfilled. There must exist a state s;_;) such that

FoyWeeys weys DY) = Fooy (weeys weeys S(e—1)) (232)

20 (@), DY) = 200 (u(e), 5(6-1) (233)

and at the same time the evolution of this state

5t) = (8(6—1)> Y(¢) U(r)) (234)

must not depend on the unknown parameters, i.e. the function ¢(.), as well as the initial conditions for
(234), must be a priori given. The regression model (Example 3.2) and the incremental regression model
(Example 3.3) are the simplest cases of this kind.

Now, the prediction of the output y;.1) will be considered. The probability distribution p(y(y1)|t(z+1)s D)
can be found applying either the general formula (93) or (187) The latter is somewhat more convenient in

our case. Using Lemmas 8 and 9 from Appendix A it is possible to find an explicit analytical expression
for the integral (186)

I (DY) = agyy) (2ot s oty B (235)

(t) P+V+1

- Gt—p+v+2 _
x H Jf()D() HF © ) Ve 2|A(t)|

2
T=to+1 j=1

Lemma 5 from Appendix A gives us the possibility to evaluate the expression (235) recursively. According
o (415) we have

|Vz(t+1)| = |Vz(t) + Z(t+1)z(7;+1)| = |Vz(t)| X (1 + C(t+1)) (236)
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1 . T éﬁH)AElé(m)
Awrn| = [Aw + me(t+l)e(t+l)| =[Aw(1+ T(t—l—l) (237)
The substitution of these relations into (235) for the time-index ¢ + 1 and 6341y = f(4) + 1 gives
K(t+1
Tippny (DY) = Iy (DY) ——— = Tt (D) (238)
1 e(t+1)A(t)e(t+1) Ot —pt24v
( + 14+¢ct+1) ) 2
where
11('9(1)*04"""2) 5 §
K(t41) = 2 (T + Ceqr)) 2A@l 2 (239)

r Oty —p+2
7T (Pt

According to (187) this recursion relation directly yields the probability distribution for y(;iq) given
U(z41) and D® but not the parameters P and

K(t+1
p(y(t+1)|u(t+1)>D(t)) = Jr+1) o —1(A ) o —ptaty (240)
(1 4 Sl e y 0722
1+¢(t41)

where Jr(;41) is the Jacobian (193), in general a function of y(;41), u(41) and D® the particular form of
which is given by the particular form of the function f(;41) (232), and €41 is also a function of y(s41),
u(¢4+1) and the past input-output history as follows from its definition (226)

€t+1) = fit+1) —ﬁﬁ)z(m) (241)

As, for fixed u(;y1) and D® | the transformation between the predicted output Y(t+1) and the random
variable €4 1) is regular, we may write

« )y _ K(t+1)
P, D7) =~y e (242)
(1+ 14+¢(e+1) ) ?

which is the so-called t-distribution (see e.g. [7], par. 5.6) with a zero mean and the covariance matrix

1+ 41y

Efe(r41)8ft41)lugerny, DY) =

It is well know that with growing 6 the t-distribution (242) very rapidly converges to the normal
distribution which suggests a reasonable approximation when required.

The rest of this discussion on generalized multi-variate regression model will be devoted to some
numerical aspects and practical hints. We have given two alternatives how the main characteristics, by
which the aposterior distributions are determined, can be updated in real time:

(i) updating the symmetric matrix V{;) according to (208)
Vi = Vie-n) + dwydy (244)

where d(4) is the data vector of dimension (v + p) defined by (202), and calculation of ]3(,5), Cy) and
Ay for each t from its sub-matrices (see the partitioning (209)) using the formulae (211) to (213)

Cy =V (245)
Py = CyyVeswy (246)
Ay = Vi) — Vsz(t)p (t) (247)
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(ii) direct updating of P(t), Ay and C(y) according to the recursion (226), (228), (230), (231) and (227)

9@ = Cu-n2@) (248)
Sy = 2(n90) (249)
éwy = fiy — Pl—nyzw (250)

N ~ 1 T
Py = Pu1y + T4 ¢ 0w (251)
A = Aoy + g el (252)

1

Cyy = Ce—1) — mguwﬁ) (253)

The most awkward operation in the first alternative is the inversion (245). Moreover, both the (p x p)-
matrix Cy) and the (v x v)-matrix A, must be positive definite to give the correct sense but, in
ill-conditioned situations (e.g. redundant parameters or ill-excited system), they may lose this important
property due to rounding errors, especially when the calculation is performed on a digital computer
with reduced word length. In the second alternative the inversion is performed implicitly in (253) but
similar difficulties may still occur. For these reasons we shall give a third possibility which is less suitable
for theoretical considerations but exhibits an outstanding numerical stability. Its square-root nature is
reflected in higher precision compared to above given alternatives (up to double precision in ill-conditioned
problems) and guarantees the positive definiteness of covariance matrices. It can be recommended both
real-time and one-shot identification.

Consider a lower triangular matrix G(;) defined as the Choleski square root of the matrix V(t_)1
-1 _ T
Viy = GG (254)

If the matrix Gy partitioned similarly to (209)

G 0
Gy = [ ) ] 255
O] Gy Ga (285)
then, using Lemma 6 from Appendix A it is easy to verify that the following relations hold
Ay =GrnGia (256)
Cuy = G.nG ) (257)
PGy = =Gas0 (258)

As Gy is triangular and only of dimension v (a single number in the case of a single output, v = 1)
the matrix equation (258) can be solved very easily. As the triangular sub-matrices Gy and Gy
are Choleski square roots of C(;) and A(*t)l7 respectively, also other characteristics can be calculated very
simply. For instance, the scalar ((;) defined by (228) can be calculated as a sum of squares

Gy = Z<Tt)0<t—1)z(t) = ||Z(7;)Gz(t—1)||2 (259)
Similarly
T
T a1 5 _ | fo ] [ Gt ] 2
érn A ép = 260
Bgtnen =1 20 ][ §ro (260)
Due to the triangular forms of the matrices G ;) and G it holds
(t) £
1 1
Vo2 = |G| ™ = =5 261
| z(t)| | z(t)| f:l Gz(t)z'i ( )
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[Tizi Gryii
These square roots of determinants appear on various places, namely in the integral (235) which will play
an important role in systems classification in Section 6

A|? =G| (262)

All this shows that it is advantageous to have a square-root filter at disposal which updates directly
the triangular matrix G;. Such a filter is given in the form of the FORTRAN subroutine REFIL in
Appendix B. Its derivation has been given by [21] and is reported by Strejc in chapter 4 of this text. A
standard usage of subroutine REFIL (G, D, N, SIG2, VG, IN) is as follows. (¢? is the forgetting factor
which will be introduced in the next Section, here ¢ = 1).

CALL state: G:G(tfl)a D :d(t)a N=1/+p, SIG2:¢2,
VG arbitrary, IN = dimension of G in the main program
RETURN state: G = Gy, SIG2 = ¢* + ||d[,,G|I*, VG = G 1)G{_yydwy,
the remaining parameters unchanged

When subroutine is used to update only the triangular matrix G, (;_1), then

CALL state: G= Gz(t—l); D= Z(t), N =p, SIG2 = ¢2
RETURN state: G = Gy, SIG2 = ¢ + (), VG = gy

where ((4) is the scalar (249) and g is the vector (248). It means that the outputs SIG2 and VG
can be used to update the point estimates of the regression coefficient P(t,l) according to the formulae
(251) and (250).

As shown in [25] the subroutine REFIL, when applied to the regression model from Example 3.2 or
to the incremental regression model from Example 3.3, yields, at the same time, all lower order models.

Example 4.5 An autonomous system will be considered the continuous output process of which can
be described by a scalar stochastic differential equation

dy(r)

W) )11~y e +3(r)] (263)
where ¢ is an unknown constant and §(7) is a stochastic term ¢ the properties of which will be specified
later on. Here, and only here in this Example, 7 denotes a continuous time the unit of which is chosen to be
one year. The model (263) can be used to describe the process of competition between two competitors,
which may be, for instance, two technologies satisfying the same or similar need. Then y(7) may be
interpreted as the fractional market share occupied by the superior newcomer while [1 — y(7)] is the
market share occupied by the looser. Hence, the output y(7) must lie in the interval

0<y(r) <1 (264)
For a more detailed discussion of substitution processes, mainly from macro-economic viewpoint, the
reader is referred to [23] where also more complex and multi-variate cases are considered.

It is assumed that a certain, rather small set of samples of the output

y(t) = {y(T1)7y(7—2)7 LR y(Tt)}

is available. The problem is to estimate the model parameters and, above all, to forecast the future course
of the substitution, i.e. to determine the probability distribution p(y(t+1)|y(t)) where yy1) = y(7e41)
and Te+1 > Tt

First, we shall show that, under certain assumptions concerning the stochastic term J,), the process
(263), when sampled, can be brought into the form of a generalized regression model (190). This will
permit us to apply the general results derived above.

When a new variable

YD)
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is introduced instead of the output y(7), the stochastic differential equation (263) gets a very simple form

dx(T)
dr

=c+8(r) (266)

Integration of (266) over the time interval < 7;,_1,7; > gives

Ty — Ti—1) = cT; + €(3) (267)
where
T = 2(73)
Tz' =T —Ti—1 (268)
T;
€)= / o(r)dr (269)

If the sampling interval T; is large enough then it is reasonable to assume that the integrals (269) form a
sequence of independent normally distributed random quantities with zero mean and with the variance
proportional to the sampling interval:

Ele;)] =0, E[efz-)] = T;0?

p(e(i)|€(i_1)) = p(e)) = N(0,T;0?)

In other words, this assumption means that €; is considered as an increment of a normal Wiener-Levy
process sometimes called integrated white noise or Brownian motion. For a more detailed justification of
this assumption see reference cited.

The relation between the sampled output y(; = y(7;) and the quantity z(; is given by (265) from

which follows 1

Yo =17 exp(—x(;))
Making use of (267) the following stochastic difference equation for the sampled output is obtained

1
exp(—cT; — €(;))

Yy = - fRrr— (270)

Yi-1)

However, for our purposes the simple relation (267) is more suitable. If it is divided by +/T; then it gets
the form of a generalized regression model (190)

fiy = VT + e (271)

where
1

€ = ﬁf(z‘)

has an unknown but constant variance

Ee%i) = 0'2
and 1 ) y y
(%) (i—1)

fin = —= (x5 —Ti—1y) = In —In 272
@ \/Ti(() -1) \/7_“1-( 1 -y 1—yi-) (272)

Hence, all results which have been derived for the general case (190) can be applied by setting

1

P=c Q=—=w 2)=VT, v=p=1ty=1 (273)
dly = fi: VT (274)
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It only remains to choose a suitable prior distribution for the unknown parameters 8 = {c,w}. As we do
not assume any prior information about the unknown parameters we shall choose the improper prior for

w according to (133)

pwlya)) =plw) =w™

and the uniform improper prior distribution for the parameter ¢
plelyay,w) =plc) =1

Hence, the prior joint probability distribution assumed is

ple,wlymy) =w !

From comparison of this choice with the general form of the self-reproducing prior distribution (205) we
have
Oy =-2, V=0

and from (207)
0(,5) =t—-3

The matrix V) (208) of dimension (2 x 2) has just three different entries

t t 2
(=) — xi-1))
Vi=) =) ———F
i=2 v

=2

t t
Vary = 2 VTifwy = (26 — 2-1) = 20 — 1)
1=2

=2
t
Ve = ZTi =Tt—T1
=2

According to (211) and (212) the characteristics of aposterior distributions are

By = = "2 (275)
T —T1
1
Co=7"h (276)
t 2 t
(G —zi-1))° (e —z@) 1 . 2
Ay ,:Zz T p—— ; T (T — 2@-1) — ¢y Th) (277)

When these characteristics are substituted into (215) the following aposterior marginal probability density
for w is obtained

A% _ 1
Oy __® 5 _ZA
p(w|y™) z%r(§)w exp{—5Apw}
After the transformation ¢ = w3 we have
AT A
®)y — @®) —(t-1) _Z® 2
plols) = ey o) (279)

For the parameter ¢ the formula (219) gives

INE=3 T — T T — T N

(t)y — 2 t 1 t 1 ~ 2

plely®) = <2 ) ) P+ (e~ &) (279)
| VaL(52) '\ A Ag) ©




In this simple case the Jacobian (193) degenerates into a single derivative

T 0f ) _ 1
O™ dyey ~ V(1 —ya)

and by substitution into the formula (240) the probability distribution for forecasting the process for the

time span
Tiyr =Tg41 — T

ahead is obtained

r(&t Yrn (= yugn)] ™
p(y(t+1)|y(t)) — — ( 2 ) x [ (t+1) (t-‘rl) ] =
VAT (552) /(1 + Cea)) Ter1 Ay (n 20D g Y0 _sooq 2] 2
1 =911 Touy Ot

(T4+C(e+1)) Te+1A (1)

where
Tt4+1 — Tt

Ce+1) trC = = —

15 A\

] / \ pis [y™)
; N

N
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Fig. 7 Substitution process-first 10 data used for parameter estimation and for forecasting

(280)

To demonstrate these analytical results we shall apply them to simulated data in order to be able to
confront the probability distributions with true values which are assumed to be unknown. Examples of

real substitution processes can be found in the reference cited.

The process simulated with ¢ = 0.2, [year—!] and ¢ = 0.1 is plotted in Fig. 7. Only the first 10
outputs, sampled with the period of 1 year, have been used to estimate the model parameters and to

forecast the future evolution of the substitution.
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1. Fig. 8 Probability distribution for the unknown parameter o after 10 observations
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1. Fig. 9 Probability distribution for the unknown parameter ¢ after 10 observations

The numerical values of characteristics calculated according to formulae (275) and (277) are ¢(1) =
0.2115 and A9y = 0.0770. Marginal probability densities (278) and (279) for the unknown parameters
o and c are plotted in Fig. 8 and Fig. 9, respectively.
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The forecast has been calculated for

Ter = 15, 20, 25, 30
Tt+1: 57 107 157 20

The probability distributions for the forecasted outputs, given by the formula (280), are plotted in Fig. 10
where also the corresponding outputs obtained in the simulation experiment are denoted by squares on
the y(;41)-axis. Notice that the precision of forecasting is the higher the closer to one the predicted output
lies. This can be intuitively explained by the fact that the superior newcomer, after a certain period of
time, will penetrate the market with almost certainty whatever the disturbances are.Notice also that the
maxima of the aposterior probability densities do not lie in the points which would be obtained from the
formula (270) by setting the stochastic term ¢(;) to zero and replacing ¢ by &

“". ‘0;9

g 054
NG9 0

1. Fig. 10 Forecasting of the substitution process for 5, 10, 15, and 20 years ahead; true outputs
obtained are denoted by squares

5 Time-Varying Parameters and Adaptivity

As it has been discussed in Section 3 the position taken up throughout this chapter is that of an outer
observer whose objective is to predict and/or to control the output of the system observed. Therefore the
system model is understood as any mathematical description of the input-output relation which defines
the family of conditional probability distributions

{p(y(‘r) |u(T)5 D(T_l)); T > tO}

through a finite set of parameters. If the set or subset of parameters, denoted by 6, is unknown then
the model, or — better to say — the model structure, defines only the conditional probability distributions
(81)

p(y(r)|u(r)7D(T_1)70) (281)
Until now it has been assumed that the model parameters are unknown but time - invariant constants.
In this Section we shall remove this assumption and instead of 8 in (281) we shall consider a quantity
q(r), possibly multi-variable which can be interpreted as time-varying internal quantity which cannot be
directly observed. Thus, instead of (281) we now have

p(y(‘r) |u(‘r)a D(Til); q('r)) (282)
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and it is assumed that this conditional probability distribution is known (as a function of g(,) ) for all
T >ty > 0.

The question we want to clarify is: How is it possible to determine the conditional probability distri-
bution

P(Y(ry Uy, DY) (283)

which is required for prediction of the process output, and what must be known or given, in addition to
(282), in order to be able to perform this task?

We shall again assume that the natural conditions of control are fulfilled, i.e., that the controller,
when making decision concerning the input u(,), does not use more information about the unknown
quantity g,y than it is contained in the past history of the input-output data D=1 This means that
the following analogy of (91) holds for any 7 > ¢

p(u) | DT, () = plug| DY) (284)

When the basic operation (13) is applied to the joint probability distribution p(Q(T),U(.,-)|D(T_1)) in two
different possible ways the following relation is obtained

P(@(r)|uiy, DT )p(uy | DY) = pluy | DT, gy )p(ae DY)

From this relation it follows that if (284) holds then also

P(g(r lury, DY) = plgr DY) (285)

The sought-for probability distribution (283) can be obtained from the known distribution (282) by
eliminating the unknown quantity g(-). This can be done by using the two basic operations (12), (13)
and the equality (285)

Py |y, DY) = /p(y(r)IU(r),D(T_l),Q(r))p(Q(r)|D(T_1))dQ(r) (286)

The second factor of the integrated function on the right-hand side of (286), namely the conditional
probability distribution

plgH| D7) (287)
is a quantitative description of the statistician’s uncertainty about the unknown internal quantity q(, at
the time instant when the u(;) has to be determined and can be understood as the Bayesian ”estimate”
of () based on the past input-output data D=1

Now it will be shown how the conditional probability distributions (283) and (287) can be calculated

recursively in real time. To derive this recursion we shall assume that the probability distribution (287)
is known for 7 = ¢ and we shall calculate it for 7 = ¢ + 1.

Knowing the probability distribution (287) for 7 = ¢t we can calculate the probability distribution of
the next output y ®) for any u, according to (286)

Py |uw), D) = /p(y(t)IU(t),D(tfl),Q(t))p(q(t)lD(t_l))dZI(t) (288)

When the input Uy 18 applied and the true value of the new output y (t is observed the new data pair

)
Dy = {uw).y ( t)} is obtained. In the next step of the recursion the new data D, has to be incorporated

into the information about the system observed.
Applying the basic operation (13) in two different ways the following relation can be written.
P, a4 luy, DY) = ply lug, DY, q)p(ae luw, DY) =

= p(a) | D)y [uw, DY)
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From the second equality in this relation and from the equality (285) reflecting the natural conditions of

control it follows

Py [uw> DY, qw)
(Y lug, DED)

This operation can be understood as updating of the probability distribution for the unknown quantity

q(r) with respect to the new data pair Dy = {u,y ( t)}. Notice the analogy between (289) and (182).

p(gy| DY) = p(g)| DY) (289)

To complete the recursion it remains to perform the re-calculation

P(CI(t) |D(t)) - P((I(t+1) |D(t)) (290)

which could be omitted when g1y = q(+) = # was an unknown constant. We employ again the two basic
operations (12) and (13), this time in the following way

p(qu41)| DY) = / P(q(+1), 4ty | DP)dgqe)

p(Q(t+1)|D(t)) = /p(q(t+1)|q(t),D(t))p(q(t)|D(t))dq(t) (291)

The relation (291) completes the recursion. However, this last step of the recursion requires that the
conditional probability distribution

P(g(r11)lg(r), D) (292)

be available for all 7. Hence, the overall system model, which makes it possible to solve the problem of
prediction and control of the system output in a consistent way within the Bayesian statistics, must define
both the conditional probability distributions (282) and (292) for all 7 > 1. The functional recursion,
defined by the relations (288), (289) and (291) solves conceptually the problem of prediction and starts
with the prior probability distribution p(g(1)) (formally p(q(1)|D(0)) = p(g(1))), which is a model of the
statistician’s prior uncertainty about g(;) when no input-output data are available. Later on we will
demonstrate this conceptual solution on particular examples.

5.1 Bayesian Viewpoint on Adaptivity

The conceptual solution of the prediction problem given above may help to throw the ”Bayesian light”
upon the problem of adaptivity in order to clear up the possibilities and limitations of the Bayesian
approach to the design of adaptive systems.

Usually, a system is called adaptive if it is able to accumulate the experience about the properties
of its environment and to exploit this experience for improvement of its performance. The adaptive
system of our interest is the predictor or controller and its environment is the process to be predicted
or controlled. If the properties of the process can be described by a mathematical model of a given
structure and quantitatively characterized by the parameter values of this structure then the Bayesian
statistics can be understood as a tool which makes it possible to rationalize and formalize the experience
accumulation. From this point of view several different types of adaptivity can be distinguished.

(I) The properties of the process, quantitatively expressible by the parameter values of a process model,
do not vary in time but they are unknown. This case has been investigated in Section 4. The
adaptive system designed for such a situation can be called self-adjusting or self-tuning.

(II) The model parameters do vary in time but a probabilistic model of their variations, fully defining
the conditional probability distributions (292), is a priori known. In such a case the both models,
defining (282) and (292), can be aggregated into a single model, which is more complex but with
all parameters known. In this way the problem of adaptivity is transformed into a problem which
does not contain the unknown parameters, see e.g. [3]. The one-step-ahead Bayesian predictor for
this case is given by recursive relations (288), (289) and (291).
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(III) The model of parameter variations is known up to a finite set of constant but unknown parameters.
By model aggregation this case be reduced to case (I)

(IV) A suitable model structure for parameter variations is not available, but it is known, or it can be
assumed, that the parameters vary ”relatively slowly”. As the conditional probability distribution
(292) is not defined, the case cannot be solved within the consistent Bayesian theory based on two
operations (12) and (13). It is the last step (290) of the above given recursion which cannot be
performed exactly. Yet, as it will be shown later on in a separate subsection, there exist a heuristic
but rationally based extension of Bayesian theory which makes it possible to overcome this difficulty
and which leads to the well-known and well-tried technique of ”exponential forgetting”.

It is worthy to note that unknown but constant parameters (I) can be considered as a special case of
time-varying parameters (II) when the model of parameter variations is
q(r+1) = 4(r)

or in terms of conditional probability distributions
P(aer+1) |9, D) = plarn)la) = 6(@er+1) — ar))

where §(.) is either the Dirac § - function if ¢ is continuous or the Kronecker’s § if q is discrete &.
Then the last operation (291) in the general recursion gives

p(g41)| DY) = plgy | DY) = p(8|DD) (293)

In this, perhaps somewhat artificial, way all cases which can be handled within the consistent Bayesian
theory can be reduced to the case (II) when the adaptive problem does not contain any unknown
parameters. It justifies the following statement which is due to [11]: "It seems that any systematic
formulation of the adaptive control problem leads to a meta-problem which is not adaptive”.

5.2 State Estimation and Output Prediction

The above given recursion (288), (289) and (291) has been derived for natural conditions of control (284)
but no particular assumptions have been made concerning the finite dimensional internal quantity ¢ ()

Therefore, the recursion also holds if ¢ ” is the state (. of the system, i.e., if 40y = Z@y- Then, given
the state z(;) and w, neither the output y () BT the next state 2,y depend on the past history of the

system and it holds

)

Py luy, DUV, z4) = ply lu, 2) (294)

Py |2y, DD = pl@in) |z, w) (295)
In such a case the recursion (288), (289) and (291) gets the following form

Py lugwy, DY) = /p(y(t)IU(t),w(t))p(w(t)|D(t_1))d$(t) (296)

Py |ue) > )P | DEY)
Py |uy, DED)

P(@(41)| DY) = /p(iv(t+1)IU(t),x(t))p(x(t)lD(t))dx(t) (298)

where the conditional probability distributions

p(z()| DY) = (297)

P 1)) wey), PWY@luE, Te))

8In multi-variate case the Kronecker’s §(z) = 1 if all elements of z are equal to zero and §(z) = 0 at least one of the
elements of z is nonzero. Similarly for multi-variate J-function
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are defined by the state space model of the system. A special case (linear and Gaussian) of the recursion
(296) to (298) is the Kalman filter as demonstrated in the following Example. This Example also may
help to understand the statement made by Kalman (1965): ”The Kalman-Bucy filter is in essence a
conditional probability computer”.

Example 5.1 (Kalman filter). Consider a system with v-dimensional output y ) and p -dimensional input

U(ry- Suppose that, on the basis of a physical analysis of the system, a n-dimensional state z, is defined
on the system and the system is described by the state-space model

T(t41) = A.’L‘(t) + BU(t) + Wy (299)

Yr) = Cowy + Dugy + e (300)

where A4, B, C, D are known matrices of appropriate dimensions. The discrete white noises {w,)} and
{e(r)} assumed to be mutually independent and normally distributed with zero mean values and known
covariances

Elwy wlyl = Rw, Elew eyl = Re (301)

For the sake of simplicity (to avoid degenerate and singular cases) it is assumed that the covariance
matrices R,, and R, are positive definite. Hence,

P(Wes1) Ty, W) = P(wietr)) ~ N(0, Ry) (302)

plewlz ey, uw) = plew) ~ N0, R.) (303)

For given z(;) and u ;) the transformation between the random variables w;) and z(;,) defined by the
state equation (299) is one-to-one with the Jacobian equal to 1 and consequently

P(@(+1) |21y, ur)) ~ N(Az ) + Bug + Ru) (304)
Similarly the output equation (300) and the distribution (303) define
Py lue), 2)) ~ N (Dugy + Czry + Re) (305)

The purpose of this Example is to show that the following statement is true: If the conditional proba-
bility distribution p(z(;| DY) is assumed to be normal then also p(y|ugy, D¢Y), p(z|D®) and
p((141)| D)) are normal — the normality is reproduced— and the functional recursion (296) to (298) can
be reduced to an algebraic recursion operating only on conditional mean values and covariances. This
algebraic recursion is the well known Kalman filter. The Bayesian view yields the precise probabilistic
meaning of each step and of each number which appear in this recursion.

Let #(4¢—1) and Sy ¢—1) be the mean value and the covariance matrix of the conditional distribution

P(m(t)|D(t_1)) ~ N (Z)t-1), S(tt—1)) (306)

First, let us consider the product
_ _vin _1 _1
Py lu, 2P | DY) = (21) 727 |Re| 2 |S(gye—n) |72 X (307)
1 _
x exp{~5[(y) — Dug) = Caw) "R (y() — Duwy — Copy)+

@y = Bie-1) " Sjio1y @) — Bap-1)]}

which enters both (296) and (297). The exponent in (307) is a sum of two quadratic forms both of which
contain the vector x(;) which has to be integrated out according to (296). To facilitate this integration
we shall rearrange the exponent in such a way that it will consist of two quadratic forms but only one of
them will depend on z(;). This can be done by completion of squares for z(;) (Lemma 3 in Appendix A)
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and by an algebraic rearrangement if the remainder using matrix inversion lemma (Lemma 4 in Appendix
A).
(y(e) — Duy — Co)) "R, (y(w) — Dugyy — Cgyy)+ (308)
@) = Ete-0)" Sy (@) = Beie-1) =

= (z@) = 2wn) " Sgly (@) — Eee) + W) = Ie-1)" Ryeny W) — Jeele-1))

where
Sy = Sair—ry +CTR'C (309)
i) = St [Siele—nyBesle—1) + CT R (y) — Dugyy)] (310)
Ry(uje—1) = Re + CSye—1)C" (311)
Uitit—1) = Duggy + CZ -1y (312)

When the product (307) with the exponent rearranged according to (308) is substituted into (296) th
integration (296) can be easily performed using Lemma 8 from Appendix A.

~
@

Py lugy, DY) =
= (2m)TE[Re| 72| S(y-1)| 2 |S(eip)|® x
x eXP{_%(y(t) — Dugy — Cgje—1)) " X
X By(eje—1)(ye) — Dugry = Cgye—1))}

Applying the relation (414) from Lemma 5 in Appendix A to (309) we obtain

_ IS@i-!
|Re|

1St1e—1)| 7 Rel M S| = [Ryqee—1y| ™"
Hence, the first step of the recursion (296) gives

1Sl ™" = |Re + CS1)-1)C" |

Py luy, D) ~ N(Dugy + Coyje1), Ry (¢t — 1)) (313)
As the result of the second step (297) we obtain in a straightforward way
p(@)|DP) ~ N (s, Suiry) (314)

The third step of the recursion (298) can be performed essentially in the same way as the first step. For
the product in the integrand of (298) we have from (304) and (314)

P(@ 1) |2(0), () P(@(1) |[DD) = (27) ™| Rup 7% | Sagay| 72 (315)
1
X exp{—i[(m(t_,_l) — A.Z'(t) — BU(t))TR;l(Z'(H_l) — AZL'(t) — BU(t))+

@y = Fin) Sy @@y — Ean)l}

The exponent of (315) can be rearranged as follows
(@(er1) = Az() = Bu) " Ry (@(e41) — Az — Bugy)+ (316)
@y = Zin) S (@@ — Eain) =

= (@+1) — Eer11) " Sk @) — Eerun)+
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+(@(0) = 20) " (Sgy + ATRG A) (@) — 2()"

where
T(er1)e) = AZ() (317)

St+1) = Ruw + AS(y AT (318)
The auxiliary vector z(;) does not need to be known, it is sufficient to know is determined by the relation

(ATREIA + S(;|1,5))z(t) = ATR;I(.'L'(t_H) - BU(t)) + S(;‘lt)zﬁ(t|t)

With this rearrangement of the exponent in (315) the integration (298) according to Lemma 8 from
Appendix A gives

_n _1 _1 _ _ _1
w41y DY) = (2m) % |Ru| ™2 |Se)| 218Gy + ATRG A7 2 x (319)

1 . .
X eXp{_i(m(t-i-l) - $(t+1|t))TS(t+1|t) (ﬂf(t+1) - $(t+1\t))}

However, from Lemma 5 we also have

_ _ |Rw + AS(yp AT IS (t4118)]
[(S L +ATR;'A)| = +
(1) IS0 || R | ISt/e)| | R |

which verifies that the normalizing factor in (319) is correct

P@(141)|DP) ~ N (&(416)s St1))) (320)

and also closes the recursion.

Summing up we can see that the normal forms of conditional probability distributions (313) and
(314) and (320) are reproduced and their mean values and covariances evolve according to the algebraic
relations (309), (310), (311), (312), (317) and (318). It only remains to bring this algebraic recursion into
a more convenient form. This can be done by using the matrix inversion lemma as the main tool. One
of many possibilities is

Uetje—1) = Duy + CZgpp—1) (321)

Ry(tt—1) = Re + CSyj4-1)CT (322)

Sttty = Sewie=1) = St C" Ryyp1)CSpe-n) (323)
By = Bl + SenC R (W) = Je-) (324)
(1) = ABy + Bug (325)

Sttty = Ruw + AS(sn AT (326)

This is the Kalman filter written in somewhat more detailed way than customary. We have shown that
it applies also for state estimation and output prediction of a system controlled in closed loop, under
natural conditions of control of course. It starts with the mean value #(;0) and the covariance matrix
5'(1‘0) of the prior (subjective) probability distribution p(x(1)) which is assumed to be normal and reflects
the statisticians uncertainty about the state Z() when no input-output data are available.
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5.3 Slowly Varying Parameters and Exponential Forgetting

In practical situations the assumption that a certain set of parameters is strictly time-invariant is fulfilled
only approximately and/or temporarily. Moreover, any mathematical model can be only an approximate
description of reality and it may well happen that for different time intervals slightly different param-
eters of the chosen approximate model structure can be appropriate. Therefore, it is of high practical
importance to have a tool available which makes it possible to extend the results obtained for constant
unknown parameters also to the case of ”slowly varying parameters” or, in other words, to extend the pa-
rameter estimation to parameter tracking. The extension developed in this subsection gives a subjective
probability interpretation to the technique which is known under the names ” exponential forgetting”, age
weighting” or ”discounting” and appears to be successful in practical applications. See e.g. [5], [12], [32],
[9].

If the unknown model parameters are allowed to be time-varying then the distinction between the
set of unknown parameters ;) and the set of internal variables q;) which cannot be directly observed,
actually, disappears. Hence, the general Bayesian solution of the case of time-varying unknown parameters
is given by the recursion (288), (289) and (291) with gy = 64). It is the relation (291) performing the
re-calculation (290)

P(O)|DP) = p(B(r41)|DD) (327)

which makes the difference between the cases of constant and of time-varying unknown parameters.
Notice that the same data set appears in the condition parts of the both probability distributions in (327).
Therefore, the information which is necessary to perform the re-calculation (327) cannot be extracted
from the new data but must be given externally. This external information is the model defining the
conditional probability distribution

P(O+1)|0¢t), DD) (328)
which is required in the last step (291) of the recursion.

Now, let us consider the meaning of the vague term ”slowly varying parameters”. Loosely speaking, it
means that the true values of parameters Q(t +1) in some sense, cannot lay far from 6. Such a situation
can be modelled by the conditional probability distribution (328) for Q(t +1) Which is, for any 6, given
in the condition, highly concentrated around this value ;). It is not difficult to see that, in such a case,
the last operation (291) of the recursion, namely

p(B(+1)| DY) = /p(o(t+1)|0(t)D(t))p(0(t)|D(t))d0(t) (329)

results in a slight ”flattening” of p(H(t)|D(t)) to obtain p((;41) |D®). This observation suggests the idea
that, instead of trying to find the most appropriate model for the conditional probability distribution
(328) (which is not an easy task, in general), it may be simpler and more advantageous of flattening
(increase of uncertainty or loss of belief in the old estimate) to perform the re-calculation (327).

Suppose that the probability distribution for 6, given the observed data D® is a known function,
say f(t)(.) ie.

PO DY) = f»(Ow) (330)
Then a simple way how to perform the flattening by introducing just one new parameter is
2
P01/ DY) = aquqan [ fy Oes))] 70+ (331)

where ¢(;11), [¢(41)| < 1, is the parameter which will be called the forgetting factor, and osy1)¢) is the
normalizing factor which does not depend on the unknown parameters 6, )

1
Jlfe (9(t+1))]¢“+”d9(t+1)

The question of the choice of the forgetting factor will be discussed later on. Now it will be shown how
the exponential forgetting can be applied to the generalized multi-variate regression model (190) with
slowly varying parameters F;) and €2 = R(_t)1

Q1)) = (332)
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Suppose that the probability distribution for 8,y = {Py), 2 } given D® is known and has the form
(206)
p(Pry, Ut)|DY) =

) 1 -1, 1" ~I,
= a(t|t)|Q| 2 X exp{—§tr 0 P(t) ‘/(t|t) P(t) } (333)

It is easy to see that the operation (331) preserves the form of the distribution modifying only its
parameters

0
P(Pa41), 2t + 1)[DY) = a0 (18

2
1 -1, 1" -1,
X —=tr [ Q v Vi v 334
Pt r( [ P41 ] (11 [ Ppy1) D} (334
where
Vier1)t) = ¢%t+1) Vel (335)
Otvae) = ¢%t+1) O(tre) (336)

and the normalizing factor a(;41)), if required, can be determined similarly to (218), (216) and (217)
with obvious replacement of indices.

Going through the derivation of the formulae for the regular stationary case it is easy to verify that
very similar results hold also for the case with exponential forgetting. Instead of (207) and (208) we now
have

Vier11e) = ¢%t) Veje—1) + d(t)dﬁ)) (337)
Otr11t) = By (Oeje—1) + 1) (338)
or equivalently
Vialey = 9y Vie—rje—1) + diydfy) (339)
0(t[t) = ¢(yyft—1ji—1) + 1 (340)
If the matrix V(;11)) is partitioned similarly to (209) we obtain by analogy to (212), (211) and (213)
Cieripry =V, = v ;C(th) (341)
2(t+1]t) ¢%t+1) 2(t|t) ¢?t+1)
Pieyrity = CarainyVasierily = Crany Vescelty = el (342)
Aetaie) = Vit — qu;(t+1|t)C(t+1|t)sz(t+1|t) = (343)
= ¢y Aty
The algebraic recursion (248) to (253) is modified by the exponential forgetting in the following way.
9ty = Cle—1]e-1) (1) (344)
o = 2{n90) (345)
ele-1) = fo) = Flimaji—n @ (346)
. A 1
Py = Py_1ji—1y + 5———9(n)€5s 347
= Fe-te-n + 3 2, I€{te-1) (347)
1
Aty = G20 [Ap—1t—1) + —5————€(tlt—1)€5 14— 348
@t = iy [Ae-116-1) By + Gy D 1)) (348)
Cuny = —[C e~ (349)
tlt) = —o Y(-1]t-1) — 3 ~ 4t
(t|t) ¢%t) (t—1lt—1) ¢%t) + C(t) ®4()
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As discussed in Section 4 it is numerically advantageous to perform this updating using the square-root
filter REFIL from Appendix B. The forgetting factor is introduced into this subroutine through its input

parameter SIG2 = %t). Let us recall that if the subroutine REFIL is used to update only the square

root of C;_1;—1) then it supplies, as its output parameters, SIG2 = ¢%t) + () and VG = g(;) which is
all what is required to update P_1;—1) and also A;_q);—1) according to (346), (347) and (348).

The conditional probability distribution for the prediction of the next output y (+41) retains its form
of the transformed ¢-distribution

RS

PO e, DY) = Ty ke L+ el My eern] z (350)
where .
E(t+1)t) = f(t+1) - P(f\t)zaﬂ) (351)
Mgsait) = (1 + 210 Clerr1o) 2e+0) A1) = @feqr) + 2{en) Cen 2641 Ay (352)
g—Pv+2

T (t+1]t) 1

2 — =
Rl = — 5 [Mtpl 2 (353)

Tl'%].-‘( (t-;1|t) )

and Jy (41 is the Jacobian (193). For practical applications it may be worthy to note that the conditional
probability for e(;y1)4), defined by (351) can be, for reasonably large ;1 1), well approximated by the
normal distribution with zero mean and the covariance matrix

1
E[e(t+1lt)e(Tt+1|t)|U(t+1),D(t)] =0 Mgty (354)
(t+1]t)

Now the question of the choice of the forgetting factor will be considered. In general, there are many
strategies how the value of this parameter can be selected. First, let us consider the case when the
forgetting factor is time-invariant, ¢;) = ¢ < 1 for all £ > o and is chosen as a "fiddle parameter” the
purpose of which is to weaken the stationarity assumption of the abstract mathematical model in order
to make the theory more realistic. In such a case it follows from the relation (339)

t—to—1

Ve = Y [#'da—plld'di—n]" + ¢ Vig120) (355)
=0

This shows that the data entering the statistic V(; ;) are weighted according to their age. The exponential
window by which the past data are weighted is plotted for different ¢ in Fig. 11. The figure clearly shows
that a reasonable choice of ¢ must lie rather close to one if the system is stochastic. The value ¢? ~ 0.985
(¢ =~ 0.992) has appeared as a reasonable starting point for by-hand tuning of the parameter-tracking
algorithm in various practical applications.

60



1.0

0.8
(H (ﬂ)
plHily 0.6 ﬂ]

oI
oo\
ol | &

0 02 04 06 08 ,10

Fig. 11 Exponential forgetting of old data

As it is seen from the recursive relation (340) for constant ¢ the parameter 6 ;) converges to the
steady state value 6 = # which can be understood as an effective number of samples within the
exponential window.

In many practical situations the parameters of a suitable model structure do not vary permanently but
only from time to time when the operating conditions are changed for some, usually unknown, reasons.
The exponential forgetting with a constant forgetting factor ¢ when applied to such situations, has the
disadvantage that, on one hand, it suppresses the information about the unknown parameters which may
be relevant (¢ is too low) but, on the other hand, the filter may react on the changed conditions too
slowly (¢ is too high). The above given probabilistic interpretation of the exponential forgetting allows
é() to be different for different ¢ and also gives, for any chosen ¢(;), the probability distribution for the
next system output y ot This opens the possibility to verify the model in real time (ex post in each
step) and to apply the forgetting when the newly observed output y ) indicates the change in model
parameters. This seems to be one of simple and rationally based ways how to construct algorithms which

are truly adaptive. An attempt in this direction has been made in [22], however, there are several other
possibilities along this line which have not been exploited yet.

6 System Classification

Until now the model structure has been assumed to be given as prior information about the system studied
and only a finite set of parameters 6 of the given model structure has been assumed to be unknown. In
this Section we will deal with a more general situation when more than one model structure have to be
considered as possible.

Often the internal mechanism or physics of the system is not understood enough to specify the model
structure uniquely. Suppose that the model builder is able to formulate a certain number of hypotheses
about the possible model structure, he believes that one of his hypotheses is true but he does not know
which one it is. If, in addition, the model builder is given a set of input-output data observed on the
system he is facing the problem called by [33] the problem of system classification.
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6.1 Model Classes and Hypotheses

Let Sxs be the set of models which are considered as candidates to represent the system under study
and let M be one particular model from this set, M € Sp,. In previous sections, when a single model
structure was considered as possible, the system model M was specified by the set of constant parameters
0, 6 € Sy, of the given model structure and the set of system models Sy, was specified be the set Sy of
all possible parameter values. The present situation is more complex.

If in a particular model structure a certain set of parameters, say 8; € Sy; is assumed to be unknown,
then the model structure and the set Sp; of all parameter values which are considered as possible define
the subset of models C; C Sis which will be called the class of system models. Then the set Sxq of all
system models under consideration is given as the union of all, say N, classes.

Sm=UX.C

In general, two different model classes may be generated by the same model structure but with two
different sets of unknown parameters. A special case is when a class, say C;, contains just one model.
This occurs when all parameters of the corresponding model structure are fixed as known; then the set
of unknown parameters 8; is empty. Another special case is when a class of models, say Cy, is a subset
of another class, say C,,, C,, C C,,. This is, for instance, the case of a linear system with unknown order
which can be either m or n and n < m. Hence, the classes are allowed to be overlapping - but only with
probability zero. The precise meaning of and the reason for this restriction will be explained later on.

Let My be the true system model, i.e. the model equivalent to the system under study. The hypothesis
that the true model M, belongs to the class C; will be denoted by #;. Using the Bayesian approach we
shall describe the uncertainty of the hypotheses by a probability distribution on the set of hypotheses
which are apriori considered as possibly true and we shall seek the solution of our problem of system
classification in the form of the aposterior probability distribution, i.e. we are interested in the probability
distribution on the set of hypotheses conditional on the input-output data observed on the system under
test. Clearly, the probability of the hypothesis H; is equal to the probability of the event M; € C; and
the probability distribution we intend to determine is

p(H;|DM) = Pr{M, € ¢;| DY = DY), (356)

i=1,2,...,N

Perhaps, it may be helpful to the reader if we explain in more detail why we formulate the problem of
system classification in terms of probability distribution and not as a decision problem, i.e. as the choice
of model structure. As it will be shown, in some applications, like the prediction of the future output of
an uncertain system, an explicite choice of the model structure is, actually, not required and it is possible,
and conceptually correct, to calculate simultaneously with all model structures which are considered as
possible, of course, with corresponding weights determined by their probabilities.

We have also another reason why we do not want to mix up the statistical data analysis with a
decision. To be able to formulate the decision problem properly it would be necessary to have a particular
objective in mind for which the decision is taken and to define the utility function. This is not an easy
task in general. However, when the amount of data is large enough it often happens that the aposterior
probability of some hypothesis, say Hj, is much larger than the probabilities of the other hypotheses,
p(Hi|DW) >> p(H;|D®) for all i # k. Then, accepting the hypothesis as true we can be sure that the
same decision would be obtained for a rather broad class of utility functions and we do not need to lose
time and energy in trying need to lose time and energy in trying to find out the one among them which
were most appropriate for the given purpose.

To be able to determine the aposterior probability distribution (356) it is necessary to define the prior
probability distribution on the entire set Spq of all models. This can be done by assigning the prior prob-
ability to each of the hypotheses, p(H;), i=1,2,...,N, and by introducing the prior probability distri-
bution on the set of possible parameter values within each of the hypotheses, p(6;|H;), i=1,2,...,N.
The former is the model of the statisticians prior uncertainty about the validity of his hypotheses before
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the data are incorporated into his knowledge. The latter reflects the statistician’s prior uncertainty about
the values of unknown parameter 0; assuming that the hypothesis H; were true. Clearly, the product
p(6;|H;)p(H;) assigns a prior probability to every subset of models within the class C;.

It is reasonable to formulate the hypotheses in such a way that they are mutually incompatible, i.e.
that only one of them can be true at the same time. Then it must hold

N N
ZP('Hz’) = ZPT[Mt €C]=1

On the other hand, as the event M; € S, is assumed to be certain, it must also hold
Pr{M; € Sp] = PriM; e UX. Gl =1
These two conditions can be satisfied simultaneously only when

PT[MECiﬂCj]ZO Vi, j#1

This means that a subset of models which is common for two or more classes may obtain a nonzero
prior probability (and consequently also aposterior probability) only through one of the hypotheses. This
is the meaning of the restriction imposed on the model classes that they can overlap only with probability
ZET0.

If all of the hypotheses can be considered as a priori equally likely then the natural choice of the prior
probability distribution on the set of hypotheses is p(H;) = & for all i. The choice of suitable prior
p(0;|H;) is a more crucial question than it was in parameter estimation in Section 4 and will be discussed
separately later on.

6.2 Natural Conditions of Control in System Classification

To be able to extract all relevant information about the class of the system which is carried by the
experimental input-output data it must be specified under what conditions the input is generated during
the experiment. It will be again assumed that the natural conditions of control are fulfilled, i.e. that
the information about the system under test which is used to generate the input u(,) is equal or less
than that which is available a priori and from the data D{"~1) known when the input u(r) is decided.
Consequently the sole u(,) cannot bring any additional information neither about the true class of the
system nor about its parameters and it holds for all ¢

p(Hilu(ry, DY) = p(H;| DY) (357)

and also
p(0i|Hi, u(ry, DY) = p(6;|H;, DY) (358)

The obvious relation
p(Hilu(ry, DT D)p(u(ry| D7) = pu)| DT, Hi)p(Hi D)
shows that the equality (357) implies
plun| DT, 1) = plu|DTY) (359)
and reversely. Similarly the equality (358) is equivalent to
Pur| DY, 05, Hi) = plu(r) | DT, Ha) = plug | D7) (360)

Hence, the natural conditions of control can be formally introduced either by the two equalities (357)
and (358) or by (360).
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6.3 Formal Solution of the Classification Problem

For the sake of generality and for latter use the problem will be formally posed as follows:

Given p(H;|D®)) and p(6;|H;, D*+)) for some t, > 0 and i = 1,2,..., N calculate p(H; D) for
t > t,, assuming that the natural conditions of control are satisfied.

The Bayes formula gives

p(DY, | D) H)p(H;| D)
SN p(DY) D), H)p(H; | D)

Applying the chain rule (19) the first factor in the numerator can be written as follows

p(H;|DW) = (361)

t
PO 1D, Hi) = T plin ucr, D, Ha)p(ue DT, Ha)
T=ts+1

When the natural conditions of control (359) are considered and the following simplification of notation
is introduced

Di (y(r) |u('r)a D(T_l)) = p(y('r) |u(7')7 D(T_l)a Hz) (362)
the formula (361) gets the form

101 Pi (W [ugry, DT~ D)p(H;| D))

p(H;| DY) = (363)
E;'V=1 Htr:ts+1 Pi(y(rlucry, DT—D)p(H;| D))
Further, under natural conditions of control it holds
Pily(n (), DY) = /pi(y(‘r)lu(‘r)aD(T_l)a6i)pz’(0i|D(T_1))d0i (364)

where, similarly to (362), we use the simplified notation
pi(0:| D) = pi(6:| DV, ;)

Notice that the conditional probability distribution (364) is the Bayesian prediction of the output y ()

given the past input-output history but not the unknown parameters 6;, all within the i-th hypothesis.
For given data D® and 7 < t, i.e. for the observed output Yiry = Yo the left-hand side of (364) is just

one number - the ordinate of the conditional probability density for a continuous y . Or the ordinate of
the conditional probability function if y - is discrete or if it is an event. The products of these ordinates

for each of the hypotheses determine, according to the formula (363), the relation between the prior and
aposterior probability distribution on the set of hypotheses. From the formula (363) it follows that for
the aposterior probability ratio for any two of the N hypotheses it holds

PO ﬁ Piyn)|ue), DY) p(H;| D)

(365)

p(HIDD) 5L 2y un, DTD) p(H; (D)
Clearly, any N — 1 finite ratios (365) for ¢ # j and the condition
N
> p(HiIDW) =1 (366)

k=1
determine uniquely the entire probability distribution on the set of N hypotheses.

Instead of determining the aposterior probability ratio p;(y()|u¢ry, D7) /p;j (Y lucry, DY) for
each y = Ym) observed it may be sometimes more convenient to proceed as follows. In analogy to (94)
we have for each of the hypotheses

H;_; +1 pi(y k)|U(k);D(k71) 0:)pi(0;|D ts))
S Tz 11 PiCyay lugry, DE=D),0;)pi (8;| D)) db;

pi(8;| DY) = (367)
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For the given input-output data D), ¢ > 7, introduce the values of integrals

Ii(rlts)z/ I PiCyluy, D=, 6:)pi(8:| D)) db; (368)
k=ts+1

Then (364), when the second factor of the integrand is substituted by (367), reads

Li(zt,)

369
Liir —1p,) (369)

Pi(y(rlue, DY) =

As, according to the definition (368), I;(ts|ts) = 1 the aposterior probability ratio (365) is now obtained

in the form
p(Hi|DDY  Liys,y p(Hi| D)

= 370
P, ID0) ~ T,y (| D) (370)
and for t; =0
p(H:|D®) _ Liyo) p(Ha) (371)
p(H;|DD) Loy p(H;)
Tit0) = /Lk(t)(ek)p(ek)dek (372)
where .
Ly 6r) = [[ pr(yrlue), DT, 61) (373)

T=1
is the likelihood function for the k-th hypothesis. These relations will be discussed in more detail later
on. Now, some further general relations will be added.

Suppose that, given the input-output data D®) | it is required to predict the next output Yiisn) for any
input w1y applied. Then the predictive conditional probability distribution is determined as follows

N
P(y(t+1)|u(t+1);D(t)) = Zp(y(t+1);Hz’|u(t+1);D(t))
i=1
N
p(y(t+1) |U(t+1), D(t)) = Zpi (y(t+1) |U(t+1), D(t))P(Hi|D(t)) (374)
i=1

where p; (y(e41) [U(e+1) D®) is the predictive conditional probability distribution within the i-th hypothe-
ses determined according to the formula (364) for 7 = t+1 as a function of y(;1.1) and u(;41). This clearly
shows that, if the objective of the statistical data analysis is to provide rational basis for prediction or
control of the output, one does not necessarily need - if one is not forced by other reasons - to take
decision concerning the model structure, i.e. to chose a single hypothesis as true.

If it is possible to express the integrals (372) for ¢ + 1 as functions of y(;41) and wu(zqq) it may be
advantageous to bring the conditional probability distribution (374) for the output prediction under
uncertainty of the hypotheses into the following form.

Zf;l Ii(t+1|0) (1/(t+1); U(t+1))P(Hi)
SN Ligjoyp(Hi)

The general formula (363) yields for ¢, = t — 1 the recursion for real time updating of the probability
distribution on the hypotheses

PWern) 1), DY) = (375)

. D(-1)
HD®) — Pi(ylug, H,\DtD 376
p(H;| D) Py [y, DED) p(Hi| ) (376)
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where the denominator of the updating factor is the ordinate of the overall predictive probability density
(or probability function) (374) from the previous step for the newly observed output y w = Y-

The purpose of the following Example is to demonstrate how the theory works in a simple and well
comprehensible case.

Example 6.1 Consider an autonomous system the output of which, Yin is an event with just two

possible outcomes, y(,) € {A, A}. Suppose that any model M which can be considered as a candidate to
describe the output process fulfills the assumption

p(y(T)|y(‘r_1)7M):p(y(r)lM) = « fO’I‘ Y(r)

=A
=l-a for y,) =A4A

Hence, the set S of all models which are a priori accepted as possible is generated by the same
model structure and each model M € Sy, is identified by the value of a single parameter a, 0 < a < 1.
To have a physical situation in mind the reader may consider the process of tossing a coin which may be
unfair.

Suppose that we have a reason to assume that the true value of « is oy = a; (for instance, that the
tossed coin is fair, a; = %), but not being quite sure that this hypothesis #; is true we may wish to
compare it with the other hypothesis Hs according to which the true value o4 is any other value from
the interval 0 < a < 1.

Clearly the class C; = {M : @ = a;} associated with the hypothesis #; contains just one model
the prior probability of which is directly p(#1). The set 6; is empty since under the hypothesis H
all parameters are known. The class associated with the alternative hypothesis Hs can be chosen as
Co = {M :0 < a < 1}. Apparently, C; C Sy = Cz but if we describe the uncertainty of the unknown
parameter « in Hy by any probability density p(a|Hz) = p2(a) which is continuous for @ = a;, then the
probability which is assigned to the model a = a; through the hypothesis H, is zero and the condition
that the classes C; and Cc may overlap only with probability zero is fulfilled.

Considering all values of o within the alternative hypothesis s as equally likely we choose p2(a) = 1.
Trying to be ”fair” we also choose p(H1) = p(H2) = 3.

If the integer n denotes the number of observed outputs the outcome of which was y;) = 4, 1<
7 < t, then the formulae (372) and (373) give for the alternative hypothesis Ha

nl(t —n)!

1
— n t—n —
I2(t\0) = /0 (% (]. — Oé) da = m

while for the tested hypothesis H; we simply have
t
Loy = [[ p1(wir) = af (1 —ax) ™"
T=1

Employing the general formula (371) the aposterior probability of the tested hypothesis H; is obtained
as follows.

1 1 nl(t —n)! 1
p(Haly™) = = =(1+ )"
p(Ha|y®) Io(r10) p(Ho) t+ DNa?(1 — aq )t—n
1+ P(H?W(‘)) 1+ Ti(zj0y P(H1) (8 + Dlag( o)

This result is illustrated in Fig.12 where it is plotted as a function of the relative frequency n/t for
different ¢t and oy = 0.2. The complement to one in this Figure is, of course, the aposterior probability
of the alternative hypothesis p(Hz|y®)
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Fig. 12 Bernoullian trials - H; : a =0.2 versus Hs : a €< 0,1 >

6.4 Role of Prior in Classification

In Section 4 it has been shown that the prior distribution on the set of unknown parameters does not
play a significant role in parameter estimation whenever the principle of stable estimation applies and the
prior information about the possible values of unknown parameters is negligible compared to that carried
by the data. Unfortunately, in system classification the problem of how to choose the prior distribution
to model the situation when little is known a priori relatively to what the data can say is relatively to
what the data can say is much more intricate.

To enlighten the problem let us write the general formula (370) in the following form

P(Hi|D(t)) _ fLi(t)(ei)pi(ei)dei p(H;)
p(H;|1D®) [ Ljw)(0;)p;(8;)d8; p(H;)

(377)

and let us consider the regular case when the data D®) do carry the information about the unknown
parameters both in the hypothesis H; and in the hypothesis H; so that, for ¢ large enough, the likelihood
functions Ly (0k), k =1,j are well peaked as sketched in Fig.13.

Then, supposing that the unknown parameters are uncertain quantities of continuous type and that
the integrals over the likelihood functions exist, the right-hand side of (377) can be well approximated as
follows
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Fig.13 Likelihood function combined with a flat prior distribution

p(Hil DY) _ [ L) (0:)dbi e; p(H:) (378)
p(H;ID®) [ Lj)(05)d6; €; p(H;)

where ¢, is some value of the prior probability density p (6) in the region where the likelihood Ly (6%) is
concentrated. If the set of possible values of the unknown parameters 6, is unbounded then by flattening
of the prior probability density pr(f)) which must integrate to one, the value €; can be made arbitrarily
small. Unlike the parameter estimation (recall the discussion of Eq. (125)) no reasonable limit of the
ratio €;/¢e; can be found, especially when the parameter sets 6; and 8; are of different nature and maybe
of different dimensions. Notice that we had no difficulties of this kind in Example 6.1 because the set of
possible values of the parameter « in the hypothesis Hs was bounded.

The relation (378) indicates that, theoretically, by the choice of prior, i.e. by the choice of the ratios
€;/€; one can arbitrarily influence the aposterior probability of any of compared hypotheses. Practically,
the situation is not as much crucial as it might seem. As Examples will demonstrate later on, for growing
t the ratio of integrals over the likelihood diverges, if the hypothesis #; is true (or converges to zero,
if H; is true) so rapidly that it dominates very soon any reasonably chosen ratio €;p(H;)/e;p(H;) and
for growing t the aposterior probability of the true hypothesis will converge to one in any case. Usually,
considering the physical nature of the case studied, it is not difficult to make an appropriate choice
of prior. Nevertheless, it must be emphasized that for small or medium data size the choice of prior
distributions on the sets of unknown parameters must be made with caution. In the following subsection
a procedure will be developed which does not require an explicit choice of priors and reflects the situation
when "little is known a priori”.

6.5 Let Data Speak for Themselves

The user of the Bayesian theory may invite a procedure which makes him free of thinking much about
a suitable choice of prior probability distributions if he knows little a priori compared to what the data
themselves can say and which makes the theory applicable in a straightforward way. It is the objective
of this subsection to develop such a procedure.

First, let us consider the problem of initial data which already appeared in parameter estimation(see
Section 4). If the model structure associated with one of the hypotheses, say #;, has the form of
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a stochastic difference equation relating the output y(,) with a finite number of delayed outputs and

inputs, DgT ) = {yg_i)i), E: 1))} then the initial conditions — the unknown data for 7 < 1 — must be

considered as unknown parameters if the model has to define the conditional probability distributions

P ui), DT, 0;, M) = iy |uiy, DY, 8;) (379)

right from the beginning of observation, i.e. also for 7 = 1. However, if we neglect a small piece of
information about the system which could be extracted from the data on the basis of the prior information
about the unknown initial conditions we may proceed as follows.

Let us take the very first data D(") as known initial conditions for the model structure associated with
the hypothesis ;. Then the set of unknown parameters is reduced, say to 6;, but the model defines the
probability distributions (379) only for 7 > n; and p;(6;]D(™)) has to be taken as the prior distribution
for the set of unknown parameters ;. In analogy to (111) we have

pi(0:[ D)) = pi(6;) (380)
For t; = n; the integral (368) is

Lirini) = /ii(r)(oi)pi(oi)dei (381)

where ii(T) is the conditional likelihood function (110) for the i-th hypothesis and for the data up to
and including 7.

Lir(65) H Py lury, DFY,6;) (382)
k=n;+1

For t; = n; the formula (369) gives

Titrim:
Piy(rlugr), DTD) = L (383)
i(t—1|n;)
and the relation (365) can be written for t; > max(n;,n;) as follows.
p(HAD®) _ T p(3, D)
(384)

p(H;|DDO) " Licing) p(H;| D))

Iittainj)

The purpose of this rearrangement is to express the relation through the ratios of integrals in which he
same prior distribution p;(6;) appears. This makes it possible to introduce non-informative improper
prior in the following way.

Usually, the uniform prior distribution can be taken as non-informative but, as discussed in Section
4, in some cases, like (133), an other form may be more suitable. To proceed generally let

pi(0:) = ¢i(0:), 0; € Sp; (385)

be the non-informative prior we want to introduce. If the set Sy;, on which it is defined, is unbounded
the distribution (385) may be improper, i.e. does not integrate to one. Let us consider a related proper
distribution defined on a bounded subset Sj;; C Sp;

pi(0:i) = ki ¢i(6:) 0 € Sy
Notice that the normalizing factor ki cancels in the ratio of integrals

Ligginy fs* Lir) (6:) ¢:(6:)db;

(386)
I’i(tslni) fs* z(ts ¢Z( i)
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If ts is large enough so that the integral

Aty = / Lagey (0)64(6:) 6 (387)

taken over the entire set Sp; exist for ¢ > ¢, then the limit of the ratio (386) for Sj; — Sp; also exist and
is
i Jittng _ Aiw
S5, =80, Lit,1n) i)
Let t; be the first time instant for which the integral (387) exist and let us choose the indexing of the
hypotheses in such a way that
t1 <t <t3<...<itn-1<in

Then for t; =ty and t >ty the relation (384) reads

/\1(t)
p(H1|D(t)) 1(tN) p(Hle(tN)) (388)
p(H;ID®) — XN p(H;| DN
Aittn)
and employing the obvious relation
N
> _p(H;1DY) =1 (389)
j=1
the following formula is obtained for ¢ > tn
e p(Hi D))
p(Hi|DW) = 7% (390)
S A p(Hy | D))

For ¢t < t,, the data themselves (without prior information about unknown parameters) cannot correct
the prior probability p(Hy) and it is natural to define p(Hx|D)) = p(Hy) for t < ty and similarly

p(H;|DW) = p(H;) for t <t; (391)

To be able to use the formula (390) it is necessary to express the probabilities p(H;|D*~)), j < N
through the prior probabilities (391). If ¢ is from the interval t; < t < tx41 then p(H;|D®) = p(H;) for
all j > k, (389) can be written as follows

k N
S pHIDD)=1= > p(H;), tr <t <ty
Jj=1 j=k+1
and it holds for ¢ < k
— S k1 P(H;) ul
p(HIDY) = = pe - = 1= 2 p) | x (392)
Zj:l p(H;| D@ j=k+1
Qi) (tr)
y ey P(Hi ID )
Akt k—1 Aj(
T p(He) + 501 5 p(H;| D)

Using the relations (390) and (392) it is possible to derive in a straightforward way that the following
formulae hold for the non-informative prior distribution on the hypotheses p(Hy) = % k=1,2,...,N

Ai(t)
)\i(t-)
p(Hz|D(t)) = N l)‘ )
j (t) X
S K

i

t>ty (393)
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where Ky, k=1,2,...,N, are defined recursively
K =1

k—1
1 )\j(tk)K‘

Kp=——
k_]'j:1 )‘j(tj)

(394)

If the probability distributions for ¢ < ¢ are of interest then they can be determined as follows

Ai) pe
Ai(t;)

pHIDY) = 5 R
Ej:l Aj((,j)) K;

, ot <t <tpy1, 1<k

2| =

1
p(H;| DY) = N t <t <tpy1, 1>k

For large and medium data size it is usually possible to use, instead of (393) the simpler formula

Ai(e)

Now s gy (395)

ZJ_V Aj)
I=1 Ajen)

p(H;|DW) =

which is obtained from (390) when p(#;|D®~)) = 1/N, i=1,2,..., N, is chosen as the prior distribu-
tion on the set of hypotheses. This choice can be considered s somewhat unfair since it does not exploit
the data D®N) to compare the hypotheses H;, i < N, for t = tx. However, for t much larger than tx
this defect of the simple formula (395) is, as a rule, negligible.

Dependent on the particular case and numerical means employed it may be sometimes convenient to
evaluate the ratios of integrals A;s)/Ai;) as the product of the ordinates of the predictive probability
densities (probability functions)

A ! _
/\i = [ pilwenlue, DY) (396)
it ol

Notice that
pz’(y(t,-+1)|u(ti+1):D(ti))
is the first prediction which can be based only on data, with negligible prior information about the
unknown parameters ;.
Example 6.2 Consider a sequence of equally distributed random variables {y(T)} which has been ob-

served for 7 = 1,2,...,t, D® = y®) Tt is a priori known that the random variables are mutually
independent but it is not known whether they are distributed normally or uniformly. Neither the param-
eters of the normal distribution (the mean y and the variance 02 = w™!) nor the bounds of the uniform
distribution (a, ) are assumed to be known. The problem is to recognize, on the basis of the observed
data y®, which one of the two hypotheses is true.

For the first hypothesis #; we have §; = {u,w} and

_ 1 1 W
21y Y,601) = pi(yn lw,w) = (21) 2wz expl—< (y(r) — 1)°]

In the alternative hypothesis H, the set of unknown parameters is 62 = {a, 8} and

p2(yn |y, 65) = pa(y(rl, B) = for a <y < B

1
-«
p2(y(r)la, B) = 0 for yy <aoryiy > B
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Clearly nq = no = 0 and likelihood functions (382) are

t
_t ot w
Luy (1 w) = (2m) el expl=5 > () = 0]

T=1

L2(t) (Oé, /8) = t for a < Ymin(t) and B > Ymaz(t)

1
B—-a)
Lywy(a, B) = 0 for @ > Ymin(r) OF B < Ymaz(t)

where

Ymin(t) = MAN(Y(1), Y(2)s - - > Y(t))
Ymaz(t) = MaT(Y(1),Y(2)> - - - Y(¢))
A suitable improper non-informative prior for the hypothesis #; is (compare with (133))

¢1 (/J,, UJ) = wil

In the hypothesis Ha the uniform distribution can be taken as non-informative prior
ga(c, ) = 1 for (8 —a) >0

¢2(a, B) =0 for (8 —a) <0

The integrals (387) exist for ¢ > ¢t; = 2 and ¢ > t2 = 3, respectively, and can be expressed analytically.
(Apply Lemmas 8 and 9 from Appendix A to determine Ay())

t—1, _+ _t=1
Ap) = F(—2 T2 (mvggy)” 2
where v is the sample variance
1¢ 1<
2
v = 5 2 —mw)’ moy =5 v
T=1 T=1
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Fig. 14 Normal (#;) versus uniform (#3). Generated process was uniformly distributed, o = —1, 8 = 2
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Fig. 15 Normal (H;) versus uniform (H). Generated process was normal, g = 0.5, 0> =w 1 =1

For the alternative hypothesis Hs we have

Ymin(t) [OO 1 1
Aoy = / / — _dfda =
2 —o0 y. (ﬁ - a)t (t - 1)(t - 2) (ymaz(t) - ymin(t))t_2

maz(t)

The formula (394) qgives K3 =1, Ks = A(3)/A1(2) and from (393) we finally obtain

Aoy A
p(Hy|y®) = (1 + 220 16)y—1
A1(t) A2(3)

To illustrate this result two typical runs are shown in Fig.14 and Fig.15

6.6 Application to Regression-Type Model Structures

As it is seen from the formulae (393) and (394) all what is required to determine the aposterior probability
distribution on the set of hypotheses under the condition that ”little is known a priori” are the values
of integrals (387). For the model structures of regression type (190) it is possible to give an analytical
expression for these integrals. In fact, it is given by the formula (235), one only has to specify its free
parameters, namely to, 6;,) and a(,) and to comb it into a form suitable for numerical evaluation. All
quantities which enter this formula and may be different in different hypotheses will be indexed by 1.
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If (1 —n;) is the time index of the most delayed output and/or input entering the known function z;(,
or fiir) in (190) then 2;(,,) and fi(,,) is the first couple of values of these vectors which is determined
by the data and the parameter to in (235) is to = n;. According to (133), let us choose the improper
non-informative prior distribution on the set of unknown parameters 6; = {P;,Q;} in the form

pi(Pi, %) = $(Pi, Q) = | F (397)
Comparison of this prior distribution with (205) gives
ey =1, Oy = —(v+1), Vi) =0
The first time instant ¢; for which the integral A;;) exist (with probability one) is
ti=ni+pi+v (398)
For these parameters the general formula (235) gives

[Tis P55

Noy = =y (399)
¢ t—t;4v
x ] Tr Vel E i3
T=n;+1
where t
Va) = D Zin (400)
T=n;+1
and A;q is defined by (213), (212) and (209) for
t T
fi(r) ] [ fi(r) ]
Vi) = [ (401)
© T:%.:H zir) | | #itn)

To get a deeper insight into the formula (399) it may be recalled that in single-output case Ay is the
sum of squares of residuals and for multiple output

t
5 AT
Ny = ) Cirléiriy
T=n;+1
5 ST
€itrlty = Ji(r) — Pi(p)Zi(r)
where Isi(t) is the recent point estimate of P; defined by (211).

Again, it is numerically advantageous to operate with the lower triangular matrix Gy introduced by
(254). Then, employing the relations (261) and (262) it can be easily found that

t—t;+v

Vel ElAin| =% = (402)
ptv v
= (1G]l X 1G @) x G = (I] Giwrn)” x (I] Giwrr)' ™
k=1 k=1

where Gj(4)xr, are the diagonal entries of the triangular matrix G;;) which can be updated in real time
using the subroutine REFIL from Appendix B. To simulate the condition that ”little is known apriori”
the updating starts with G;,,,) = € I where ¢! is a large number. (For data of order 10° the choice
e ! > 103 is appropriate).

The gamma functions entering the formula (399) can also be calculated recursively using the relation

T—2_1—2

)=

)
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for initial conditions I'(3) = /7, ['(1) = 1. Alternatively, for ¢ large enough, the Stirling’s formula can

Z)’T_l

be used as a very good approximation
2Qme” %
me” 2 ( 5

F(%) ~

Example 6.3 Consider a normal uni-variate auto-regressive process

n
Yr) = Zaky(-rfk) + €er)

k=1
Neither the parameters 6, = {a1,as,...,a,,02} nor the order n of the process are given, but it is
known that 0 < n < N. The problem is to estimate the order n on the basis of observed data D® =

{y(l)a Y2)s--+> y(t)}

N hypotheses. Let the hypothesis H; be that n = ¢. Then
Ziry = Wer 1 Yr2)se o Yrp] T >

The problem can be solved as determination of the aposterior probability distribution on the set of

fiy = vy, Jpmy =1, ti=2i+1
Since v =1 and I
t—t;+1 t . =
e
Hk:l (5 - k)
the formula (399) can be given the following form
F(L) LS 1 (i
)\’(t) - i i t H/Zz(t)l 2A@(§) )7 t Z t;
72 [li=a(z — F)
i
e
0.8
Y
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Fig.16 Uncertain order n of an auto-regressive process (H1 :n =1, Ha :n =2, Hz : n = 3) simulated

n=2

and the formula (402) is simplified to

T i+1 ‘

Va2 Ay = ] Ginm Gl
k=1
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Notice that the factor F(%)T(—% is common for all Ay, ¢ = 1,2,..., N, it cancels in the formula (393)
for p(H;|D®) and therefore does not need to be calculated for t > t, = 2N + 1. Compare this results
with the solution given by [16]. Algorithmic aspects are followed in more detail in [15].

For illustration, results of a simulation experiment are plotted in Fig. 16. The figure shows the
evolution of the probability distribution for three hypotheses n =4, ¢ =1,2,3, and the data generated
by the model of second order y(;) = y(;—1) —0.16y(;_2) + €(r), o2 = 0.2. Notice the rather small absolute
value of the coefficient as in the simulated model. This makes the hypotheses H; and s rather close
and not easy to distinguish.
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7 Appendices

7.1 Some Useful Lemmas from Matrix Algebra and Integral Calculus

Several standard operations are repeatedly met when dealing with multi-variate probability distributions
which are tractable analytically. It may be helpful for the reader who is interested in applications of
Bayesian statistics if we summarize them for easy reference in the form of mathematical lemmas the most
of which are well known but seldom can be found on one place.

Lemma 1 The following relations hold for traces of matrix expressions

tr(A B C) =tr(C A B) =tr(B C A) (403)
tr(A+ B) = trA +trB (404)

Proof: The relations directly follow from the definition of the trace
M) =" M; (405)

Lemma 2 Let Q and A be positive definite matrices of dimensions (v x v) and (p X p) respectively and
let 2 and A% be their square roots introduced so that

1

(Q2)TQz =Q, (A7)TAz =4
If X is a matrix of appropriate dimensions, then
tr(QXTAX) = [|A7X(Q3)7|)? (406)

where ||M||? is the sum of squares of all etries M;;, i.e. the square of Euclidean norm of the matrix M.
Proof:

tr(QXTAX) = tr[Q2 XT(42)T A2 X (Q2)T] = [V TY] = Z Z
where ) )
Y =AzXx(Q2)7 (407)
Lemma 3 Let a symmetric positive definite matrix V' be partitioned in the following way
A BT
V= [ B C ] (408)
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where A and C are square matrices. Further, let 2 be symmetric positive definite and X,Y rectangular
matrices of appropriate dimensions. Then the following relation, sometimes called completion of squares
for Y, holds.

(9 [ > ]T [ . BCT ] [ 3 ]) — r(Q[XTAX + 2YTBX + YTCY]) = (409)

=tr(Q[Y - Y])TClY - V]) + tr(QXT[A - BTC'B]X)

where .
Y =-C'BX (410)
Proof: by inspection.
Lemma 4
(A+BCD) ' =A'—A'B(C' + DA™'B)"'DA™! (411)

The relation (411) is sometimes called matrix inversion lemma and holds if the required inversions exist.
An often met special case is when C' is a scalar, C = % and B = DT = b is a vector:

1
oy +bTA 1D
Proof: Multiply both sided of (411) by (A + BCD) to obtained identity.

Lemma 5 Let A and C' be nonsingular square matrices and B, D rectangular matrices of appropriate
dimensions. Then the following relations for determinants hold.

(A+ %bbT)*l A ATRTA (412)

[ a p ] —|A|x|C = DA™'B| = |C| x |A— BC™'D| (413)
1 4| 1
|A—BC D|:WX|C—DA B (414)
An often met special case is when B = DT = b is a vector and C a scalar, C = —y~%:
|A 4+ ybbT| = |A| x (1 + b7 A1) (415)

Proof: see, e.g., Rao (1965, supplement to Chapter 1b)

Lemma 6 Consider a nonsingular square matrix A and its inversion B = A~1. If both these matrices
are partitioned in the same way

A11 A12 Bll Bl2
A= B= 416
[ Az Aap ] ’ [ By Bao ] (416)
then the following relations hold between the particular sub-matrices.
Bll = (A11 - A12A2_21A21)71 = Al_ll + A1_11A12322A21A1_11 (417)
322 = (A22 - A21A1_11A12)_1 = A2_21 =+ A2_21A21311A12A2_21 (418)
Biy = —Aj{ A15Byy = —Bi1 A1 A3y (419)
By = — A5y Ay1 Bi1 = —Bas Ay AT (420)

An important special case is when A is triangular. Then B is also triangular. If, for instance As; = 0,
then By; = 0 and
By = A[}', Baa = A3}, Bia = —A A1 A (421)
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Proof: by substitution of (417) to (420) into the relations AB = I and BA =1

Lemma 7 Let A be a (v X v) positive-definite matrix and let £ be a variable matrix of the same
dimensions which is restricted to be positive semi-definite. Then the maximum of the expression

0 1
¢(Q) = Q] exp{~5tr(Q4)} (422)
is reached for
Q=0*=60A4""1 (423)
and is equal to
H00%) = [AI740% expl - (124)

Proof: see Anderson (1958 par.3.2 )

Lemma 8 Let (2 and A be positive definite matrices of dimensions (v x v) and (p x p), respectively.
Let P be a given (p X v) - matrix. Then

/R . exp{—%tr[ﬂ(P — P)TA(P — P)}dP = (27) % |Q|~5|A|~3 (425)

Proof: The proof is similar to that given by Anderson (1958, par.2.3 ) for the case when P is a vector.
See [22] for details.

Lemma 9 Let S be a space of all positive definite matrices 2 of dimensions (v X v) and let ¢ be a
given, also positive definite matrix. Then

2 1 v v=1.vy _ 8tvti u O+v+2—4
/s 'Q'ge"p{‘itf@@}dﬂ: @t )5 g ||F(fj) (426)
Q

j=1

where I is the gamma-function.
Proof: See, e.g., [1](par. 7.2).

7.2 FORTRAN Subroutine REFIL

SUBROUTINE REFIL(G,D,N,SIG2,VG,IN)

FUNCTION
SQUARE ROOT FILTER FOR REAL-TIME
MULTIVARIATE REGRESSION. PROCESSED
DATA ARE SUCCESSIVELY CONTRACTED
INTO A LOWER TRIANGULAR MATRIX G.
REFIL UPDATES THIS MATRIX WITH
RESPECT TO A NEW DATA VECTOR D.
PARAMETERS
INPUT:
G = LOWER TRIANGULAR MATRIX TO
BE UPDATED
D = VECTOR OF NEW DATA
N = DIMENSION OF D AND G
SIG2 = SQUARE OF FORGETTING FACTOR,
WHEN NO FORGETTING SIG2=1
VG = ARBITRARY N-VECTOR
IN = DUMMY PARAMETER TO TRANSFER
DIMENSION DECLARED IN MAIN
PROGRAM FOR ACTUAL PARAMETER G

oNoNoNE N o NN NN NN NN s s NN Ne!
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0UTPUT:
G
SI1G2

UPDATED G
SIG2 + SUM OF SQUARES OF
G’*D

VG = G*G’*D

REMAINING PARAMETERS UNCHANGED
REMARK: UPPER PART OF G OVER MAIN

DIAGONAL NOT USED

DIMENSION G(IN,IN), D(N), VG(N)
SIG = SQRT(SIG2)
PHI = SIG
J =
1 F =

D021I-=1J,N
2 F = G(I,)*D(I) + F

A = SIG/PHI

B = F/SIG2

SIG2 = F*F + SIG2

SIG = SQRT(SIG2)

A = A/SIG

VG(J) = G(J,J)*F

G(J,J) =A*G(J,J)

K=J+1

IF(N-K) 5, 3, 3
3 D0O4I=K,N

GIJ = G(I,J)

G(I,J) = Ax(GIJ - BxVG(I))
4 VG(I) = GIJ*F + VG(I)
5 J=J-1

IF(J) 6, 6, 1
6 CONTINUE

RETURN

END

o =1
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