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Abstract: The aim of the paper consists in demonstrating the relevance
of the fundamental information-theoretic concepts, namely the entropy and
the I-divergence, for both the statistical inference and the limit theorems of
probability theory.

Abstrakt: Ćılem je ukázat význam základńıch pojmů teorie informace, tj.
entropie a I-divergence, jak pro statistické úlohy tak i pro limitńı věty teorie
pravděpodobnosti.

1 Introduction

Entropy, as a fundamental concept arising from statistical physics, was orig-
inally understood as a thermodynamical property of heat engines (see, e.g.,
[8] or [12]). Later, in the pioneering Shannon’s paper [13] it was introduced
as a crucial quantity of information theory. Its relevance as a measure of un-
certainty (ignorance, information) was early recognized and widely exploited
(see [3], [4], [10]). As the number of different names for the same concept in-
dicates, the more general quantity of I-divergence (relative entropy, Kullback-
Leibler number, information gain) became also widely used (see again [3], [4],
or [11], [14], and the references therein).

The purpose of the present paper consists in showing even more funda-
mental importance of the concepts for the area of mathematical statistics and
probability theory. We intend to illustrate how the quantities are inherent,
especially, for the multidimensional joint distributions, and how they arise
naturally in various situations.

Similar contents as here can be found, e.g., in [8]. For many topics of the
present paper, in particular for the limit theorems, [3] or [4] are the basic
references. For exponential distributions, closely related to the maximum
entropy principle, see [2], or, more generally, [5]. For statistical problems see
[11] or [14]. The presented results can be also generalized from the I.I.D. case
to the random processes or fields, see [6], [7], [9],and [15].

2 Basic definitions and properties

Let us consider a finite state space X = {x1, . . . , xM}.
By P(X ) we denote the class of all probability measures on X , and by

F(X ) the class of all real-valued functions on X . In particular, by R ∈ P(X )
we denote the uniform distribution, i.e., R(x) = 1

M for every x ∈ X .
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Let us recall the formulas for the entropy and the I-divergence, respec-
tively, namely

H(P ) =
∫
− logP dP =

∑
x∈X
− logP (x)P (x),

for P ∈ P(X ), and

I(P |Q) =
∫

log
P

Q
dP =

∑
x∈X

log
P (x)
Q(x)

P (x)

for P,Q ∈ P(X ), providing the terms are well defined. Otherwise we set
I(P |Q) =∞.

Proposition 1. For P,Q ∈ P(X ) it holds
i) H(P ) ∈ [0, logM ];
ii) H(P ) = 0 iff P (xi) = 1 for some i ∈ {1, . . . ,M} and P (xj) = 0 for

every j 6= i;
iii) H(P ) = logM iff P = R.
iv) I(P |Q) ∈ [0,∞];
v) I(P |Q) = 0 iff P = Q;
vi) I(P |Q) =∞ iff P 6� Q.

Proof.
H(P ) ≥ 0 follows from − logP (x) ≥ 0 for every x ∈ X . Thus H(P ) = 0

can occur only if − logP (x) ≡ 0 which proves ii). H(P ) ≤ logM and iii)
follow from iv) and v) with Q = M .

iv) and v) are due to Jensen’s inequality, vi) is obvious.

Remark.
Due to the above properties of the entropy, which is minimal for non-

random case and maximal for the uniform distribution, it can be understood
as a measure of uncertainty contained in the probability distribution. Namely,
if the entropy is zero then the output is sure, if it is maximal then all possible
outputs are equally likely.

The I-divergence, on the other hand, can serve as a distance, being equal
to zero for identical distributions, and maximal, equal to ∞, if the first
distribution is not supported on the same set as the second one.

3 Maximum entropy principle

As a rule, whenever we have no information about the distribution of some
random phenomenon, we turn to the uniform distribution. It is justified by
the fact that we have no reason for preferring any particular output. Thus,
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in the light of the above Remark, we opt for the distribution with maximum
entropy.

Such approach can be extended (see, e.g., [10] as the standard reference)
to the general maximum entropy principle (MAXENT). Suppose we have only
a partial information about the distribution, namely P ∈ E where E ⊂ P(X ).

Then, applying the MAXENT, we seek for

P E ∈ argmaxP∈EH(P )

or, more generally,
P E ∈ argminP∈EI(P |Q)

where Q ∈ P(X ) is some fixed reference probability measure.
Usually, the first definition, which, after all, agrees with the latter one for

the uniform Q = R, is meant by the maximum entropy principle.

Example (maximum entropy with linear constraints). Let us con-
sider a collection of statistics f = {fj}j∈K with |K| < ∞, where fj ∈
F(X ) for every j ∈ K. Moreover, in order to guarantee the basic regular-
ity (identifiability) condition, we assume the system (1, {fj}j∈K) to be
linearly independent.

Now, for a collection of constants m = {mj}j∈K we denote

E =M(m,f) = {P ∈ P;
∫
fj dP = mj for every j ∈ K}.

Further, let us introduce the exponential distribution Pα given by

Pα(x) = exp

∑
j∈K

αj fj(x)− c(α)


where α = (αj)j∈K ∈ RK is a parameter, and the appropriate normalizing

constant is given by c(α) = log
∑
x∈X exp

{∑
j∈K αj fj(x)

}
.

Then, we may deduce the following properties:
i) There is a one-to-one relation between the parameter α and the expo-

nential distribution Pα. Namely, for Pα = P β we have 〈α − β,f〉 = const.,
and the statement holds thanks to the identifiability condition above.

ii) Let Pα, P β ∈ E . Then α = β. We observe

0 ≤ I(Pα|P β) + I(P β |Pα) = 〈β − α,
∫

f dP β −
∫

f dPα〉 = 0.

Hence Pα = P β , and, due to i), we have α = β.
iii) Let Pα ∈ E . Then P E is given uniquely, and P E = Pα.
As it is well-known, we have

0 ≤ I(P |Pα) = c(α)− 〈α, m〉 −H(P ) = H(Pα)−H(P )
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where, by Proposition 1.v), the inequality turns into equality iff P = Pα.

We may conclude that whenever there exists the exponential representa-
tive Pα ∈ E =M(m,f) then it is given uniquely and satisfies the MAXENT.
Thus, the exponential distributions maximize the entropy under the linear
constraints, and, since the linear constraints are rather standard form of par-
tial information (see, e.g., the moment conditions in mathematical statistics),
the exponential families are well justified as probability models.

4 I.I.D. sequences

Let us consider a sequence xn = (x1, . . . , xn) where xi ∈ X for every i =
1, . . . , n. Let us denote by Nxn(y) =

∑n
i=1 δ(y, xi) the number of occurrences

of the state y ∈ X in the sequence xn. Consequently, we shall denote by
P xn = 1

nN
xn the empirical distribution induced by the sequence xn.

Now, we understand the sequence xn as a collection of data obtained from
a sequence of I.I.D. random variables with a one-body marginal distribution
P ∈ P(X ). Then, for the joint distribution, we may easily observe

Pn(xn) =
n∏
i=1

P (xi) =
∏
y∈X

P (y)N
xn (y) = exp{−n[D(P xn |P ) +H(P xn)]}.

As a result we may express the log-likelihood as

− 1
n

logPn(xn) = D(P xn |P ) +H(P xn).

Thus, we may conclude that, first, the empirical distribution is a sufficient
statistics for the joint distribution, and, moreover,the joint distribution de-
pends on the empirical distribution just through the above quantities, namely
the entropy and the I-divergence. Let us emphasize that such relation is not
imposed or artificial, it is apparently natural and inherent for the joint prob-
ability distributions.

5 Statistical problems

5.1 Parameter estimation

In this section let us consider a parametric family of probability distributions
{P θ}θ∈Θ where P θ ∈ P(X ) for every θ ∈ Θ. For the sake of simplicity we
shall assume P θ > 0 for every θ ∈ Θ (we may, e.g., imagine the exponential
family as introduced in Section 3).

Based on a data sequence xn = (x1, . . . , xn), we may define the maximum

likelihood estimate (MLE) standardly as : θ̂n = arg maxθ∈Θ logP θn(xn).
But, due to the above formula for the log-likelihood, we have also
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θ̂n = arg min
θ∈Θ

D(P xn |P θ).

Thus, the MLE can be alternatively understood as the Minimum I-
divergence estimate which provides us with an additional justification for
the MLE: we seek for such value of the parameter that makes the theoretical
distribution as close (in the sense of I-divergence) to the empirical one as
possible. Conversely, if we stay within the framework of ”minimum distance
estimation” then the distance measured by the I-divergence is privileged since
it yields the maximum likelihood estimation with all its favourable properties.

Remark(Consistency). The consistency of the MLE is in general rather
well-known. Nevertheless, it can be simultaneously derived from the mini-
mum I-divergence approach. Let us give a sketch of the proof:

Suppose θ0 ∈ Θ is the true parameter. Then, obviously,

θ0 = arg min
θ∈Θ

D(P θ0 |P θ).

Denote Ln(θ) = D(P xn |P θ) for every n = 1, ..., and L0(θ) = D(P θ0 |P θ).
Then, due to the law of large numbers, we obtain Ln(θ) −→n→∞ L0(θ)
a.s.[P ] point-wise for every θ ∈ Θ. But, in order to prove

θ̂n = arg min
θ∈Θ

Ln(θ) −→n→∞ arg min
θ∈Θ

L0 = θ0

we need the above convergence uniform at least on every compact set. The
latter is satisfied if all the functions Ln are convex, which is the case, e.g., of
the exponential families.

5.2 Testing hypotheses

Similarly as for the estimates, the likelihood ratio test may be understood as
tests based on the I-divergence. In particular, for Θ = RK , let us consider
the test of a simple hypothesis H0 : θ = θ0 against the alternative H1 : θ =
Θ \ {θ0}. Then

2nD(P θ̂
n

|P θ0) =⇒n→∞ χ2
K in distribution [P θ0 ].

More generally, for a subspace or a hyperplane Θ0 ⊂⊂ Θ, we may consider
the affine hypothesis H0 : θ ∈ Θ0 against the alternative H1 : θ ∈ Θ \ Θ0.
Then

2nD(P θ̂
n

|P θ̂
n
0 ) =⇒n→∞ χ2

K−dim(Θ0) in distribution [P θ]

for every θ ∈ Θ0, where

θ̂n0 = arg min
θ∈Θ0

D(P xn |P θ).

For more detailed treatment see, e.g., [9] or [14].
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6 I.I.D. sequences and types

From Section 3 we know Pn(xn) = exp{−n[D(P xn |P ) +H(P xn)]} providing
x1, . . . , xn are drawn I.I.D. according to P ∈ P(X ).

Now, let xn ∈ Tn(Q) = {xn : P xn = Q} for some Q ∈ P, we say xn is in
the type class of Q, then

Pn(xn) = exp{−n[D(Q|P ) +H(Q)]}.

In particular, for xn ∈ Tn(P ) we have Pn(xn) = exp{−nH(P )}.
At the same time, by combinatorial arguments we can obtain |Tn(P )| .=

exp{nH(P )} or, more precisely

exp{nH(P ) + o(n)} ≤ |Tn(P )| ≤ exp{nH(P )}

(see, e.g. [3]), and, therefore

Pn[Tn(P )] .= 1

while, in general,

Pn[Tn(Q)] .= exp{−nD(Q|P )}.

Thus, we may conclude that the joint distribution Pn is approximately
supported on the set Tn(P ) ⊂ Xn, that contains approximately enH(P ) con-
figurations. And each of the configurations has the equal probability e−nH(P ).
In such a way the joint distribution Pnis essentially determined by the entropy
H(P ).

As a corollary we obtain the law of large numbers. Namely, for g : X → R
we obtain

1
n

n∑
i=1

g(xi) =
∫
gdP xn

.=
∫
gdP.

7 Limit theorems

From the preceding section we know that every joint distribution Pn is con-
centrated on the configurations from its own type class Tn(P ). Nevertheless,
we are still interested in the behaviour of Pn outside its type class. Such
behaviour is again characterized by the entropy and related notions.

Definition(I-projection). For E ⊂ P(X ) we denoteD(E|P ) = infQ∈E D(Q|P ).
If there exists P∗ = arg minQ∈E D(Q|P ) we call it I-projection.

Due to compactness of P(X) and continuity of D(•|P ) we observe that
P∗ is attained if E ⊂ P(X ) is closed.

The proofs of the following results can be found. e.g., in [3] and [4], or,
in the most general form, also in [7].
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Theorem 1(Large deviations). If E = cl(intE) then

− 1
n

logPn(P xn ∈ E) −→n→∞ D(P∗|P ).

The above theorem has many interesting consequences, as an example let
us introduce the following result.

Corollary(Test power). When testing a simple hypothesis H0 : P = P 0

against a simple alternative H1 : P = P 1 with a level (first kind error) equal
to α ∈ (0, 1) we obtain for the second kind error

− 1
n

log βn −→n→∞ D(P 0|P 1).

The theorem on large deviations proclaims that, whenever the distance
D(E|P ) is positive, the probability Pn(P xn ∈ E) is very small, it tends to
zero exponentially fast. The following important and nice theorem shows
what will happen if we still ”enforce” the distribution to concentrate on such
a ”small” set.

Theorem 2 (Conditional limit theorem). Let E be a closed convex
subset of P(X) and P /∈ E . Then

Pn(•|P xn ∈ E) =⇒n→∞ P∞∗ (weakly).

The conditional limit theorem proofs, e.g., one of the fundamental results
of statistical physics.

Remark (the second law of thermodynamics). For P = R we have
P∗ = arg maxQ∈E H(Q). That means the conditional distribution attains (at
infinity) the maximum entropy.

Usually we have the set E given by a linear constraint (see Section 3), i.e.
E = {Q ∈ P(X );

∫
EdQ ≤ c}. Then we obtain the exponential distribution

P∗ ∝ exp{αE} · P as the I-projection.

Remark (importance sampling). The above conditional limit theorem
can be also used for approximating the conditional distribution, e.g., for the
simulation method known as ”importance sampling”.

Namely, for estimating some ”small” probability P (A) we can use P̂ (A) =
1
k

∑k
i=1 IA(yi)

P (yi)
Q(yi)

where y1, . . . , yk are drawn I.I.D. with some Q ∈ P(X ).
From the minimum variance point of view, the optimal choice is Q =

P (•|A), and, whenever we have A = An = {xn;P xn ∈ E}, we may use the
approximation Pn(•|An) .= Pn∗ (see [1]).
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