THE EQUATIONS OF STOCHASTIC NONLINEAR OSCILLATOR DRIVEN BY FRACTIONAL BROWNIAN MOTION

Jana Šnupárková

Abstract: Existence of a weak solution to the n-dimensional equation of stochastic nonlinear oscillator driven by a fractional Brownian motion with Hurst parameter $H \in (0,1) \setminus \{\frac{1}{2}\}$ has been shown if a diffusion matrix is time-dependent but state-independent and a drift may be singular but has to satisfy conditions of Girsanov Theorem.

Keywords: Fractional Brownian Motion, Girsanov Theorem, Weak Solution, Stochastic Nonlinear Oscillator.

1 Introduction

In this paper, we prove an existence of a weak solution to the n-dimensional equation of stochastic oscillator

$$\frac{d^2}{dt^2}x_t + F(t, x_t, \frac{d}{dt}x_t) = \bar{\sigma}(t)\frac{d}{dt}B_t^H ,$$

where $B^H = \left((B^H)^i\right)_{i=1}^n$ is an *n*-dimensional **fractional Brownian motion** with Hurst parameter $H \in (0,1)$, i.e. B^H is a centered Gaussian process with covariance function

$$\mathbb{E}\left[(B_s^H)^i(B_t^H)^j\right] = \frac{1}{2} \left(s^{2H} + t^{2H} - |s - t|^{2H}\right) \delta_{ij}, \quad s, t \ge 0, \ i, j = 1, \dots, n \ .$$

Process B^H is a standard Wiener process for $H=\frac{1}{2}$. For $H\neq\frac{1}{2}$ B^H has a version with Hölder continuous trajectories of order γ for any $0<\gamma< H$ and has stationary increments. Nevertheless, B^H is neither Markov process nor a semimartingale, hence standard methods of integration are not applicable. This example of a stochastic oscillator and other results about existence of weak solutions with full proofs will appear in [11]. There are many papers devoted to equations driven by a fractional Brownian motion, e.g. in [2], [8] the strong existence and uniqueness of solutions to one-dimensional SDE's for any $H\in(0,1)$ is established. In the case $H>\frac{1}{2}$ the existence and uniqueness of solutions is also proved in [4], [5] (by the rough path approach, using Young type integrals and the concept on p-variation) and in [10]. An existence of weak solutions in one-dimensional case is studied in [8], [9], [7] and [1] using Girsanov Theorem for fractional Brownian motion. Stochastic equations in Hilbert spaces driven by a fractional Brownian motion are studied in [3], [6].

2 Preliminaries

Consider an n-dimensional stochastic differential equation

$$X_{t} = \tilde{x} + \int_{0}^{t} b(s, X_{s}) ds + \int_{0}^{t} \sigma(s) dB_{s}^{H}, \qquad (2.1)$$

where $\tilde{x} \in \mathbb{R}^n$ is deterministic initial condition, $b : [0,T] \times \mathbb{R}^n \to \mathbb{R}^n$ is a drift which can be divided into a regular part and a singular part and $\sigma : [0,T] \to \mathcal{L}(\mathbb{R}^n)$ is a diffusion, which is time-dependent but state-independent. $\mathcal{L}(\mathbb{R}^n)$ is a space of all linear bounded operators from \mathbb{R}^n to \mathbb{R}^n . Furthermore, consider another simplier equation

$$Y_t = \tilde{x} + \int_0^t b_1(s, Y_s) \, ds + \int_0^t \sigma(s) \, dB_s^H \ . \tag{2.2}$$

Definition 2.1. An adapted process with continuous trajectories is a **solution** to the equation (2.2) if $\{Y_t, t \in [0,T]\}$ satisfies the equation (2.2). The solution to the equation (2.2) is **pathwise unique** if

$$\mathbb{P}\left\{Y_t = \tilde{Y}_t \quad \forall t \in [0, T]\right\} = 1$$

holds for any two solutions $\{Y_t, t \in [0,T]\}, \{\tilde{Y}_t, t \in [0,T]\}.$

By a **weak solution** to the equation (2.1) we mean a couple of adapted processes (B^H, X) with continuous trajectories on a complete probability space $(\Omega, \mathcal{F}, \mathbb{P})$ such that B^H is an n-dimensional fractional Brownian motion on the interval [0, T] and X and B^H satisfy (2.1).

The next theorem is a main result in [11]. Remark that $C^{\delta}([0,T];\mathcal{L}(\mathbb{R}^n))$ is a space of all Hölder continuous mappings of order δ , $0 < \delta < 1$, from the interval [0,T] to the space $\mathcal{L}(\mathbb{R}^n)$.

Theorem 2.2. Let $b_1, b_2 : [0, T] \times \mathbb{R}^n \to \mathbb{R}^n$, $\sigma : [0, T] \to \mathcal{L}(\mathbb{R}^n)$ be Borel mappings such that $b = b_1 + b_2$ on $[0, T] \times \mathbb{R}^n$ and assume that there exists a Borel measurable inverse σ^{-1} of σ . Suppose that

$$\exists K_b > 0 \ \forall t \in [0, T] \ \forall x \in \mathbb{R}^n \quad \|b_1(t, x)\| \le K_b(1 + \|x\|) \tag{2.3}$$

and there exists a solution Y to the equation (2.2). Set $u(t) = \sigma^{-1}(t)b_2(t, Y_t)$, $t \in [0, T]$. Assume that $u \in L^{\infty}([0, T]; \mathbb{R}^n)$ \mathbb{P} -almost surely and either $H < \frac{1}{2}, \ \sigma \in \mathcal{C}^{\delta^*}([0, T]; \mathcal{L}(\mathbb{R}^n))$ for some $\delta^* \in (\frac{1}{2} - H, 1)$ and $\exists K > 0$ $\forall t \in [0, T] \ \forall x \in \mathbb{R}^n$

$$\|\sigma^{-1}(t) b_2(t,x)\| \le K(1+\|x\|)$$
,

or

 $H > \frac{1}{2}, \ \sigma \in L^{\infty}([0,T];\mathcal{L}(\mathbb{R}^n)) \ and \ \exists \alpha \in (1-\frac{1}{2H},1) \ \exists \beta \in (H-\frac{1}{2},1) \ \exists C > 0 \ \forall s,t \in [0,T] \ \forall x,y \in \mathbb{R}^n$

$$\|\sigma^{-1}(t) b_2(t,x) - \sigma^{-1}(s) b_2(s,y)\| \le C(\|x-y\|^{\alpha} + |t-s|^{\beta}).$$

Then there exists a weak solution to the equation (2.1).

Sketch of the proof (cf. [11] for details) First we show that there exists a version of the stochastic integral $\{\int_0^t \sigma(s) dB_s^H, t \in [0,T]\}$ with Hölder continuous trajectories of order γ , $0 < \gamma < H$, using Kolmogorov-Chentsov Theorem. As H increases, conditions on integrand σ are less restrictive and computations in the proof of Hölder continuity are easier for $H > \frac{1}{2}$ then for $H < \frac{1}{2}$. Next we prove that if we have solution Y to the equation (2.2), where b_1 is a Borel function satisfying condition (2.3), then there exists a version of $\{Y_t, t \in [0, T]\}$ with Hölder continuous trajectories of order γ , $0 < \gamma < H$. The next aim is to use Girsanov Theorem which for a fractional Brownian motion takes the following form

Theorem 2.3. Let $B^H = \{B_t^H, t \in [0,T]\}$ be an n-dimensional fractional Brownian motion with Hurst parameter H on the interval [0,T]. Consider an adapted n-dimensional process $u = \{u_t, t \in [0,T]\}$ with integrable trajectories. Set

$$v(s) = K_H^{-1} \left(\int_0^{\cdot} u_r \, dr \right) (s) \,, \quad s \in [0, T] \,,$$
$$\xi_T = \exp \left\{ \int_0^T v_s^{\mathrm{T}} \, dW_s - \frac{1}{2} \int_0^T \|v_s\|^2 \, ds \right\}$$

and assume that

(i)
$$\int_0^{\cdot} u_s \, ds \in I_{0+}^{H+\frac{1}{2}} \left(L^2([0,T]; \mathbb{R}^n) \right) \quad \mathbb{P} - a.s. ,$$

(ii) $\mathbb{E}(\mathcal{E}_T) = 1 .$

Then $\{B_t^H - \int_0^t u_s \, ds, \, t \in [0,T]\}$ is an n-dimensional fractional Brownian motion with Hurst parameter H on the interval [0,T] under the probability $\tilde{\mathbb{P}}$ defined by the density $\xi_T = \frac{d\tilde{\mathbb{P}}}{d\mathbb{P}}$ with respect to \mathbb{P} .

Note that $\{W_t, t \geq 0\}$ is an *n*-dimensional Wiener process defined by

$$W_t = \int_0^T (\mathcal{K}_H^*)^{-1} (I_{[0,t]} id)(s) dB_s^H, \quad t \in [0,T] ,$$

where \mathcal{K}_H^* is an isometry between the space $(\mathcal{H}, \| . \|_{\mathcal{H}})$ of all deterministic time-dependent integrable functions with respect to the fractional Brownian motion and a space $L^2(\Omega, \mathcal{L}(\mathbb{R}^n))$ (for precise definitions see [11]). The space $I_{0+}^{H+\frac{1}{2}}(L^2([0,T];\mathbb{R}^n))$ is an image of $L^2([0,T];\mathbb{R}^n)$) under the operator $I_{0+}^{H+\frac{1}{2}}$ defined by the formula

$$\left(I_{0+}^{H+\frac{1}{2}}\varphi\right)(t) := \frac{1}{\Gamma(H+\frac{1}{2})} \int_0^t (t-s)^{H-\frac{1}{2}}\varphi(s)\,ds$$

for $\varphi \in L^1([0,T];\mathbb{R}^n)$. The above integral is well-defined for a.e. $t \in [0,T]$ and Γ denotes Gamma function.

The operator $K_H^{-1}: I_{0+}^{H+\frac{1}{2}}\left(L^2([0,T];\mathbb{R}^n)\right) \longrightarrow L^2([0,T];\mathbb{R}^n)$ is the inverse of the linear operator $K_H: L^2([0,T];\mathbb{R}^n) \longrightarrow I_{0+}^{H+\frac{1}{2}}\left(L^2([0,T];\mathbb{R}^n)\right)$ defined by

$$(K_H \varphi)(t) := \int_0^t K_H(t, s) \varphi(s) ds ,$$

where $K_H(t,s)$ is an integral kernel having a form

$$K_H(t,s) = \begin{cases} \frac{C_H}{H^*} s^{-H^*} \left[(t.(t-s))^{H^*} - H^*.I_H \right] &, \quad s < t ,\\ 0 &, \quad s \ge t , \end{cases}$$

where $H^* = H - \frac{1}{2}$, $I_H = \int_s^t u^{H^* - 1} (u - s)^{H^*} du$ and

$$C_H = \sqrt{\frac{H.H^*}{2B(2-2H, H^*)}} \;,$$

and B denotes Beta function.

To verify conditions (i), (ii) of Girsanov Theorem it is sufficient to show that

$$\mathbb{E} \exp\left\{ \int_{t_1}^{t_2} \|v_s\|^2 \, ds \right\} < +\infty$$

for any $0 \le t_1 < t_2 \le T$ enough small. This can be shown using Fernique theorem

Theorem 2.4. Let $(V, \|.\|, \mathcal{B}(V))$ be a separable Banach space with a Borel σ -field $\mathcal{B}(V)$. Suppose that G is a V-valued zero-mean Gaussian random variable. Then there exists $\zeta > 0$ such that

$$\mathbb{E} \exp\{\zeta \|G\|_V^2\} < +\infty.$$

Contrary to the regularity of trajectories of the process $\{\int_0^t \sigma(s) \, dB_s^H, \, t \in [0,T]\}$, conditions on the product $\sigma^{-1}b_2$ are more restrictive and computations are more difficult in the case $H > \frac{1}{2}$ than in the case $H < \frac{1}{2}$. Finally we show that the couple $(\{B_t^H - \int_0^t u_s \, ds, \, t \in [0,T]\}, Y)$ is a weak solution to the equation (2.1) on the probability space $(\Omega, \mathcal{F}, \tilde{\mathbb{P}})$, where $\tilde{\mathbb{P}}$ is a changed probability measure defined by a density ξ_T with respect to probability measure \mathbb{P} .

Δ

3 Equation of stochastic oscillator

Consider the formal equation

$$\frac{d^2}{dt^2}x_t + F(t, x_t, \frac{d}{dt}x_t) = \bar{\sigma}(t)\frac{d}{dt}\bar{B}_t^H , \qquad (3.1)$$

the weak solution of which is defined as the weak solution to

$$X_t = y_0 + \int_0^t (b_1(X_s) + b_2(s, X_s)) ds + \int_0^t \sigma(s) dB_s^H, \qquad (3.2)$$

where $\{B_t^H, t \in [0,T]\}$ is a 2n-dimensional fractional Brownian motion whose first n components are components of \bar{B}^H and where for $t \in [0,T]$ and $y = (x,v)^T \in \mathbb{R}^{2n}$

$$X_t := \begin{pmatrix} x_t \\ v_t \end{pmatrix},$$

$$b_1(y) := \begin{pmatrix} v \\ 0 \end{pmatrix},$$

$$b_2(t,y) := \begin{pmatrix} 0 \\ -F(t,y) \end{pmatrix},$$

$$y_0 := \begin{pmatrix} x_0 \\ v_0 \end{pmatrix}$$

and

$$\sigma(t) := \left(\begin{array}{cc} 0 & 0 \\ 0 & \bar{\sigma}(t) \end{array} \right) \ ,$$

 $\sigma(t)$ being a $2n \times 2n$ -dimensional matrix. Moreover, consider the linear equation

$$Y_t = y_0 + \int_0^t b_1(Y_s) \, ds + \int_0^t \sigma(s) \, dB_s^H \,. \tag{3.3}$$

Proposition 3.1. Suppose that $\sigma:[0,T] \to \mathcal{L}(\mathbb{R}^n)$ is a Borel mapping satisfying either $H < \frac{1}{2}$ and $\sigma \in \mathcal{C}^{\delta^*}([0,T];\mathcal{L}(\mathbb{R}^n))$ for some $\delta^* \in (\frac{1}{2} - H, 1)$ or $H > \frac{1}{2}$ and $\sigma \in L^{\infty}([0,T];\mathcal{L}(\mathbb{R}^n))$. Further, let $b_1:[0,T] \times \mathbb{R}^n \to \mathbb{R}^n$ be a Borel function satisfying the following conditions:

 $\forall N \in \mathbb{N} \ \exists K_N > 0 \ \forall t \in [0, T] \ \forall x, y \in \mathbb{R}^n \ \|x\| + \|y\| \le N$

$$||b_1(t,x)-b_1(t,y)|| \le K_N||x-y||,$$

and

$$\exists K_b > 0 \ \forall t \in [0, T] \ \forall x \in \mathbb{R}^n \quad ||b_1(t, x)|| \le K_b(1 + ||x||) .$$

Then there exists the pathwise unique solution to the equation (2.2).

Proof. Cf. [11].

Q.E.D.

Suppose that matrix $\bar{\sigma}$ is regular for all $t \in [0, T]$. Let

$$\Sigma(t) = \left(\begin{array}{cc} 0 & 0 \\ 0 & \bar{\sigma}^{-1}(t) \end{array} \right), \quad t \in [0,T] \ ,$$

be a $2n \times 2n$ -dimensional matrix. It is easy to see from the proof that the statement of Theorem 2.2 holds if we replace σ^{-1} in this theorem by Σ . Suppose that $\bar{\sigma}$ is a Borel function satisfying either

(A1)
$$H < \frac{1}{2}$$
 and $\bar{\sigma} \in \mathcal{C}^{\delta^*}([0,T];\mathcal{L}(\mathbb{R}^n))$ for some $\delta^* \in (\frac{1}{2} - H, 1)$, or

(A2)
$$H > \frac{1}{2}$$
 and $\bar{\sigma} \in L^{\infty}([0,T];\mathcal{L}(\mathbb{R}^n))$.

Function $b_1: \mathbb{R}^{2n} \to \mathbb{R}^{2n}$; $y = (x, v)^T \mapsto (v, 0)^T$ is Lipschitz (consequently b_1 satisfies condition (2.3)). Then there exists the pathwise unique solution $\{Y_t, t \in [0, T]\}$ to the equation (3.3) (cf. Proposition 3.1).

Assume that trajectories of the process $\{\bar{\sigma}^{-1}(t)F(t,Y_t), t \in [0,T]\}$ are in $L^{\infty}([0,T];\mathbb{R}^n)$ and suppose moreover either

(B1)
$$H < \frac{1}{2}$$
 and $\exists K > 0 \ \forall t \in [0, T] \ \forall y \in \mathbb{R}^{2n}$

$$\|\bar{\sigma}^{-1}(t)F(t,y)\| < K(1+\|y\|)$$
,

or

(B2)
$$H > \frac{1}{2}$$
 and $\exists \alpha \in (1 - \frac{1}{2H}, 1) \exists \beta \in (H - \frac{1}{2}, 1) \exists C > 0 \ \forall s, t \in [0, T] \ \forall y_1, y_2 \in \mathbb{R}^{2n}$

$$\|\bar{\sigma}^{-1}(t)F(t,y_1) - \bar{\sigma}^{-1}(s)F(t,y_2)\| \le C(\|y_1 - y_2\|^{\alpha} + |t - s|^{\beta}).$$

Then assumptions of Theorem 2.2 on a map $(t, y) \mapsto \Sigma(t) b_2(t, y), t \in [0, T], y \in \mathbb{R}^{2n}$, are satisfied because

$$\Sigma(t) b_2(t,y) = \begin{pmatrix} 0 \\ -\bar{\sigma}(t)F(t,y) \end{pmatrix} ,$$

hence equations (3.2) and thereby (3.1) have weak solutions.

References

- [1] B. Boufoussi, Y. Ouknine: On a SDE driven by a fractional Brownian motion and with monotone drift, *Elect. Comm. Probab.* 8 (2003), 122-134
- [2] L. Denis, M. Erraoni, Y. Ouknine: Existence and uniqueness for solutions of one dimensional SDE's driven by an additive fractional noise, Stoch. Stoch. Rep., 76 (2004), 409-427
- [3] T.E. Duncan, B. Maslowski, B. Pasik-Duncan: Semilinear stochastic equations in a Hilbert space with a fractional Brownian motion, to appear in SIAM J. Math. Anal.

- [4] T. Lyons: Differential Equations Driven by Rough Signals, Rev. Mat. Iberoamericana, 14 (1998), 215-310
- [5] T. Lyons: Differential Equations Driven by Rough Signals (I): an extension of an inequality of L. C. Young, *Math. Res. Lett.*, 1 (1994), 451-464
- [6] B. Maslowski, D. Nualart: Evolution equations driven by a fractional Brownian motion, J. Funct. Anal., 202 (2003), 277-305
- [7] Yu. Mishura, D. Nualart: Weak solutions for stochastic differential equations with additive fractional noise, Stat. Probab. Lett., 70 (2004), 253-261
- [8] D. Nualart, Y. Ouknine: Regularization of Differential equations by fractional noise, Stochastic Process. Appl., 102 (2002), 103-116
- [9] D. Nualart, Y. Ouknine: Stochastic differential equations with additive fractional noise and locally unbounded drift, Stochastic inequalities and applications, 353-365, Birkhäuser, Basel, 2003
- [10] D. Nualart, A. Răşcanu: Differential Equations driven by Fractional Brownian Motion, *Collect. Math.*, 53 (2002), 55-81
- [11] J. Šnupárková: Weak solutions to stochastic differential equations driven by fractional Brownian motion, to appear in *Czech. Math. J.*

Acknowledgement: This work was partially supported by the GAČR grant no. 201/07/0237.

Address: Institute of Information Theory and Automation of the ASCR, Pod Vodárenskou věží 4, 182 08 Prague 8 Czech Republic

E-mail: snupark@utia.cas.cz