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THE EQUATIONS OF STOCHASTIC
NONLINEAR OSCILLATOR DRIVEN
BY FRACTIONAL BROWNIAN MOTION

Jana Šnupárková

Abstract: Existence of a weak solution to the n-dimensional equation of
stochastic nonlinear oscillator driven by a fractional Brownian motion with
Hurst parameter H ∈ (0, 1) \ { 1

2} has been shown if a diffusion matrix is
time-dependent but state-independent and a drift may be singular but has
to satisfy conditions of Girsanov Theorem.
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1 Introduction

In this paper, we prove an existence of a weak solution to the n-dimensional
equation of stochastic oscillator

d2

dt2
xt + F (t, xt,

d

dt
xt) = σ̄(t)

d

dt
BHt ,

where BH =
(
(BH)i

)n
i=1

is an n-dimensional fractional Brownian motion
with Hurst parameter H ∈ (0, 1), i.e. BH is a centered Gaussian process with
covariance function

E [(BHs )i(BHt )j ] =
1
2
(
s2H + t2H − |s− t|2H

)
δij , s, t ≥ 0, i, j = 1, . . . , n .

Process BH is a standard Wiener process for H = 1
2 . For H 6= 1

2 BH has a
version with Hölder continuous trajectories of order γ for any 0 < γ < H and
has stationary increments. Nevertheless, BH is neither Markov process nor
a semimartingale, hence standard methods of integration are not applicable.
This example of a stochastic oscillator and other results about existence of
weak solutions with full proofs will appear in [11]. There are many papers
devoted to equations driven by a fractional Brownian motion, e.g. in [2], [8]
the strong existence and uniqueness of solutions to one-dimensional SDE’s for
any H ∈ (0, 1) is established. In the case H > 1

2 the existence and uniqueness
of solutions is also proved in [4], [5] (by the rough path approach, using Young
type integrals and the concept on p-variation) and in [10]. An existence of
weak solutions in one-dimensional case is studied in [8], [9], [7] and [1] using
Girsanov Theorem for fractional Brownian motion. Stochastic equations in
Hilbert spaces driven by a fractional Brownian motion are studied in [3], [6].
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2 Preliminaries

Consider an n-dimensional stochastic differential equation

Xt = x̃+
∫ t

0

b(s,Xs) ds+
∫ t

0

σ(s) dBHs , (2.1)

where x̃ ∈ Rn is deterministic initial condition, b : [0, T ] × Rn → Rn is a
drift which can be divided into a regular part and a singular part and σ :
[0, T ]→ L(Rn) is a diffusion, which is time-dependent but state-independent.
L(Rn) is a space of all linear bounded operators from Rn to Rn. Furthermore,
consider another simplier equation

Yt = x̃+
∫ t

0

b1(s, Ys) ds+
∫ t

0

σ(s) dBHs . (2.2)

Definition 2.1. An adapted process with continuous trajectories is a solu-
tion to the equation (2.2) if {Yt, t ∈ [0, T ]} satisfies the equation (2.2). The
solution to the equation (2.2) is pathwise unique if

P {Yt = Ỹt ∀ t ∈ [0, T ]} = 1

holds for any two solutions {Yt, t ∈ [0, T ]}, {Ỹt, t ∈ [0, T ]}.
By a weak solution to the equation (2.1) we mean a couple of adapted
processes (BH , X) with continuous trajectories on a complete probability space
(Ω,F ,P ) such that BH is an n-dimensional fractional Brownian motion on
the interval [0, T ] and X and BH satisfy (2.1).

The next theorem is a main result in [11]. Remark that Cδ([0, T ];L(Rn)) is
a space of all Hölder continuous mappings of order δ, 0 < δ < 1, from the
interval [0, T ] to the space L(Rn).

Theorem 2.2. Let b1, b2 : [0, T ] × Rn → Rn, σ : [0, T ] → L(Rn) be Borel
mappings such that b = b1 + b2 on [0, T ]×Rn and assume that there exists a
Borel measurable inverse σ−1 of σ. Suppose that

∃Kb > 0 ∀t ∈ [0, T ] ∀x ∈ Rn ‖b1(t, x)‖ ≤ Kb(1 + ‖x‖) (2.3)

and there exists a solution Y to the equation (2.2). Set u(t) = σ−1(t)b2(t, Yt),
t ∈ [0, T ]. Assume that u ∈ L∞([0, T ]; Rn) P -almost surely and either
H < 1

2 , σ ∈ C
δ∗([0, T ];L(Rn)) for some δ∗ ∈ ( 1

2 −H, 1) and ∃K > 0
∀t ∈ [0, T ] ∀x ∈ Rn

‖σ−1(t) b2(t, x)‖ ≤ K(1 + ‖x‖) ,

or
H > 1

2 , σ ∈ L
∞([0, T ];L(Rn)) and ∃α ∈ (1− 1

2H , 1) ∃β ∈ (H − 1
2 , 1)

∃C > 0 ∀s, t ∈ [0, T ] ∀x, y ∈ Rn

‖σ−1(t) b2(t, x)− σ−1(s) b2(s, y)‖ ≤ C(‖x− y‖α + |t− s|β) .

Then there exists a weak solution to the equation (2.1).
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Sketch of the proof (cf. [11] for details) First we show that there exists
a version of the stochastic integral {

∫ t
0
σ(s) dBHs , t ∈ [0, T ]} with Hölder

continuous trajectories of order γ, 0 < γ < H, using Kolmogorov-Chentsov
Theorem. As H increases, conditions on integrand σ are less restrictive and
computations in the proof of Hölder continuity are easier for H > 1

2 then for
H < 1

2 . Next we prove that if we have solution Y to the equation (2.2), where
b1 is a Borel function satisfying condition (2.3), then there exists a version of
{Yt, t ∈ [0, T ]} with Hölder continuous trajectories of order γ, 0 < γ < H.
The next aim is to use Girsanov Theorem which for a fractional Brownian
motion takes the following form

Theorem 2.3. Let BH = {BHt , t ∈ [0, T ]} be an n-dimensional fractional
Brownian motion with Hurst parameter H on the interval [0, T ]. Consider
an adapted n-dimensional process u = {ut, t ∈ [0, T ]} with integrable trajec-
tories. Set

v(s) = K−1
H

(∫ .

0

ur dr

)
(s) , s ∈ [0, T ] ,

ξT = exp

{∫ T

0

vT
s dWs −

1
2

∫ T

0

‖vs‖2 ds

}
and assume that

(i)
∫ .

0

us ds ∈ I
H+ 1

2
0+

(
L2([0, T ]; Rn)

)
P − a.s. ,

(ii) E (ξT ) = 1 .

Then {BHt −
∫ t

0
us ds, t ∈ [0, T ]} is an n-dimensional fractional Brownian

motion with Hurst parameter H on the interval [0, T ] under the probability
P̃ defined by the density ξT = dP̃

dP with respect to P .

Note that {Wt, t ≥ 0} is an n-dimensional Wiener process defined by

Wt =
∫ T

0

(
K∗H
)−1(I[0,t] id)(s) dBHs , t ∈ [0, T ] ,

where K∗H is an isometry between the space (H, ‖ . ‖H) of all deterministic
time-dependent integrable functions with respect to the fractional Brownian
motion and a space L2(Ω,L(Rn)) (for precise definitions see [11]). The space

I
H+ 1

2
0+

(
L2([0, T ]; Rn)

)
is an image of L2([0, T ]; Rn)) under the operator IH+ 1

2
0+

defined by the formula

(
I
H+ 1

2
0+ ϕ

)
(t) :=

1
Γ(H + 1

2 )

∫ t

0

(t− s)H− 1
2ϕ(s) ds

for ϕ ∈ L1([0, T ]; Rn). The above integral is well-defined for a.e. t ∈ [0, T ]
and Γ denotes Gamma function.
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The operator K−1
H : IH+ 1

2
0+

(
L2([0, T ]; Rn)

)
−→ L2([0, T ]; Rn) is the inverse of

the linear operator KH : L2([0, T ]; Rn) −→ I
H+ 1

2
0+

(
L2([0, T ]; Rn)

)
defined by

(
KHϕ

)
(t) :=

∫ t

0

KH(t, s)ϕ(s) ds ,

where KH(t, s) is an integral kernel having a form

KH(t, s) =

{
CH

H∗ s
−H∗

[
(t.(t− s))H

∗
−H∗.IH

]
, s < t ,

0 , s ≥ t ,

where H∗ = H − 1
2 , IH =

∫ t
s
uH

∗−1(u− s)H∗
du and

CH =

√
H.H∗

2B(2− 2H, H∗)
,

and B denotes Beta function.
To verify conditions (i), (ii) of Girsanov Theorem it is sufficient to show that

E exp
{∫ t2

t1

‖vs‖2 ds
}
< +∞

for any 0 ≤ t1 < t2 ≤ T enough small. This can be shown using Fernique
theorem

Theorem 2.4. Let (V, ‖ . ‖,B(V )) be a separable Banach space with a Borel
σ-field B(V ). Suppose that G is a V -valued zero-mean Gaussian random
variable. Then there exists ζ > 0 such that

E exp{ζ‖G‖2V } < +∞ .

Contrary to the regularity of trajectories of the process {
∫ t

0
σ(s) dBHs , t ∈

[0, T ]}, conditions on the product σ−1b2 are more restrictive and computa-
tions are more difficult in the case H > 1

2 than in the case H < 1
2 . Finally we

show that the couple ({BHt −
∫ t

0
us ds, t ∈ [0, T ]}, Y ) is a weak solution to the

equation (2.1) on the probability space (Ω,F , P̃ ), where P̃ is a changed prob-
ability measure defined by a density ξT with respect to probability measure
P .

4

3 Equation of stochastic oscillator

Consider the formal equation

d2

dt2
xt + F (t, xt,

d

dt
xt) = σ̄(t)

d

dt
B̄Ht , (3.1)
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the weak solution of which is defined as the weak solution to

Xt = y0 +
∫ t

0

(
b1(Xs) + b2(s,Xs)

)
ds+

∫ t

0

σ(s) dBHs , (3.2)

where {BHt , t ∈ [0, T ]} is a 2n-dimensional fractional Brownian motion whose
first n components are components of B̄H and where for t ∈ [0, T ] and y =
(x, v)T ∈ R2n

Xt :=
(
xt
vt

)
,

b1(y) :=
(
v

0

)
,

b2(t, y) :=
(

0
−F (t, y)

)
,

y0 :=
(
x0

v0

)
and

σ(t) :=
(

0 0
0 σ̄(t)

)
,

σ(t) being a 2n× 2n-dimensional matrix.
Moreover, consider the linear equation

Yt = y0 +
∫ t

0

b1(Ys) ds+
∫ t

0

σ(s) dBHs . (3.3)

Proposition 3.1. Suppose that σ : [0, T ] → L(Rn) is a Borel mapping sat-
isfying either H < 1

2 and σ ∈ Cδ∗([0, T ] ;L(Rn)) for some δ∗ ∈ ( 1
2 −H, 1) or

H > 1
2 and σ ∈ L∞([0, T ];L(Rn)). Further, let b1 : [0, T ] × Rn → Rn be a

Borel function satisfying the following conditions:
∀N ∈N ∃KN >0 ∀t∈ [0, T ] ∀x, y∈Rn ‖x‖+ ‖y‖ ≤ N

‖b1(t, x)− b1(t, y)‖ ≤ KN‖x− y‖,

and
∃Kb > 0 ∀t ∈ [0, T ] ∀x ∈ Rn ‖b1(t, x)‖ ≤ Kb(1 + ‖x‖) .

Then there exists the pathwise unique solution to the equation (2.2).

Proof. Cf. [11].
Q.E.D.

Suppose that matrix σ̄ is regular for all t ∈ [0, T ]. Let

Σ(t) =
(

0 0
0 σ̄−1(t)

)
, t ∈ [0, T ] ,
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be a 2n × 2n-dimensional matrix. It is easy to see from the proof that the
statement of Theorem 2.2 holds if we replace σ−1 in this theorem by Σ.
Suppose that σ̄ is a Borel function satisfying either

(A1) H < 1
2 and σ̄ ∈ Cδ∗([0, T ];L(Rn)) for some δ∗ ∈ ( 1

2 −H, 1) ,

or

(A2) H > 1
2 and σ̄ ∈ L∞([0, T ];L(Rn)) .

Function b1 : R2n → R2n; y = (x, v)T 7→ (v, 0)T is Lipschitz (consequently
b1 satisfies condition (2.3)). Then there exists the pathwise unique solution
{Yt, t ∈ [0, T ]} to the equation (3.3) (cf. Proposition 3.1).
Assume that trajectories of the process {σ̄−1(t)F (t, Yt), t ∈ [0, T ]} are in
L∞([0, T ]; Rn) and suppose moreover either

(B1) H < 1
2 and ∃K > 0 ∀t ∈ [0, T ] ∀y ∈ R2n

‖σ̄−1(t)F (t, y)‖ ≤ K(1 + ‖y‖) ,

or

(B2) H > 1
2 and ∃α ∈ (1 − 1

2H , 1) ∃β ∈ (H − 1
2 , 1) ∃C > 0 ∀ s, t ∈ [0, T ]

∀ y1, y2 ∈ R2n

‖σ̄−1(t)F (t, y1)− σ̄−1(s)F (t, y2)‖ ≤ C(‖y1 − y2‖α + |t− s|β) .

Then assumptions of Theorem 2.2 on a map (t, y) 7→ Σ(t) b2(t, y), t ∈ [0, T ],
y ∈ R2n, are satisfied because

Σ(t) b2(t, y) =
(

0
−σ̄(t)F (t, y)

)
,

hence equations (3.2) and thereby (3.1) have weak solutions.
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