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Abstract

Belief functions are generalized to formulas in  Lukasiewicz logic. It is
shown that they generalize probabilities on formulas (so-called states) and
that they are completely monotone mappings with respect to the lattice
operations.

1 Introduction

Belief measures are certain non-additive real-valued set functions introduced by
Dempster and Shafer [10, 12]. Roughly speaking, models based on belief mea-
sures are used in situations in which the precise probabilistic model consisting
of one probability measure is not available due to the lack of information about
the conditions or results of some random experiment. From the mathematical
point of view, belief measures are completely monotone set functions in the
sense of Choquet [11], who studied complete monotonicity of capacities in the
systematic way.

The aim of this paper is to introduce belief functions in the framework of
 Lukasiewicz logic. This is accomplished by an extension procedure that assigns
a functional to some belief measure via Choquet integral. In this general set-
ting the key issue is to clarify the meaning of total monotonicity, which can be
expressed on an arbitrary Abelian semigroup according to Choquet. The con-
cept of belief function proposed in this paper includes many-valued analogues
of probabilities on formulas, the so-called states. States were introduced by
Mundici [9] in order to model the notion of “average truth-value” of formulas.
It was proved in [5] and [6] that the mathematical properties of states indeed fits
this idea, namely, every state is the Lebesgue integral of (an equivalence class
of) a formula w.r.t. a Borel probability measure on possible worlds. Since this
result is of an independent interest and motivates the forthcoming definition of
a belief function, a new proof is given in Section 3.



2 T. KROUPA

The paper is structured as follows. Section 2 contains necessary definitions
and results concerning  Lukasiewicz infinite-valued propositional logic and its
associated Lindenbaum algebra Lk of (equivalence classes of) formulas over k
propositional variables. Section 3 is devoted to states. In particular, it will be
shown that the geometrical structure of formulas in Lk makes possible to derive
the integral representation of states (Theorem 1). In Section 4 we investigate
belief functions on formulas in Lk and show a number of generalizations of
results known for classical belief measures on events (Theorem 3 and 4).

2 Preliminary Notions

The aim of this section is to provide a survey of  Lukasiewicz infinite-valued
propositional logic [1, Chapter 4] and its associated Lindenbaum algebra. For-
mulas φ,ψ, . . . are constructed from propositional variables A1, . . . , Ak by ap-
plying the standard rules known in Boolean logic. The connectives are negation,
disjunction and conjunction, which are denoted by ¬, ⊕ and ⊙, respectively.
This is already a complete set of connectives so that, for instance, the implica-
tion φ → ψ can be defined as ¬φ ⊕ ψ. The set of all formulas in propositional
variables A1, . . . , Ak is denoted by Form(A1, . . . , Ak).

Semantics for connectives of  Lukasiewicz logic is defined by operations in
algebras called MV-algebras [1]. The algebra of truth degrees of  Lukasiewicz
logic is the standard MV-algebra, which is the unit interval [0, 1] endowed with
the operations ¬,⊕,⊙ defined as follows:

¬a =1 − a

a⊕ b = min {a+ b, 1}
a⊙ b = max {a+ b− 1, 0}

A valuation is a mapping V : Form(A1, . . . Ak) → [0, 1] such that V (¬φ) =
1 − V (φ), V (φ ⊕ ψ) = V (φ) ⊕ V (ψ) and V (φ ⊙ ψ) = V (φ) ⊙ V (ψ). Formulas
φ,ψ ∈ Form(A1, . . . , Ak) are called equivalent when V (φ) = V (ψ), for every
valuation V . The equivalence class of φ is denoted [φ]. The set of all such
equivalence classes is an MV-algebra Lk with the operations ¬[φ] = [¬φ],
[φ] ⊕ [ψ] = [φ⊕ ψ] and [φ] ⊙ [ψ] = [φ⊙ ψ], for every φ,ψ ∈ Form(A1, . . . , Ak).

Since every valuation V is uniquely determined by its restriction to the
propositional variables V 7→ V (A1, . . . , Ak) ∈ [0, 1]k, every “possible world” V
is matched with a unique point xV from the k-dimensional unit cube [0, 1]k

and vice versa. Let Vx be the valuation corresponding to x ∈ [0, 1]k. Put
[φ](x) = Vx(φ), for every x ∈ [0, 1]k. Hence the equivalence class [φ] of every
φ ∈ Form(A1, . . . Ak) can be viewed as a function [0, 1]k → [0, 1] and Lk is the
algebra of all such functions endowed with the pointwise operations ¬,⊕,⊙.

McNaughton theorem ([2]). (Lk,⊕,⊙,¬) is precisely the algebra of all func-
tions [0, 1]k → [0, 1] that are continuous and piecewise linear, where each linear
piece has integer coefficients.
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Let f ∨ g = ¬(¬f ⊕ g) ⊕ g, f ∧ g = ¬(¬f ∨ ¬g). These operations are in fact
the pointwise supremum and infimum of functions in Lk, respectively, and they
make Lk into a distributive lattice.

A filter in Lk is a subset F of Lk such that (i) 1 ∈ F ; (ii) if f ∈ F and f ≤ g
with g ∈ Lk, then g ∈ F ; (iii) if f, g ∈ F , then f ⊙ g ∈ F . In this article we
consider only filters F with F ̸= Lk. A maximal filter is a filter F such that no
filter in Lk strictly contains F .

Theory of Schauder hats and bases in Lk, which was developed for the purely
geometrical proof of McNaughton theorem [1, Section 9.1], is briefly repeated in
this paragraph. The basic familiarity with polyhedral geometry and topology is
assumed, see [3, 4], for instance. A polyhedral complex (in [0, 1]k) is a finite set
of polyhedra R such that: (i) each polyhedron of R is included in [0, 1]k, all its
vertices have rational coordinates; (ii) if P ∈ R and Q is a face of P , then Q ∈ R;
(iii) if P,Q ∈ R, then P ∩Q is a face of both P and Q. The set

∪
P∈R P is called

a support of R. When all the polyhedra of a polyhedral complex S are simplices,
then S is said to be a simplicial complex. Alternatively, a simplicial complex S

with the support S is called a triangulation of S. The denominator den(q) of a
point q ∈ [0, 1]k with rational coordinates ( r1

s1
, . . . , rk

sk
), where ri ≥ 0, si > 0 are

the uniquely determined relatively prime integers, is the least common multiple
of s1, . . . , sk. Passing to homogeneous coordinates in Rk, put

q̃ =
(

den(q)
s1

r1, . . . ,
den(q)

sk
rk,den(q)

)
and note that q̃ ∈ Zk+1. A k-simplex with vertices v0, . . . , vk is unimodular if
{ṽ0, . . . , ṽk} is a basis of the free Abelian group Zk+1. An n-simplex with n < k
is unimodular when it is a face of some unimodular k-simplex. We say that
a triangulation Σ is unimodular if each simplex of Σ is unimodular. When R

is a polyhedral complex, V(R) denotes the set of all the vertices of R. Let Σ
be a unimodular triangulation with a support S ⊆ [0, 1]k. For each x ∈ V(Σ),
the Schauder hat (at x over Σ) is the uniquely determined continuous piecewise
linear function hx : S → [0, 1] which attains the value 1

den(x) at x, vanishes at
each vertex from V(Σ) \ {x}, and is a linear function on each simplex of Σ. The
basis HΣ (over Σ) is the set {hx | x ∈ V(Σ)}.

3 States

States on MV-algebras are many-valued analogues of probabilities on Boolean
algebras. The disjointness of functions in Lk is captured by the relation f ⊙g =
0, for f, g ∈ Lk. This condition also implies f ⊕ g = f + g.

Definition 1. A state s on Lk is a mapping s : Lk → [0, 1] such that s(1) = 1
and s(f ⊕ g) = s(f) + s(g), for every f, g ∈ Lk with f ⊙ g = 0.

States on any (semisimple) MV-algebra were completely characterized in [5] and
independently in [6] as integrals.
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Theorem 1. If s is a state on Lk, then there exists a uniquely determined Borel
probability measure µ on [0, 1]k such that s(f) =

∫
f dµ, for each f ∈ Lk.

In the rest of this section we give an alternative, a purely geometrical proof
of Theorem 1. By M1 we denote the convex set of all Borel probability measures
on [0, 1]k, which is a compact metric space in w∗-topology. For every sequence
(µn) in M1,

µn
w∗

−−→ µ iff ∫ fdµn −→ ∫ fdµ,

for every continuous function f : [0, 1]k → R. Let s be a state on Lk. In
the sequel T denotes the collection of all unimodular triangulations of [0, 1]n.
Theorem 1 will be established in three steps.

Claim 1. For every Σ ∈ T, the set of Borel probability measures

MΣ = {µ | s(hx) = ∫ hxdµ, for each hx ∈ HΣ}

is nonempty and w∗-closed.

Proof. Let δx denotes the Dirac measure concentrated at a point x ∈ [0, 1]n.
Put

δ =
∑

x∈V(Σ)

den(x)s(hx)δx,

and observe that den(x)s(hx) = s(den(x)hx) ∈ [0, 1] for each x ∈ V(Σ). The
sum

∑
x∈V(Σ) den(x)hx is constantly equal to 1 since it is equal to 1 at every

vertex of V(Σ) and every Schauder hat is linear over each simplex of Σ. This
gives

∑
x∈V(Σ)

den(x)s(hx) =
∑

x∈V(Σ)

s(den(x)hx) = s

 ∑
x∈V(Σ)

den(x)hx

 = s(1) = 1.

Hence δ is a convex combination of Borel probability measures and therefore
itself a Borel probability measure. We will show that δ ∈ MΣ. For each vertex
x′ ∈ V(Σ), we get∫

hx′ dδ =
∑

x∈V(Σ)

∫
den(x)s(hx)hx′ dδx =

∑
x∈V(Σ)

den(x)s(hx)hx′(x)

= den(x′)s(hx′)hx′(x′) = den(x′)s(hx′)
1

den(x′)
= s(hx′).

(1)

In order to show that MΣ is w∗-closed, consider a sequence (µn) in MΣ

with µn
w∗

−−→ µ, for some µ ∈ M1. It follows that for each hx ∈ HΣ we obtain
s(hx) =

∫
hx dµn −→

∫
hx dµ. Hence s(hx) =

∫
hx dµ and µ ∈ MΣ.

Claim 2. The collection of subsets (MΣ)Σ∈T of M1 has the finite intersection
property.
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Proof. Let T′ ⊆ T be nonempty and finite. We will show that
∩

Σ∈T′ MΣ ̸= ∅.
First, we will show that every pair of bases HΣ1 ,HΣ2 , where Σ1,Σ2 ∈ T′, has
a joint refinement (that is, there exists a basis H such that both HΣ1 and HΣ2

are included in the MV-algebra generated by H). This is proved directly as
follows. The triangulations Σ1,Σ2 have a joint subdivison (that is, there exists
a triangulation of [0, 1]k with the property that each of its simplices is included
in some simplex of HΣ1 or HΣ2) by taking all the intersections of simplices of
HΣ1 and HΣ2 , and eventually triangulating the resulting polyhedral complex.
This triangulation can be in turn subdivided to a unimodular triangulation
Σ∗ ∈ T [7, Claim 2]. The joint refinement of the bases HΣ1 ,HΣ2 is then the
basis HΣ∗ . The same argument straightforwardly applies to the finite set of
bases {HΣ | Σ ∈ T′}. Let HΣ′ be the basis refining each basis HΣ, Σ ∈ T′.

Precisely, if Σ ∈ T′, then for each hy ∈ HΣ there exist uniquely determined
nonnegative integers αx, where x ∈ V(Σ′), such that hy =

∑
x∈V(Σ′) αxhx. Put

δ =
∑

x∈V(Σ′) den(x)s(hx)δx. It follows that∫
hy dδ =

∑
x∈V(Σ′)

αx

∫
hx dδ =

∑
x∈V(Σ′)

αxs(hx),

where the last equality results from the calculation completely analogous to (1).
Since

∑
x∈V(Σ′) αxhx ≤ 1, we obtain

∑
x∈V(Σ′) αxs(hx) = s

(∑
x∈V(Σ′) αxhx

)
=

s(hy), and thus δ ∈
∩

Σ∈T′ MΣ.

Claim 3. The intersection
∩

Σ∈TMΣ contains a single element µ which satisfies
s(f) =

∫
f dµ, for every f ∈ Lk.

Proof. As M1 is w∗-compact and (MΣ)Σ∈T is a collection of w∗-closed subsets
having the finite intersection property, the intersection

∩
Σ∈TMΣ is nonempty.

Every probability measure µ ∈
∩

Σ∈TMΣ represents the state s. Indeed, given
a McNaughton function f ∈ Lk, find Σ∗ ∈ T and the basis HΣ∗ such that f =∑

x∈V(Σ∗) αxhx, for uniquely determined nonnegative integers αx [1, Theorem
9.1.5]. It results that

s(f) = s

 ∑
x∈V(Σ∗)

αxhx

 =
∑

x∈V(Σ∗)

αxs(hx) =
∑

x∈V(Σ∗)

αx

∫
hx dµ

=
∫ ∑

x∈V(Σ∗)

αxhx dµ =
∫
f dµ.

It remains to show that
∩

Σ∈TMΣ is a singleton. By the way of contradiction,
assume that there are Borel probability measures µ, ν ∈

∩
Σ∈TMΣ such that

µ ̸= ν. The Borel subsets of [0, 1]n are generated by the collection of all open
(in the subspace Euclidean topology of [0, 1]n) (hyper)rectangles with rational
vertices: indeed, every open subset of [0, 1]n can be written as a countable union
of such rectangles. As a consequence, [8, Theorem 3.3] yields that there exists
an open rectangle R ⊆ [0, 1]n with rational vertices and µ(R) ̸= ν(R).
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Let R be the polyhedral complex consisting of all the faces of the closure
R of R. Taking an arbitrary point r ∈ R with rational coordinates, consider
the stellar subdivision R′ of R (see [4, p.15]). The polyhedral complex R′ can
be triangulated without introducing any new vertices [4, Proposition 2.9]. In
turn, the resulting simplicial complex can be subdivided into a unimodular
triangulation Σ of R with a possible introduction of new vertices (see [7, Claim
2], for example).

For each v ∈ V(Σ) ∩ R, let hv be the Schauder hat at v over Σ, and define
a function fv : [0, 1]n → [0, 1] by

fv(x) =

{
hv(x), x ∈ R,

0, otherwise.

When f =
⊕

v∈V(Σ)∩R

fv, then it follows directly from unimodularity of Σ and

the definition of fv that f ∈ Lk. In particular, note that f(x) vanishes iff
x ∈ [0, 1]n \R and thus

sup
m∈N

m⊕
i=1

f = χR, (2)

where χR is the characteristic function of R. For every m ∈ N, the function⊕m
i=1 f is an n-variable McNaughton function, and (2) together with Lebesgue’s

dominated convergence theorem leads to the equality

µ(R) = sup
m∈N

∫ m⊕
i=1

f dµ = sup
m∈N

∫ m⊕
i=1

fdν = ν(R),

which is the contradiction.

The state space of Lk is a compact convex set. It can be completely described
by its extreme boundary (Krein-Milman theorem), which is formed by the states
sx : f ∈ Lk 7→ f(x), for every x ∈ [0, 1]k. In addition, the set of all such states
can be bijectively mapped onto the set of all maximal filters in Lk [9, Theorem
2.5] by the mapping sx 7→ Fx = {f ∈ Lk | sx(f) = 1}.

Theorem 2 ([9]). The set S(Lk) of all states on Lk is a compact convex subset
of the product space [0, 1]Lk . The set of all extreme points of S(Lk) equals
{sx | x ∈ [0, 1]k}, which is a closed subset of S(Lk) whose elements are in
one-to-one correspondence with maximal filters in Lk.

4 Belief Functions

Belief measures introduced in Dempster-Shafer theory [10, 12] are particular
completely (totally) monotone mappings in the sense of Choquet [11]. The
complete monotonicity of a real function can be defined on an arbitrary Abelian
semigroup. Let (G, ∗) be an Abelian semigroup and β be a mapping G → R.
Put ∆∗

aβ(x) = β(x) − β(x ∗ a), for every x, a ∈ G.
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Definition 2. A mapping β : G→ R is completely monotone if

∆∗
an
· · ·∆∗

a1
β(x) ≥ 0 (3)

for every n ≥ 1 and every x, a1, . . . , an ∈ G.

A completely monotone, normalized and nonnegative real function on a family
of sets equipped with ∩ is known as a belief measure (function) [12].

Definition 3 (Belief measure). Let (G, ∗) = (A,∩), where A is a family of
subsets of some nonempty set X closed w.r.t. finite intersections such that
∅, X ∈ A. A completely monotone function β : A → [0, 1] with β(X) = 1, β(∅) =
0 is called a belief measure.

In case that A is even an algebra of sets, the condition (3) can be equivalently
expressed for belief measures as follows:

β

(
n∪

i=1

Ai

)
≥

∑
I⊆{1,...n}

I ̸=∅

(−1)|I|+1β

(∩
i∈I

Ai

)
,

for every A1, . . . , An ∈ A. In this case the nonnegativity of the first two suc-
cessive differences in (3) implies that β is a monotone and a supermodular set
function, respectively, where the latter property means that

β(A1 ∪A2) + β(A1 ∩A2) ≥ β(A1) + β(A2),

for every A1, A2 ∈ A. In particular, note that every finitely additive probability
measure on A is a belief measure due to the inclusion-exclusion principle.

A plain generalization of the classical notion of a belief measure from Defi-
nition 3 towards the MV-algebra of McNaughton functions Lk leads to consid-
ering the Abelian semigroup (Lk,⊙) together with the differences defined by
the operator ∆⊙. This approach, however, does not seem to give the “right”
concept of a belief function on Lk since not every state is completely monotone
w.r.t. ∆⊙. In fact it is possible to find a state s and McNaughton functions
f, g1, g2 ∈ Lk such that ∆⊙

g2
∆⊙

g1
s(f) < 0. The lack of complete monotonicity is

caused by the absence of distributivity of ⊙ over ⊕ (and vice versa), which is
in a clear contrast to the properties of the lattice operations ∨ and ∧ on Lk.
Yet the requirement of complete monotonicity for states is rather natural due
to the linearity of every state (cf. Theorem 1) and consistency with the classi-
cal definition of belief measure, which covers finitely additive probabilities. An
alternative definition of belief function on Lk is proposed in the next paragraph
and it is shown how this concept relates to complete monotonicity w.r.t. the
Abelian semigroup (Lk,∧) together with the operator ∆∧.

In the sequel we consider belief measures on the family C of all closed subsets
of [0, 1]k. In particular, a belief measure β on C is outer regular (w.r.t. C) if
β(A) = inf {β(B) | B ∈ C and Int B ⊇ A}, for every A ∈ C.
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Definition 4 (Belief function). Let β be an outer regular belief measure on C.
A belief function β̂ on Lk is given by

β̂(f) =
∫ 1

0

β(f−1([t, 1])) dt, f ∈ Lk. (4)

Thus saying that “β̂ is a belief function on Lk” is equivalent to the existence
of an outer regular belief measure β on C so that β̂ and β are related by the
formula (4). The functional f 7→

∫ 1

0
β(f−1([t, 1])) dt is also called the Choquet

integral of f w.r.t. β [13]. Every pre-image f−1([t, 1]) is a closed set in [0, 1]k

and β(f−1([t, 1])) is thus well-defined. Since the function t 7→ β(f−1([t, 1])) is
bounded and non-increasing on [0, 1] for a fixed β and f ∈ Lk, the integral on
the right-hand side of (4) exists as the Riemann integral. Definition 4 bears a
resemblance to the approach of Goubault-Larrecq in [14], where, on the other
hand, belief measures are defined on the lattice of open subsets of a certain topo-
logical space. The preference of closed sets over opens is immaterial from the
viewpoint of Choquet integration (4) and it will be justified only in the follow-
ing. In a nutshell, closed subsets of [0, 1]k correspond one-to-one to particular
basic belief functions.

States are special belief functions according to Definition 4. Indeed, if an
outer regular belief measure β satisfies

β(A ∪B) + β(A ∩B) = β(A) + β(B), for every A,B ∈ C,

then β determines a unique regular Borel measure [11, V.26.6], and, conse-
quently, the corresponding β̂ is a state on Lk by Theorem 1 since the Choquet
integral w.r.t. a measure is just the Lebesgue integral. Moreover, Choquet
proved in [11, VII.52] that the integral in (4) preserves complete monotonicity
of β when the lattice operations on the domain of β̂ are employed. Precisely,
the following statement holds true.

Theorem 3 ([11]). Every belief function β̂ is completely monotone w.r.t. the
Abelian semigroup (Lk,∧).

Any belief function β̂ thus satisfies the following properties that are jointly
equivalent to its complete monotonicity:

(i) β̂ is monotone,
(ii) for every f1, . . . , fn ∈ Lk with n ≥ 2:

β̂

(
n∨

i=1

fi

)
≥

∑
I⊆{1,...n}

I ̸=∅

(−1)|I|+1β̂

(∧
i∈I

fi

)
. (5)

Further properties of belief functions on Lk are direct consequences of the well-
known properties of Choquet integral (see [13]).

Proposition 1. Let β̂ be a belief function on Lk. Then for every f, g ∈ Lk:
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(i) β̂(0) = 0, β̂(1) = 1
(ii) if f ≤ g, then β̂(f) ≤ β̂(g)
(iii) if f ⊙ g = 0, then β̂(f ⊕ g) ≥ β̂(f) + β̂(g)
(iv) β̂(f) + β̂(¬f) ≤ 1
(v) β̂ is a state iff β satisfies β(A ∪B) + β(A ∩B) = β(A) + β(B), for every

A,B ∈ C
(vi) if f⊙g = 0 and there is no pair x, y ∈ [0, 1]k with f(x) < g(x), f(y) > g(y),

then β̂(f ⊕ g) = β̂(f) + β̂(g)

Basic examples of belief functions are minima of McNaughton functions over
closed subsets of [0, 1]k.

Example 1. Let C ∈ C be nonempty and

bC(f) = min {f(x) | x ∈ C}, f ∈ Lk.

Then bC is a belief function since one can write bC = β̂C , where

βC(A) =

{
1, C ⊆ A,

0, otherwise,
A ∈ C,

is an outer regular belief measure on C.

Theorem 4. The set B(Lk) of all belief functions on Lk is a compact con-
vex subset of the product space [0, 1]Lk . The set of extreme points extB(Lk) of
B(Lk) is closed, equals {bC | C ∈ C, C ̸= ∅}, and it is in one-to-one correspon-
dence with filters in Lk.

Proof. It is known that the set B(C) of all outer regular belief measures on C is
a compact convex subset of the product space [0, 1]C and that the set of extreme
points of B(C) is closed and equals {βC | C ∈ C, C ̸= ∅} (see [11, VII.50]). The
mapping β 7→ β̂ is an affine and a continuous mapping of B(C) onto B(Lk)
since Choquet integration is continuous for a fixed integrand. Moreover, it is
also injective, which can be deduced from another result of Choquet [11, p. 266].
The one-to-one correspondence between {bC | C ∈ C, C ̸= ∅} and the filters in
Lk follows from [1, Section 3.4]: given bC , put

FC = {f ∈ Lk | f(x) = 1, for every x ∈ C}. (6)

Vice versa, if F is a filter in Lk, let

KF =
∩

f∈F

f−1(1). (7)

Compactness of [0, 1]k and closedness of each f−1(1) gives that the closed set
KF is nonempty. The two mappings from (6)-(7) are mutually inverse since [1,
Theorem 3.4.3(ii)] shows that C = KFC , for every C ∈ C.
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By Krein-Milman theorem, every belief function on Lk is thus in the closure of
some convex hull formed by belief functions bC . In particular, the usual integral
reformulation of Krein-Milman theorem together with Theorem 4 admits to
prove another integral representation of β̂. The uniqueness part of the next
theorem can be deduced from the similar result [11, VII.50.1] for B(C) by using
the fact that β 7→ β̂ is an affine homeomorphism.

Theorem 5. If β̂ is a belief function on Lk, then there exists a unique regular
Borel probability measure µ on extB(Lk) such that

β(f) =
∫

ext B(Lk)

bC(f) dµ, f ∈ Lk.

4.1 Remarks

Every belief function of the form bC for some C ∈ C preserves finite minima:

bC(f ∧ g) = bC(f) ∧ bC(g), f, g ∈ Lk.

In general, every minimum-preserving function b : Lk → [0, 1] with b(0) =
1, b(1) = 1 is a belief function. These functions are termed necessity mea-
sures (functions) and they were recently investigated on formulas of n-valued
 Lukasiewicz logic in [15].

Belief measures can be interpreted as certain lower probabilities. The cor-
responding upper probabilities are called plausibility measures in Dempster -
Shafer theory. If A is an algebra of sets and β : A → [0, 1] is a belief measure,
then the plausibility measure π is defined by π(A) = 1−β(AC), for every A ∈ A.
Properties of plausibility measures are “dual” to those of belief measures so that
the general theory can be developed for any of them. Plausibility functions on
Lk are defined analogously: if b is a belief function on Lk, then the function
p(f) = 1− b(¬f), f ∈ Lk, is called a plausibility function. Observe that it is the
involutivity of  Lukasiewicz negation that makes b and p dual to each other:

b(f) = b(¬¬f) = 1 − p(¬f), f ∈ Lk.

4.2 Open problems

The important open question is whether complete monotonicity of a real map-
ping on Lk is sufficient for its representation by the Choquet integral w.r.t. some
belief measure on C. Precisely, if b : Lk → [0, 1] is such that b(0) = 0, b(1) = 1
and b is completely monotone w.r.t. (Lk,∧), is it true that there exists an outer
regular belief measure β on C satisfying β̂ = b?

Another question of interest is whether a belief function b on Lk is a “lower
probability”, that is, whether the equality

b(f) = inf {s(f) | s state with s ≥ b}, f ∈ Lk,

holds true or not.
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