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THE EQUATIONS OF STOCHASTIC
NONLINEAR OSCILLATOR DRIVEN
BY FRACTIONAL BROWNIAN MOTION

Jana Snuparkova

Abstract: Existence of a weak solution to the n-dimensional equation of
stochastic nonlinear oscillator driven by a fractional Brownian motion with
Hurst parameter H € (0,1) \ {3} has been shown if a diffusion matrix is
time-dependent but state-independent and a drift may be singular but has
to satisfy conditions of Girsanov Theorem.
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1 Introduction

In this paper, we prove an existence of a weak solution to the n-dimensional
equation of stochastic oscillator

i + F(t d ) =a(t) 4 g

—x Ty, —xy) = 0 (t)— ,
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where B = ((BY )i)?zl is an n-dimensional fractional Brownian motion
with Hurst parameter H € (0, 1), i.e. B¥ is a centered Gaussian process with
covariance function

]E[(Bff)l(Bf)J]: (52H+t2H—\s—t|2H)5ij, 5,t>0,4,5=1,...,n.
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Process B is a standard Wiener process for H = % For H # % BH has a
version with Holder continuous trajectories of order  for any 0 < v < H and
has stationary increments. Nevertheless, B is neither Markov process nor
a semimartingale, hence standard methods of integration are not applicable.
This example of a stochastic oscillator and other results about existence of
weak solutions with full proofs will appear in [11]. There are many papers
devoted to equations driven by a fractional Brownian motion, e.g. in [2], [§]
the strong existence and uniqueness of solutions to one-dimensional SDE’s for
any H € (0,1) is established. In the case H > % the existence and uniqueness
of solutions is also proved in [4], [5] (by the rough path approach, using Young
type integrals and the concept on p-variation) and in [10]. An existence of
weak solutions in one-dimensional case is studied in [8], [9], [7] and [1] using
Girsanov Theorem for fractional Brownian motion. Stochastic equations in
Hilbert spaces driven by a fractional Brownian motion are studied in [3], [6].
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2 Preliminaries

Consider an n-dimensional stochastic differential equation

t t
Xt:;%+/ b(s,Xs)ds+/ o(s)dBH | (2.1)
0 0

where Z € R" is deterministic initial condition, b : [0,7] x R" — R™ is a
drift which can be divided into a regular part and a singular part and o :
[0,T] — L(R™) is a diffusion, which is time-dependent but state-independent.
L(R"™) is a space of all linear bounded operators from R™ to R”. Furthermore,
consider another simplier equation

t t
Yt:£+/ bl(s,Ys)ds+/ o(s)dBH . (2.2)
0 0

Definition 2.1. An adapted process with continuous trajectories is a solu-
tion to the equation (2.2) if {Y:, t € [0,T]} satisfies the equation (2.2). The
solution to the equation (2.2) is pathwise unique if

P{Y, =Y, Vte[0,T]} =1

holds for any two solutions {Y;, t € [0,T]}, {Y;, t € [0,T7]}.
By a weak solution to the equation (2.1) we mean a couple of adapted
processes (B | X)) with continuous trajectories on a complete probability space

(Q,F,P) such that B is an n-dimensional fractional Brownian motion on
the interval [0,T] and X and B satisfy (2.1).

The next theorem is a main result in [11]. Remark that C°([0, T]; L(R™)) is
a space of all Holder continuous mappings of order 4, 0 < § < 1, from the
interval [0, 7] to the space L(R™).

Theorem 2.2. Let by,by : [0,T] x R" — R", ¢ :[0,7] — L(R™) be Borel
mappings such that b =by + by on [0,T] X R™ and assume that there exists a
Borel measurable inverse o~ of 0. Suppose that

3K, >0Vt € [0,T] Vo € R ||b(t, o) < Kp(1+ [lz])  (2.3)

and there exists a solution Y to the equation (2.2). Setu(t) = o= 1(t)ba(t, V),
t €10,T]. Assume that u € L*([0,T];R™) P -almost surely and either
H< L oec®([0,T); L(R™)) for some 6* € (3 — H,1) and 3K > 0

vt € [0,T] Vo € R"
lo™ () ba(t, 2)|| < K(1+ [l])

or
H>1 oeL®(0,T);L(R") and 3a € (1 54,1) 36 € (H — 5, 1)
3C > 0 Vs, t € [0,T] Yo,y € R™

lo= () ba(t,2) — o7} (s) ba(s, )| < Cllla —yl|* + |t = sI7) .

Then there exists a weak solution to the equation (2.1).
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Sketch of the proof (cf. [11] for details) First we show that there exists
a version of the stochastic integral {fot o(s)dBH, ¢t € [0,T)} with Holder
continuous trajectories of order v, 0 < v < H, using Kolmogorov-Chentsov
Theorem. As H increases, conditions on integrand o are less restrictive and
computations in the proof of Holder continuity are easier for H > % then for
H < % Next we prove that if we have solution Y to the equation (2.2), where
by is a Borel function satisfying condition (2.3), then there exists a version of
{Y;, t € [0,T]} with Holder continuous trajectories of order v, 0 < v < H.
The next aim is to use Girsanov Theorem which for a fractional Brownian
motion takes the following form

Theorem 2.3. Let B = {BH t € [0,T]} be an n-dimensional fractional
Brownian motion with Hurst parameter H on the interval [0,T]. Consider
an adapted n-dimensional process w = {uy, t € [0,T]} with integrable trajec-
tories. Set

o) =K' ([ war) @) se .

T 1 T
& = exp / vl dW, — */ [vs]? ds
0 2.Jo

and assume that

(i) /0 usds € I0 7 (L2(10, T); R™)) P —a.s. |

(it) E(&r)=1.

Then {BF — fot usds, t € [0,T]} is an n-dimensional fractional Brownian
motion with Hurst parameter H on the interval [0,T] under the probability

P defined by the density & = % with respect to P.

Note that {W;, ¢ > 0} is an n-dimensional Wiener process defined by

T
W, = / (K3) ™ o id)(s) B, te(0.7),
0

where K3 is an isometry between the space (H,||.||#) of all deterministic
time-dependent integrable functions with respect to the fractional Brownian
motion and a space L?(£2, L(R™)) (for precise definitions see [11]). The space

1

I(ﬁf% (L*([0,T]; R™)) is an image of L2([0,T];R™)) under the operator Igf§

defined by the formula

1

(I(iJr%SD) (t) := F(HJrl)/o (t—5)"=2p(s) ds

for ¢ € LY([0,T];R™). The above integral is well-defined for a.e. t € [0, 7]
and I' denotes Gamma function.
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The operator K" : Iéfr% (L*([0,T);R™)) — L%([0,T]; R™) is the inverse of
the linear operator Kg : L?([0, T]; R") — Iéﬁr% (L2([0, T};R™)) defined by

KHSD /KHtS )d

where Ky (t,s) is an integral kernel having a form

Cyg .—H* _ H*_ *
Kul(t,s) = TS [(t.(t s)) H.IH} , s<t,
s>t

7

where H* = H—Q,IH—f w1 (u — s)"" du and

O — H.H*
7=\l 2B(2=2H, H*)
and B denotes Beta function.
To verify conditions (4), (i4) of Girsanov Theorem it is sufficient to show that

ta
Eexp{/ ||vs|2ds} < 400
t1

for any 0 < ¢; < t3 < T enough small. This can be shown using Fernique
theorem

Theorem 2.4. Let (V,||. ||, B(V)) be a separable Banach space with a Borel
o-field B(V). Suppose that G is a V-valued zero-mean Gaussian random
variable. Then there exists ¢ > 0 such that

E exp{C[|G|[}/} < +o0 .

Contrary to the regularity of trajectories of the process { fo s)dBH t €
[0, T}, conditions on the product o~1by are more restrictive and computa-
tions are more difficult in the case H > % than in the case H < % Finally we
show that the couple ({ B} —fg usds, t € [0,71},Y) is a weak solution to the
equation (2.1) on the probability space (Q, F,P), where P is a changed prob-
ability measure defined by a density {7 with respect to probability measure
P.

N
3 Equation of stochastic oscillator
Consider the formal equation
2 d d -y
pToR + F(t, ¢, prd ¢) = O’(t)%Bt , (3.1)
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the weak solution of which is defined as the weak solution to
t t
Xi =1yo —I—/ (bl(XS) + bg(s,Xs)) ds —|—/ a(s) dBf , (3.2)
0 0

where {B/,t € [0, T]} is a 2n-dimensional fractional Brownian motion whose
first n components are components of B¥ and where for t € [0,7] and y =

(.IZ,U)T c RQn
xr
Xt = < t),
Ut

bi(y) = <g>
ba(t,y) = <_F?t,y)>’

< )
y =
Vo

oft) = ( 8 6?15) ) :

o(t) being a 2n x 2n-dimensional matrix.
Moreover, consider the linear equation

and

t t
Yt:yo—i—/ bl(YS)der/ o(s)dB! | (3.3)
0 0

Proposition 3.1. Suppose that o : [0,T] — L(R™) is a Borel mapping sat-
isfying either H < L and o € C%"([0,T]; L(R™)) for some 6* € (3 — H,1) or
H > 1 and o € L>([0,T]; L(R™)). Further, let by : [0,T] x R® — R" be a
Borel function satisfying the following conditions:
YNeNIKN>0Vte[0,T] Vo, yeR” |z|| + |ly]| < N

B2, ) = ba (8 )| < K[l =yl

and

K, >0Vt € [0,T) Ve € R™ ||by (¢, z)|| < Kp(1 4+ ||z]]) -
Then there exists the pathwise unique solution to the equation (2.2).
Proof. Cf. [11].

Q.E.D.
Suppose that matrix & is regular for all ¢ € [0,T]. Let

E(t)_<8 _Q(t)), tel0,T],
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be a 2n x 2n-dimensional matrix. It is easy to see from the proof that the
statement of Theorem 2.2 holds if we replace ¢~ in this theorem by X.
Suppose that & is a Borel function satisfying either

(A1) H < % and 5 € €% ([0,T]; L(R™)) for some 6* € (2 — H,1) ,

(A2) H > 1 and 6 € L>([0,T]; L(R™)) .

Function b; : R?" — R?"; y = (x,v)T +— (v,0)T is Lipschitz (consequently
by satisfies condition (2.3)). Then there exists the pathwise unique solution
{Y;, t € [0,T]} to the equation (3.3) (cf. Proposition 3.1).

Assume that trajectories of the process {571(t)F(t,Y;), t € [0,T]} are in
L*°([0,T]; R™) and suppose moreover either

(B1) H < % and 3K > 0Vt € [0,T] Vy € R*"

I O FE )l < KA+ [lyl)

(B2) H>1and3Ja € (1-55,1)3B € (H-1%,1)3C > 0Vs,t €[0,T]
vylayQ €R2n

167 O F(t 1) — () F(t 2| < Cllyn — ol + [t = 1) -

Then assumptions of Theorem 2.2 on a map (t,y) — X(¢) ba(t, y), t € [0,T],
y € R?" are satisfied because

S(t) ba(t,y) = ( ,5(15)37(16,1/) ) ’

hence equations (3.2) and thereby (3.1) have weak solutions.
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