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Abstract 
A sophisticated simulator of permanent magnet synchronous machine (PMSM) drive was developed 
and is used for research into model-based sensorless control strategies. In this paper, we focus on 
estimators based on the extended Kalman Filter (EKF). The limits and possible improvements of the 
EKF are investigated using the developed simulator and real data recorded on designed laboratory 
prototypes of PMSM drives. From the viewpoint of possible improvement of the estimator, the main 
attention has been paid to the following phenomena: (i) uncertainty of a stator voltage vector (effects 
of dead-times, non-linear voltage drops on power devices, etc.), (ii) impact of imperfect model 
discretization, and (iii) impact of unknown load torque. These phenomena are analyzed and the results 
are used to tune covariance matrices of the EKF via a semi-analytical approach. Theoretical results are 
verified by experiments made on two developed prototypes of PMSM drive of rated power of 10.7kW 
and 310W. Finally, this paper summarizes the major limits of EKF and proposes prospective ways for 
further research leading to reduction of these limits.  

Introduction 
This research was motivated by demand of our industrial partners for proposal of a prospective 
sensorless control strategy for permanent magnet synchronous machine (PMSM) drives operated in 
modern transport systems. The sensorless control of PMSM drives is well established and discussed in 
the literature. Several interesting papers and books covering this issue were published, e.g. [1]. 
However, this problem is still open for further research. Specifically, sensorless operation of the drive 
in standstill and in low speeds is not satisfactorily resolved. We have focused in the first part of our 
research on model-based sensorless techniques. One of our important tasks was to design a model of 



the drive that would allow for better control performance in very low speeds. The resulting model is 
then estimated using the extended Kalman Filter (EKF). This filter is well known in the area, its 
design considerations and implementation in sensorless control of PMSM drives were discussed e.g. in 
[1], [2] – [5]. The EKF is often considered to be an excessively complex algorithm, which is difficult 
to implement (especially in the case of fixed-point application) and requires huge computational 
performance. However, this disadvantage can be avoided using either manually optimized EKF 
equations (such as in our case) or various kinds of square-root algorithms (e.g. [6]). Another well-
known disadvantage is the need for tuning of covariance matrices of the EKF, as discussed e.g. in [5]. 
This paper complements empirical findings and recommendations of [5] by a theoretical study of the 
problem using the developed sophisticated simulator.  
The EKF is an approximate technique for Bayesian filtering of non-linear models with Gaussian 
noises. It is known to work well when the nonlinearities are not severe and the distribution of the 
disturbances is mutually independent zero-mean Gaussian with known variance. When these 
conditions are not met, the filter is known to fail [7]. However, experimental evidence suggests that 
EKF is an adequate choice for sensorless control of PMSM when properly tuned – e.g. [2], [3]. 
Nevertheless, the limits of EKF in these applications are not exactly known. Therefore, the aim of this 
paper is to analyze optimal conditions and settings for the EKF. The challenge is to design a valid 
stochastic model of the PMSM drive that meets the requirements of the EKF. The most challenging is 
modeling of the disturbances; we intend to assure that the disturbances have: (i) zero mean,  
(ii) temporal independence, and (iii) known fixed variance. Standard model of the PMSM drive is 
studied in the light of these requirements. Specifically, the following phenomena are addressed: 
(I) uncertainty of reconstructed stator voltage vector (effects of dead-times, non-linear voltage drops 
on power electronics devices, etc.), (II) impact of imperfect model discretization, and (III) impact of 
unknown load torque. The findings are used for tuning of covariance matrices of the EKF. 
This paper is organized as follows. First, the developed sophisticated simulator of a PMSM drive is 
presented. Second, a stochastic model of a PMSM drive is analyzed and its possible improvements are 
discussed. Third, the theoretical results provided in this paper are verified by experiments made on 
two developed PMSM drives of rated power of 10.7kW and 310W. Finally, major constrains and 
limits of the EKF are summarized and prospective ways for further research leading to reduction of the 
EKF limits are discussed. 

Identification and Control Simulator based on BDM Environment 
In order to understand cooperation of the EKF and the PMSM drive, we have built a sophisticated 
simulator which allows us to model internal state of the drive in detail. This knowledge serves for 
improvements of stochastic state-space model of the drive. Valid stochastic model can be used for 
tuning of covariance matrices in the EKF which is our current goal. Since EKF can be interpreted as a 
special case of Bayesian filtering [8], we have designed our simulator in the Bayesian Decision 
Making (BDM) development environment. Furthermore, the verified stochastic drive model can be 
used for application of more advanced Bayesian filtering techniques which are already implemented in 
BDM (such as particle or unscented filter) – this is our research direction. 

Developed Bayesian Decision Making (BDM) Environment 

BDM has been developed as a unified framework for development of identification and control 
techniques based on stochastic models. Following the Bayesian approach, all uncertainty within the 
model is modeled by probability density functions. The basic building blocks of the framework are 
thus probability density functions, Bayesian estimators and stochastic controllers which operate on 
data provided by data-sources. These blocks are implemented as classes in object-oriented design. 
Hence, the existing filters and data sources can be easily extended for new models, simulators or real-
time physical processes. The framework allows easy combination of various estimation methods and 
offers tools for their mutual comparison. It is being developed as an open-source product available 
from our web site http://mys.utia.cas.cz:1800/trac/bdm under the GPL license. 
Block configuration of the developed simulator is shown in Fig. 1. Here, the data source for the EKF 
estimator is represented by “physical” model of PMSM drive. For experiments with real 
measurements, data recorded on PMSM drive prototypes are used as a data source. 



 

Fig. 1: Block scheme of developed simulator within BDM framework 

“Physical” model of permanent magnet synchronous motor drive: BDM data source 

This model of surface mounted PMSM drive uses conventional rotor flux oriented vector control in 
Cartesian coordinates for control of the investigated drive (see Fig. 2). Simulator uses carrier-based 
PWM and voltage source inverter model which respects as close as possible dead-time effects and 
non-linear voltage drops on power electronics devices (the power devices are modeled using 
approximations of their V-A characteristics). Control strategy respects behavior of a real 
microcontroller based control system including realistic sampling, known transport delays and finite 
calculation times.  
Surface mounted PMSM is modeled using the conventional continues-time model in the stationary 
reference frame: 
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Here isα, isβ, usα and usβ represent components of stator current and voltage vectors in the stationary 
reference frame, respectively; ωme is electrical rotor speed and ϑe is position of rotor flux vector in the 
stationary reference frame (the rotor flux vector position in stationary frame is in case of PMSM equal 
to electrical rotor position). Rs and Ls is stator resistance and inductance respectively, ΨPM is the flux 
linkage excited by permanent magnets on the rotor, B is friction, TL is load torque, J is moment of 
inertia, pp is number of pole pairs and kp is the Park constant. For further research we have also 
prepared model of permanent magnet motor in revolving reference frame linked to the rotor flux 
vector which is eligible particularly for research into interior permanent magnet motor types. Both 
PMSM models are calculated in discrete form using Adams-Bashforth difference formula of 4th order 
with sampling period of 1µs. 

Stochastic Model of PMSM Drive 
The EKF is an approximate solution of Bayesian filtering for a non-linear state-space model with 
Gaussian disturbances 
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where g() and h() are non-linear functions, p(et) denotes probability density function of disturbance  et, 
N(0,Q) denotes Gaussian distribution with zero mean value and covariance matrix Q. 



 

Fig. 2: Configuration of investigated sensorless control of PMSM drive 

EKF is an approximation of the exact Bayesian filtering for the above model projecting the posterior 
density of xt  into a Gaussian, ),,ˆ()...|( 1 tttt PxNyyxp =  this approximation is using linearization of 

the non-linear function g() at working point tx̂ . EKF performs well when: (i) the Gaussian assumption 

is met, and (ii) working point tx̂  is close to the true state xt. 

Discrete-time state-space model of the PMSM drive can be obtained from (1) using Euler 
approximation of the first order. Under assumption that the rotor speed change is negligible within the 
sampling period, the discrete-time state-space model is given by: 
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Here, ∆t is the chosen sampling period. Equation (3) defines function g() under assignments: xt = [isα; 
isβ; ωme; ϑe], ut = [usα; usβ], where usα  and usβ  are components of the stator voltage vector. Function h() 
for this model is trivial, since measurements of state variables isα  and isβ  are unbiased. Hence, 
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It remains to specify covariance matrices Q and R. These matrices represent statistical properties of 
disturbances et and εt, which accumulate all uncertainty in the model. We consider the following 
sources of uncertainty in the model:  

1. Measurement error. 
2. Uncertainty of reconstructed stator voltage vector (effects of dead-times, non-linear voltage 

drops on power devices, etc.).  
3. Impact of imperfect model discretization – error in discretization of the model (1) due to the 

used first-order Euler method. 



4. Impact of unknown load torque and generally mechanical equation in EKF model. 
5. Unknown parameters of motor equivalent circuit and variation of these parameters.  

Remark 1: The EKF requires all disturbances to be modeled as Gaussian. Thus, other probability 
densities must be approximated by a Gaussian. We will use minimization of Kullback-Leibler 
divergence from the approximated density to the Gaussian density for this task. The resulting Gaussian 
has the first two moments equal to those of the approximated density. For example, a uniform 
probability density on interval [a,b] will be approximated by a Gaussian with mean value (a+b)/2 and 
variance (b-a)2/12, i.e. N((a+b)/2, (b-a)2/12). 

Measurement error 

The components of stator current vector isα, isβ are observed via A/D converter with discretization step 
∆i (we of course measure the phase currents isa, isb which are then transformed to the space vector in 
stationary reference frame). Since this error is the only source of disturbance for the observation 
equation, we can consider εt to be uniformly distributed on interval [-∆i/2, ∆i/2]. Hence, the optimal 
Gaussian density (Remark 1) has zero mean and variance ∆i2/12. In our particular case, the 
discretization step is ∆i = 0.085A. The optimal matrix R for this A/D converters is then  
R = diag(0.0006, 0.0006). 
An input to the stochastic model of PMSM (3) is the stator voltage vector in stationary reference 
frame. Direct measurement of the motor voltage by voltage transducers is problematic, because the 
motor voltage generated by voltage source converter consists of voltage pulses. Therefore, the 
components of the motor voltage vector are estimated indirectly based on the demanded voltage 
magnitude, demanded position of motor voltage vector in stationary reference frame and measured 
converter dc-link voltage. The measurement of dc-link voltage is influenced by discretization error ∆u. 
The Gaussian probability density of this error can be derived using the same approach as for current 
measurement error ∆i. Furthermore, the conventional reconstruction of motor voltage vector does not 
respect the impact of dead-times and non-linear voltage drops on power electronics devices. The 
impact of the motor voltage estimation error on the EKF estimator performance is going to be 
explored in the following section.  

Uncertainty of reconstructed stator voltage vector: effects of dead-times and non-linear 
voltage drops on power electronics devices 

The reconstructed motor voltage vector (ueqv), which is the input to the stochastic model (3), is 
influenced by the following disturbances: (i) error of converter dc-link voltage measurement, (ii) dead-
times and (iii) non-linear voltage drops on power electronics devices. These phenomena contribute to 
the voltage error ∆ueqv having impact on the first two equations of (3). The error ∆ueqv influences 
disturbance et and its covariance matrix Q. Dead-times and voltage drops, which are the major 
problem, take effect on a very short time scale compared to the sampling period of both the controller 
and the EKF estimator. Their effect on the time scale of the sampling period can be studied only via 
statistical properties. While mean value of the error can be predicted, its variance must be studied in 
simulation. The relation between the “real” voltage vector on the motor terminals (us = [usα; usβ]) and 
the conventionally reconstructed motor voltage vector (ueqv = [usα_eqv; usβ_eqv]) is given by: 
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Here, ∆us,VA is the voltage drop on power devices, ∆us,DT is the difference caused by dead-time and 
∆us,ADC is the difference caused by error of dc-link voltage measurement. 
The error ∆us,VA is given by the VA characteristics of power electronics devices employed in the 
voltage source converter. The voltage drops depend on several factors – these are particularly the 
motor phase currents and power devices chip temperatures. Since measurements of motor phase 
currents are available and the converter switching diagram is known, we derived a simplified formula 
for estimation of voltage drops ∆us,VA (the similar approach is used e.g. in [9]). The approximate 
voltage drop in each converter phase in the given sampling instant is: 

( ) ( ) txdtxtrhtrhtxVAx iRisignuiiu ,,,, +>=∆ ,           (6) 



where x = (a,b,c) denotes motor phase, ix,t is the current in phase x, itrh is a threshold current (it 
represents non-sensitivity band around zero current), Rd is the equivalent resistance of the power 
device and utrh is a threshold voltage of the given power device. The voltage drops in phase 
coordinates are transformed to the stationary Cartesian coordinates and in this way, the corrected 
components of stator voltage vector (usα_eqv_comp, usβ_eqv_comp) are calculated. 
Variance of this error was studied in simulation for the 10.7kW drive with parameters of the 
compensation (itrh = 0.3A, utrh = 1.4V). The simulation results are displayed in Fig. 3.  

 
Fig 3.  Motor voltage vector reconstruction error. Left : differences between “real” and reconstructed 

motor voltage. Right: Histograms of the error for all simulation of lengths 8s.  
Top: conventional voltage vector reconstruction. Bottom: voltage vector reconstruction with 
proposed compensation. Data source: simulator; speed profile + load torque profile. 

After compensation, the histogram of errors in Fig. 3 (bottom right) corresponds well to a Gaussian 
density, with the exception of sharp peaks around zero and ±1.2V. The former peak is a result of a 
standstill period in the simulation; the latter corresponds to the discretization error mentioned above. 
Without these peaks, the histogram can be considered to represent realizations of Gaussian density 
N(0,1). This disturbance contributes to et by term ∆ueqv∆t/Ls, the variance of this contribution being 
(∆t/Ls)

2. This term will be denoted qpwm.  

Impact of imperfect model discretization 

The error of model discretization was studied by comparison of the continuous-time model integrated 
on fine time-scale of 1µs with the discrete model with sampling period of 125 µs. Differences between 
these two models for the 10.7kW drive are displayed in Fig. 4, in tandem with their histograms. Note 
that the error of integration is systematic (temporally correlated). Hence, it could be compensated, e.g. 
by means of higher-order discretization. Most significant systematic deviation is in ϑe which could be 
easily compensated using derivative of ωme. However, the contribution of this type of error to the total 
disturbance is significantly lower than from the other sources. Therefore, we will not compensate it 
and leave it for further study.  
The histograms suggest that majority of the deviation is close to zero; however, the distribution 
appears to have too many distant realizations to be considered as being Gaussian. Therefore, we will 
model these deviations as uniformly distributed on a symmetric interval around zero with bounds 
given by the maximum observed value of the deviation. Contribution of this error to et is then obtained 
using Remark 1 as follows: Qdiscr = diag(8e-6, 8e-6, 5e-7, 3e-13). 

Impact of unknown load torque 

Temporal variation of the load torque (TL) can be slower than the sampling period, hence it can not be 
considered to be a white noise. The load torque represents a systematic error in (3). Therefore, we will 
analyze two approaches to this problem: (i) direct estimation of TL, and (ii) derivation of contribution 
from unknown TL to disturbances et in the same spirit as in the previous Section. 



 
Fig. 4 Deviation of the state space model (3) from continuous-time solution of model (1), displayed 

for each state variable in each row, respectively. Left : evolution of deviation in time.  
Right: histograms of the deviation. Data source: simulator; speed profile; no-load motor. 

Estimation of the load torque 

In order to estimate TL we must model its evolution in time. We consider a Gaussian random walk: 

TL,t = TL,t-1 +eT,t ,     p(eT,t)=N (0;qT),          (7) 

where variance parameter qT governs tightness of the walk. This is a free parameter, the influence of 
which will be studied in simulation. The new state is xt = [isα; isβ; ωme; ϑe; TL,t] with covariance matrix 
of disturbances Q = diag(qpwm+qd1, qpwm+qd2, qd3, qd4, qT). This model will be denoted by EKF TL. 

Propagation of load torque in stochastic model 

In some applications, further extension of the state-space is prohibited, e.g. for computational 
complexity reasons. In that case, the load torque can be considered as a disturbance which propagates 
through (3) and influences all elements of covariance matrix Q. This can be achieved using Schmidt-
Kalman filter [10]. In this paper, we apply a simpler heuristic approach based on propagation of the 
unknown contribution of TL in the third equation of (3) to the remaining equations. First, TL will affect 
the third equation in (3) such that the difference between ωme computed with known TL and ωme 
computed for TL = 0 is ∆ω = –p/J TL∆t. This difference will be propagated to the remaining equations 
via substitution of ωme +∆ω in place of ωme, causing differences: 
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Since functions sin() and cos() are bounded, the maximum absolute value of error on the first two 
equations is |∆isα,β| = ΨPM/LS p/J TL∆t2, |∆ω| = p/J TL∆t on the third equation, and |∆ϑ| = ∆t∆ω on the 
fourth. These values can be converted to contributions to covariance matrices QTL using Remark 1. 
However, since these differences are systematic (i.e. they do not have zero mean) the deviation may 
not be sufficiently compensated by the EKF and it can grow with time. Thus, we propose to increase 
QTL, by a multiplicative constant cTL > 1. We do not provide any guidance how to choose cTL – it 
remains to be done experimentally. However, it is the only parameter that must be tuned which is 
much easier than tuning the full covariance matrix. This model will be denoted by EKF PTL. 



Theoretical limits of model accuracy 

The developed covariance matrices determine theoretical limits of accuracy of any estimator based on 
this model. These limits are known as Cramer-Rao bounds on minimum mean-square error. These 
bounds can be computed recursively using all possible realizations of the random process [11]. 
However, disturbances of the model in our case are not stochastic. Repeated runs of the simulator will 
result in the same trajectory of the system. It is easy to show that the Cramer-Rao bound is equal to 
covariance matrix P of the posterior state density if the EKF is evaluated exactly in the simulated state. 
For illustration, the Cramer-Rao bounds for both variants of the stochastic model (i.e. EKF TL and 
EKF PTL) are displayed in Fig. 5.  
Note that the Cramer-Rao bound on position is almost equal for both considered variants of the model. 
In fact, the most significant influence on it have values Q1,1 and Q2,2 which are equal for both models.  
The bound however reveals principal properties of the model. Namely, for non-zero speed the 
uncertainty on position is proportional to the speed (compare time intervals of 2-3s with 7-9s), for zero 
speed (standstill) the uncertainty in position is linearly increasing. 

 
Fig. 5 Cramer-Rao lower bounds on mean-square error of estimates of rotor position (bottom) for a 
simulated speed profile (top). Data source: simulator. 

Verification of the model on real data 

Validity of the presented stochastic model was tested on real data recorded on the prototype of PMSM 
drive of rated power of 10.7kW. We have recorded many transients on the drive on which we have 
then off-line tested the proposed EKF estimator. The components of both the demanded stator voltage 
vector (usα_eqv and usβ_eqv) commanded by DSP (see next section for detail description of the 
configuration of designed drive prototypes) and the stator current vector (isα and isβ) were transformed 
from the digital form to the analog via a D/A converter installed in the drive controller. The output of 
the D/A converter has been recorded by a 4-channel digital scope TEKTRONIX MSO4054. The data 
from the scope has been stored in a CSV file which served as a data source for off-line testing of our 
simulator. The rotor speed and position measured by the rotor position sensor as well as components 
of the stator current vector have been simultaneously recorded by the PC-based master control unit of 
the drive. Results of one of the tests are presented in Fig. 6. The data were recorded during the drive 
start-up and speed reversals – triangular speed profile, commanded electrical rotor speed of ±5Hz. The 
EKF TL estimator provides additional estimate of the load torque which in effect compensate 
additional inaccuracies of the model (see Fig. 6, bottom). 

Sensorless Controlled PMSM Drive Prototypes: Experimental Results and 
Simulator Verification 
We are aware that the simulation model has always some deviations from an original physical object. 
Therefore, we have carefully calibrated our simulator and verified it using two servo drives with 
PMSM of rated power of 10.7kW and 310W on which we have made extensive experimental tests. 



The control strategy presented in Fig. 2 has been implemented in a fixed-point digital signal processor 
Texas Instruments TMS320F2812. EKF has been implemented in DSP in a form of manually 
optimized equations which strongly reduced requirements on both computation performance and 
memory space. Computation of EKF takes 78µs with DSP clock frequency of 150MHz. 
Presented simulation and experimental results use carrier-based PWM with injected third harmonic 
component with carrier frequency of 4kHz. Sampling period of vector control as well as of the EKF 
has been selected of 125µs. Fig. 7 demonstrates results of developed drive simulator and presents 
behavior of sensorless controlled drive of rated power of 10.7kW under speed reversal transient. We 
have employed a triangular speed profile with electrical rotor speed commands of ±100Hz. We have 
selected quite slow speed ramp in order to verify proper function of the drive in critical low speed 
region. Fig. 8 displays experimental results introducing the same transient effect as in Fig. 7. Behavior 
of designed PMSM drive prototype of 310W is documented in Fig. 9 which analyzes speed reversal 
transient under sensorless control mode. In this test, we have utilized a trapezoidal speed profile with 
electrical rotor speed commands of ±50Hz. The carrier frequency of the PWM has been in this case of 
8kHz while the sampling period of both the controller and the EKF stayed unchanged, i.e. 125µs. 

 
Fig. 6 Comparison of measured el. rotor speed with estimates provided by EKF TL and EKF (top). 

Bottom: load torque estimated by EKF TL. Data source: real data recorded on 10.7kW drive 
prototype; drive start-up and speed reversals – triangular el. rotor speed profile of ±5Hz. 

Conclusion & Discussion 
The sophisticated simulator of permanent magnet synchronous machine (PMSM) drive was developed 
using Bayesian Decision Making (BDM) environment. This simulator has been used to study the 
influence of various uncertainties as a disturbance in conventional model of PMSM drive. Stochastic 
properties of these disturbances were summarized and used for tuning of covariance matrices of the 
EKF by the presented semi-analytical approach. Very important task has been improvement of the 
stochastic drive model. We have focused on two particular problems: (i) improved reconstruction of 
the stator voltage vector, and (ii) modeling of unknown load torque. The theoretical results have been 
verified by tests on two PMSM drives prototypes of rated power of 10.7kW and 310W. Experimental 
testing covered both on-line tests on designed drive prototypes and off-line tests using data recorded 
on these drives as the data source in the simulator. The proposed stochastic model extends operating 
speed range of the drive, however, there are still serious constrains of the EKF estimator. 
The main problem of EKF based estimator is that this filter does not guarantee convergence if the 
operating point is far from the true state. Moreover, the underlying stochastic model has a singular 
point at zero speed which has been demonstrated using Crammer-Rao bounds. These properties 
strongly limit applicability of this estimator. The prospective way for overcoming of above mentioned 
limits could be application of estimator employing higher number of operating points such as 
interacting multiple models or particle filters. Furthermore, the Gaussian representation of the 
uncertainties does not exactly respect the physical reality. Hence, the new solutions should take 
advantage of non Gaussian noise models which better corresponds with the reality. 



  

Fig. 7: Simulation results – sensorless drive operation – drive 10.7kW: speed reversal, triangular speed 
profile, commanded el. rotor speed of ±100Hz 

  

  

Fig. 8: Sensorless drive operation – drive of 10.7kW: speed reversal – triangular speed profile, 
commanded el. rotor speed of ±100Hz, ch1: el. rotor speed – sensor (80Hz/V), ch2: EKF 
estimated el. rotor speed (80Hz/V), ch3: electrical rotor position – sensor (72deg/V),  
ch4: EKF estimated el. rotor position (72deg/V) 

  

Fig. 9: Sensorless drive operation – drive of 310W: speed reversal – trapezoidal speed profile, 
commanded el. rotor speed of ±50Hz, ch1: electrical rotor position – sensor (72deg/V),  
ch2: EKF estimated el. rotor position (72deg/V), ch3: el. rotor speed – sensor (25Hz/V),  
ch4: EKF estimated el. rotor speed (25Hz/V) 
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