Challenges and Limits of Extended Kalman Filter basd Sensorless Control
of Permanent Magnet Synchronous Machine Drives

Zderek Peroutkd, Vaclav Smidl and David Vo3mik
1UNIVERSITY OF WEST BOHEMIA IN PILSEN
Univerzitni 8, 306 14
Plzei, Czech Republic
Tel.: +420/ 37763-4443 (-4446).

Fax: +420 / 37763 4402.
E-Mail: peroutka@ieee.orgosmikl@kev.zcu.cz
URL: http://www.fel.zcu.cz

2INSTITUTE OF INFORMATION THEORY AND AUTOMATION
ACADEMY OF SCIENCE OF THE CZECH REPUBLIC
Pod vodarenskowi 4, 182 08
Prague, Czech Republic
Tel.: +420/ 266 052 420.
Fax: +420 / 266 052 068.
E-Mail: smidl@utia.cas.cz
URL: http://www.utia.cz

Acknowledgements
This research has been supported by the CzechcBdreundation under project GR 102/08/P250.

Keywords

Control of Drive, Estimation technique, Intelligadrive, Permanent magnet motor, Sensorless control.

Abstract

A sophisticated simulator of permanent magnet syomabus machine (PMSM) drive was developed
and is used for research into model-based sensartastrol strategies. In this paper, we focus on
estimators based on the extended Kalman Filter JEKRe limits and possible improvements of the
EKF are investigated using the developed simulatat real data recorded on designed laboratory
prototypes of PMSM drives. From the viewpoint oEgible improvement of the estimator, the main
attention has been paid to the following phenoméhancertainty of a stator voltage vector (effect
of dead-times, non-linear voltage drops on poweric#s, etc.), (ii) impact of imperfect model
discretization, and (iii) impact of unknown loaddoe. These phenomena are analyzed and the results
are used to tune covariance matrices of the EKR @ami-analytical approach. Theoretical results ar
verified by experiments made on two developed pypts of PMSM drive of rated power of 10.7kW
and 310W. Finally, this paper summarizes the miajuts of EKF and proposes prospective ways for
further research leading to reduction of thesetdmi

Introduction

This research was motivated by demand of our imdligbartners for proposal of a prospective
sensorless control strategy for permanent magnmethsgnous machine (PMSM) drives operated in
modern transport systems. The sensorless contRM&M drives is well established and discussed in
the literature. Several interesting papers and ®ookvering this issue were published, e.g. [1].
However, this problem is still open for furthereasch. Specifically, sensorless operation of tlvedr

in standstill and in low speeds is not satisfabtaesolved. We have focused in the first part of o

research on model-based sensorless techniquesof@uoe important tasks was to design a model of



the drive that would allow for better control perfance in very low speeds. The resulting model is
then estimated using the extended Kalman FilterREKRhis filter is well known in the area, its
design considerations and implementation in sees®itontrol of PMSM drives were discussed e.g. in
[1], [2] — [5]. The EKF is often considered to be excessively complex algorithm, which is difficult
to implement (especially in the case of fixed-paaplication) and requires huge computational
performance. However, this disadvantage can bedadousing either manually optimized EKF
equations (such as in our case) or various kindsgahre-root algorithms (e.g. [6]). Another well-
known disadvantage is the need for tuning of cewee matrices of the EKF, as discussed e.g. in [5].
This paper complements empirical findings and raoendations of [5] by a theoretical study of the
problem using the developed sophisticated simulator

The EKF is an approximate technique for Bayesiétering of non-linear models with Gaussian
noises. It is known to work well when the nonlinges are not severe and the distribution of the
disturbances is mutually independent zero-mean $kmuswith known variance. When these
conditions are not met, the filter is known to fi@@]. However, experimental evidence suggests that
EKF is an adequate choice for sensorless contrd?MEM when properly tuned — e.g. [2], [3].
Nevertheless, the limits of EKF in these appliaaiare not exactly known. Therefore, the aim of thi
paper is to analyze optimal conditions and settiiogghe EKF. The challenge is to design a valid
stochastic model of the PMSM drive that meets dguiirements of the EKF. The most challenging is
modeling of the disturbances; we intend to asstw the disturbances have: (i) zero mean,
(i) temporal independence, and (iii) known fixedriance. Standard model of the PMSM drive is
studied in the light of these requirements. Spedlify, the following phenomena are addressed:
() uncertainty of reconstructed stator voltagetoegeffects of dead-times, non-linear voltage drop
on power electronics devices, etc.), (Il) impaciroperfect model discretization, and (Ill) impadt o
unknown load torque. The findings are used forrtgraf covariance matrices of the EKF.

This paper is organized as follows. First, the tigyed sophisticated simulator of a PMSM drive is
presented. Second, a stochastic model of a PMSM d@rianalyzed and its possible improvements are
discussed. Third, the theoretical results provigtethis paper are verified by experiments made on
two developed PMSM drives of rated power of 10.7&Wd 310W. Finally, major constrains and
limits of the EKF are summarized and prospectivgsafar further research leading to reduction of the
EKF limits are discussed.

Identification and Control Simulator based on BDM Environment

In order to understand cooperation of the EKF dredRMSM drive, we have built a sophisticated

simulator which allows us to model internal stateat® drive in detail. This knowledge serves for

improvements of stochastic state-space model ofithe. Valid stochastic model can be used for

tuning of covariance matrices in the EKF which us ourrent goal. Since EKF can be interpreted as a
special case of Bayesian filtering [8], we haveigle=d our simulator in the Bayesian Decision

Making (BDM) development environment. Furthermaitee verified stochastic drive model can be

used for application of more advanced Bayesia@riilg techniques which are already implemented in
BDM (such as particle or unscented filter) — tei@ur research direction.

Developed Bayesian Decision Making (BDM) Environmen

BDM has been developed as a unified framework fewetbpment of identification and control
techniques based on stochastic models. FollowiagBidyesian approach, all uncertainty within the
model is modeled by probability density functiofitie basic building blocks of the framework are
thus probability density functions, Bayesian estora and stochastic controllers which operate on
data provided by data-sources. These blocks aréemgmted as classes in object-oriented design.
Hence, the existing filters and data sources casalsgy extended for new models, simulators or-real
time physical processes. The framework allows easgbination of various estimation methods and
offers tools for their mutual comparison. It is fggideveloped as an open-source product available
from our web siténttp://mys.utia.cas.cz:1800/trac/bdmder the GPL license.

Block configuration of the developed simulator i®wn in Fig. 1. Here, the data source for the EKF
estimator is represented by “physical” model of RWISIrive. For experiments with real
measurements, data recorded on PMSM drive protstgpeused as a data source.
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Fig. 1: Block scheme of developed simulator witBIDM framework
“Physical” model of permanent magnet synchronous mor drive: BDM data source

This model of surface mounted PMSM drive uses cotiweal rotor flux oriented vector control in
Cartesian coordinates for control of the invesadatirive (see Fig. 2). Simulator uses carrier-based
PWM and voltage source inverter model which respest close as possible dead-time effects and
non-linear voltage drops on power electronics devi¢the power devices are modeled using
approximations of their V-A characteristics). Cahtrstrategy respects behavior of a real
microcontroller based control system including istid sampling, known transport delays and finite
calculation times.

Surface mounted PMSM is modeled using the conwveatioontinues-time model in the stationary
reference frame:
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Hereis, iss Usy andugs represent components of stator current and volageors in the stationary
reference frame, respectively. is electrical rotor speed astl is position of rotor flux vector in the
stationary reference frame (the rotor flux vectosipon in stationary frame is in case of PMSM dqua
to electrical rotor position)Rs andLs is stator resistance and inductance respectivély,is the flux
linkage excited by permanent magnets on the r&as, friction, T, is load torque,) is moment of
inertia, p, is number of pole pairs arg is the Park constant. For further research we lase
prepared model of permanent magnet motor in renglveference frame linked to the rotor flux
vector which is eligible particularly for researitio interior permanent magnet motor types. Both
PMSM models are calculated in discrete form usinigus-Bashforth difference formula df drder
with sampling period of 1s.

Stochastic Model of PMSM Drive

The EKF is an approximate solution of Bayesiarefittg for a non-linear state-space model with
Gaussian disturbances

X =0(X4 W) *te, p&)=N(@OQ),
Y. =h(x,u)+&, p(&)=NOR),

whereg() andh() are non-linear functiong(e,) denotes probability density function of disturbare,
N(0,Q) denotes Gaussian distribution with zero meanevahd covariance matng.

(2)
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Fig. 2: Configuration of investigated sensorlesstiad of PMSM drive

EKF is an approximation of the exact Bayesianfiitig for the above model projecting the posterior
density ofx, into a Gaussianp(X, | y;...Y,) = N(X.,P), this approximation is using linearization of
the non-linear functiog() at working pointX, . EKF performs well when: (i) the Gaussian assuampti

is met, and (ii) working poink, is close to the true state

Discrete-time state-space model of the PMSM drieem de obtained from (1) using Euler
approximation of the first order. Under assumptioat the rotor speed change is negligible withi th
sampling period, the discrete-time state-space msdgven by:

iw(t+1)=(1-%mjiw(t)+"’LﬂAt%(t)smae(t)+§uw )

isB(t+1)=(1—%At]i$(t)—%At%(t)cos’ie(th%%(t), @)

et +1) = e (t),
9. (t+1)=9,(t)+Atw, (t).
Here,At is the chosen sampling period. Equation (3) dsfin@ctiong() under assignments; = [is;

Isg Gher 7], U = [Use; Usg, Whereus, andugg are components of the stator voltage vector. Foméq)
for this model is trivial, since measurements afestvariables,, andisz are unbiased. Hence,

1000
h(><uut)=[0 10 O}ert- (4)

It remains to specify covariance matrid@sandR. These matrices represent statistical properties o
disturbances, and g, which accumulate all uncertainty in the model. Wmsider the following
sources of uncertainty in the model:

1. Measurement error.

2. Uncertainty of reconstructed stator voltage vectdfects of dead-times, non-linear voltage

drops on power devices, etc.).
3. Impact of imperfect model discretization — errordiscretization of the model (1) due to the

used first-order Euler method.



4. Impact of unknown load torque and generally meatar@quation in EKF model.
5. Unknown parameters of motor equivalent circuit gadation of these parameters.

Remark 1: The EKF requires all disturbances to be modeledasssian. Thus, other probability
densities must be approximated by a Gaussian. Weusgé minimization of Kullback-Leibler
divergence from the approximated density to thesSiam density for this task. The resulting Gaussian
has the first two moments equal to those of theraydmated density. For example, a uniform
probability density on interval [a,b] will be appimated by a Gaussian with mean value (a+b)/2 and
variance (b-&)12, i.e. N((a+b)/2, (b-8)12).

Measurement error

The components of stator current veatgrisz are observed via A/D converter with discretizatsep

Ai (we of course measure the phase currigftis, which are then transformed to the space vector in
stationary reference frame). Since this error i d¢inly source of disturbance for the observation
equation, we can considerto be uniformly distributed on intervalAH2, Ai/2]. Hence, the optimal
Gaussian density (Remark 1) has zero mean andneariai?12. In our particular case, the
discretization step isAi = 0.085A. The optimal matrixk for this A/D converters is then

R = diag(0.0006, 0.0006).

An input to the stochastic model of PMSM (3) is ttator voltage vector in stationary reference
frame. Direct measurement of the motor voltage blfage transducers is problematic, because the
motor voltage generated by voltage source convertersists of voltage pulses. Therefore, the
components of the motor voltage vector are estidhatelirectly based on the demanded voltage
magnitude, demanded position of motor voltage veittcstationary reference frame and measured
converter dc-link voltage. The measurement of dk-lioltage is influenced by discretization erfar.

The Gaussian probability density of this error banderived using the same approach as for current
measurement errdxi. Furthermore, the conventional reconstruction ofanvoltage vector does not
respect the impact of dead-times and non-lineatagel drops on power electronics devices. The
impact of the motor voltage estimation error on tH€F estimator performance is going to be
explored in the following section.

Uncertainty of reconstructed stator voltage vectoreffects of dead-times and non-linear
voltage drops on power electronics devices

The reconstructed motor voltage vectog,j, which is the input to the stochastic model (3),
influenced by the following disturbances: (i) eradrconverter dc-link voltage measurement, (ii)dlea
times and (iii) non-linear voltage drops on powieconics devices. These phenomena contribute to
the voltage errolug, having impact on the first two equations of (3heTerrorAue, influences
disturbancee, and its covariance matriQ. Dead-times and voltage drops, which are the major
problem, take effect on a very short time scale manmed to the sampling period of both the controller
and the EKF estimator. Their effect on the timdescéd the sampling period can be studied only via
statistical properties. While mean value of th@egan be predicted, its variance must be studied i
simulation. The relation between the “real” voltagetor on the motor terminalgs(= [Us,; Usgl) and
the conventionally reconstructed motor voltage ®e(tle = [Usy eqv; Us eq]) IS Qiven by:
Ugy = Ugy equ _Ausa,\/A _Ausa,DT _Ausa,ADC
_ : ()
Up = Ug oq ~DUgya ~ AUy ot —AUg apc
Here, Ausva is the voltage drop on power devicésipr is the difference caused by dead-time and
Aug ppc is the difference caused by error of dc-link vgtaneasurement.
The errorAusya is given by the VA characteristics of power elenics devices employed in the
voltage source converter. The voltage drops demsndeveral factors — these are particularly the
motor phase currents and power devices chip temyes Since measurements of motor phase
currents are available and the converter switcdiagram is known, we derived a simplified formula
for estimation of voltage dropAusya (the similar approach is used e.g. in [9]). The@ragimate
voltage drop in each converter phase in the giaempling instant is:

Au><,\/A = Gix,t| > itrh )JtrhSign(ix,t)+ Rdix,t ! (6)



wherex = (a,b,c) denotes motor phasg, is the current in phase iy, is a threshold current (it
represents non-sensitivity band around zero cUir&qtis the equivalent resistance of the power
device anduy, is a threshold voltage of the given power devithe voltage drops in phase
coordinates are transformed to the stationary Siarecoordinates and in this way, the corrected
components of stator voltage vecto, (e comps Usz eqv comp) are calculated.

Variance of this error was studied in simulatior tbhe 10.7kW drive with parameters of the
compensationig, = 0.3A, Uy, = 1.4V). The simulation results are displayedim B.

x 10

2

a & Histogram of difference
S B 15
E2= > :
o < Q=
S 38
v 2 g
9t B ‘
88 g @
S~ 5 =
¢ 3 0.3 Full data
A g record of 8s
= -
6
R detail Histogram of difference
5
£ 2.5
2= iz 2
- 3 =
O © oz
- 9—2 = 1.5
822
RN SIS S Full data
o (=% 7 0.5 B 4
= g~ record of 8s
S B

'61.8 1.9 2 21 2.2 23 24 25 —06 -4 -2 0 2
Time [s] Difference [V]
Fig 3. Motor voltage vector reconstruction ertceft: differences between “real” and reconstructed
motor voltageRight: Histograms of the error for all simulation of ¢ghs 8s.
Top: conventional voltage vector reconstructiBottom: voltage vector reconstruction with

proposed compensation. Data source: simulatordspexile + load torque profile.
After compensation, the histogram of errors in Fgbottom right) corresponds well to a Gaussian
density, with the exception of sharp peaks arouwsr® and +1.2V. The former peak is a result of a
standstill period in the simulation; the latter remponds to the discretization error mentioned abov
Without these peaks, the histogram can be considereepresent realizations of Gaussian density
N(0,1). This disturbance contributes goby termAusAt/Ls, the variance of this contribution being
(At/Lg)% This term will be denotegym,

Impact of imperfect model discretization

4 6

The error of model discretization was studied bmparison of the continuous-time model integrated
on fine time-scale ofds with the discrete model with sampling period 25 lus. Differences between
these two models for the 10.7kW drive are displayeHig. 4, in tandem with their histograms. Note
that the error of integration is systematic (tenafigrcorrelated). Hence, it could be compensateyl, e
by means of higher-order discretization. Most digant systematic deviation is i which could be
easily compensated using derivativecf. However, the contribution of this type of errorthe total
disturbance is significantly lower than from thé&art sources. Therefore, we will not compensate it
and leave it for further study.

The histograms suggest that majority of the destafis close to zero; however, the distribution
appears to have too many distant realizations toobsidered as being Gaussian. Therefore, we will
model these deviations as uniformly distributedaosymmetric interval around zero with bounds
given by the maximum observed value of the deuviati@ontribution of this error te is then obtained
using Remark 1 as followQiscr= diag(8e-6, 8e-6, 5e-7, 3e-13).

Impact of unknown load torque

Temporal variation of the load torquE ) can be slower than the sampling period, hencaritnot be
considered to be a white noise. The load torqueesgts a systematic error in (3). Therefore, we wi
analyze two approaches to this problem: (i) diesttmation ofT,, and (ii) derivation of contribution
from unknownT, to disturbances, in the same spirit as in the previous Section.
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for each state variable in each row, respectiuadjt: evolution of deviation in time.
Right: histograms of the deviation. Data source: sinaujatpeed profile; no-load motor.

Estimation of the load torque

In order to estimat&, we must model its evolution in time. We considé&aussian random walk:

Toe=Ti+ere,  PErd=N (0;0), (7)
where variance parametgy governs tightness of the walk. This is a free petar, the influence of
which will be studied in simulation. The new stee; = [is,; isg e Je; Ti] With covariance matrix
of disturbance® = diagQpwmtQd1, Opwmt a2, Gda Gaa, Gr). This model will be denoted by EKF TL.

Propagation of load torque in stochastic model

In some applications, further extension of the estgtace is prohibited, e.g. for computational
complexity reasons. In that case, the load torguebe considered as a disturbance which propagates
through (3) and influences all elements of covargamatrixQ. This can be achieved using Schmidt-
Kalman filter [10]. In this paper, we apply a simpheuristic approach based on propagation of the
unknown contribution of in the third equation of (3) to the remaining egpras. First, T, will affect

the third equation in (3) such that the differefetweenay,. computed with knownT, and e
computed forT, = 0 isAw= —p/J T At. This difference will be propagated to the remagnequations

via substitution oty +Aw in place ofa, causing differences:

A (t+1)= +q:_ﬂAtAwsinz99(t)

S

i, (t+1)= —qiﬂAtAa)cosﬁe(t) 8)

AS(t+1) = +Athw.

Since functions sin() and cos() are bounded, theimam absolute value of error on the first two
equations isHis, 4 = Wem/Ls p/J T.A, Acd = p/d T At on the third equation, anff| = AtAwon the
fourth. These values can be converted to contohatito covariance matric€3 using Remark 1.
However, since these differences are systematictfiey do not have zero mean) the deviation may
not be sufficiently compensated by the EKF andait grow with time. Thus, we propose to increase
Qr., by a multiplicative constarty, > 1. We do not provide any guidance how to choase- it
remains to be done experimentally. However, ithis only parameter that must be tuned which is
much easier than tuning the full covariance mairhis model will be denoted by EKF PTL.



Theoretical limits of model accuracy

The developed covariance matrices determine thealditmits of accuracy of any estimator based on
this model. These limits are known as Cramer-Raentl® on minimum mean-square error. These
bounds can be computed recursively using all ptesgibalizations of the random process [11].
However, disturbances of the model in our casaatetochastic. Repeated runs of the simulator will
result in the same trajectory of the system. kasy to show that the Cramer-Rao bound is equal to
covariance matri® of the posterior state density if the EKF is ea#ddl exactly in the simulated state.
For illustration, the Cramer-Rao bounds for bothiargs of the stochastic model (i.e. EKF TL and
EKF PTL) are displayed in Fig. 5.

Note that the Cramer-Rao bound on position is alraqaal for both considered variants of the model.
In fact, the most significant influence on it haxsuesQ, ; andQ, , which are equal for both models.
The bound however reveals principal properties hif model. Namely, for non-zero speed the
uncertainty on position is proportional to the spé@mpare time intervals of 2-3s with 7-9s), fere
speed (standstill) the uncertainty in positioringarly increasing.
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Verification of the model on real data

Validity of the presented stochastic model wasetksin real data recorded on the prototype of PMSM
drive of rated power of 10.7kW. We have recordedhynsiansients on the drive on which we have
then off-line tested the proposed EKF estimatoe ¢bmponents of both the demanded stator voltage
vector (s, e and Uss o) COmmanded by DSP (see next section for detaicrgg®on of the
configuration of designed drive prototypes) andstaor current vectoig, andiss) were transformed
from the digital form to the analog via a D/A conee installed in the drive controller. The outmdit

the D/A converter has been recorded by a 4-chatfigghl scope TEKTRONIX MSO4054. The data
from the scope has been stored in a CSV file whantved as a data source for off-line testing of our
simulator. The rotor speed and position measurethéyotor position sensor as well as components
of the stator current vector have been simultarigaoesorded by the PC-based master control unit of
the drive. Results of one of the tests are predant&ig. 6. The data were recorded during theedriv
start-up and speed reversals — triangular spediiepmommanded electrical rotor speedtdHz. The
EKF TL estimator provides additional estimate o€ tlnad torque which in effect compensate
additional inaccuracies of the model (see Fig.ostdm).

Sensorless Controlled PMSM Drive Prototypes: Expemental Results and
Simulator Verification
We are aware that the simulation model has alwaygesdeviations from an original physical object.

Therefore, we have carefully calibrated our sinarland verified it using two servo drives with
PMSM of rated power of 10.7kW and 310W on which aa’e made extensive experimental tests.



The control strategy presented in Fig. 2 has begteimented in a fixed-point digital signal processo
Texas Instruments TMS320F2812. EKF has been implwdein DSP in a form of manually
optimized equations which strongly reduced requinet® on both computation performance and
memory space. Computation of EKF takepg@&ith DSP clock frequency of 150MHz.
Presented simulation and experimental results asgecbased PWM with injected third harmonic
component with carrier frequency of 4kHz. Samplpegiod of vector control as well as of the EKF
has been selected of 15 Fig. 7 demonstrates results of developed driveilator and presents
behavior of sensorless controlled drive of ratedigroof 10.7kW under speed reversal transient. We
have employed a triangular speed profile with eie&l rotor speed commands #100Hz. We have
selected quite slow speed ramp in order to venfyper function of the drive in critical low speed
region. Fig. 8 displays experimental results intrcidg the same transient effect as in Fig. 7. Bighav
of designed PMSM drive prototype of 310W is docutedrnin Fig. 9 which analyzes speed reversal
transient under sensorless control mode. In tlsis ¥&e have utilized a trapezoidal speed profild wi
electrical rotor speed commandst®0Hz. The carrier frequency of the PWM has beethiscase of
8kHz while the sampling period of both the conepknd the EKF stayed unchanged, i.e 525

10 T T T T T T

f,.. [Hz]

5 { —— EKF T, estimate

Electrical rotor speed,

— EKF estimate
Speed from shaft sensor
T T

v v, fo

! | ! ! ! I ! ! !
0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9 1

Time [s]
Fig. 6 Comparison of measured el. rotor speed @stimates provided by EKF TL and EKief).
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Conclusion & Discussion

The sophisticated simulator of permanent magneattegmous machine (PMSM) drive was developed
using Bayesian Decision Making (BDM) environmenhisT simulator has been used to study the
influence of various uncertainties as a disturbanocenventional model of PMSM drive. Stochastic
properties of these disturbances were summarizdduaed for tuning of covariance matrices of the
EKF by the presented semi-analytical approach. \femyortant task has been improvement of the
stochastic drive model. We have focused on twoiqdar problems: (i) improved reconstruction of
the stator voltage vector, and (ii) modeling of mon load torque. The theoretical results have been
verified by tests on two PMSM drives prototypegated power of 10.7kW and 310W. Experimental
testing covered both on-line tests on designededuiototypes and off-line tests using data recorded
on these drives as the data source in the simul@be proposed stochastic model extends operating
speed range of the drive, however, there aresstilbus constrains of the EKF estimator.

The main problem of EKF based estimator is that fiier does not guarantee convergence if the
operating point is far from the true state. Moregwhe underlying stochastic model has a singular
point at zero speed which has been demonstratedy WSiammer-Rao bounds. These properties
strongly limit applicability of this estimator. Thgrospective way for overcoming of above mentioned
limits could be application of estimator employitigher number of operating points such as
interacting multiple models or particle filters. rehermore, the Gaussian representation of the
uncertainties does not exactly respect the physigality. Hence, the new solutions should take
advantage of non Gaussian noise models which hmitezsponds with the reality.
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. 7: Simulation results — sensorless drive dpmra- drive 10.7kW: speed reversal, triangularespe
profile, commanded el. rotor speectdfO0Hz
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Fig. 8: Sensorless drive operation — drive of 1W/7kpeed reversal — triangular speed profile,
commanded el. rotor speedx#00Hz, chl: el. rotor speed — sensor (80Hz/V), &kF-
estimated el. rotor speed (80Hz/V), ch3: electriotdr position — sensor (72deg/V),
ch4: EKF estimated el. rotor position (72deg/V)
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Fig. 9: Sensorless drive operation — drive of 318péed reversal — trapezoidal speed profile,
commanded el. rotor speedx¥0Hz, chl: electrical rotor position — sensor (¢,
ch2: EKF estimated el. rotor position (72deg/V)3:.cél. rotor speed — sensor (25Hz/V),
ch4: EKF estimated el. rotor speed (25Hz/V)
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