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Chapter 1

Introduction

This text should support learning theory of Bayesian decision making under uncertainty pre-
sented at the course of “Adaptive Systems”. There are good textbooks for learning both decision-
making theory, e.g. [1, 2] and adaptive control, e.g. [3, 4]. The view presented in this text,
namely, viewing adaptive systems as an important branch of dynamic decision making under
uncertainty is dissipated in various textbooks and numerous papers. The classical text [5, 6] is
probably closest to this one. Permanently growing computer power available, novel solutions of
various theoretical and algorithmic subtasks justify this attempt to update the description of
the theory.

1.1 Aim of the work

Theory of statistical decision making under uncertainty [2, 7] provides a unified logical structure
for solving problems ranging from parameter estimation, prediction, pattern recognition, learn-
ing, testing of hypothesis etc. up to feedback control. The application width is also enormous:
inspection, maintenance and control of technologic as well as economic processes; signal pro-
cessing; information processing in medicine, physics, etc. Huge amount of available particular
results, techniques and methods hide the common logical structure and leave often newcomers
without a guide.

This text aims to recall the relatively simple common structure of the mentioned decision tasks
and to help the user in focusing on those ingredients that are specific to his/her problem.

Naturally, the reaching of a satisfactory solution of a particular decision-making problem remains
to be an iterative process [8]. The number of trial solutions can be, however, significantly reduced
by using the advocated logical structure. This is the main practical outcome of mastering the
presented theory.

The logical structure of the decision making under uncertainty is now well understood. The
number of open problems, related especially to computational and implementation aspects, is,
however, large. Some of them are formulated throughout the text. In this way, we try to turn
the attention of (prospective) researchers to challenging and important topics.
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8 CHAPTER 1. INTRODUCTION

1.2 Structure

The aim of the work dictates the top-down style of presentation: the logically simple but rela-
tively abstract problem formulation and solution are gradually specialized. The logical skeleton
of the theory is filled up by practical details later on in chapters dealing with particular examples.

Chapter 2 summarizes the theory of the design and states the basic analytical results. Usual
decision-making tasks are discussed, formulated and solved in Chapter 3. Common evaluation
techniques are characterized in Chapter 4.

The rest of the text serves for illustration of the theory. The structure of the remaining chapters
is (more or less) uniform. For specific construction elements, they illustrate majority of decision-
making tasks that can be related to the considered case. For instance, Chapter 6 deals with a
bit academic problem of the controlled tossing of a coin. Simplicity of the calculus related to
it helps us to focus on the logical structure to be mastered. Other examples are gradually less
and less academic and become more and more of practical importance.

1.3 Readers

It is natural that authors of this text hope to have a wide range of readers. At the same time,
it is natural to expect them to be very individual in their attitude, background and interests.
So we can distinguish just two groups:

Research inclined readers who are interested in the state and problems of the area and do
not worry of relatively abstract notions. They are expected to read the text linearly with
occasional skips and complementary reading of references.

Application oriented readers who are searching for a flexible tool-set for their real-life prob-
lem. They are supposed to start with demos supplied to particular examples in order to
judge whether the presented text is of interest for them at all. Any example, which is
judged to be close to the considered application may serve to this purpose. If, as we hope,
they will find it worth of interest and energy put in study they are expected to go through
Chapter 3 in order to learn the structure of the problem formulation and its solution.
Chapter 4 then serves for inspiration on practical evaluation techniques. Both of them
contain pointers to the necessary auxiliary notions in remaining “theoretical” Chapters.

All readers are warned that:

• this text is not mathematical one in spite of all mathematical machinery (mis)used:
mathematical purity and technical details are sacrificed in order present basic explanations
as directly as possible,

• the presentation adapts and sometimes create symbols and terminology with the aim to
balance generality and expressiveness: for instance, the notion of probability space with
its σ-algebras is replaced by notions like ignorance, experience etc.,

• the attention focuses on problems that can be quantified and potentially solved in as
algorithmic way as possible: the relatively straightforward extension to non-numerical
problems are not considered, for the sake of conciseness.
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Chapter 2

Underlying theory

At a general level, the presented decision-making theory should help the decision maker – typ-
ically, human being – to select one of the available options (decisions). These options relate to
a part of the real world, to a system. They concern with descriptions of the system and/or its
influencing.

This chapter summarizes the design principles and tools exploited later on in our particular
task, i.e. operator support. It starts with conventions and notions used throughout, Sections
2.1, 2.2. The considered framework covers a broad range of problems. Inevitably, the adopted
symbols and notions have more specific meanings in specific application fields. The reader is
kindly asked to be patient especially in this respect.

The adopted principle of the optimal decision-making under uncertainty, inspected in Section
2.3, implies the following important conclusion: incomplete knowledge and randomness have
the same operational consequences for decision-making and should be treated in the same way
labelled as Bayesian decision making. In the same section, the design of optimal decision rules
is solved. In Section 2.4 the design of the optimal strategies is derived. These designs work with
models that are usually obtained through Bayesian learning described in Section 2.5.

A similarly formulated control design, that is a specific decision-making problem, is presented
in [9]. For a detailed explanation of Bayesian learning see [10]. This chapter is a tailored version
of a chapter in [11] where our view on decision making is summarized.

2.1 General conventions

The conventions presented here are mostly respected in this work. If some exception is necessary
it is named just at the place of its validity. If some verbal notions are introduced within bodies
of Propositions, Remarks etc., then they are emphasized by the print that differs from that of
the surrounding text. Moreover, they appear in Index. Sometimes, important parts of sentences
are stressed by underlining them.

f is the letter reserved for probability (density) functions (p(d)f).

The meaning of the p(d)f is given through the name of its argument.

x∗ denotes the range of x, x ∈ x∗.

11
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x̊ denotes the number of members in the countable set x∗ or number of entries in the vector x.

≡ means the equality by definition.

xt is a quantity x at the discrete time labelled by t ∈ t∗ ≡ {1, . . . , t̊}.

t̊ ≤ ∞ is called (decision, learning, prediction, control, advising) horizon.

xi;t is an ith entry of the array x at time t.

The semicolon in the subscript indicates that the symbol following is time index.

x(k l) denotes the sequence xt with t between time moments k ≤ l, i.e. x(k l) ≡ xk, . . . , xl.

x(t) ≡ x(1 t).

x(t) is an empty sequence and reflects just the prior information if t < 1.

supp [ f(x)] is the support of the pdf f : x∗ → [0,∞], i.e. the subset of x∗ on which f(x) > 0.

2.2 Basic notions and notations

Below, if need be, a brief characterization of the introduced notion is complemented by explana-
tory comments (printed differently).

Quantity is a multivariate mapping.

The domain and form of the quantity are mostly unused and unspecified. The introduced
notion corresponds with random variable used in probability theory. The use of the alter-
native term should stress that probability serves us as the tool adopted for decision making
under uncertainty. The term quantity stresses our orientation on numerical values that
arise mostly by observing physical quantities. However, quantities with a discrete range
that need not have numerical meaning are also considered.

Realization is a value of the quantity for its fixed argument.

Often, the quantity and its realization are not distinguished, as usual. The proper meaning
is determined by the context.

System is the part of the world that is of interest for a decision maker who should either describe
or influence it.

Decision maker might be a person, group of persons or mechanisms.

The system is specified with respect to the aim that the decision maker wants to reach
and with respect to the tools he/she has available. In other words, the boundaries (that
can be penetrated) of the system are implied by the decision task.

Decision a ∈ a∗ is the value of a quantity that can be directly chosen by the decision maker for
reaching his/her aims.

A decision task makes sense only when the decision maker faces real option, i.e. when
å > 1.
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(Decision) experience Pa∗ ∈ P∗a∗ is knowledge about the system available to the decision
maker for the selecting the decision a ∈ a∗.
For example, if just data values D are available for constructing the estimate Θ̂ of an
unknown quantity Θ ∈ Θ∗ then the experience is PΘ̂∗ ≡ D. Often, experience includes
the past data observed.

(Decision) ignorance Fa∗ ∈ F∗
a∗ is knowledge about the system unavailable to the decision

maker for the choice of the value of a.

The unknown value of the quantity Θ to be estimated is a part of the ignorance PΘ̂∗ of
its estimate Θ̂. Often, ignorance contains future, still unobserved data.

(System) behavior Q∗ consists of all possible realizations (of trajectories) Q, i.e. values of
all quantities within the time span determined by the horizon of interest that are related to
the system and considered by the decision maker.

The realization Q can be split with respect to any decision a ∈ a∗ into the relevant
experience Pa∗ and ignorance Fa∗ . Formally, Q = (Pa∗ , a,Fa∗).
Note that a single realization Q can be split differently with respect to a pair of decisions,
say a, ã with different experience Pa∗ 6= Pã∗ and different ignorance Fa∗ 6= Fã∗ . Q =
(Pa∗ , a,Fa∗) = (Pã∗ , ã,Fã∗).

(System) input u ∈ u∗ is a decision, which is supposed to influence the ignorance part Fu∗ of
the (system) behavior.

A manipulated valve position influencing a fluid flow is the system input. A point estimate
Θ̂ of an unknown (realization of) quantity Θ is an instance of the decision that is not the
system input. It is chosen with the aim to describe the system and exhibits no direct
influence on it.

(System) output y ∈ y∗ is an observable quantity that provides the decision maker informa-
tion about the (system) behavior.

A pressure measured in an isolated heated system is an instance of the output. A pressure
applied on a closed system is an instance of the input.

To be or not to be input or output is a relative property.

Innovation ∆t ∈ ∆∗
t contains quantities that are not included in the experience Pa∗t but are

included in Pa∗t+1
\ at.

Often, ∆t = yt = the system output at time t.

Decision rule R : Q∗ → a∗ is a mapping that assigns a decision a ∈ a∗ to the behavior Q ∈
Q∗.

Causal decision rule R : P∗a∗ → a∗ is a mapping that assigns the decision a ∈ a∗ to its expe-
rience Pa∗ ∈ P∗a∗ .
In other words, the decision a made by a causal decision rule is uninfluenced by the related
ignorance Fa∗ .
Mostly, we deal with the causal decision rules so that the term “causal” is often dropped.

Estimator is an instance of the causal decision rule R : P∗
Θ̂∗ → Θ̂∗ that assigns an estimate

Θ̂ of the unknown quantity Θ ∈ Θ∗ to the available experience PΘ̂∗ .
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Strategy is a sequence of decision rules {Rt : Q∗ → a∗t }t∈t∗ .

Causal strategy {Rt : P∗a∗t → a∗t }t∈t∗ is a sequence made of causal decision rules.

Again, we deal mostly with causal strategies so that the term “causal” is often dropped.

Controller is a causal strategy assigning inputs ut to experience Pu∗t , ∀t ∈ t
∗.

The proportional controller given by the constant p is an example of the causal control
strategy {y∗t−1 → u∗t : ut = pyt−1}t∈t∗ .

Design selects the decision rule or strategy.

The design selecting a single rule is called static design. The choice of the strategy is called
dynamic design.

The person (group) who makes the selection is designer. Authors and readers of this text
are supposed to be designers. In that sense, the term we used within the text should
mostly be read: we designers.

Agreement 2.1 (Interface between the design and reality) Physical connections of
the design domain to the real world (sensors, transmission lines, actuators etc.) are here
always taken as a part of the system. Consequently, all quantities and mappings considered
can be and are taken as mathematical entities living in an abstract calculating machine.

Uncertain behavior (related to static design) is a behavior whose realizations Q can be de-
composed into

• QR ≡ the part that is unambiguously determined by the considered decision rule
R ∈ R∗,

• uncertainty Υ≡ the part of the behavior that belongs to the ignorance FR(P)∗ of de-
cisions R(P) generated by the admissible rules R ∈ R∗ and uninfluenced by them,
even indirectly.

With an abuse of notation, we write the corresponding decomposition of realization Q =
(QR,Υ) = (·, uncertainty).
Uncertain behavior related to dynamic design is encountered if any of its rules faces un-
certainty.

Incomplete knowledge of (the realization of) a considered quantity Θ ∈ Θ∗ makes the
behavior uncertain.

External unobserved noise influencing the system makes its behavior uncertain.

Uncertainty expresses both incomplete knowledge and randomness.

Uncertain behavior in the dynamic design is defined in a similar way by replacing rules
with strategies. The related cumbersome notation is avoided in our presentation.

Decision-making means design and application of a decision rule (strategy).

Admissible strategy is a strategy {Rt}t∈t∗ that

• is causal ⇔ {Rt}t∈t∗ ≡ {Rt : P∗a∗t → a∗t }t∈t∗ and
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• meets technological restrictions ⇔ the ranges of its decision rules are in pre-specified
subsets of respective decision sets.

Loss function, Z : Q∗ → [0,∞], quantifies the degree of achievement of the design aim.

The loss function measures quality of the realizations Q and indirectly (partially) orders
admissible strategies influencing the behavior.

The smaller the value of Z(Q) the better.

Negative value of profit might be a loss function in economic applications.

Quadratic deviation (Θ̂ − Θ)′(Θ̂ − Θ) (′ is transposition) of the estimate Θ̂ and of an
unknown vector Θ is a wide spread loss function used for ranking decision rules generating
point estimates.

The important case of multi-valued loss function [12] is out of the scope of this text but the
approach discussed in Section 2.3 could be relatively simply extended to it by embedding
the index of the “decisive” entry of the loss function into uncertainty.

“Expected” loss Ẽ(Z) ≡ Ẽ{R}(Z) assigns to the considered loss function Z and strategy {R}
a value in [0,∞] that is independent of the uncertainty.

The quotation marks as well as the sign ˜ serve us in the discussion that shows that, under
widely acceptable conditions, we have to deal with expectation in mathematical sense.
Then, they are unused any more.

Optimal design selects an admissible strategy that leads to the smallest value of the “expected”
loss function.

Practically admissible strategy is an admissible strategy that respects restrictions limiting
complexity of the decision-making.

The complexity is considered with respect to the computational resources available at the
design and application stages. The majority of discussed problems in which the complexity
restriction play a role are computationally hard in terms of computer sciences. An intuitive
understanding of the computational complexity is sufficient to our purposes.

Practically optimal design selects a practically admissible strategy giving the smallest values
of the “expected” loss.

The presented optimal design provides optimal admissible strategies and can be simply
adapted to provide strategies of a pre-specified complexity by optimizing over a set of
simple decision rules, for instance, over proportional controllers only.

Operational formal tools for practically optimal design are not available. It is not known how
to make the optimal design of a pre-specified complexity.

We never know whether the selection of the constant determining proportional controller
made with use of, say, ten algebraic operations is really the best one possible among all
selections that are allowed to perform ten algebraic operations.

This is the main barrier of the applicability of the theory describing the optimal design. The
optimal design becomes a practical tool by employing sound engineering heuristics. The
practical optimum is not guaranteed. This fact is stressed by using the term suboptimal
design.
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2.3 Decision-making under uncertainty

Here, we describe a general way how to understand and face uncertainty that causes incomplete
ordering of strategies. In order to avoid a cumbersome notation, we formulate the adopted design
principle, related requirements and their consequences for the static design, i.e. the design of a
single not necessarily causal decision rule. The obtained results are also valid for the dynamic
design, i.e. the choice of decision strategies.

Agreement 2.2 (Uncertainty in decision-making) Decision-making under uncertainty arises
if the optimal decision-making is to be performed and

• at least a pair of different decisions can be made, å > 1,

• the considered loss function Z(Q) ≡ Z(QR,Υ) depends on non-void set Υ∗ of uncertain-
ties.

Under uncertainty, the function ZR(Υ) ≡ Z(QR,Υ) of uncertainty Υ, i.e. the part of realization
in ignorance uninfluenced by the rule R, is assigned to each considered decision rule R ∈ R∗.
The set of such functions is denoted ZR∗

ZR∗ ≡ {ZR : Υ∗ → [0,∞], ZR(Υ) ≡ Z(QR,Υ)}R∈R∗ . (2.1)

Under uncertainty, the loss function is insufficient for a complete ordering (comparing) of ad-
missible rules, and consequently strategies, in spite of the fact that its values are in the fully
ordered set. Each R is assigned a function in the set (2.1) and not a single number.

For instance, consider a pair of estimates Θ̂1 6= Θ̂2 of an unknown scalar quantity Θ ∈ Θ∗ ≡
(−∞,∞). They cannot be compared with the help of the quadratic loss function (Θ− Θ̂)2 as we
do not know whether Θ is in that part of Θ∗ where (Θ− Θ̂1)2 ≤ (Θ− Θ̂2)2 or in its complement.

2.3.1 Ordering of decision rules

We rely on the following systematic choice of a good decision rule.

Agreement 2.3 (Design principle: “expectation”-minimization design)

• A functional ẼR, called “expectation”, is selected by designer. It assigns to functions in
(2.1) (determined by the considered loss function Z and indexed by inspected decision rules
R ∈ R∗) a non-negative ”expected loss” ẼR[Z]

ẼR : ZR∗ → [0,∞] (2.2)
ZR∗ ≡ {ZR : Υ∗ → [0,∞], ZR(Υ) ≡ Z(QR,Υ)}R∈R∗

• The minimizer of ẼR[Z(QR,Υ)] ≡ Ẽ [ZR] found in R∗ is taken as the optimal decision
rule.

The outcome of this design depends on the introduced “expectation” ẼR. It has to avoid (at
least) unequivocally bad rules. Such bad rules are identified here with dominated decision rules.
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Agreement 2.4 (Dominated decision rules; strictly isotonic expectation) Let a loss func-
tion Z measure the quality of the behavior. The decision rule R : Q∗ → a∗ is called dominated
iff there is another decision rule R̃ : Q∗ → a∗ such that for

ZR ≥ ZR̃ ⇔ Z(QR,Υ) ≥ Z(QR̃,Υ), ∀Υ ∈ Υ∗. (2.3)

The dominated decision rule is called strictly dominated iff there is a non-trivial subset of Υ∗

on which the inequality (2.3) is strict.

The “expectation” ẼR (2.2) is said to be strictly isotonic if for a decision rule R strictly domi-
nated by a decision rule R̃ it holds

ẼR[Z(QR,Υ)] > ẼR̃[Z(QR̃,Υ)]

Now we can specify the dominated decision rules as those to be surely avoided.

Requirement 2.1 (Inadmissibility of strictly dominated decision rules) The considered
“expectation”-minimization design, Agreement 2.3, must not lead to the strictly dominated de-
cision rule.

We want to select the “expectation” ẼR so that the decision rules are ordered as objectively as
possible. It means that the ordering should weakly depend on the inspected set of rules R∗, on
the loss function Z considered and on the “expectation” ẼR selected by the designer.

Requirement 2.2 (Independence of R∗) The chosen “expectation” should fulfill Require-
ment 2.1 even if we restrict the set of possible decision rules R∗ to any of its non-trivial subsets
that contains at least two different rules while at least one of them gives a finite ”expected” loss.

Proposition 2.1 (Isotonic ordering) Assume that there is a rule in R∗ for which the ”ex-
pected” loss is finite. Then, Requirements 2.1, 2.2 are fulfilled, i.e. the chosen rule is not dom-
inated even if the set R∗ is restricted, iff the “expectation” is strictly isotonic, see Agreement
2.4.

Proof:

1. We prove by contradiction that – with strictly isotonic “expectation” ẼR – the minimizer
cannot be strictly dominated.

Let ẼR[Z] be strictly isotonic on its domain ZR∗ (2.2) and Ro ∈ R∗ be a minimizer of the
“expected” loss. The minimizer gives necessarily a finite value of the corresponding ẼR[Z]. Let
Rd ∈ R∗ dominate it strictly. Then, because of the construction of Ro, the strict dominance
and strictly isotonic nature of ẼR, we get the following contradictory inequality

ẼRo [Z(QRo ,Υ)] ≤︸︷︷︸
minimum

ẼRd [Z(QRd ,Υ)] <︸︷︷︸
strictly isotonic

ẼRo [Z(QRo ,Υ)].

2. We prove by contradiction that use of an “expectation” ẼR that is not strictly isotonic leads
to violation of Requirement 2.1 when Requirement 2.2 holds.
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If ẼR[Z] is not strictly isotonic on its domain ZR∗ (2.2) then there is rule R1 ∈ R∗ strictly
dominated by a decision rule Rd ∈ R∗ such that

ẼRd [Z(QRd ,Υ)] ≥ ẼR1 [Z(QR1 ,Υ)].

If we restrict the set of decision rules R∗ to the pair of rules {Rd, R1} then R1 can always
be taken as the optimal decision rule. Thus, under Requirement 2.2, Requirement 2.1 is not
fulfilled with such an “expectation” ẼR.

♦

Requirement 2.2 guarantees suitability of the “expectation” to a wide range of decision rules.
The ”full objectivity” of ordering of decision rules is approached if the “expectation” ẼR is made
weakly dependent on the loss function considered. We have to adopt rather technical conditions
on the set of such loss functions. Essentially, applicability to a very smooth functions and a
restricted version of ”linearity” of ẼR are required.

Requirement 2.3 (Independence of loss function) Let us consider various loss functions
Z ∈ Z∗. The “expectation” Ẽ acts on union of the sets ZR∗ (2.1) of functions with a common
uncertainty set Υ∗. The union is taken over the set of the loss functions

Z∗R∗ ≡ ∪Z∈Z∗ZR∗ (2.4)

The set Z∗R∗ is required to contain a subset of test loss functions that are zero out of a compact
non-empty subset Ω of Q∗ and continuous on Ω.

The “expectation” is assumed to be an isotonic, sequentially continuous and boundedly uniformly
continuous functional on Z∗R∗ that is, moreover, additive on loss functions with non-overlapping
supports

Ẽ [Z1 + Z2] = Ẽ [Z1] + Ẽ [Z2] if Z1Z2 = 0, Z1, Z2 ∈ Z∗R∗ .

This technical Requirement allows us to get an integral representation of the “expectation”
searched for. Its proof as well as definitions of the adopted non-common terms can be found in
[13].

Proposition 2.2 (Integral form of the “expectation”) Under Requirement 2.3, the “ex-
pectation” Ẽ has the form

Ẽ [Z] =
∫
Ω
U(Z(Q),Q)µ(dQ), where (2.5)

µ is a finite regular non-negative Borel measure on Ω. The utility function U satisfies U(0,Q) =
0. It is continuous in values of Z(·) almost everywhere (a.e.) on Ω, bounded a.e. on Ω for each
Z in the set of the test loss functions.

Remark(s) 2.1

1. The test loss functions are widely applicable and their consideration implies no practical
restriction. The continuity requirements on Ẽ are also widely acceptable.
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2. The linearity of Ẽ on functions with non-overlapping support seems to be sound. Any loss
function Z ∈ Z∗R∗ can be written as Z = Zχω +Z(1− χω) ≡ Z1 +Z2, Z1Z2 = 0 with χω
denoting an indicator of a set ω ⊂ Ω ⊂ Q∗. The indicator χ equals 1 on ω and it is zero
outside of it.

The loss ”expected” on the set ω and its complement should sum to the loss ”expected” on
the whole set of arguments.

3. The utility function U allows the designer to express his/her attitude to the design conse-
quences: he/she might be risk aware, risk prone or risk indifferent [12].

4. The utility function U and the non-negative measure µ are universal for the whole set of
test functions. U and µ are (almost) “objective”, i.e. suitable for a wide range of decision
tasks facing the same uncertainty.

We formulate now our final objectivity oriented Requirement.

Requirement 2.4 (Indifference of the designer)

• The designer is risk indifferent, i.e. U is the identity mapping.

• The “expectation” preserves any constant loss Ẽ [constant] = constant.

• The involved measure µ has Radon-Nikodým derivative, [13], f(Q) with respect to a dom-
inating measure denoted dQ.

In the treated cases, d(·) is either Lebesgue or counting measure.

Adopting Requirement 2.4, we get the basic representation Proposition that introduces objective
“expectation”.

Proposition 2.3 (The objective “expectation”) Under Requirement 2.4, the “expectation”
Ẽ (2.5) is formally identical with a mathematical expectation. The Radon Nikodým’s derivative
f , [13], has all properties of the joint probability (density) function (p(d)f) on Q∗.

Proof: It is sufficient to observe that the preservation of constants implies that µ is a probabilistic
measure, i.e. µ ≥ 0, µ(Q∗) = 1. ♦

Remark(s) 2.2

1. The (mathematical) “expectation” is distinguished by dropping the sign ˜ as well as the
quotation symbols “ ”

E [Z] ≡
∫
Q∗
Z(Q)f(Q) dQ ≡

∫
Z(Q)f(Q) dQ. (2.6)

2. The first item in Requirement 2.4 is our last step we made in the objectivity direction. It
has clear meaning: we support objective, emotionally indifferent designers.
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3. The last item in Requirement 2.4 is unnecessary but it covers all cases we are here interested
in. It helps us to deal with simpler objects, namely, with probability density functions (pdf)
or probability functions (pf).

Mostly, we make no formal distinction between these cases and we use notations related
to pdfs. Only when necessary, we underline that we deal with a pf and write integrals as
sums.

4. The notion of conditional expectation E [•|∗], [13] is adopted further on and it is treated
in a simplistic way as the integral

∫
•(a)f(a|∗) da weighted by the conditional pdf f(a|∗).

2.3.2 Calculus with pdfs

The joint pdf f on Q ≡ (α, β, γ) is analysed/synthesised using several pdfs related to it. Let us
recall meaning of pdfs derived from f(Q).

Agreement 2.5 (Nomenclature of pdfs; Independence) We work with

Name Meaning

joint pdf f(α, β|γ) of α, β conditioned on
γ

a pdf on (α, β)∗ restricting f(Q) on the cross-
section of Q∗ given by a fixed γ

marginal pdf f(α|γ) of α conditioned on
γ

a pdf on α∗ restricting f(Q) on the cross-section
of Q∗ given by a fixed γ with no information on
β

marginal pdf f(β|α, γ) of β conditioned on
α, γ

a pdf on β∗ restricting f(Q) on the cross-section
of Q∗ given by a fixed α, γ

The conditioning symbol | is dropped if just trivial conditions are considered.
The pdf f(α, β) is the lower dimensional joint pdf (with respect to the pdf f(α, β, γ)), f(β) is
the marginal pdf.
Quantities α and β are conditionally independent under the condition γ iff

f(α, β|γ) = f(α|γ)f(β|γ). (2.7)

Our manipulations with the introduced pdfs rely on the following calculus.

Proposition 2.4 (Calculus with pdfs) For generic (α, β, γ) ∈ (α, β, γ)∗ it holds:

Non-negativity f(α, β|γ), f(α|β, γ), f(β|α, γ), f(β|γ) ≥ 0.

Normalization
∫
f(α, β|γ) dαdβ =

∫
f(α|β, γ) dα =

∫
f(β|α, γ) dβ = 1.

Chain rule f(α, β|γ) = f(α|β, γ)f(β|γ) = f(β|α, γ)f(α|γ).

Marginalization f(β|γ) =
∫
f(α, β|γ) dα, f(α|γ) =

∫
f(α, β|γ) dβ.

Bayes rule

f(β|α, γ) =
f(α|β, γ)f(β|γ)

f(α|γ)
=

f(α|β, γ)f(β|γ)∫
f(α|β, γ)f(β|γ) dβ

∝ f(α|β, γ)f(β|γ). (2.8)

The proportion sign, ∝, means that the factor independent of β and uniquely determined
by the normalization is not explicitly written in the equality represented.
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Independence equivalents

f(α, β|γ) = f(α|γ)f(β|γ) ⇔ f(α|β, γ) = f(α|γ) or f(β|α, γ) = f(β|γ). (2.9)

Proof: For motivation see [10], a more precise and more technical treatment exploits the mea-
sure theory [13]. Technically, an intermediate insight can be gained by considering loss functions
dependent only on a part of Q or with some parts of Q ”fixed by the condition”, [9]. ♦

Remark(s) 2.3

1. Duplicates in the presented formulas stress symmetry of many of them.

2. The technical fact that the identities, like (2.9), hold only almost everywhere, (a.e.) is
mostly omitted in the subsequent explanations.

3. The Bayes rule (2.8) is a simple consequence of previous formulas. Its importance in this
text justifies the explicit presentation in various forms.

4. The symmetric identity (2.9) says that β does not influence the description of α if α and
β are conditionally independent for a given γ.

Often, a pdf f(α) of a multi-variate variable α ∈ α∗ is given and mapped on a variable β by
a mapping T : α∗ → β∗ ≡ T (α∗). We need to specify the corresponding pdf f(β). Rules for
determining the pdf f(β) are implied by the obvious need to preserve the expectation.

Proposition 2.5 (Pdfs of transformed quantities) Let the expectation E, acting on func-
tions B : β∗ → (−∞,∞), be specified by the pdf fT (β), i.e.

ET [B] =
∫
B(β)fT (β) dβ.

This functional expresses the same expectation as E [B] =
∫
B(T (α))f(α) dα iff∫

T (A)
fT (T (α)) dT (α) =

∫
A
f(α) dα (2.10)

for all measurable sets A ⊂ α∗.

Let α be a real vector , α ≡ [α1, . . . , αα̊] and T = [T1, . . . , Tα̊] bijection (one-to-one mapping)
with finite continuous partial derivatives a.e. on α∗

Jij(α) ≡ ∂Ti(α)
∂αj

, i, j = 1, . . . , α̊, (2.11)

for all entries Ti of T and entries αj of α. Then,

fT (T (α))|J(α)| = f(α), where (2.12)

| · | denotes determinant of the matrix in its argument.

Proof: Proposition describes substitutions in multi-variate integrals, see [13, 14]. ♦

It is useful to summarize basic properties of expectation, which help us to simplify formal
manipulations.
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Proposition 2.6 (Basic properties of E) For arbitrary functions Z1(·), Z2(·) on which the
conditional expectation E [·|γ] is well defined, E [·|γ] has the following properties.

Isotonic nature of E [·|γ]: Z1 ≤ Z2, cf. (2.3),⇒ E [Z1|γ] ≤ E [Z2|γ].

Linearity of E [·|γ]: E [A(γ)Z1 +B(γ)Z2|γ] = A(γ)E [Z1|γ] +B(γ)E [Z2|γ]
for arbitrary coefficients A,B depending at most on the condition γ.

Chain rule for expectation: E [E [·|γ, ζ]|γ] = E [·|γ] for an arbitrary additional condition ζ.

Conditional covariance of a vector α cov[α|γ] ≡ E [(α− E [α|γ])(α− E [α|γ])′|γ] is related to
the non-central moments through the formula

cov[α|γ] = E [αα′|γ]− E [α|γ]E [α′|γ], ′ is transposition. (2.13)

Jensen inequality bounds expectation of a convex function Tγ : α∗ → (−∞,∞)

E [Tγ(α)|γ] ≥ Tγ (E [α|γ]) . (2.14)

Proof: All statements can be verified by using the integral expression (2.6) of the expectation.
Proof of Jensen inequality can be found e.g. in [15]. ♦

Remark(s) 2.4

1. Proposition is formulated for the conditional expectation. The unconditional case is for-
mally obtained by omitting the condition used.

2. Note that whenever the expectation is applied to a vector (matrix) function V it should be
understood as the vector (matrix) of expectations

[E(V )]i ≡ E(Vi). (2.15)

2.3.3 Basic decision-making lemma

The optimal selection of admissible decision rules relies on the following key proposition that
converts minimization over mappings to an “ordinary” minimization.

Proposition 2.7 (Basic decision-making lemma) The optimal admissible decision rule Ro

Ro(Pa∗) ≡ ao(Pa∗), ∀Pa∗ ∈ P∗a∗

minimizing the expected loss (2.6) can be constructed value-wise as follows.

To each Pa∗ ∈ P∗a∗, a minimizing argument ao(Pa∗) in

min
a∈a∗

E [Z(Pa∗ , a,Fa∗)|a,Pa∗ ] (2.16)

is assigned as the value of the optimal decision rule corresponding to the considered argument.
The reached minimum is

min
{R:P∗

a∗→a∗}
E [Z(Pa∗ , a,Fa∗)] = E

{
min
a∈a∗

E [Z(Pa∗ , a,Fa∗)|a,Pa∗ ]
}
. (2.17)
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Proof: Let us fix an arbitrary Pa∗ ∈ P∗a∗ . The definition of minimum implies

E [Z(Pa∗ ,Ro(Pa∗),Fa∗)|Ro(Pa∗),Pa∗ ] ≤ E [Z(Pa∗ , a,Fa∗)|a,Pa∗ ], ∀a ∈ a∗.

Let an admissible rule R : P∗a∗ → a∗ assign a decision a ∈ a∗ to the considered Pa∗ . Then, the
previous inequality can be written

E [Z(Pa∗ ,Ro(Pa∗),Fa∗)|Ro(Pa∗),Pa∗ ] ≤ E [Z(Pa∗ ,R(Pa∗),Fa∗)|R(Pa∗),Pa∗ ].

We apply unconditional expectation E [·] acting on functions of Pa∗ to this inequality. Due to the
isotonic nature of E , the inequality is preserved. The chain rule for expectations, see Proposition 2.6,
implies that on the left hand side of the resulting inequality the value of the unconditional expected
loss for Ro is found. Ro assigns to each Pa∗ ∈ P∗a∗ the decision ao(Pa∗). On the right hand side
of the discussed inequality, we get the unconditional expected loss corresponding to an arbitrarily
chosen R : P∗a∗ → a∗. ♦

Proposition and its proof imply no preferences if there are more absolutely minimizing arguments
ao(Pa∗). We can use any of them or switch between them in a random manner whenever the
pdf f(at|Pa∗t ) has its support concentrated on them. This is an example where a randomized
causal strategy may occur. We specify it formally as it is used later on more extensively.

Agreement 2.6 (Outer model of randomized decision strategy) The pdf f(a|Pa∗) is called
outer model of the decision rule. The collection of pdfs

{
f(at|Pa∗t )

}
t∈t∗

forms the outer model
of the decision strategy.

A decision rule f(a|Pa∗) is called randomized decision rule if its support contains at least two
different values of at. The strategy is called randomized strategy if some of its rules is random-
ized.

Remark(s) 2.5

1. We do not enter the technical game with ε-optimum: the existence of the various minimiz-
ing arguments is implicitly supposed.

2. It is worth repeating that the optimal decision rule is constructed value-wise. Formally,
the minimization should be performed for all possible instances of experience Pa∗ ∈ P∗a∗ in
order to get the decision rule.

Often, we are interested in the optimal decision for a given fixed, say observed, experience.
Then, just a single minimization is necessary. This is typically the case of the estimation
problem. This possibility makes the main distinction from the dynamic design, when opti-
mal strategy, a sequence of decision rules, is searched for. In this case, discussed in next
Section, the construction of decision rules is necessary. This makes the dynamic design
substantially harder and mostly infeasible [5, 6].

2.4 Dynamic design

We are searching for the optimal admissible strategy. We consider the usual case, when its
individual rules use a non-decreasing sequence of experience. The extending experience models
increasing amount of data available for the decision-making.
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2.4.1 Dynamic programming

The optimal admissible strategy can be found by using a stochastic version of celebrated dynamic
programming [16]. It is nothing but a repetitive application of Proposition 2.7.

Proposition 2.8 (Stochastic dynamic programming) The optimal causal strategy
{Ro

t : P∗a∗t → a∗t }t∈t∗ ∈ {Rt : P∗a∗t → a∗t }t∈t∗ acting on non-decreasing sequence of experience
Pa∗t ⊂ Pa∗t+1

and minimizing the expected loss function E [Z(Q)] can be constructed in a value-
wise way. For every t ∈ t∗ and each Pa∗t ∈ P

∗
a∗t

, it is sufficient to take a minimizing argument
ao(Pa∗t ) in

V(Pa∗t ) = min
at∈a∗t

E [V(Pa∗t+1
)|at,Pa∗t ], t ∈ t

∗ (2.18)

as the decision generated by the tth rule of the optimal strategy, i.e. ao(Pa∗t ) = Ro
t (Pa∗t ).

The recursion (2.18) is performed in the backward manner against the course given by the in-
creasing experience. It starts with

V(Pa∗
t̊+1

) ≡ E [Z(Q)|Pa∗
t̊+1

]. (2.19)

The reached minimum has the value E [V(Pa∗1)] = min{Rt:P∗a∗
t
→a∗t }t∈t∗ E [Z(Q)].

Proof: Let us define Pa∗
t̊+1

≡ Q in order to get a uniform notation It is legitimate as åt+1 is not

optimized. The definition of minimum and Proposition 2.7 imply

min
{Rt:P∗a∗

t
→a∗t }t∈t∗

E [Z(Pa∗
t̊+1

)] = min
{Rt:P∗a∗

t
→a∗t }t<t̊

 min
Rt̊:P∗a∗

t̊

→a∗
t̊

E [Z(Pa∗
t̊+1

)]

 =︸︷︷︸
(2.17)

= min
{Rt:P∗a∗

t
→a∗t }t<t̊

E
[

min
at̊∈a∗t̊

E [Z(Pa∗
t̊+1

)|åt,Pa∗t̊ ]
]
.

Denoting V(Pa∗
t̊
) ≡ minat̊∈a∗t̊ E [Z(Pa∗

t̊+1
)|åt,Pa∗t̊ ], we proved the first step of the recursion and

specified the start (2.19). The following step becomes

min
{Rt:P∗a∗

t
→a∗t }t<t̊

E
[
V(Pa∗

t̊
)
]
.

We face the identical situation as above with the horizon decreased by one. Thus, the procedure can
be repeated till the initial rule R1 is constructed. ♦

The optimization relies on our ability to evaluate the expectations

E [V(Pa∗t+1
)|at,Pa∗t ] =

∫
∆∗
t

V(Pa∗t , at,∆t)f(∆t|at,Pa∗t ) d∆t, ∀t ∈ t∗.

The introduced innovation ∆t contains those observable quantities that cannot be used for the
choice of at. They are not in Pa∗t but they belong to Pa∗t+1

\ at. The pdfs
{
f(∆t|at,Pa∗t )

}
t∈t∗

model the relationships of ∆t to Pt and at.

Agreement 2.7 (Outer model of the system) The collection of pdfs{
f(∆t|at,Pa∗t )

}
t∈t∗

, (2.20)

required for the optimal design, is called outer model of the system.
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Remark(s) 2.6

1. The term outer model of the system is abbreviated to the model of the system or even to
the model. The exact meaning is clear from the specific context.

2. Often, the innovation ∆t = yt = observable output of the system. The set-point to which
the output should be driven by the chosen input ut has to be included into ∆ut if its values
are uncertain.

The following agreement is used in a presentation of the most common version of dynamic
programming.

Agreement 2.8 (Data driven design; internal quantities) The design is called data driven
if realization Q consists of optional and potentially observable quantities, i.e. with ignorance con-
sisting of unobserved data only

Q ≡ (∆
(̊
t
)
, a
(̊
t
)
) ≡ (Pa∗ , a,Fa∗). (2.21)

Quantities in Q that are never observed directly are called internal quantities.

Proposition 2.9 (Dynamic programming for additive loss function) Let us consider data
driven design and search for the optimal admissible strategy {Rt : P∗a∗t → a∗t }t∈t∗ acting on a
non-decreasing sequence of experience {Pa∗t }t∈t∗.
Then, the optimal strategy {Ro

t : P∗a∗t → a∗t }t∈t∗ minimizing the expected additive loss function

E
[∑
t∈t∗

z(∆(t), a(t))

]
(2.22)

can be constructed value-wise. For all t ∈ t∗ and to each Pa∗t ∈ P∗a∗t , a minimizing argument
ao(Pa∗t ) = Ro

t (Pa∗t ) in

V(Pa∗t ) = min
at∈a∗t

E [z(∆(t), a(t)) + V(Pa∗t+1
)|at,Pa∗t ], t ∈ t

∗ (2.23)

is assigned. The recursion (2.23) is performed in the backward manner against the course given
by the increasing experience, starting from

V(Pa∗
t̊+1

) ≡ 0. (2.24)

The reached minimum has the value

min
{Rt:P∗a∗

t
→a∗t }t∈t∗

E [Z(Pa∗
t̊+1

)] = E [V(Pa∗1)].

Proof: It follows exactly the line of Proposition 2.8 with a modified definition of the function V(·)

V(Pa∗t ) ≡ min
{Rτ :P∗a∗τ

→a∗τ}τ≥t
E

∑
τ≥t

z(∆(τ), a(τ))|at = Rt(Pa∗t ),Pa∗t

 . (2.25)

♦

Agreement 2.9 (Partial loss; Bellman function) The function z(∆(t), a(t)) is called the
partial loss. The function V(·) occurring in dynamic programming is called Bellman function.
Bellman function V(·) in (2.25) is also called the optimal loss-to-go.
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2.4.2 Fully probabilistic design

A specific but rather general design is formulated and solved here. It is believed to form a bridge
between optimal and practically optimal design.

Here, and in many other places, we need the notion of the Kullback-Leibler divergence [17] that
measures well proximity of a pair of pdfs.

Agreement 2.10 (Kullback-Leibler divergence) Let f, g be a pair of pdfs acting on a com-
mon set x∗. Then, the Kullback-Leibler divergence D(f ||g) is defined by the formula

D(f ||g) ≡
∫
x∗
f(x) ln

(
f(x)
g(x)

)
dx. (2.26)

For conciseness, the Kullback-Leibler divergence is referred to as the KL divergence.

Proposition 2.10 (Basic properties of KL divergence)
Let f, g be a pair of pdfs acting on a same set. It holds

1. D(f ||g) ≥ 0,

2. D(f ||g) = 0 iff f = g (a.e.),

3. D(f ||g) = ∞ iff on a set of a positive measure f > 0 and g = 0,

4. D(f ||g) 6≡ D(g||f); the KL divergence does not obey triangle inequality.

Proof: See, for instance, [15] ♦

Now we are ready to formulate and solve the fully probabilistic design problem. A simple version
is presented here considering the data-driven design, see Agreement 2.8. In this case, the joint
pdf f(Q) ≡ f(∆

(̊
t
)
, a
(̊
t
)
) describing observable quantities of interest can be factorized by a

repetitive use of the chain rule, see Proposition 2.4,

f(∆
(̊
t
)
, a
(̊
t
)
) =

∏
t∈t∗

f(∆t|at,Pa∗t )f(at|Pa∗t ). (2.27)

The first factors
{
f(∆t|at,Pa∗t )

}
t∈t∗

under the product sign describe possible reactions of the
system on the decision at under the experience Pa∗t . These pdfs form the outer model of the

system, see Agreement 2.7. Similarly,
{
f(at|Pa∗t )

}
t∈t∗

represent an outer model of a randomized
decision strategy to be chosen, see Agreement 2.6. Looking at the joint pdf (2.27), it seems to
be “natural” to formulate the design as an attempt to make this pdf as close as possible to some
“ideal” joint pdf.

Agreement 2.11 (Fully probabilistic design) The fully probabilistic, data driven, design
specifies its target through an ideal pdf

bIf(Q) =
∏
t∈t∗

bIf(∆t|at, d(t− 1)) bIf(at|d(t− 1)).
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The optimal admissible, possibly randomized, decision strategy is defined as a minimizer of the
KL divergence (2.26) of f(d

(̊
t
)
) = f(∆

(̊
t
)
, a
(̊
t
)
) and bIf(d

(̊
t
)
) = bIf(∆

(̊
t
)
, a
(̊
t
)
)

D(f || bIf) ≡
∫
f(∆

(̊
t
)
, a
(̊
t
)
) ln

 f(∆
(̊
t
)
, a
(̊
t
)
)

bIf(∆
(̊
t
)
, a
(̊
t
)
)

 d(∆
(̊
t
)
, a
(̊
t
)
). (2.28)

Proposition 2.11 (Solution to fully probabilistic design) The optimal strategy minimiz-
ing KL divergence (2.28) has the form

f(at|d(t− 1)) = bIf(at|d(t− 1))
exp[−ωγ(at, d(t− 1))]

γ(d(t− 1))
, where (2.29)

γ(d(t− 1)) ≡
∫
a∗t

bIf(at|d(t− 1)) exp[−ω(at, d(t− 1))] dat

ωγ(at, d(t− 1)) ≡
∫
∆∗
t

f(∆t|at, d(t− 1)) ln
(

f(∆t|at, d(t− 1))
γ(d(t)) bIf(∆t|at, d(t− 1))

)
d∆t

γ(d
(̊
t
)
) = 1. (2.30)

The solution is performed against the time course, starting at t = t̊.

Proof: Using chain rule, we can write the KL divergence in the form

D
(
f || bIf

)
= E

{∑
t∈t∗

∫
f(at|d(t− 1))

[
ln
(
f(at|d(t− 1))
bIf(at|d(t− 1))

)
+ ω(at, d(t− 1))

]
dat

}
with

ω(at, d(t− 1)) ≡
∫
f(∆t|at, d(t− 1)) ln

(
f(∆t|at, d(t− 1))
bIf(∆t|at, d(t− 1))

)
d∆t. Let us denote ln(γ(d(t))) ≡

≡ min
{f(aτ+1|d(τ))}t̊τ=t

E


t̊∑

τ=t+1

∫
f(aτ |d(τ − 1))

[
ln
(
f(aτ |d(τ − 1))
bIf(aτ |d(τ − 1))

)
+ ω(aτ , d(τ − 1))

]
daτ |d(t)

 .
Then, this definition implies that γ(d

(̊
t
)
) = 1 and

− ln(γ(d(t))) ≡ min
f(at+1|d(t))

∫
f(at+1|d(t))

[
ln
(
f(at+1|d(t))
bIf(at+1|d(t))

)
+ ωγ(at+1, d(t))

]
dat+1 with

ωγ(at+1, d(t)) ≡
∫
f(∆t|at, d(t− 1)) ln

(
f(∆t|at, d(t− 1))

γ(d(t)) bIf(∆t|at, d(t− 1))

)
d∆t. It implies

− ln(γ(d(t))) ≡ min
f(at+1|d(t))

∫
f(at+1|d(t))ln

 f(at+1|d(t))
bIf(at+1|d(t)) exp[−ωγ(at+1,d(t))]∫

bIf(ãt+1|d(t)) exp[−ωγ(ãt+1,d(t))] dãt+1

 dat+1 − ln
(∫

bIf(at+1|d(t)) exp [−ωγ(at+1, d(t))] dat+1

) .
The first term in the above identity is the KL divergence, that reaches its smallest zero value for the
claimed pdf. At the same time, it defines the form of the reached minima. An alternative derivations,
with more details, see [18, 19]. ♦

Remark(s) 2.7



28 CHAPTER 2. UNDERLYING THEORY

1. At a descriptive level, the stochastic dynamic programming consists of a sequence of the
evaluation pairs

(take conditional expectation, minimize).

Except of a few numerically solvable cases, some approximation techniques have to be
employed. The complexity of the approximated optimum prevents a systematic use of the
standard approximation theory and various ad hoc schemes are adopted.

The fully probabilistic design finds minimizers explicitly and reduces the design to a se-
quence of conceptually feasible multi-variate integrations.

2. The found optimal strategy is randomized and obviously causal one. The technological
restriction are met trivially if the chosen ideal strategy meets them, if supp

[
bIf(at|Pa∗t )

]
⊂

a∗t , cf. (2.29).

2.4.3 Asymptotic of design

The analysis outlined here serves us mainly for interpretation purposes. Thus, all technicalities
are suppressed as much as possible.

The asymptotic of the dynamic programming is analyzed for horizon t̊→∞ within this section.
The data-driven case with an additive loss function (2.22) is considered. Note that the general
loss function can always be converted in it by defining

z(∆(t), a(t))) =

{
Z(∆

(̊
t
)
, a
(̊
t
)
) if t = t̊

0 otherwise
. (2.31)

We deal, however, with a simpler but still useful case by assuming that

• there is a finite-dimensional information state, i.e. Pa∗t ≡ xt−1 ≡ a finite-dimensional
vector,

• the partial loss depends on xt and at only z(∆(t), a(t)) ≡ z(xt, at), i.e. the considered loss
is

Z(∆
(̊
t
)
, a
(̊
t
)
) =

∑
t∈t∗

z(xt, at).

Agreement 2.12 (Stabilizing strategy) Let us consider sequence of decision-making prob-
lems with the growing horizon t̊ → ∞. The strategy {Rt : P∗a∗t → a∗t }t∈t∗≡{1,...,̊t} ∀̊t ∈ {1, 2, . . .}
is called stabilizing strategy if there is a finite constant c such that

E [z(xt, at)|at,Pa∗t ] ≤ c <∞, t ∈ {1, 2, 3, . . .}. (2.32)

Proposition 2.12 (Asymptotic design) Let a stabilizing strategy exist. Then there is an
optimal, stationary strategy, formed by a repetitive use of the same rule, for t̊ → ∞ whose
decisions are minimizing arguments in the formal analogy of (2.23)

b∞V(xt−1) + C = min
at∈a∗t

E
[
z(xt, at) + b∞V(xt)|at, xt−1

]
. (2.33)

with a constant C ≤ c and a time invariant Bellman function b∞V(x).
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Proof: (Outline) Let us take any finite horizon t̊. We denote b̊tE the expectation taken for the strategy

{ b̊tRt}t∈t∗ optimal for the additive loss specified on this horizon. Similarly, b̊tṼ(Pa∗t ) ≡
b̊tṼ(xt−1)

denotes the optimal loss-to-go, see Agreement 2.9 and b̊tat = b̊tRt(xt−1).

The definition of optimum, the additive form of the loss (2.22) and the assumption (2.32) imply that

c ≥ b̊tC ≡ b̊tE [Z(∆
(̊
t
)
, b̊ta

(̊
t
)
)]− b̊t−1E [Z(∆(̊t− 1), b̊t−1a(̊t− 1))] ≥ 0.

Consequently, lim sup̊t→∞

 b̊tE [Z(∆
(̊
t
)
, b̊ta

(̊
t
)
)]−

t̊∑
t=1

btC

 ≡ b∞V <∞.

If we redefine the partial loss to z(xt, at) − btC then the optimal strategies for all t̊ do not change

and b̊tE
[
Z
(
∆
(̊
t
)
, b̊ta

(̊
t
))]

= b∞V + o
(̊
t
)
, where the symbols o

(̊
t
)

means, as usual, a term

converging to zero for t̊→∞.

Similar considerations apply to the modified optimal loss-to-go b̊tV(xt), Agreement 2.9, imply that
(with the modified partial loss!) it converges for all xt ∈ x∗t to some b∞V(xt).

With the original partial loss and modified loss-to-go, the dynamic programming (2.23) gets the form

b̊tV(xt−1) + btC = min
at∈a∗t

b̊tE
[
z(xt, at) + b̊tV(xt)|at, xt−1

]
that converges for t̊→∞.

♦

Remark(s) 2.8

1. The same proof is directly applicable to the fully probabilistic design as it can be seen as
an instance of the additive loss function.

2. Solutions to the Bellman equation obtained for a growing finite horizon t̊ can be interpreted
as successive approximations for solving its stationary counterpart (2.33).

3. So called iterations in strategy space [20] is an alternative and efficient way of finding
the asymptotic solution. Essentially, a stabilizing stationary, i.e. repeating a single rule,
strategy {R} is selected and the linear equation

V(x) + C = E [z(x̃,R(x)) + V(x̃)|R(x), x]

is solved for the function V(·) and constant C. Then, a new approximating strategy is
found value-wise R(x) = Arg mina∈a∗ E [z(x̃, a)+V(x̃)|a, x] with such a V(·). Under general
conditions, the newly found strategy is stabilizing and iterations may be repeated till the
guaranteed convergence. Details of this procedure are out of scope of this work but it should
be considered when searching for efficient numerical procedures.

2.5 Learning

Generally, considered behavior Q∗ contains quantities that are never observed directly and, in
spite of this, we want to describe them or influence them. We called them internal quantities,
see Agreement 2.8. Even in this case, the optimal decision-making needs the outer model (2.20),
see Proposition 2.8, that should reflect them. Here we describe how to get it. The presented
construction is of an independent interest as a good formal model of learning.
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2.5.1 Bayesian filtration

This section deals with a general case when the construction of the outer model relies on filtering,
i.e. learning of time variant internal, i.e. directly unobservable, quantities. It requires the
following elements.

Requirement 2.5 (Models; natural conditions of decision-making)

1. The innovations ∆t are related to experience Pa∗t and decisions at through the observation
model

{f(∆t|at,Pa∗t ,Θt)}t∈t∗ (2.34)

that is given up to unknown internal quantities Θt ∈ Θ∗
t ⊂ Fa∗τ , ∀τ ∈ t

∗.

2. The evolution of the quantities Θ
(̊
t
)
∈ Θ∗

(̊
t
)

is described by a known collection of pdfs
called the time evolution model {

f(Θt|at,Pa∗t ,Θt−1)
}
t∈t∗

. (2.35)

3. The quantities Θ
(̊
t
)

are unknown to the strategies considered. The natural conditions of
decision-making (a slight generalization of natural conditions of control [10]) express it
formally. They postulate independence of at and Θt when conditioned on Pa∗t

f(at|Pa∗t ,Θt) = f(at|Pa∗t ) ⇔︸︷︷︸
Proposition 2.4

f(Θt|at,Pa∗t ) = f(Θt|Pa∗t ). (2.36)

4. The initial values of Θ0, Pa∗1 add nothing new to the prior information so that the prior
pdf

f(Θ1) ≡ f(Θ1|a1,Pa∗1 ,Θ0) = f(Θ1|a1,Pa∗1) =︸︷︷︸
(2.36)

f(Θ1|Pa∗1) (2.37)

is the first term in the sequence of pdfs (2.35).

Remark(s) 2.9

1. Often, the unknown quantities Θt together with the decision at are assumed to describe the
involved conditional pdfs fully. Then, Pa∗t can be omitted and Θt can be identified with the
information state.

2. The natural conditions of decision-making express the assumption that Θt /∈ Pa∗τ ∀τ ∈
t∗. Thus, values of Θt cannot be used by the decision rules forming admissible strategy.
Alternatively, see (2.36), we cannot gain information about Θt from the decision at if the
corresponding innovation ∆t (the corresponding reaction of the system) is not available.

The natural conditions of decision-making are “naturally” fulfilled by strategies we are
designing. They have to be checked when data influenced by an “externally chosen” strategy
are processed.
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Proposition 2.13 (Generalized Bayesian filtering) Let Requirement 2.5 be met. Then, the
outer model of the system (2.20) is given by the formula

f(∆t|at,Pa∗t ) =
∫
Θ∗
t

f(∆t|at,Pa∗t ,Θt)f(Θt|Pa∗t ) dΘt. (2.38)

The evolution of the pdf f(Θt|Pa∗t ), called (generalized Bayesian) filtration of unknown quantities
Θt, is described by the following recursion that starts from the prior pdf f(Θ1):

• Data updating

f(Θt|Pa∗t+1
) =

f(∆t|at,Pa∗t ,Θt)f(Θt|Pa∗t )
f(∆t|at,Pa∗t )

∝ f(∆t|at,Pa∗t ,Θt)f(Θt|Pa∗t ) (2.39)

that incorporates the innovation ∆t and the decision at, and

• Time updating

f(Θt+1|Pa∗t+1
) =

∫
Θ∗
t

f(Θt+1|at+1,Pa∗t+1
,Θt)f(Θt|Pa∗t+1

) dΘt (2.40)

that reflects the time evolution Θt → Θt+1.

Proof: Sequential use of marginalization, chain rule, Proposition 2.4, and of the natural conditions
of decision making (2.36) implies (2.38)

f(∆t|at,Pa∗t ) =
∫
Θ∗
t

f(∆t,Θt|at,Pa∗t ) dΘt =
∫
Θ∗
t

f(∆t|at,Pa∗t ,Θt)f(Θt|at,Pa∗t ) dΘt =

=
∫
Θ∗
t

f(∆t|at,Pa∗t ,Θt)f(Θt|Pa∗t ) dΘt.

Data updating coincides with the Bayes rule in which the outer model of the strategy cancels as it
does not depend on Θt due to the natural conditions of decision making (2.36).

Marginalization, chain rule and natural conditions of decision making imply also the formula for time
updating. ♦

Agreement 2.13 (Filtering; predictive pdf) The process of generating filtration is called
(generalized Bayesian) filtering. The outer model of the system obtained by filtering is called
predictive pdf.

Remark(s) 2.10

1. The term predictive pdf reflects the way how the outer model of the system has been
obtained. It uses the observed experience and extrapolates it into ignorance assuming that
the mechanism of generating Θt does not change.

This accumulation of experience and its extrapolation represent a good formal model of
learning.

2. It has to be stressed that the accumulation of experience can take place only when the rules
governing the behavior are not changed during it, i.e. when we can rely on the validity of
the underlying models.
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3. The construction of the predictive pdf is our key motivation for filtering. Its results are
often of an independent interest.

4. Under the natural conditions of decision-making, the filtering relies on the knowledge of
decisions and not on the knowledge of rules R : P∗a∗ → a∗ generating them. It is practically
important when we learn while decision loop is closed, especially, when decisions are made
by a human decision maker.

5. The time evolution model f(Θt|Θt−1, at,Pa∗t ) as well as the observation model f(∆t|Θt, at,Pa∗t )
have to result from a theoretical modelling of the system in question. Such a modelling uses
both field knowledge, like laws of conservation, and approximation capabilities of the se-
lected family of the models involved. Often, deterministic relationships are modelled and
then the “deviations” from an “expected” trajectory are described.

6. The prior pdf f(Θ1) allows us to introduce an information based on expert knowledge or
analogy to situations observed previously.

7. The observed data, the only bridge to reality, enter the evaluations in the data updating
step only when the newest innovation-decision pair is processed. This simple observation
is important for approximation of the time evolution model, see Section 4.2.2.

8. In summary, the described Bayesian filtering combines prior information in f(Θ1), the-
oretical knowledge of the specific fields described by f(∆t|Θt, at,Pa∗t ), f(Θt|Θt−1, at,Pa∗t )
and observed data d(

(̊
t
)
) = (∆

(̊
t
)
, a
(̊
t
)
) by using coherent deductive rules of the calculus

with pdfs.

This combination of information sources is a powerful internally consistent framework
describing the essence of learning. Due to its deductive structure, the incorrect modelling
not an incorrect information processing can be blamed for a failure of the specific learning
process.

2.5.2 Bayesian estimation

This section deals with a special version of filtering called estimation. It arises when the internal
quantities Θt are time invariant Θt = Θ, ∀t ∈ t∗. The common value Θ is called parameter.

In this case, the time evolution model is f(Θt|Θt−1, at,Pa∗t ) = δ(Θt−Θt−1), where the employed
Dirac delta function δ(·) is a formal pdf of the measure fully concentrated on the zero argument.

The parameterized model, generally defined in (2.34), has the form

{f(∆t|at,Pa∗t ,Θ)}t∈t∗ . (2.41)

Proposition 2.14 (Generalized Bayesian estimation) Let Requirement 2.5 be met with time
invariant Θt = Θ ∈ Θ∗ ⊂ Fa∗τ , ∀τ ∈ t

∗. Then, the outer model of the system (2.20) is given by
the formula

f(∆t|at,Pa∗t ) =
∫
Θ∗
f(∆t|at,Pa∗t ,Θ)f(Θ|Pa∗t ) dΘ. (2.42)

The evolution of the pdf f(Θ|Pa∗t ), called (generalized Bayesian) parameter estimation generating
parameter estimate coinciding with the posterior pdf of unknown parameter, is described by the
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recursion identical with data updating (2.39)

f(Θ|Pa∗t+1
) =

f(∆t|at,Pa∗t ,Θ)f(Θ|Pa∗t )
f(∆t|at,Pa∗t )

∝ f(∆t|at,Pa∗t ,Θ)f(Θ|Pa∗t ). (2.43)

It starts from the prior pdf f(Θ) ≡ f(Θ|Pa∗1 , a1) = f(Θ|Pa∗1).
The simplicity of the estimation formula allows us to write down its (non-recursive) batch variant

f(Θ|Pa∗t+1
) =

∏
τ≤t f(∆τ |aτ ,Pa∗τ ,Θ)f(Θ)∫

Θ∗
∏
τ≤t f(∆τ |aτ ,Pa∗τ ,Θ)f(Θ) dΘ

≡
L(Θ,Pa∗t+1

)f(Θ)

I(Pa∗t+1
)

. (2.44)

The introduced likelihood function

L(Θ,Pa∗t+1
) ≡

∏
τ≤t

f(∆τ |aτ ,Pa∗τ ,Θ) (2.45)

evolves according to the recursion identical with that for the posterior pdf (2.43) but it starts
from the L(Θ,Pa∗1) identically equal to 1.

The normalization factor I(·) is defined by the formula

I(Pa∗t+1
) =

∫
L(Θ,Pa∗t+1

)f(Θ) dΘ ∝ f(∆t|at,Pa∗t ). (2.46)

With it, the outer model of the system (2.20) can alternatively be expressed

f(∆t|at,Pa∗t ) =
I(Pa∗t+1

)

I(Pa∗t )
. (2.47)

Proof: It is again a simple exercise in calculus with pdfs, marginalization, chain rule and Bayes rule,
Proposition 2.4 with the natural conditions of decision-making (2.36). ♦

Remark(s) 2.11

1. The observation model f(∆t|at,Pa∗t ,Θ) is called parameterized model whenever estimation
problem is considered. We respect this tradition.

2. Note that the recursive evolution of the pdf f(Θ|Pa∗t ) allows us to interpret the posterior
pdf as the prior one before processing new observations.

3. The data inserted into the “objective” parameterized (observation) model correct gradually
the subjectively chosen prior pdf f(Θ). The posterior pdf f(Θ|Pa∗t ) reflects always both
ingredients. If the data are informative enough, the relative contribution of the single
subjective factor f(Θ) to the posterior pdf is decreasing with increasing t as the likelihood
function L(Θ,Pa∗t+1

) contains t “objective” factors, cf. (2.45).

4. Zero values are preserved by multiplication. Thus, the posterior pdf re-distributes proba-
bility mass only within the support of the prior pdf, i.e. within the set

supp [ f(Θ)] ≡ {Θ ∈ Θ∗ : f(Θ) > 0}.

This fact allows us to introduce hard bounds on possible parameter values but prevents us
to “learn” about parameters Θ out of the support supp [ f(Θ)], see (2.44).
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5. Remarks 2.10 related to filtering apply mostly to estimation, too. The parameter estimation
is a task on its own; unknown parameters are always in the ignorance of the decision to be
chosen; under the natural conditions of decision-making (2.36), decisions are needed and
not the strategy{
Rt : P∗a∗t → a∗t

}
t∈t∗

generating them.

6. The parameters Θt are usually assumed to be finite-dimensional in order to avoid tech-
nicalities related to measure theory. In exceptional cases, like in description of so called
equivalence approach, see Section 4.2.1, we deal with potentially infinite-dimensional pa-
rameter. It means that the number of unknown quantities is finite but increases without
limitations. This case is often called non-parametric estimation.

2.5.3 Asymptotic of estimation

The analysis outlined here serves us mainly for interpretation purposes. Thus, all technicalities
are suppressed as much as possible.

The “objective” pdf f(Q), see Section 2.3.1, describing the system behavior is denoted here
bof(Q). The corresponding outer model of the system f(∆t|at,Pa∗t ) is denoted bof(∆t|at,Pa∗t ).
Its relationship to the predictive pdf f(∆t|at,Pa∗t ) obtained through the parameter estimation,
Proposition 2.14, is inspected.

For the analysis, the notion of entropy rate H∞
(
bof ||Θ

)
is needed. For each Θ ∈ Θ∗, it is

defined by the formula

H∞
(
bof ||Θ

)
≡ lim

t→∞
supHt

(
bof ||Θ

)
≡ (2.48)

≡ lim
t→∞

sup
1
t

∑
τ≤t

∫
∆∗
τ

bof(∆τ |aτ ,Pa∗τ ) ln

(
bof(∆τ |aτ ,Pa∗τ )
f(∆τ |aτ ,Pa∗τ )

)
d∆τ .

Proposition 2.15 (Asymptotic of estimation) Let the natural conditions of decision-making
(2.36) hold and 0 < CΘ ≤ CΘ ≤ c <∞, t̄Θ ∈ {1, 2, . . .} exist, for almost all Θ ∈ Θ∗, such that

CΘf(∆t|at,Pa∗t ,Θ) ≤ bof(∆t|at,Pa∗t ) ≤ CΘf(∆t|at,Pa∗t ,Θ), ∀t > t̄Θ, ∀Pa∗t+1
∈ P∗a∗t+1

. (2.49)

Then, the posterior pdf f(Θ|Pa∗t ) (2.43) converges almost surely to a pdf f(Θ|Pa∗∞). It has the
support coinciding with the set of minimizing arguments in

supp
[
f(Θ|Pa∗∞)

]
= Arg min

Θ∈supp[ f(Θ)]∩Θ∗
H∞

(
bof ||Θ

)
. (2.50)

Proof: Under the natural conditions of decision making (2.36), the posterior pdf (2.43) can be
written in the form

f(Θ|Pa∗t+1
) ∝ f(Θ) exp

[
−tH(Pa∗t+1

,Θ)
]

with (2.51)

H(Pa∗t+1
,Θ) =

1
t

∑
τ≤t

ln

[
bof(∆τ |aτ ,Pa∗τ )
f(∆τ |aτ ,Pa∗τ ,Θ)

]
. (2.52)

This form exploits the fact that non-normalized posterior pdf can be multiplied by any factor inde-
pendent of Θ.
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Let us fix the argument Θ ∈ Θ∗ and define

eΘ;τ ≡ ln

[
bof(∆τ |aτ ,Pa∗τ )
f(∆τ |aτ ,Pa∗τ ,Θ)

]
− boE

[
ln

[
bof(∆τ |aτ ,Pa∗τ )
f(∆τ |aτ ,Pa∗τ ,Θ)

]
|aτ ,Pa∗τ

]

≡ ln

[
bof(∆τ |aτ ,Pa∗τ )
f(∆τ |aτ ,Pa∗τ ,Θ)

]
−
∫

bof(∆τ |aτ ,Pa∗τ ) ln

[
bof(∆τ |aτ ,Pa∗τ )
f(∆τ |aτ ,Pa∗τ ,Θ)

]
d∆τ .

A direct check reveals that the introduced deviations eΘ;τ of values

ln

[
bof(∆τ |aτ ,Pa∗τ )
f(∆τ |aτ ,Pa∗τ ,Θ)

]

from their conditional expectations boE [·|aτ ,Pa∗τ ], given by bof(∆τ |aτ ,Pa∗τ ), are zero mean and
mutually non-correlated. With them,

H(Pa∗t+1
,Θ) = Ht

(
bof ||Θ

)
+

1
t

∑
τ≤t

eΘ;τ .

The assumption (2.49) implies that the variance of eΘ;τ is bounded. Consequently, the last term
in the above expression converges to zero almost surely (a.s.), see [21], page 417. The first
term on the right hand side of the last equality is non-negative as it can be viewed as a sum of
Kullback-Leibler divergences, see Proposition 2.10. Due to (2.49), it is also finite. Thus, (2.52)

converges a.s. to the non-negative value H
(
bof ||Θ

)
. The posterior pdf remains unchanged if we

subtract tminΘ∈supp[ f(Θ)]∩Θ∗ H∞
(
bof
∣∣∣∣∣∣Θ) from the exponent of its non-normalized version (2.51).

Then, the exponent contains (−t× an asymptotically non-negative factor). Thus, the posterior pdf
f(Θ|Pa∗∞) may be asymptotically non-zero on minimizing arguments (2.50) only. ♦

Remark(s) 2.12

1. The entropy rate can be seen as an extension of the Kullback-Leibler divergence (2.26)
that covers well asymptotic and controlled cases. It coincides with the Kullback-Leibler
divergence in a range of particular cases.

2. The assumption (2.49) can be weakened. It is, however, intuitively well acceptable. It
excludes parameterized models, which assign zero belief to data generated by the system
with a non-zero probability and vice versa.

3. The Bayesian estimation minimizes asymptotically the entropy rate of the objective pdf
bof(∆t|at,Pa∗t ) and a model chosen among candidates f(∆t|at,Pa∗t ,Θ), Θ ∈ Θ∗. In other
words, a best projection of the objective pdf to the considered parameterized models is
asymptotically found. The prior pdf can be interpreted as a prior belief assigned to the
individual parameters Θ ∈ Θ∗ that the corresponding parameterized model is the best pro-
jection of the objective pdf [22]: not knowing the reality we do not know the best projection
we finally arrive at.

4. The posterior pdf concentrates on a point if there is a unique minimizer of the entropy
rate. In this case, the model is called identifiable. The possibility to identify the model can
be influenced by
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• the considered class of the parameterized models and

• the decisions chosen, for instance, by the controller used: e.g. controller generating
constant inputs does not allow us to learn their dynamic influence on outputs.

5. If the objective pdf bof(∆t|at,Pa∗t ) coincides with f(∆t|at,Pa∗t ,Θ) for some Θ = boΘ with

f
(
boΘ
)
> 0 then boΘ is in the support of the asymptotic posterior pdf f(Θ|Pa∗∞). If,

moreover, the model is identifiable the objective pdf is asymptotically identified by the
adopted Bayesian approach. This fact can be expressed in a more appealing form:

Bayesian estimate is consistent whenever there is a consistent estimator.

6. Often, a similar analysis is performed by measuring distance of parameterized models to
empirical pdf of data [23]. It gives similar answers if the empirical pdf converges to the
objective pdf. Moreover, it provides hints how to approximate the posterior pdf [24], see
also Section 4.2.1. On the other hand, the known conditions of such convergence are more
restrictive. For instance, an analysis of the controlled case is much harder.

Problem 2.1 (How to unify statistics?) Asymptotic analysis and finite-data oriented Bayesian
approach are often perceived in an antagonistic way. Their simultaneous and harmonized use
still waits for its full exploitation.

2.5.4 Exponential family

The exponential family of distribution describing the parameterized model plays decisive role
in all decision-making tasks. The reason is, that all functional recursions solving the dynamic
decision-making tasks change into algebraic ones for their statistics. Thus, the tasks are signifi-
cantly easier to solve within this class then outside it.

Agreement 2.14 (Exponential family of parameterized models) The parameterized model
belongs to the (dynamic) exponential family iff it can be written in the form

f(∆t|Θ,Pa∗t , at) = A(Θ) exp[B′(Ψt)C(Θ)], where (2.53)

Ψ′
t ≡ [∆′

t, ψ
′
t] is a finite dimensional data vector determined by experience Pa∗t+1

and its values
can be recursively updated according to a known formula (Ψt−1, at,∆t)∗ → Ψ∗

t ,

′ means transposition.

A(·) is a non-negative scalar function defined on Θ∗,

B(·), C(·) are vector functions of the same finite fixed dimension. They are defined on respective
arguments in Ψ∗

t and Θ∗.

Remark(s) 2.13

1. The ψ part of the data vector Ψ is often called regression vector.

2. Our definition of the exponential family is non-standard. The additional requirement on
the recursive updating of the data vector Ψ (2.53) is important for the dynamic situations
we deal with.
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3. Notice that equality is used in (2.53). The normalization of this pdf must not spoil it. Due
to it, the allowed form is rather restrictive. Let us indicate it.

Often, it is possible to assume that f(∆t|Θ,Pa∗t , at) = Φ(Ψt,Θ) > 0. Then, a first
order Taylor-type expansion of logarithm of this function implies that ln(Φ(Ψt,Θ)) ≈
B̃′(Ψt)C̃(Θ). We exponentiate the right hand of this approximate equality and try to
normalize it so that integral over ∆t equals to one. Mostly, we find that the normalizing
factor A(·) will depend both on entries of ψt and Θ. Thus, the resulting pdf lies out of the
exponential family.

Practical significance of the exponential family becomes obvious when we specialize to it Propo-
sition 2.14 describing estimation and prediction.

Proposition 2.16 (Estimation and prediction in exponential family) Let natural con-
ditions of decision making, Requirement 2.5, be met with time-invariant Θt = Θ ∈ Θ∗. Let
the parameterized model belong to exponential family (2.53). Then, the predictive pdf (the outer
model of the system) is given by the formula

f(∆t|Pa∗t , at) =
I(Vt−1 +B(Ψt), νt−1 + 1)

I(Vt−1, νt−1)
, with (2.54)

Vt = Vt−1 +B(Ψt), V0 = 0; νt = νt−1 + 1, ν0 = 0, and (2.55)

I(V, ν) =
∫
Θ∈Θ∗

Aν(Θ) exp[V ′C(Θ)]f(Θ) dΘ (2.56)

where f(Θ) is a prior pdf. The Bayesian parameter estimate (posterior pdf) is

f(Θ|Pa∗t+1
) =

Aνt(Θ) exp[V ′
tC(Θ)]f(Θ)

I(Vt, νt)
, (2.57)

i.e. the likelihood function is L(Θ,Pa∗t+1
) ≡ L(Θ, Vt, νt) = Aνt(Θ) exp[V ′

tC(Θ)].

Remark(s) 2.14

1. Estimation and prediction within exponential family is extremely simple. The problem of
updating of functions (pdfs) converts into the algebraic recursive updating of the finite-
dimensional sufficient statistics Vt and of the sample counter νt. The wish to have this
recursion complete explains the requirement for possibility to update Ψt recursively, see
Agreement 2.14. Moreover, a single type of the normalization integral I(V, ν) has to be
evaluated.

2. An inspection whether there is a wider set of parameterized models with advantageous
properties of the exponential family opens just narrow space [25, 26]. Essentially, the
exponential family coincides with all parameterized models that are sufficiently smooth
functions of Θ and with supports independent of Θ. Uniform distribution with unknown
constant boundaries represents one of a few feasible examples of pdfs out of exponential
family.

3. The class of models that lead to a finite-dimensional characterization of pdfs occurring in
filtering is even more restrictive. Its discussion can be found in [27].
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Chapter 3

Decision-making tasks

Here, we provide practical comments to elements occurring in all decision tasks. Then we
list usual decision tasks met. Their specific cases are is the second part of this text. Their
presentation follows more or less the structure of this chapter.

3.1 Construction elements

The discussion of “atoms” creating any decision task should help us to learn a good practice
and to avoid common mistakes. Their choice, modification and use represent typically specific
decision subtasks that have to be harmonized with the final aim considered. It is often very
hard task but the following design golden rule should be respected as much as possible:

Do not split the overall decision task into subtasks unless necessary. (3.1)

3.1.1 Data

Data connect the artificial world of evaluations with reality. Their information content is crucial
for the success of the decision making that use them.

Experimental design

If the designer has an opportunity to influence the information content of data he/she should
do that by a proper experimental design. At abstract level, it means that the chosen working
conditions should suppress ambiguity of the best projections caused by quality of data, see
Proposition 2.15. More practically, the optional data (inputs, set-points) have to be chosen so
that they “excite” the system in a sufficient way. For instance, we cannot learn the dependence
of outputs on inputs when inputs are not varying during the data acquisition. Obviously, data
properties influence also speed of the learning.

Thus, if possible, it is reasonable to optimize information content of data. We outline such
optimization in the simpler case of estimation.

Mutual information, i.e. Kullback-Leibler divergence (2.26) of the joint pdf of data and param-
eters to the product of their marginal pdfs, is known to be an adequate quantitative expression

39
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of the informational relationship inspected [15]. Under natural conditions of decision making
(2.36), it takes the form

I(∆(̊t), a(̊t)||Θ) ≡ (3.2)∫
f(∆(̊t), a(̊t),Θ) ln

(
f(∆(̊t), a(̊t),Θ)
f(∆(̊t), a(̊t))f(Θ)

)
d(∆(̊t), a(̊t),Θ) =

∑
t∈t∗

∫
f(∆t|Θ,Pa∗t , at)f(at|Pa∗t )f(Θ|Pa∗t )f(Pa∗t ) ln

(
f(Θ|Pa∗t )
f(Θ)

)
d(∆(t), a(t),Θ).

This form demonstrates that the mutual information measures an average distance of the pos-
terior and prior pdfs.

In order to learn as much as possible about unknown parameters, the mutual information
should be maximized with respect to the optional admissible strategy described by its model
{f(at|Pa∗t )}t∈t∗ . Formally, dynamic programming, Proposition 2.8, could be used to this pur-
pose.

Remark(s) 3.1

1. The functional (3.2) depends linearly on pdfs {f(at|Pa∗t )}t∈t∗ describing the optional strat-
egy. Thus, a practically meaningful solution can be obtained only when some restrictions
are added. This property is not related to this specific distance but manifests the fact that
an infinite stimulating energy, if allowable, may provide the best information about the
system inspected.

2. The formulated maximization task cannot be generally solved because of its complexity. It
is as complex as dual control. It provides us at least the ideal solution to be approximated.
For instance, it becomes a useful optimizing guide when only a finite amount of competitive
strategies is a priori allowed.

Mutual information can also be used for analyzing data when results of parameter estima-
tion are unsatisfactory.

3. Specific feasible solutions for specific classes of models are well elaborated see, for instance,
[28].

Problem 3.1 (How to approximate experimental design?) General, numerically feasible
approximations of the optimal but infeasible solution to the experimental design are still waiting
for their inventors. The problem is even more hard and challenging when the predictive pdfs
result from filtering, see Section 2.5.1. It might be reasonable to consider the asymptotic version
of this optimization like in Section 2.4.3.

Data pre-processing

The objective pdf describing reality is (practically) always out of the set considered parameter-
ized models. The estimation searches for the best projection of all aspects of reality which are
reflected in measured data, cf. Remarks 2.12. Some aspects may be a priori uninteresting for the
problem at hands. The estimation, that always deals with a finite data set, has to handle them,
too. Consequently, it might fail to provide a solid information on aspects of interest. Thus, a
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wise and commonly used practice is to suppress uninteresting details in data before estimation
or filtering, to pre-process data. A similar logic justifies pre-processing in control and other
decision-making tasks.

Pre-processing steps could be and ideally should be done using the framework described in this
text. Some of them form essence of the presented examples. At the same time, there is a bunch
of ready technique [29, 30] that can be carefully used.

Typical pre-processing steps are: data transformation linearizing their relationships, data scal-
ing, outliers removal, high frequency noise removal, filling of missing data, data aggregation etc.
Each of them makes a pre-projection to a simplified world. It obviously influences quality of the
resulting projection. Damages made in the pre-processing phase can hardly be removed in later
design phases. Typical errors in pre-processing are:

• a premature reduction of data so that some informative attributes are lost,

• wasting of the information in data by sampling them with too low frequency,

• a significant change of the modelled dynamics by underestimating the fact that the the
final model describes coupling of the reality and the used pre-processing mechanism,

• a distortion of the inspected relationships by inadequate substitutions for missing data.

Problem 3.2 (How to harmonize pre-processing with ultimate goal?) Similarly, as in
other places, the optimal pre-processing demands to solve the decision problem in its entirety. It
is mostly impossible and splitting the overall task into adequate and harmonized subtasks is left
to a “sound” reasoning. It is pleasant as it requires creativity. It is unpleasant as the overall
results of the decision making might be spoiled by an improper choice. The problem is severe
especially in dynamic decision-making problems in which there is a restricted freedom for an
iterative trial-and-error treatment.

3.1.2 Decisions

Elements

The set a∗ of possible decisions contains often elements that can “substitute” each other. This
incomplete pre-determination calls for selecting the most suitable elements. For instance, mois-
ture of a produced paper can be influenced both by machine speed and energy used for drying
[31]. The choice is first of all based on physical and economic priorities. Then structure es-
timation task, see Agreement 3.4 and Proposition 3.6, should follow when no other technical
priorities can be recognized.

Restrictions

Causality restrictions, see Section 2.2, are always considered in our design. Their impact can
be influenced at a pre-design stage. Typically, new sensors can be installed in order to enrich
accessible experience. Their efficient choice is far from being trivial and respecting of the design
golden rule (3.1) cannot be over-stressed in this instance.

Technological restrictions, i.e. final specification of the decision set a∗(̊t), follows mostly from
technological, economic or safety considerations. Generally, they increase complexity of the
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design of the optimal strategy and have to be modified in order to make the design and applica-
tion feasible. When they are relaxed for complexity reasons, they have to be reflected in other
elements of the design. Often, the loss function is modified. In a sense, a sort of penalty-based
minimization under restrictions is implicitly used.

Moreover, a good and justified optimization practice has to be respected. For instance, when
a particular unrestricted optimizing decision is out of the target set a∗ a simple clipping at the
boundary of a∗ should not be used: a proper (near) optimal projection on a∗ is needed.

Also, unnecessary restrictions should be avoided. For instance, the restriction to unbiased
estimators [32] is well justified in many statistical decision tasks. If it is, however, mechanically
required for other tasks, say adaptive control design, it can make the final strategy (much) less
efficient than possible.

Problem 3.3 (How to treat technical priorities?) A systematic analysis of priorities and
technical consideration mentioned in previous paragraphs and met on many places should be
supported by formal tools. Those available now, like qualitative modelling and simulation [33],
do not fit well the methodology described here.

3.1.3 Parameterized model

Again, a non-formalized search for a compromise between the model quality and complexity of
its treatment makes the model choice more art than science.

Exponential family

The need for reaching this compromise is responsible for a prominent role of so called exponential
family [34] and conjugate prior. They help us in struggle with the curse of dimensionality [35]
and at the same time they are able to cover a range of practical problems.

Majority of the textbook pdfs belong to the exponential family. The following table provides
examples of such pdfs in the static case when the regression vector is empty, i.e. Ψ ≡ ∆ ≡ y
and y is either scalar or its entries are independent (recall Agreement 2.5).

Name Parameterized model Innovation Parameter

Exponential 1
λ exp

(
− y
λ

)
y ≥ 0 λ > 0

Poisson µy

Γ(y+1) exp(−µ) y ∈ {0, 1, . . .} µ > 0

Multinomial
∏
i∈y∗ Θδ(i,y)

i y ∈ {1, . . . , ẙ} {Θi ≥ 0,
∑
i∈y∗ Θi = 1}

Normal 1√
2πr

exp
[
− (y−µ)2

2r

]
y ∈ (−∞,∞) µ ∈ (−∞,∞), r > 0

Log-normal 1
y
√

2πr
exp

[
−

ln2
(
y
µ

)
2r

]
y > 0 µ > 0, r > 0

The Euler gamma function Γ (7.3) and Kronecker delta function δ (7.1) are defined in Chapter 7.

The dynamic case with a nonempty ψ is much more narrow (cf. Remarks above). Essentially,
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normal (Gaussian) linear-in-parameters model and Markov chains dominate this case.

Name Parameterized model Data vector Parameter

Normal 1√
2πr

exp
[
− (y−θ′ψ)2

2r

]
y ∈ (−∞,∞) θ ∈ θ∗ ⊂ (−∞,∞)θ̊

(Gaussian) ψ ∈ (−∞,∞)ψ̊ r > 0
Markov

∏
i∈y∗

∏
j∈ψ∗ Θδ(i,y)δ(j,ψ)

i|j y ∈ y∗ ≡ {1, . . . , ẙ} ∀j ∈ ψ∗, {Θi|j ≥ 0,
chain ψ ∈ ψ∗ ≡ {1, . . . , ψ̊}

∑
i∈y∗ Θi = 1}

Completion of probabilistic models

The presented design relies (with a few exceptions) on a complete specification of the parame-
terized model. At the same time, the designer has always at disposal a finite amount of facts for
its construction. Their necessary completion to pdf (an infinite-dimensional object) represents a
non-standard and weakly supported interpolation task. We sketch its solution proposed in [36].

Let the designer know the form of the conditional expectation of a vector function H(∆t), i.e.

E [H(∆t,Pa∗t , at)|Θ,Pa∗t , at] = h(Θ,Pa∗t , at) (3.3)

with a known vector function h. The constructed pdf f(∆t|Θ,Pa∗t , at) should respect just this
knowledge. It has to fulfill (3.3). It should be as uncertain as possible in order to leave as much
freedom as possible for learning from data. We quantify these requirements by minimizing
Kullback-Leibler divergence (2.26) of the constructed f(∆t|Θ,Pa∗t , at) to the uniform pdf under
the restriction (3.3). Note that the minimization is equivalent to entropy maximization [15].

Proposition 3.1 (Completion of parameterized models) The minimizer
f(∆t|Θ,Pa∗t , at) of the functional

D(f ||uniform pdf) =
∫
f(∆t|Θ,Pa∗t , at) ln[f(∆t|Θ,Pa∗t , at)] d∆t

within the set of pdfs f(∆t|Θ,Pa∗t , at) ∈{∫
∆t∈∆∗

t

f(∆t|Θ,Pa∗t , at) d∆t = 1, E [H(∆t,Pa∗t , at)|Θ,Pa∗t , at] = h(Θ,Pa∗t , at)
}

has the form

f(∆t|Θ,Pa∗t , at) = γ(Θ,Pa∗t , at) exp[λ′(Θ,Pa∗t , at)H(∆t,Pa∗t , at)]. (3.4)

The scalar function γ(·) is determined by the normalization, see Proposition 2.4. The vector
function λ(·) has to fulfill the identity∫

∆∗
t

H(∆t,Pa∗t , at)γ(Θ,Pa∗t , at) exp[λ′(Θ,Pa∗t , at)H(∆t)] d∆t = h(Θ,Pa∗t , at). (3.5)

Proof: It is implied by an elementary calculus of variations. ♦

Remark(s) 3.2
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1. The result is more of a conceptual than of a practical interest as the solution to (3.5) can
rarely be found. Moreover, the model found is mostly out of the favorite exponential family.

2. Gaussian parameterized model is obtained for H(∆t,Pa∗t , at) = [∆t,∆2
t ]
′. This helps us in

judging suitability of this popular option.

Problem 3.4 (How to make the completion practicable?) The weakness of the presented
results indicates how neglected the art of the model completion is. The completion has to be ei-
ther developed much more or avoided completely. The latter desirable direction would, however,
require to built the corresponding decision theory relying only on partial descriptions like (3.3).
It is possible that it is impossible.

Mixtures of models

The model constructed in previous Section exploits available physical knowledge expressed by
the expectation (3.3). It is often obtained through modelling valid locally around some working
point. Then, an extension to models covering a wider range of working conditions is desirable.
Mixture of models

f(∆t|Θ,Pa∗t , at) =
∑
c∈c∗

αcfc(∆t|Θc,Pa∗t , at), Θ ∈ Θ∗ ≡ (3.6){
Θ = (αc,Θc), Θc ∈ Θ∗

c c ∈ c∗ ≡ {1, . . . , c̊ <∞}, α ∈ α∗ ≡
{
αc ≥ 0,

∑
c∈c∗

αc = 1

}}

represents a good universal option for meeting this need as the mixtures of models have often so
called universal approximation property. It means that the set (3.6) is dense in the set of outer
models of the system. This property takes place whenever the number of components c̊ is not
limited and individual components, i.e. pdfs fc(∆t|Θc,Pa∗t , at), can be made arbitrarily close to
an arbitrarily positioned Dirac delta function [37].

The exact estimation and prediction with this model is practically impossible as the number of
terms in likelihood function L(Θ,Pa∗t+1

) – the product of parameterized models – increases expo-
nentially. Luckily enough, good algorithms for approximate estimation of the mixture of models
are available [38]. Even a good approximate recursive estimation is possible if the components
{fc(∆t|Θc,Pa∗t , at)}c∈c∗ belong to the exponential family or describe uniform distributions on
rectangular boxes. This quasi-Bayes estimation is described in Section 4.2.3.

The quasi-Bayes estimation as well as other algorithms exploit the following alternative inter-
pretation of the mixture of models (3.6). Let ct ∈ c∗ be the unobservable random selector of the
“active” component that takes the value c with probability αc. Then,

f(∆t, ct|Θ,Pa∗t , at) = fct(∆t|Θct ,Pa∗t , at)αct . (3.7)

The marginalization rule, see Proposition 2.4, implies that the mixture (3.6) is marginal pdf of
the joint pdf (3.7).

3.1.4 Prior pdf

The need for selecting prior pdf is often regarded as the main disadvantage of the adopted
Bayesian approach [10]. We contribute positively to the never-ending discussion on its pros and
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cons by showing that its use opens a regular gate through which prior “expert” information can
be introduced into learning in a systematic way.

The posterior pdf (2.44) is a product of the likelihood function consisting of t factors f(∆τ |Θ,Pa∗τ , aτ )
and of a single prior pdf f(Θ). If t is high enough and data bring a sufficient information on Θ
then the posterior pdfs obtained for various prior pdfs resemble each other: the role of prior pdf
is weak.

The posterior pdf is significantly influenced by the prior pdf when some of the above conditions
is not fulfilled. Let us formulate simple Propositions that formalize this.

Proposition 3.2 (Role of the prior pdf)

1. Parameter values Θ /∈ supp [ f(Θ)], for which the prior pdf is zero, get the zero posterior
pdf, too. Formally,

supp
[
f(Θ|Pa∗t+1

)
]

= supp
[
L(Θ,Pa∗t+1

)
]
∩ supp [ f(Θ)] .

2. The recursive evolution of the likelihood function

L(Θ,Pa∗t+1
) = f(∆t|Θ,Pa∗t , at)L(Θ,Pa∗t ), t ∈ t∗, L(Θ,Pa∗1) = 1,Θ ∈ Θ∗

L (3.8)

does not depend on the prior pdf chosen.

3. The posterior pdf exists iff the product L(Θ,Pa∗t+1
)f(Θ) is integrable.

Proof: It is a direct consequence of the formula for posterior pdf (2.44). ♦

Remark(s) 3.3

1. The prior pdf offers a simple and clear way for introducing hard restrictions on parameters.

2. The recursion (3.8) is valid even if Θ∗
L 6= Θ∗ ≡ supp [ f(Θ)]. This trivial statement

implies that hard bounds on parameter values must not influence likelihood function, i.e.
the “objective” link to data reflecting reality. This fact is easily and repeatedly overlooked
in recursive estimation. Instead of restricting the posterior pdf the statistics determining
the likelihood are deformed with an adverse effect on the estimation quality.

3. Often, a flat prior pdf is chosen in order to model the lack of prior knowledge. Even
integrability of the prior pdf is relaxed and the improper prior pdfs f(·) ≥ 0,

∫
f(Θ) dΘ =

∞ are used. For instance, the posterior pdf is proportional to the likelihood function if we
allow the prior pdf be improper and equal 1. Then, however, the posterior pdf might be
improper, too. Thus, it is more reasonable to select a flat but proper prior pdf as it serves
as a regularizing factor.

Agreement 3.1 (Conjugate prior pdf) Let the parameterized model belong to exponential
family, see Agreement 2.14,

f(∆t|Θ,Pa∗t , at) = A(Θ) exp[B′(Ψt)C(Θ)].

The prior pdf is called conjugate prior pdf if it has the form

f(Θ) ∝ Aν0(Θ) exp[V ′
0C(Θ)]χ(Θ). (3.9)

It is determined by the indicator χ of the set Θ∗ and “prior statistics” V0, ν0.
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Proposition 3.3 (Estimation with conjugate prior pdf) Let the parameterized system be-
long to the exponential family and the conjugate prior pdf is chosen. Then, the posterior pdf
have the same functional form as the prior one. Its statistics Vt, νt evolve according to (2.55)
with zero initial conditions replaced by V0, ν0:

f(Θ|Pa∗t ) ∝ Aνt(Θ) exp[V ′
tC(Θ)]χ(Θ), t ∈ t∗ (3.10)

Vt = Vt−1 +B(Ψt), νt = νt−1 + 1
V0, ν0 ≡ prior statistics.

Proof: It is a direct consequence of the formula for posterior pdf (2.44) applied to the exponential
family. ♦

Agreement 3.2 (Fictitious data) Let the parameterized model belong to the exponential fam-
ily and a conjugate prior pdf f(Θ) ≡ f(Θ|Ktf ) respects a piece of knowledge Ktf . The fictitious
data vector Ψtf is said to express this knowledge piece if

f(Θ|Ktf ) ∝ Aν̄+1(Θ) exp
{
[B(Ψtf ) + V̄ ]′C(Θ)

}
∝ A(Θ) exp[B′(Ψtf )C(Θ)]f̄(Θ). (3.11)

The used pdf f̄(Θ) ∝ Aν̄(Θ) exp[V̄ ′C(Θ)] is a flat pre-prior pdf.

In other words, the inclusion of the individual knowledge piece Ktf is expressed as an application
of the Bayes rule with fictitious data vector inserted into the parameterized model.

Remark(s) 3.4

1. Instructive examples of fictitious data are in in [39].The construction is also demonstrated
on examples of this text. The common procedure is as follows:

Algorithm 3.1 (Construction of fictitious data)

(a) Ask yourselves what response of the system you expect to some experience (often, past
inputs or initial values) when your information piece is correct.

(b) Think about uncertainty of the system response caused by your uncertainty about the
treated knowledge piece.

(c) Scale these data so that the response uncertainty resembles the uncertainty caused by
random noises within the system.

2. It is possible and sometimes reasonable to group fictitious data into mutually consistent
blocks that are treated as a block of real data vectors, i.e. modify the flat prior pdf through
a plain rule of Bayes rule.

A collection of knowledge pieces {Ktf }tf∈t∗f contains generally items of heterogeneous and uncer-
tain nature. The auxiliary notion of fictitious data provides us their unified expression and give
us a possibility to reflect their uncertainty. With fictitious data vectors, the knowledge items
K (̊tf ), t̊f < ∞ can be incorporated into the prior pdf individually. Without knowing their
mutual dependencies, like their complementarity, degree of compatibility, repetitions etc., we
cannot construct the desirable prior pdf f(Θ|K(t̊f )) reflecting the whole collection of available
knowledge pieces. Thus, some heuristics is needed. The following simple proposition prepares
one of possible and successful formalizations.
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Proposition 3.4 (Geometric representant of a pair of pdfs) Let an unknown pdf f ∈ f∗ ≡
{f1, f2} be equal to f1(x) with a probability α ∈ α∗ ≡ [0, 1] and equal to f2(x) with the comple-
mentary probability 1 − α. The pdfs f1, f2 are supposed to have a common support x∗. Then,
the pdf

bof̂(x) ∝ fα1 (x)f1−α
2 (x), x ∈ x∗ (3.12)

minimizes the expected Kullback-Leibler divergence (2.26) of f̂(·) to f(·), i.e. the functional

E [D(f̂ ||f)] ≡ αD(f̂ ||f1) + (1− α)D(f̂ ||f2). (3.13)

The minimum reached is

ω(α) ≡ E [D( bof̂ ||f)] = − ln
∫
x∗
fα1 (x)f1−α

2 (x) dx. (3.14)

If f1 6≡ f2, the function ω(α) reaches its maximum on (0, 1).

Proof: (3.12) is implied by an elementary calculus of variations. (3.14) follows from it and (3.13).
The last statement is implied by the assumption f1 6≡ f2, closeness of α∗ and continuity of ω(α)
guaranteed by the common support of f1, f2. ♦

The combination or merging of a pair of knowledge pieces may be directly based on this propo-
sition by taking ftf ≡ f(Θ|Ktf ), tf = 1, 2 and accepting bof̂ as f(Θ|K(t̊f )). The constructed
prior pdf used should not claim misleading confidence thus it makes sense to choose the “worst”
(conservative) α in (3.12), i.e. α that maximizes the minimum reached.

It is straightforward to extend Proposition 3.4 for several pooled pdfs. However, the search for
the worst probabilistic vector α becomes computationally intensive even for a medium t̊f .

There is an obvious approximation based on a sequential application of Proposition 3.4 with
f1 ≡ f(Θ|K (̊tf − 1)), f2 ≡ f(Θ|Ktf ) and bof̂ ≡ f(Θ|K (̊tf )). The result may, however, strongly
depend on the evaluation order. For this reason, an alternative formulation has been proposed
in [39] that allows us not only to add a knowledge piece but also to remove superfluous ones.

Let us describe this procedure assuming that f(Θ|K(tf − 1)) has been gained in some way and
that there are two possibilities to built-in a new piece of knowledge Ktf :

Optimistic variant: Bayes rule includes correctly the new knowledge piece

f1(Θ|K(tf )) ∝ f(∆tf |Θ,Pa∗tf , atf )f(Θ|K(tf − 1)).

This variant is assigned the probability α ∈ [0, 1]

Cautious variant: Bayes rule can only be applied after removing the new factor f(∆tf |Θ,Pa∗tf , atf )
β-times

f2(Θ|K(tf )) ∝ [f(∆tf |Θ,Pa∗tf , atf )]
1−βf(Θ|K(tf − 1)), β ≥ 0.

This variant is taken with the probability 1− α.

Proposition 3.5 (Recursive processing of prior knowledge) Let f(Θ|K(tf )) has only the
optimistic or cautious variant. Then, the minimizer f̂(Θ|K(tf )) of the expected value of the
Kullback-Leibler divergence (2.26) to it has the form

f̂(Θ|K(tf )) ∝ [f(∆tf |Θ,Pa∗tf , atf )]
wf(Θ|K(tf − 1)), with w = α+ (1− α)(1− β).
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The unique “worst” values of α ∈ [0, 1] maximizing the reached minimum and

β =
{

inf β̃ :
∫

[f(∆tf |Θ,Pa∗tf , atf )]
−β̃f(Θ|K(tf − 1)) dΘ = ∞

}
exist.

Proof: Essentially, Proposition 3.4 is extended. For details see [39]. ♦

In batch processing, when we can combine prior knowledge with the measured data at one shot,
it is possible to estimate weights α by using the standard Bayes rule. This straightforward
procedure provides directly estimate of the posterior pdf with the available prior knowledge
included. We present the result for exponential family.

Agreement 3.3 (Batch processing of prior knowledge) Let the parameterized model be-
long to exponential family (2.53) and prior knowledge pieces K (̊tf ) are expressed through fic-
titious data, see Agreement 3.2. We search for such an approximation f̂(Θ|Pa∗t ,K (̊tf )) of the
unknown posterior pdf f(Θ|Pa∗t ,K (̊tf )) that

• has experience Pa∗t ,K (̊tf ),

• minimizes the expected Kullback-Leibler divergence to projections of f(Θ|Pa∗t ,K (̊tf )) within
the set

{f(Θ|Pa∗t ,Ktf }tf∈t∗f (3.15)

• assigns the to the elements of (3.15) the posterior probabilities α(Ktf |Pa∗t ) corresponding
to uniform prior probabilities on K(t̊f ).

A straightforward use of Proposition 3.4, definition of fictitious data, Agreement 3.2, estimation
in the exponential family, Proposition 3.3, and Bayes rule give:

Algorithm 3.2 (Batch processing of prior knowledge)

1. Compute the statistics V, ν determining the posterior pdf corresponding to the pre-prior
pdf only

V̄t =
∑
τ≤t

B(Ψτ ) + V̄ , ν̄t = ν̄ + t (3.16)

where the data vectors Ψτ are constructed from the (real) data available.

2. Evaluate the posterior probabilities

α(tf |Pa∗t ) ∝
I(V̄t +B(Ψtf ), ν̄t + 1)
I(V̄ +B(Ψtf ), ν̄ + 1)

, tf ∈ t∗f (3.17)

where the data vectors Ψtf are fictitious.

3. Determine statistics of the final pdf f̂(Θ|Pa∗t ,K (̊tf )) ∝ Aνt(Θ) exp[V ′
tC(Θ)]

Vt = V̄t +
∑
tf∈t∗f

α(tf |Pa∗t )B(Ψtf ), νt = ν̄t. (3.18)
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Remark(s) 3.5

1. The upper bound on the set of possible β values is chosen so that out of it the removal
of the factor f(∆tf |Θ,Pa∗tf , atf )]

−β shifts the product with f(Θ|K(tf − 1)) out of class of
proper pdfs: nothing more can be removed.

2. The combination of pdfs with the worst α is tightly related to so called barycenter of a pdf
group, see [40] and its approximation called pooling [41].

3. The results of the batch version do not depend on the order of prior knowledge processing.
It is obviously desirable property that supports the use of this version whenever possible.

Problem 3.5 (Is the knowledge quantification good enough?) There is a significant progress
in this area but the results are not stabilized yet. For instance, there is little experience with a
direct use of Proposition 3.5 and Algorithm 3.2. It is worth of being inspected more closely.

Problem 3.6 (How to choose version of Kullback-Leibler divergence?) Kullback-Leibler
divergence is not symmetric in its arguments. Optimization of the alternative version leads to
the arithmetic mean of pdfs instead of the geometric one. There are indications [42] that the
chosen version should be preferred but a definite answer does not exist.

3.1.5 Loss function

The loss function should express our wishes as precisely as possible. This obvious demand is
often violated. Then, the design provides non-acceptable decision strategies. Let us discuss the
common mistakes made.

Common mistakes

A wider than the practically admissible set of decisions a∗ is often used in order to decrease
complexity of the design. Then, the loss function has to penalize values out of the desirable set.
Otherwise, the optimal strategy found may generate useless decisions.

Use of loss functions that do not respect decision making as a dynamic process is another common
error. Generally, the decision at influences whole future of the coupling system ↔ strategy. It
gives unreasonable strategies if this fact is not respected and sequence of decisions is chosen by
optimizing a sequence of unrelated decisions, see Section 4.4.1.

Instability of the closed loop with one-step-ahead controllers applied to non-minimum phase
systems is the most known demonstration of this property. However, even stable behavior is
achieved with energy wasted. This is a less known manifestation of the same “mistake” [9].

Popular options

A dominating use of a few loss functions reflects an indirect fight with the design complexity.
Undoubtedly, the quadratic loss is a prominent example of this type. Its general form,

Z = ||Q − bIQ||2, (3.19)
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where || · || is a quadratic weighted norm and bI denotes a given ideal (reference, set-point), has
numerous variants. They differ in the target ideal, in the variables involved and weighting used.
The quadratic loss:

+ is numerically feasible in connection with linear models,

+ is flexible as it allows us to express priorities by a proper choice of weights,

+ approximates majority of smooth loss functions through a second order Taylor expansion.

It is, however, fair to say that:

− the quadratic loss over-stresses significance of large deviations from the ideal,

− the choice of weights and ideal reflecting true aims is not easy,

− usefulness of the quadratic loss as a “suppressor” of the design complexity decreases sharply
whenever the underlying model is not linear or hard restrictions are involved.

When hard bounds on admissible decisions have to be considered, loss functions based on l-
one norm might be much better. Also, the design based on l-infinity norm is nowadays widely
inspected [43]. It enhances the attention paid to requirements on robustness of the designed
strategy. Note that robustness is an engineering name to a smooth dependence of the strategy
on various elements (initial conditions, model quality, etc.) on which it depends.

Ideal in fully probabilistic design

The choice of the loss function should be harmonized with the model adopted. For instance, if
large random deviations are expected then the use of a quadratic loss might be doubtful.

The need for the harmonization is an additional argument for our preference to the fully
probabilistic design, see Section 2.4.2. In this case, the loss is determined by the ideal pdf
bIf(∆(̊t), a(̊t)) we would like to approximate. Generally, it is wise to derive the ideal pdf from
the outer description of closed loop f(∆(̊t), a(̊t)) by replacing those characteristics we hope to
influence by their desirable values. In this way, we get, for instance, an equivalent of a well
tailored quadratic performance index for linear systems with Gaussian distribution [18]. Then,
the choice of adequate weights in the loss is much simplified. We get also a realistic loss if the
well modelled system noise is non-normal.

Problem 3.7 (How to express multiple objectives?) There are extensive theories how to
handle multi-valued loss functions, what properties utility functions should have [44] etc. In spite
of this, operational guidelines how to construct the loss function in specific cases are far from
being cook-book.

3.2 Derived elements

3.2.1 Likelihood function

All investigated tasks are based on data measured on the plant we want to decide of. The
information extracted from the data measured up to time t (without prior data) is collected in
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the likelihood function. It is defined as a product of model pdfs with the data substituted which
is viewed as a function of the unknown parameter Θ (2.45)

L(Θ,Pa∗t+1
) ≡

∏
τ≤t

f(∆τ |Θ,Pa∗τ , aτ ) (3.20)

Remark(s) 3.6

1. The form of the likelihood function is often used as a template for the form chosen for
the prior pdf. The reason is that reproducibility of the likelihood function when recursively
updated, see (3.8).

3.2.2 The integral I

This integral is defined in (2.46)

I(Pa∗t+1
) =

∫
L(Θ,Pa∗t+1

)f(Θ) dΘ. (3.21)

It is frequently used in the tasks solved.

3.2.3 Posterior pdf

The posterior pdf represents the most general description the unknown parameter Θ. It yields
not only point estimates of parameter values in the form of conditional mean, but it contains
also information about its uncertainty. It can be obtained from likelihood and prior pdf

f(Θ|Pa∗t+1
) ∝ L(Θ,Pa∗t+1

)f(Θ) (3.22)

with normalization integral I(Pa∗t+1
) (3.21) or recursively

f(Θ|Pa∗t+1
) ∝ f(∆t|Θ,Pa∗t , at)f(Θ|Pa∗t ), (3.23)

where in the role of the normalization integral appears the predictive pdf (3.24).

3.2.4 Predictive pdf

It is a distribution of the next data item (in time instant t+ 1) conditioned on past and present
data items but not parameters. It can be computed from model an posterior pdf by integration

f(∆t+1|Pa∗t+1
, at+1) =

∫
Θ∗
f(∆t+1|Θ,Pa∗t+1

, at+1)f(Θ|Pa∗t )dΘ =
I(Pa∗t+1

)

I(Pa∗t )
(3.24)

where the integrals I(Pa∗t+1
) and I(Pa∗t ) can be found above in (3.21).

Remark(s) 3.7

1. The pdf (3.24), at time t is the normalization integral for recursive update of posterior pdf
(3.23).
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3.3 Static tasks

The static decision making deals with the design and use of a single decision rule. Proposition
2.7 describes its optimal design. Specific instances differ in:

• Decomposition of the behavior Q = (Pa∗ , a,Fa∗) ≡
(experience, decision, ignorance).

• Admissible rules R ∈ R∗ determined by the domain P∗a∗ and range a∗.

• Loss function Z : Q∗ ≡ (Pa∗ , a,Fa∗)∗ → [0,∞].

These elements determine the outer model f(Fa∗ |Pa∗ , a) needed for a direct application of the
basic optimization lemma, Proposition 2.7.

3.3.1 Point estimation

Point estimation can be cast in the considered framework as follows.

• Q ≡ (D, Θ̂,Θ) ≡
(data at disposal, point estimate, unknown parameter).

• Admissible rules are of the form R : D∗ → Θ̂∗, Θ∗ ⊂ Θ̂∗

• Loss function Z measures a distance of Θ̂ and Θ. This distance may depend on data D,
too.

The ignorance FΘ̂∗ coincides with the unknown parameter Θ. Thus, the outer model of the
system needed for decision making is f(Θ|D, Θ̂). The adopted natural conditions of decision
making (2.36) imply that the decision Θ̂ is superfluous in the conditioning. Thus, the needed
model coincides with the (generalized) Bayesian estimate f(Θ|D) (posterior pdf) determined in
Proposition 2.14. For the given D, the optimal point estimate is, Proposition 2.7,

Θ̂(D) ∈ Arg min
Θ̂∈Θ̂∗

∫
Z(D, Θ̂,Θ)f(Θ|D) dΘ. (3.25)

Remark(s) 3.8

1. Note that the needed outer model depends on the specific structuring of realizations Q not
on the loss function chosen.

The specific result of the optimization depends of course on the loss function chosen.

2. The quadratic loss function Z(D, Θ̂,Θ) = ||Θ−Θ̂||2Q(D) ≡ ||Θ||
2
Q(D)+||Θ̂||

2
Q(D)+2(Θ, Θ̂)Q(D)

is the most popular option. It is determined by a quadratic norm || · ||Q(D) with a positive
definite, data-dependent, kernel Q(D) and the related scalar product (·, ·)Q(D). For it, the
minimized quantity, see Proposition 2.7, is quadratic form in Θ̂, namely,

E [Z|D, Θ̂] = E [||Θ||2Q(D)|D] + ||Θ̂||2Q(D) + 2(E [Θ|D], Θ̂)Q(D) (3.26)
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⇒ Θ̂ ≡ E [Θ|D],

irrespectively of the kernel Q(·).
This general result looks very promising as just the first moment (expectation) of the pos-
terior pdf is needed. However, its evaluation requires mostly a complete knowledge of
f(Θ|D).

Problem 3.8 (How to select the ideal pdf for estimation?) There is little experience how
to specify the ideal of the fully probabilistic design 2.4.2 in the case of parameter estimation. The
general guideline, see Section 3.1.5 should be followed in this case, too. A systematic inspection
is needed.

3.3.2 Set estimation

Set estimation is tightly related to the point estimation. It can be cast in the considered
framework as follows.

• Q ≡ (D, θ∗,Θ)
(data, set estimate, unknown parameter).

• Admissible rules are of the form

R : D∗ → (θ∗)∗ ⊂
{
θ∗ ⊂ Θ∗,

∫
θ∗
f(Θ, D) dΘ ≥ α ∈ (0, 1)

}
(3.27)

where α is a pre-specified probability called credibility level.

• Loss function Z measures volume of the θ∗. The volume specification may depend on data
D, too.

Structuring of realizations Q is similar to the point estimation. This, see Remark 1 in the
previous section, implies that the outer system model needed is f(Θ|D). For the given D, the
optimal interval estimate is (Proposition 2.7)

θ∗(D) ∈ Arg min
(θ∗)∈(θ∗)∗

∫
Z(D, θ∗,Θ)f(Θ|D) dΘ. (3.28)

Remark(s) 3.9

1. Essentially, α-fractiles of f(Θ|D) are searched for.

2. Mostly, intervals are taken as the sets considered. Their length is then taken as a mea-
sure of their volume. Other choices might be more appropriate when a multivariate Θ is
considered. For instance, hyper-ellipsoids fit well to normally distributed parameters.

3. The sets searched for are called credibility sets and they are quite close to so called confi-
dence intervals studied in classical statistics.

Problem 3.9 (Is there a cook-book giving the ideal pdf?) Again, the experience how to
specify the ideal of the fully probabilistic design 2.4.2 is missing. The general guideline, see
Section 3.1.5 should be followed but a systematic inspection is needed.
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3.3.3 Testing of hypothesis

Hypothesis testing, a selection of the best variant among several alternatives, can be put within
our framework as follows.

• Q ≡ (D, ĥ, {Hh}h∈h∗) ≡
(data at disposal, estimate ĥ ∈ h∗ ≡ {1, . . . , h̊ <∞} of h, {hypothesis list}).

• Admissible rules are of the form R : D∗ → h∗.

• Loss function Z is a (̊h, h̊)-table with non-negative entries Z(D, ĥ, h), usually with the
zero diagonal as no penalty is paid when ĥ = h.

The outer system model (2.20) needed is f(h|D, ĥ). The adopted natural conditions of decision
making (2.36) imply that the decision ĥ is superfluous in conditioning. Thus, we need f(h|D).
This probability function (pf, h̊ <∞) is obtained according to Proposition 2.14 as the generalized
Bayesian estimate

f(h|D) ∝ f(D|h)f(h), h ∈ h∗ (3.29)

where f(h) is the prior pf of h’s hypothesis. The pdf f(D|h) relates observed data to individual
hypotheses h ∈ h∗. For a given D, the optimal decision in hypothesis testing is, Proposition 2.7,

ĥ(D) ∈ Arg min
ĥ∈ĥ∗

∑
h∈h∗

Z(D, ĥ, h)f(h|D) . (3.30)

Remark(s) 3.10

1. Unlike in classical hypothesis testing [32], the testing is performed within a completely
specified set of alternatives.

2. If a pair of hypothesis is compared, h̊ = 2, the decision rule constructed according to the
described methodology coincides with a celebrated Neymann-Pearson lemma [1].

In this case, off diagonal elements of Z(D, ĥ, h) penalize the classical errors of the 1st and
2nd kind [32].

3. The needed pdfs are rarely obtained directly. Instead, they are predictive pdfs obtained
through filtering or parameter estimation and prediction, see Remarks 2.10. If other de-
cisions, like control, influence the observed data then factors describing their generators
cancel in (3.29). It follows from natural conditions of acting (2.36) that are supposed to
be valid.

4. In spite of its formal simplicity, the testing of hypothesis is extremely powerful technique.
It is especially true when dealing with predictive pdfs needed when so called compound
hypothesis are treated, [32]. It, for instance, brought a whole set of novel and efficient
solutions to so called structure estimation problem [45, 46, ?] (see below).

5. When dealing with predictive pdfs, a special care has to be devoted to the choice of the prior
pdf of unknown parameters within the respective hypothesis. Their practical influence may
be unexpectedly high.

The importance of the structure estimation task calls for its formal specification:
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Agreement 3.4 (Structure estimation) Let us consider parameterized models
{f(∆t|Θh,Pa∗t , at, h)}h∈h∗;t∈t∗ as candidates for describing a single system. Then, the hypothesis
testing about the best value h ∈ h∗ is called structure estimation. The generator of the additional
decisions at (like system inputs) is supposed to fulfill natural conditions of decision making
(2.36).

Proposition 3.6 (Solution to structure estimation) Let the data
D ≡ (Pa∗t+1

, at+1) be available for structure estimation. Then, the outer model needed for select-
ing the best structure estimate according to (3.30) is

f(h|Pa∗t+1
) ∝ f(∆t|Pa∗t , at, h)f(h|Pa∗t ) ≡ (3.31)

≡
∫
f(∆t|Θh,Pa∗t , at, h)f(Θh|Pa∗t ) dΘhf(h|Pa∗t ).

The pf f(h|Pa∗t , at) can be obtained recursively according to the formula (3.31) starting from a
given prior pf f(h) ≡ f(h|Pa∗1). The needed generalized Bayesian parameter estimate evolves
according to Bayes rule, h ∈ h∗,

f(Θh|Pa∗t ) ∝ f(∆t|Θh,Pa∗t , at, h)f(Θh|Pa∗t−1
) (3.32)

starting from a given prior pdf of parameters f(Θh|h) ≡ f(Θh|h,Pa∗1).
The equivalent batch version is, h ∈ h∗,

f(h|Pa∗t+1
) ∝

Ih(Pa∗t+1
)

Ih(Pa∗1)
f(h|Pa∗1) (3.33)

Ih(Pa∗) ≡
∫
L(Θh,Pa∗)f(Θh|h) dΘh

L(Θh,Pa∗t+1
) =

t∏
τ=1

f(∆τ |Θh,Pa∗τ , aτ , h), L(Θh,Pa∗1) ≡ 1.

Proof: It uses basic algebra with pdfs, Proposition 2.4, respecting natural conditions of acting
adopted for all involved decisions. ♦

Problem 3.10 (How to treat select the list of hypotheses?) Mechanical ways of gener-
ating list of hypotheses make h̊ extremely large and consequently the their testing infeasible.
GUHA methodology represents a systematic way how to proceed. Nothing, however, has been
elaborated which would fit the methodology presented here.

Problem 3.11 (How to treat extending list of hypotheses?) Hypotheses are usually cre-
ated gradually. It opens a question, how to extend the existing set of hypothesis and how to exploit
former data so that the new hypothesis is compared in a fair way. A lot of partial steps have
been done in this respect but a systematic design and analysis are missing.

3.3.4 One-step-ahead prediction

One-step-ahead prediction, an extrapolation of experience to the potentially observable data that
are part of the ignorance set, is a very basic task that fits in our framework as follows.
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• Q ≡ (P∆̂∗ , ∆̂,∆) ≡
(data at disposal, prediction, potentially observable data).

• Admissible rules are R : P∗
∆̂∗ → ∆̂∗.

• Loss function Z measures a distance of ∆̂ and ∆ and may depend on P∆̂∗ .

The outer system model (2.20) needed is f(∆|P∆̂∗) as the natural conditions of decision making
(2.36) imply that the decision ∆̂ is superfluous in conditioning. This pdf is obtained according
to Proposition 2.14 as the generalized Bayesian prediction. For a given P∆̂∗ , the optimal point
prediction is, Proposition 2.7,

∆̂(P∆̂∗) ∈ Arg min
∆̂∈∆̂∗

∫
Z(P∆̂∗ , ∆̂,∆)f(∆|P∆̂∗) d∆. (3.34)

Remark(s) 3.11

1. The prediction experience may contain results of other decisions, like system inputs. In
this case P∆̂∗ ≡ (Pu∗ , u) ≡ D, inputs are integral part of experience and they influence
both value of the innovation and its prediction.

2. For the popular quadratic loss Z(D, ∆̂,∆) = ||∆− ∆̂||2Q(D) with quadratic norm || · ||Q(D)

weighted by a positive definite kernel Q(·), see Remarks 3.8 and the relation (3.26), the
conditional expectation is the optimal prediction for any weight Q(·),

∆̂(D) = E [∆|D]. (3.35)

3. The discussed prediction should be called point prediction. As in the estimation, set esti-
mates (credibility intervals) might be searched for. Their discussion is identical with that
presented in Section 3.3.2.

3.3.5 One-step-ahead control

One-step-ahead control tries to influence the response of the controlled system in the nearest
future by choosing an appropriate input. This problem is formulated within our framework as
follows.

• Q ≡ [Pu∗ , u, (y, x)] ≡
[data at disposal, system input, (system output, system state)].

• Admissible rules are of the form R : P∗u∗ → u∗.

• Loss function Z measures distance of (y, x, u) to desirable known reference values (yr, xr, ur)
and may depend on Pu∗ .

The outer system model (2.20) needed is f(y, x|Pu∗ , u) = f(x|Pu∗ , u, y)f(y|Pu∗ , u). The factors
creating it are obtained by applying Proposition 2.13 if we

• set x ≡ Θt,
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• take the filtration result after data updating as the first factor,

• use the output predictor f(y|Pu∗ , u) as the second factor.

For the given Pu∗ , the optimal inputs are (Proposition 2.7)

u(Pu∗) ∈ Arg min
u∈u∗

∫ ∫
Z(Pu∗ , y, x, u, yr, xr, ur)f(x|Pu∗ , u, y)f(y|Pu∗ , u) dxdy. (3.36)

Remark(s) 3.12

1. The input u influences directly the outer model of the system. This property makes the
main difference of the control task from estimation.

2. This case is a special version of the multi-step control design, see Section 3.4.4, where
additional details are presented.

3. Often, just the output of the system is controlled. Then the output predictor is needed only.

4. Output and state reference values are often called set points.

5. Quadratic distance is a popular option used. Then, the conditional expected loss optimized
depends on 1st and 2nd conditional moments of the outer model. Often, the conditional
variance does not depend on the chosen input. Then, a quadratic form in the conditional
expectation E{[y, x]|Pu∗ , u} is just needed for determining the optimal input.

6. Often, multi-step-ahead control design is approximated by using an extreme version of
receding-horizon strategy, see Section 4.4.1. The substantial loss of quality up to the
closed-loop instability may be encountered in this case [9]. This extreme should be avoided
as much as possible.

7. Fully probabilistic version, see Proposition 2.11, of this problem may be easily formulated
and solved. It is the simples application of Proposition 2.11 and as such is omitted here.

3.4 Dynamic tasks

Dynamic decision making discussed here form the core of this work. This justified a bit more
detailed discussion.

3.4.1 Sequential estimation

Mostly, we consider decision tasks with a fixed horizon t̊ < ∞. Sequential estimation is an
important exception.

If technically possible, it is often advantageous to decide whether to perform a new measurement
before making the final decision. This task makes sense if we respect the price paid in connection
with the data acquisition. The optimal decision strategies, called sequential, then lead in average
to a shorter observation process. It makes the overall decision making cheaper in comparison
with strategies that rely on a pre-defined sufficiently long decision horizon. Sequential estimation
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serves well for describing the idea. Other variants, like sequential testing of hypothesis might
be formulated and solved similarly.

Sequential point estimation can be cast in our framework as follows.

• Q ≡ [Pa∗t , at ≡ (Θ̂t, st),Fa∗t ≡ (Θ,∆t)]
[data at disposal, (estimate,stopping flag), (unknown parameter,innovations)].

• Admissible strategies consist of rules Rt : P∗a∗t → (Θ̂∗
t , s

∗
t ), Θ∗ ⊂ Θ̂∗, s∗t ≡ {stop measuring

and estimate Θ, wait for a new measurement} ≡ {0, 1},

• Loss function

Z =

{ ∑
τ≤t c(Pa∗τ ) + z(Pa∗t ,Θ, Θ̂t) if st = 0 and sτ = 1, ∀τ < t∑
τ≤t c(Pa∗τ ) if sτ = 1 ∀τ ≤ t

(3.37)

where z(Pa∗t ,Θ, Θ̂t) measures a distance of Θ and its estimate Θ̂. c(Pa∗τ ) denotes a positive
price of τth observation.

Proposition 3.7 (Sequential estimation) Let us consider the sequential estimation and as-
sume that there is an admissible strategy for which the expected loss is finite. The following
inequalities express the sufficient condition for an index t to be the time moment at which ob-
servation should be stopped

E
[(
z(Pa∗t ,Θ, Θ̂t)− z(Pa∗

t+k
,Θ, Θ̂t+k)−

t+k∑
τ>t

c(Pa∗τ )
)
|Pa∗t

]
≤ 0, ∀k = 1, 2, . . . . (3.38)

In (3.38), Θ̂t+k, k = 0, 1, 2, . . . denote parameter estimates based on Pa∗
t+k

minimizing E [z(Pa∗
t+k
,Θ, Θ̂)].

Proof: Let (3.38) be fulfilled. Then, combining the form of the loss function (3.37), the fact that
the optimal stopping time has to be determined using its experience and finiteness of the loss for the
optimal solution we get, ∀k = 1, 2, . . . ,

E
[(
z(Pa∗t ,Θ, Θ̂t) +

t∑
τ=1

c(Pa∗τ )
)
|Pa∗t

]
≤ E

[(
z(Pa∗

t+k
,Θ, Θ̂t+k) +

t+k∑
τ=1

c(Pa∗τ )
)
|Pa∗t

]
.

Using isotonicity of the expectation (taken over Pa∗t ), see Proposition 2.6, we find that the chosen
decision cannot be improved by any estimate that uses more measurements than the inspected one.
♦

The outer system model (2.20) needed for this decision making coincides with the generalized
Bayesian estimate (posterior pdf) given in Proposition 2.14.

Remark(s) 3.13

1. The ability to evaluate E
[
z(Pa∗

t+k
,Θ, Θ̂t+k)|Pa∗t

]
is decisive for a practical solvability of

the problem.

2. Stopping rules used for speeding up extensive simulations [47] based on a simple sequential
estimation serve as an example of their, still underestimated, usefulness.

3. The dependence of the observation price can be effectively exploited when the sequential
estimation is performed in an inner loop of some optimization process: the closer we are
to the optimum the lower this weight is.
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3.4.2 Multi-step-ahead prediction

Multi-step-ahead prediction, an extrapolation of experience to data in a more distant part of
the ignorance set, is an extension of one-step-ahead prediction, Section 3.3.4, and fits in our
framework as follows.

• Q ≡ (P∆̂∗
t+j|t

, ∆̂t+j|t,∆t+j) ≡
(data at disposal at time t, prediction of innovations at time t+ j based on data at disposal,
innovation potentially observable at time t+ j, j > 1).

• Admissible strategies are formed by rules Rt : P∗
∆̂∗
t+j|t

→ ∆̂∗
t+j|t.

• Loss function Z measures P∆̂∗
t+j|t

-dependent distance of ∆̂t+j|t and ∆t+j .

The outer system model (2.20) needed is f(∆t+j |P∆̂∗
t+j|t

) and the optimal point prediction is

(Proposition 2.7)

∆̂t+j|t ∈ Arg min
∆̂∈∆̂∗

∫
Z(P∆̂∗

t+j|t
, ∆̂,∆t+j|j)f(∆t+j |P∆̂∗

t+j|t
) d∆t+j .

Let us illustrate the construction of the needed outer model in a special case of the controlled
system with ∆t = yt = system output. It is controlled by a randomized controller described
by its outer model f(ut|Pu∗t ), Agreement 2.6. The outer model of the system f(yt|Pu∗t , ut) is
either given or obtained as the predictive pdf by filtering, Proposition 2.13 or through parameter
estimation, Proposition 2.14. The experience of the multi-step predictor is assumed to coincide
with Pu∗t , ut.
Using the calculus with pdfs, Proposition 2.4, the needed outer model can be expressed with
the help of the available elements as follows

f(yt+j |ut,Pu∗t ) =

=
∫
f(y(t t+ j), u(t+ 1 t+ j)|Pu∗t , ut) d (y(t t+ j − 1), u(t+ 1 t+ j)) =

=
∫ t+j∏

τ=t

f(yτ |Pu∗τ , uτ , )f(uτ |Pu∗τ )d (y(t t+ j − 1), u(t+ 1 t+ j)) .

Remark(s) 3.14

1. The need to know the future control strategy makes the main difference of this task from
one-step-ahead prediction where just knowledge of inputs is sufficient.

2. As a rule, the computed marginal pdf f(yt+j |ut,Pu∗t ), j > 1 is much flatter than the one-
step ahead predictor. Formally, it results from integration (averaging) over intermediate
predicted values. It reflects the fact that it is much harder (less reliable) to make a long
term prediction. The situation is the more pronounced the longer the prediction horizon j
is.

3. Notice that integrations over the intermediate quantities is done also over their values in
conditioning. This makes multi-step prediction highly non-linear task.



60 CHAPTER 3. DECISION-MAKING TASKS

4. Sometimes, the parameterized model can be constructed directly with the gap j, i.e. in
the form f(∆t+j |Θ,P∆̂∗

t+j|t
). Then, there is no formal difference to the one-step-ahead

prediction. The prediction quality is of course worse. If, however, there is a gap in system-
output sequence and no gap in system-input sequence the prediction of future inputs is
necessary.

Predictors of this type are used in connection with so called MUSMAR controllers [48].

5. The point prediction is discussed here. Of course, the set estimation may be also formulated
and solved using our general tools.

3.4.3 Filtering

Filtering, described in Proposition 2.13, provides filtration and one step-ahead prediction of an
unknown internal variable Θt and can be extended to multi-step prediction in the same manner
as the innovation prediction discussed in Section 3.4.2. The fact that we never observe directly
time varying Θt calls for a novel task called smoothing.

A smoother estimates the internal quantities Θt−j , j > 1 using also the measured data reflecting
newer variables Θ((t− j + 1) t). Its construction is cast in our framework as follows.

• Q ≡ (PΘ̂∗
t−j|t

, Θ̂t−j|t,Θt−j) ≡
(data at disposal at time t, smoothed estimate of Θt−j based on data at disposal, unknown
internal variable at time t− j, j ≥ 1).

• Admissible rules are of the form R : P∗
Θ̂∗
t−j|t

→ Θ̂∗
t−j|t.

• Loss Z measures distance of Θ̂t−j|t and Θt−j and may depend on PΘ̂∗
t−j|t

.

Assuming controlled system and PΘ̂∗
t−j|t

≡ (ut,Pu∗t ), basic decision-making lemma, Proposition

2.7, reads

Θ̂t−j|t ∈ Arg min
Θ̂∈Θ̂∗

t−j

∫
Z(ut,Pu∗t , Θ̂t−j ,Θt−j)f(Θt−j |Pu∗t , ut) dΘt−j (3.39)

Let us assume that we have at disposal both observation f(yt|Θt,Pu∗t , ut) and time evolution
f(Θt|Θt−1, ut,Pu∗t ), t ∈ t

∗ models used in Proposition 2.13. The applied control strategy meets
natural conditions of decision making (2.36). Using the calculus with pdfs, Proposition 2.4,
and (2.36), the model needed in the above optimization can be expressed with the help of the
available elements as follows

f(Θt−j |Pu∗t , ut) ∝ f(Θt−j , y(t− j t)|u(t− j t),Pu∗t−j ) = (3.40)

=
∫ t−1∏

τ=t−j+1

f(yτ |Θτ ,Pu∗τ , uτ )f(Θτ |Θτ−1,Pu∗τ , uτ ) dΘ(t− j + 1 t− 1)×

×f(yt−j |Θt−j ,Pu∗t−j , ut−j)f(Θt−j |Pu∗t−j )

The integrand contains the available models with available data substituted. The factor f(Θt−j |Pu∗t−j )
results from filtering described by Proposition 2.13. Smoothing is simply derived from filtering.
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3.4.4 Multi-step-ahead control

Multi-step-ahead control, and extension of one-stage-ahead control of Section 3.3.5, tries to push
quantities characterizing the controlled system, namely (system output, system input, system
state)= (y, u, x), to the desired reference values (yr, ur, xr). Their proximity should be enforced
on a whole time-interval up to the horizon t̊ by choosing an appropriate sequence of inputs u(̊t).

We consider here the most general combination of tracking and regulation to uncertain reference
values. The specialization to the case of (partially) known reference values is straightforward.
This problem is formulated in our framework as follows.

• Q ≡ [Pu∗t , ut,Fu∗t ] ≡
[(observed data ≡ y(t−1), u(t−1), yr(t−1), ur(t), xr(t−1)), system input ut, (future system
outputs y(t t̊), states x(̊t) and references yr(t t̊), ur(t+ 1 t̊), xr(t t̊))].

Time t is increasing within the set t∗.

• Admissible strategy consists of a sequence of control laws (decision rules) of the form
{Rt : P∗u∗t → u∗t }t∈t∗ .

• Loss Z measures distance of Q to reference values yr (̊t), ur (̊t), xr (̊t).

The optimal control strategy can be designed using directly dynamic programming, see the
general version in Proposition 2.8, the version with additive loss in Proposition 2.9 or the fully
probabilistic version in Proposition 2.11.

The needed outer model is f(yt, xt, yr;t, xr;t|Pu∗t , ut, ur;t). It is obtained via filtering with un-
known internal variables Θt = (xt, yr;t, xr;t) using Proposition 2.13.

Remark(s) 3.15

1. The optimal controller consists of the combination of filtering and controller acting on its
results.

2. Control of the system with unknown time invariant parameters Θ, the central topic of
main stream adaptive control [3], is a special case of the described design with the trivial
time evolution Θt = Θt−1. The parameter estimation, see Proposition 2.13, provides the
necessary outer system model in this case.

3. It is fair to say that the optimal multi-step-ahead control has the widest gap between the
optimal design and practically optimal design. It is rarely analytically or numerically
feasible. For this reason, a lot of heuristic approximation techniques have been developed.
Some of them are discussed in Chapter ??.

4. The time evolution model f(xt, yr;t, xr;t|xt−1, yr;t−1, xr:t−1,Pu∗t , ut, ur;t) has to describe the
evolution of both system state and uncertain reference values.

5. The typical control design optimizing closed-loop behavior with respect to randomly oc-
curring step changes can be obtained by modelling the output and/or state references as
random walks with time-varying dispersion [49].
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6. The described general cases covers the situation when we try to follow evolution of another
uncertain object. Rescue/military interpretations of this case are straightforward. The key
message is that the dynamics of the uncertain target has to be modelled for finding the
optimal strategy.

The situation is simplified whenever target values are (partially) known. Then the corre-
sponding outer models reduce formally to Dirac delta functions on a given known support.



Chapter 4

Evaluation techniques

Here, we review basic evaluation techniques and tools that create bridge between optimal and
practically optimal design. All of them try to cope with the complexity restrictions. The com-
plexity of the optimal design stems from the fact that the optimal “plan” of dynamic decisions
is essentially searched for by comparing all possible behaviors resulting from the interaction of
the system and judged strategy. The design complexity is significantly influenced by richness
of the inspected space. Its reduction is behind the majority of available approximation schemes
including those discussed here.

4.1 Adaptive systems

The ideal solution to the decision making under uncertainty is described by the combination of
Bayesian filtering, see Proposition 2.13, and dynamic programming, see Propositions 2.9, 2.11.
The functional equations describing them are mostly computationally infeasible. Consequently,
their use cannot live without approximations. Even the simpler fully probabilistic design oper-
ates on infinite-dimensional objects. The involved multivariate functions should be represented
in computer, i.e. in the device that can operate on a high but finite amount of values. Thus,
a sort of approximation is needed. Global approximation of functions of many variables we are
dealing with is known to be computationally hard. The application of the strategies resulting
from the design requires knowledge of the discussed solutions only for the recorded experience.
Thus, it is sufficient to know them locally around the actual experience. It can often be approx-
imately achieved. Such local approximations are known as adaptive systems [50]. They natural
exploit majority approximation techniques described below.

Remark(s) 4.1

1. Note that there is no formal definition of adaptive systems. Their operational description
is, for instance, in [3].

2. We found the coined understanding of adaptive systems as local approximations very useful.
It helps us to have a unified view on existing practical strategies and opens a way for
designing novel ones [50]. Moreover, it shows that the adaptive systems will be inevitably
used in future due to the theoretically provable need for local approximations.

63
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4.2 Suboptimal estimation

Parameter estimation, Proposition 2.14, is a special case of filtration, Proposition 2.13, with a
“trivial” time-evolution model f(Θt+1|Θt,Pa∗t+1

, at+1) = δ(Θt+1 − Θt). Consequently, majority
of techniques suitable for approximate filtering, see Section 4.3, can be used in this case, too.
Specific common techniques related to estimation only are outlined here.

4.2.1 Equivalence approach

Under natural conditions of decision making (2.36), the generalized Bayesian estimation (Propo-
sition 2.14) updates the posterior pdfs according to the Bayes rule (2.43)

f(Θ|Pa∗t+1
) =

f(∆t|Θ,Pa∗t , at)f(Θ|Pa∗t )
f(∆t|Pa∗t , at)

, t ∈ t∗. (4.1)

Complexity of expressing of this pdf increases quickly with an increasing amount of data, with
increasing t. Exponential family (2.53) is essentially the only exception from this rule. This
section tries to cope with recursive estimation out of exponential family.

Always limited capabilities of a computer that treats non-exponential parameterized models call
for a reduced representation of propagated posterior pdfs. It is a peculiar task as the posterior
pdfs concentrate quickly on a very narrow support at unknown position in Θ∗, see Proposition
2.15. Thus, a representation on a sufficiently fine grid that does not miss the final position
becomes soon computationally prohibitive. The way out has been elaborated in a sequence
of papers by Dr. Kulhavý and summarized in [24]. Here, we just outline the essence of this
equivalence approach.

Proposition 4.1 (Equivalence-preserving mapping) Let gt be a finite-dimensional vector
representing the posterior pdf f(Θ|Pa∗t ). In other words, gt is a finite-dimensional image gen-
erated by a mapping Gt : (f(Θ|Pa∗t ))

∗ → g∗t . Let the parameterized models be positive on a
common, time, data and parameter invariant support.

Then, the values of gt can be exactly recursively updated using only its previous value and
the current parameterized model f(∆t|Θ,Pa∗t , at) iff Gt is a time-invariant linear mapping G ≡
Gt t ∈ t∗ acting on logarithms of the pdfs involved. The logarithmic pdfs are treated as functions
of Θ. Gt has to map Θ-independent elements to zero.

Proof: To demonstrate necessity is rather hard and the interested reader is referred to [51, 52]. To
show that the conditions on Gt ≡ G, t ∈ t∗, are sufficient is simple and instructive. They become
obvious if we apply G to the logarithmic version of the Bayes rule (4.1) and use both its time-
invariance and linearity. The normalizing term ln(f(∆t|Pa∗t , at)) is independent of Θ and as such
mapped to zero. The recursion for gt is then simply

gt = G[ln(f(∆t|Θ,Pa∗t , at))] + gt−1, with g0 = G(f(Θ)) ≡ G(prior pdf). (4.2)

♦

Note that (4.2) becomes the true recursion if we need not store whole past observed data for
evaluating f(∆t|Θ,Pa∗t , at). Thus, similarly as in the case of exponential family, see Agreement
2.14, we adopt the mild assumption that

f(∆t|Θ,Pa∗t , at) ≡M(Θ,Ψt). (4.3)
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The data ∆t, at,Pa∗t are compressed into a finite dimensional data vector Ψt that can be updated
recursively Ψt−1, at,∆t → Ψt.

In the subsequent discussion, we need:

Agreement 4.1 (Empirical pdf; Riezs representation) Let parameterized model have the
form (4.3). Then,

ft(Ψ) ≡ 1
t

t∑
τ=1

δ(Ψ−Ψτ ), Ψ ∈ Ψ∗ ≡
⋃
t∈t∗

Ψ∗
t (4.4)

is the (formal) empirical pdf of Ψ. The used Dirac delta function δ(·) is defined in (7.2).

We assume that the same representation exists for the linear mapping G introduced in Proposi-
tion 6.1, i.e. there is a possibly generalized vector function G(Θ) such that

G(C) ≡
∫
Θ∗
C(Θ)G(Θ) dΘ (4.5)

for any considered function C(Θ), Θ ∈ Θ∗.

Assuming (4.3), using the (formal) empirical pdf (4.4) and Riezs representation of G (4.5), we
see that

gt = t

∫
Ψ∗

[∫
Θ∗

ln[M(Θ,Ψ)]G(Θ) dΘ
]
ft(Ψ) dΨ (4.6)

for the vector function G(Θ) representing functionals chosen. The integral in brackets [ ] defines
the vector function

h(Ψ) ≡
∫
Θ∗

ln[M(Θ,Ψ)]S(Θ) dΘ. (4.7)

With it, we get the equivalent form of (4.6)

gt = t

∫
Ψ∗
h(Ψ)ft(Ψ) dΨ + g0. (4.8)

Recall, that left hand side of (4.8) is known as it can be update recursively according to (4.2)
which has the equivalent “Riezs” form

gt =︸︷︷︸
(4.2)

∫
Θ∗

ln[M(Θ,Ψt)]G(Θ) dΘ + gt−1 ≡︸︷︷︸
(4.7)

h(Ψt) + gt−1, g0 = G(f(Θ)). (4.9)

Also, for the chosen parameterized model (4.3) and functions G(Θ) representing the admissible
projections to g∗t , the vector function h(Ψ) is known as well as its values in measured data
vectors Ψt. The empirical pdf ft(Ψ) (4.4) is the only incompletely known object in (4.8) as we
are not able (or willing) to store all measured Ψτ , τ ≤ t.

The posterior pdf, we are interested in, can be expressed in terms of empirical pdf as follows,
cf. a similar transformation in connection with Proposition 2.15,

f(Θ|Pa∗t+1
) ≡ f(Θ|ft) ∝ f(Θ) exp

[
t

∫
Ψ∗

ln[M(Θ,Ψ)]ft(Ψ) dΨ
]
. (4.10)

The empirical pdf is unknown to us, thus this posterior pdf is unknown, too. The selection of a
suitable approximating pdf f̂(Θ|gt) acting on Θ∗ fits to our general decision-making framework:
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• Q ≡ (Pa∗ , a,Fa∗) ≡ (gt, f̂(Θ|gt), f(Θ|ft(·)) ≡
(stored statistic, estimate of the posterior pdf, the posterior pdf determined by the unknown
empirical pdf ft(Ψ), Ψ ∈ Ψ∗),

• Admissible decision rule are of the form

R : g∗t →
{
f̂(Θ|gt) ≥ 0,

∫
f̂(Θ|gt) dΘ = 1, Θ ∈ Θ∗

}

• Loss function is the Kulback-Leibler divergence (2.26) D(f̂(Θ|gt)||f(Θ|ft))

Formally, the optimal point estimate of the posterior pdf is, Proposition 2.7,

f̂(Θ|gt) ∈ Arg min
f̂∈f̂∗

E
[
D(f̂(Θ|gt)||f(Θ||ft))|gt

]
= (4.11)

= Arg min
f̂∈f̂∗

[
D(f̂(Θ|gt)||f(Θ))− t

∫
Ψ∗
f̂(Θ|gt) ln[M(Θ,Ψ)]E [ft(Ψ)|gt] dΨ

]
.

The conditional expectation E [·|gt] is taken with respect to the uncertain empirical pdf ft(Ψ), Ψ ∈
Ψ∗.

The minimizer can be found explicitly as

f̂(Θ|gt) ∝ f(Θ) exp
{
t

∫
Ψ∗

ln[M(Θ,Ψ)]E [ft(Ψ)|gt] dΨ
}
. (4.12)

It depends only on the conditional expectation E [ft(Ψ)|gt]. The empirical pdf fulfills the iden-
tity (4.8) that is linear in it. Consequently, its conditional expectation E [ft(Ψ)|gt] has to, see
Proposition 2.6, fulfill it, too:

gt =
∫
Ψ∗
h(Ψ)E [ft(Ψ)|gt] dΨ + g0. (4.13)

For the given gt, g0, the solution (4.12) can be used if we specify the expectation

E(Ψ) ≡ E [ft(Ψ)|gt], Ψ ∈ Ψ∗. (4.14)

For it, let us accept

Agreement 4.2 (Linear span over h-entries; Orthogonality) The set of real functions de-
fined on Ψ∗ and spanned linearly over entries of the vector function h(Ψ), see (4.7)

e∗ ≡


∑

i∈i∗≡{1,...,̊h}

αihi(Ψ) with arbitrary real weights αi

 (4.15)

is embedded into a linear space E∗ with the scalar product < ·, · >. For A,B ∈ E∗ it is defined
< A,B >≡

∫
Ψ∗ A(Ψ)B(Ψ) dΨ.

The orthogonal complement e∗⊥ of e∗ to E∗ is the set

e∗⊥ ≡ {A ∈ E∗ \ 0 :< A,B >= 0 ∀B ∈ e∗} . (4.16)
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The restriction (4.12) on the constructed expectation E(Ψ) (4.14) can be written in the equiv-
alent form

gi;t − gi;0 =< hi, E >, ∀i ∈ i∗ ≡ {1, . . . , h̊}. (4.17)

This form and definition (4.16) imply that if some E(·) ∈ E∗ fulfills (4.17) then also E(·) +B(·)
does whenever B(·) ∈ e∗⊥. All such options are equivalent. At the same time, we have exploited
all relevant information sources: the prior pdf f(Θ), the parameterized model M(Θ,Ψ) and
data compressed into the recursively feasible statistics gt. We have no reason to prefer any
B(·) ∈ e∗⊥. Consequently, we consider that E(·) (refexpeE)

E(Ψ) ∈ e∗ ⇔ E [ft(Ψ)|gt] = h′(Ψ)αt, for an h̊-vector of weights αt(gt). (4.18)

This assumption and the condition (4.17) determines the weights as the solution to the set of
linear algebraic equations

gt − g0 = Hαt, Hij ≡< hi, hj >, i, j ∈ i∗. (4.19)

The constant square matrix H is positive semi-definite. Its regularity can simply be guaranteed
by a proper choice of h(·). Then, the weights α and consequently of E(·) are uniquely determined.
Thus, we can summarize the overall algorithm:

Algorithm 4.1 (Recursive estimation based on equivalence approach) Off-line phase

1. Select the parameterized model f(∆t|Θ,Pa∗t , at) ≡M(Θ,Ψt).

2. Select the prior pdf f(Θ).

3. Select the (generalized) vector function G(Θ) such that
∫
G(Θ) dΘ = 0.

4. Prepare evaluation of the function

h(Ψ) ≡
∫

ln(M(Θ,Ψ))G(Θ) dΘ. (4.20)

5. Compute the positive definite matrix A ≡ [
∫
h(Ψ)h′(Ψ), dΨ]−1.

6. Prepare evaluation of the function

H(Θ) ≡
∫

ln(M(Θ,Ψ))h(Ψ) dΨ. (4.21)

7. Set t = 0 and α0.

On-line use phase for t ∈ t∗

1. Measure data vector Ψt.

2. Evaluate h(Ψt) ≡
∫

ln(M(Θ,Ψt))G(Θ) dΘ.

3. Update weights αt = Aht + αt−1.

4. Exploit the approximation of the posterior pdf

f̂(Θ|gt) ∝ f(Θ) exp
[
H ′(Θ)αt

]
. (4.22)
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Remark(s) 4.2

1. Zero initial weights α0 reflect the fact that they are always determined by the increment
gt − g0, see (4.19).

2. The term “equivalence” approach stresses the fact that the set of posterior pdfs is reduced
to equivalence classes: pdfs with the same representation g cannot be distinguished.

3. The chosen form of the expectation (4.18) determining the final solution is definitely not
unique. It has, however, the smallest norm among possible options and as such it has
tendency to give the most flat estimate of the posterior pdf. This seems to be wise as the
approximation involved adds uncertainty to the estimation results.

4. The required commutativity of the updating and projecting the posterior pdfs is crucial. The
recursion for gs is exact and the approximation errors caused by the use of f̂(Θ|gt) instead
of f(Θ|Pa∗t+1

) ≡ f(Θ|ft(·)) do not accumulate! Use of a non-commutative projection Gt :
f∗(Θ|Pa∗t ) → g∗t is always endangered by divergence: the estimation described by the Bayes
rule can be viewed as a dynamic system evolving f(Θ|Pa∗t+1

) at stability boundary.

5. The indicated integrations represent computationally the most demanding part of the algo-
rithm. They can be performed in off-line mode if their results can be efficiently stored (the
resulting functions interpolated).

Problem 4.1 (How to choose the mapping G?) The (generalized) functions G represent
the key tuning knobs of the approach. Options leading to discretisation of the function and/or
its derivatives, or M(Θ,Ψi) on a grid of Ψi have been tried with a success but a deeper insight
is needed in order to arrive to a cook-book.

Problem 4.2 (Does exist an equivalent for filtration?) There are indications that answer
is negative. If it is true, other approaches relying on usual stabilising effect of time-updating
(2.40) have to be used. They, however, should have a smooth transition to the estimation as its
special case.

4.2.2 Estimation with forgetting

The case of slowly varying parameters is discussed here as an intermediate, widely met, case
bridging estimation and filtering. It admits time variations of Θt but it assumes that Θt+1 ≈ Θt.
At the same time, more precise model of changes the is not used.

We summarize an approach called stabilised forgetting, [53]. It is based on a flexible problem
formulation and a simple application of Proposition 3.4. It proved to be a powerful tool for
solving the considered ill-posed problem.

Let f(Θt+1 = Θt = Θ|Pa∗t+1
) be pdf that assumes no parameter changes and fa(Θt+1 = Θ|Pa∗t+1

)
an alternative pdf that describes parameters after some changes. Let φ ∈ (0, 1] be the probability
that the “correct” unknown pdf f(Θ) ≡ f(Θt+1 = Θ|Pa∗t+1

) has the best projection equal to the
former pdf and 1− φ the probability that the later one is relevant. Then, the best compromise
minimizing its expected Kullback-Leibler divergence to the unknown best projection is, see
Proposition 3.4,

f(Θt+1 = Θ|Pa∗t+1
) ∝

[
f(Θt+1 = Θt = Θ|Pa∗t+1

)
]φ [

fa(Θt+1 = Θ|Pa∗t+1
)
]1−φ

. (4.23)
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Using this formula, we approximate the time updating step (2.40) in filtering without explicitly
specifying the model of time evolution (2.35).

Algorithm 4.2 (Stabilised forgetting) Select the probability φ ∈ (0, 1] and specify prior pdf
f(Θ1 = Θ) ≡ f(Θ1 = Θ|Pa∗1) corresponding to the treated parameterized (observation) model
f(∆t|Θt,Pa∗t , at).
Repeat for time t ∈ t∗

1. Collect the newest data Pa∗t+1
, at+1

2. Perform data updating

f(Θt = Θ|Pa∗t+1
) ∝ f(∆t|Θ,Pa∗t , at)f(Θt = Θ|Pa∗t ).

3. Select or update the alternative pdf fa(Θt+1 = Θ|Pa∗t+1
).

4. Approximate time updating (forget)

f(Θt+1 = Θ|Pa∗t+1
) ∝

[
f(Θt+1 = Θt = Θ|Pa∗t+1

)
]φ [

fa(Θt+1 = Θ|Pa∗t+1
)
]1−φ

.

Remark(s) 4.3

1. The time-updated pdf (4.23) is a compromise between the posterior pdf obtained under
the hypothesis that Θt is time-invariant and an externally supplied alternative fa. The
closer φ is to unity the slower changes are expected, i.e. the higher weight the posterior pdf
corresponding to the time-invariant case gets.

2. Note that the forgetting operation (4.23) preserves the basic property of time-updating: the
posterior pdf on parameters propagates without obtaining any new measured information.

3. Let us assume that fa ∝ 1. Then f(Θt+1 = Θ|Pa∗t+1
) ∝

[
f(Θt+1 = Θ|Pa∗t+1

)
]φ

, i.e. the
time-updated pdf is a flattened version of the pdf obtained after data-updating (if φ < 1).
It is intuitively appealing as our uncertainty about parameters can hardly decrease without
knowing a good time-evolution model (2.35) and with no new information processed.

4. It is instructive to inspect the influence of forgetting on old data built in through the ob-
servation model. The older data are the higher flattening is applied to the corresponding
model. Consequently, the older data influence the estimation results less than new ones.
Data are gradually “forgotten”. This explains why the probability φ is referred as a forget-
ting factor,

5. The alternative pdf assigned to to Θ∗ expresses our belief where the parameters might move
within the time interval [t, t+ 1) while we have no new observable information.

Often, the pessimistic uniform alternative pdf (∝ 1) has been used. This special case
of stabilised forgetting is called exponential forgetting. It allows us to follow relatively
fast parameter changes but it forgets the accumulated information with, often to high,
exponential rate. For this reason, it is worth to preserve what we feel as a guaranteed
information. The prior pdf f(Θt+1 = Θ) is a typical, reasonably conservative choice of the
alternative pdf fa(Θt+1 = Θ|Pa∗t ).
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6. The non-trivial alternative pdf prevents us to forget the “guaranteed” information as it is
always incorporated after flattening (exponential forgetting). This stabilises whole learning
and reflects very positively in its numerical implementations. Without this, the posterior
pdf may become too flat whenever the information brought by new data is not sufficient.

Note that insufficient informativeness of new data is more rule than exception. It is true
especially in regulation problems in which the controller tries to make closed-loop as quiet
as possible, i.e. it tries to suppress any new information in data.

7. The forgetting factor φ can be either taken as tuning knob or estimated. The predictive pdf
parameterized by it, however, depends on it in a very complex way so that a partitioned
estimation has to be applied when its posterior pdf is estimated on a prespecified grid [54],
see Section 4.3.1.

Also, the forgetting factor can be chosen in a pessimistic way as the maximiser of the
reached minima, see Proposition 3.4.

8. Practical importance of this particular case of slowly varying parameters cannot be over-
stressed: vast majority of adaptive systems, see Section 4.1, rely on a version of forgetting
combined with a version of receding horizon strategy, see Section 4.4.1. With it, the es-
timation and prediction are approximated locally within time domain. They rely on data
measured nearby the actual time.

4.2.3 Quasi-Bayes estimation

The quasi-Bayes estimation described here is a special approximation techniques designed for
mixtures of models introduced in Section 3.1.3. The standard Bayesian estimation, see Section
2.5.2, is infeasible with this parameterized model

f(∆t|Θ,Pa∗t , at) =
∑
c∈c∗

αcfc(∆t|Θc,Pa∗t , at), Θ ∈ Θ∗ ≡{
Θ = (αc,Θc), Θc ∈ Θ∗

c , c ∈ c∗ ≡ {1, . . . , c̊ <∞}, α ∈ α∗ ≡
{
αc ≥ 0,

∑
c∈c∗

αc = 1

}}

as the number of terms in the likelihood function (??) (a product of parameterized models)
blows up exponentially. The quasi-Bayes estimation is justified as follows.

Let us have the generalized Bayesian estimate in the form

f(Θ|Pa∗t ) ∝
∏
c∈c∗

f(Θc|Pa∗t )α
vc;t−1−1
c (4.24)

with some pdfs f(Θc|Pa∗t ) and scalars statistics vc;t−1 > 0.

Introducing the random unobservable selector ct ∈ c∗ of components, we defined extension of
the parameterized model to the joint pdf of ct and innovation (3.7). Using it, the assumed form
(4.24), Bayes rule (2.8) and definition of Kronecker symbol δ(c, c̃), (7.1), we get

f(Θ, ct|Pa∗t+1
) ∝ fct(∆t|Θct ,Pa∗t , at)αct

∏
c∈c∗

f(Θc|Pa∗t )α
vc;t−1−1
c = (4.25)

=
∏
c∈c∗

[fct(∆t|Θct ,Pa∗t , at)]
δ(c,ct)f(Θc|Pa∗t )α

vc;t−1+δ(c,ct)−1
c .
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The result of the data updating for Θ could be gained from this pdf using marginalisation in
order to get rid off unobservable ct, see Proposition 2.4. It would, however, destroy the product
form (4.24) of the posterior pdf. In order to avoid this trap, we simply replace the unknown
δ(c, ct) by its point estimate. We take the conditional expectation of δ(c, ct) as this estimate. It
is the optimal point estimate corresponding at least to the quadratic loss, see Remarks 3.8:

δ(c, ct) ≈ wc;t ≡ E [ct = c|Pa∗t+1
] = f(ct = c|Pa∗t+1

) ∝ (4.26)

∝ (vc;t−1 + 1)
∫
fc(∆t|Θc,Pa∗t , at)f(Θc|Pa∗t ) dΘct .

Note that the expectation over unknown α is evaluated using formulae related to Dirrichlet
distribution, see Chapter 6.

The substitution of a point estimate preserves the product form (4.24) and whole procedure
can be prolonged. We summarize the algorithm for exponential family (2.53) for which it is of
practical interest. The results of Propositions 2.16, 3.3 are used.

Algorithm 4.3 (Quasi-Bayes estimation in exponential family)

Off-line phase

1. Select the number of components and their structure, i.e. the form of fc(∆t|Θc,Pa∗t , at).

2. Select prior statistics for estimation of parameters of individual components Vc,0, νc,0 >
0, c ∈ c∗.

3. Select prior statistics vc,0 > 0, c ∈ c∗ for estimation of the weights αc of components.

On-line phase, do for t ∈ t∗

1. do for c ∈ c∗

(a) Collect the newest data ∆t, at,

(b) Construct data vectors Ψc,t,

(c) Compute weights (4.26)

wc;t ∝
I(Vc;t−1 +B(Ψc;t), νc;t−1 + 1)

I(Vc;t−1, νc;t−1)
, (4.27)

(d) Update statistics

Vc;t = Vc;t−1 + wc;tB(Ψc;t), νc;t = νc;t−1 + wc|t

vc;t = vc;t−1 + wc;t. (4.28)

2. Evaluate required characteristics of the approximate posterior pdf

f(Θ|Pa∗t+1
) ∝

∏
c∈c∗

Aνc;t(Θc) exp[V ′
c;tC(Θc)]αvc;t−1. (4.29)

Remark(s) 4.4
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1. The used approximation is intuitively appealing. The more we expect that the innovations
∆t for given at has been generated by some component the higher weight to the increment
B(Ψc;t) of the corresponding statistics we assign.

2. It is straightforward and computationally cheap to allow slow parameter changes by em-
ploying the stabilised forgetting, see Algorithm 4.2.

3. Unlike other procedures applied to mixtures, it fits well for on-line adaptive learning of
dynamic systems (with non-trivial regressors).

4. All known procedures are sensitive to initiation, [38]. It applies to the quasi-Bayes esti-
mation even in a wider extent. This is inevitable price for its advantages.

5. The components describing multivariate innovations can be always factorized into product
of parameterized models describing predicting single entry (single output). Each of these
factors may have its structure and may be even of a different type. Thus, we can combine,
for instance, regression models with Markov chains. In this way, we get mixture model de-
scribing interrelated continuous and discrete data. It is of an extreme practical importance,
especially in connection with the universal approximation property of mixtures.

Problem 4.3 (How to make quasi-Bayes estimation complete?) The quasi-Bayes algo-
rithm proved to be powerful complement to universal and flexible mixtures. A lot of subproblems
still await for their solutions: initiation, structure estimation, multi-step control design etc.

4.3 Suboptimal filtering

Filtering, see Proposition 2.13, is the basic technique for generating the outer model of the
system needed for (sub)optimal decision making. There is a bunch of complementary general
techniques that convert optimal learning into practically applicable suboptimal learning. They
are discussed here.

4.3.1 Partitioned approach

This approach [54] suits to cases when the problem formulation, determined by the observation
f(∆t|Θt,Pa∗t , at) and time evolution f(Θt|Θt−1,Pa∗t , at) models, has the following structure:

• Θt = (Θ, xt) ≡
(time-invariant parameters, state of the system)

• filtering of xt is solvable for any fixed Θ ∈ Θ∗

• a finite (low-dimensional) grid {Θi ∈ Θ∗}i∈i∗ “covers” sufficiently the space of possible
parameter values Θ∗.

The partitioned approach is described by the following algorithm:

Algorithm 4.4 (Partitioned filtering)
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Off-line phase
Select prior probabilities f(Θi|Pa∗1) of individual parameter values on the grid {Θi}i∈i∗ and set
time t = 0.

On-line phase, do for t ∈ t∗

1. Repeat for i ∈ i∗

(a) Collect the newest data ∆t, at,

(b) Perform the conditional data updating

f(xt|Pa∗t+1
,Θi) =

f(∆t|xt,Θi,Pa∗t , at)f(xt|Pa∗t ,Θi)
f(∆t|Pa∗t , at)

∝

∝ f(∆t|xt,Θi,Pa∗t , at)f(xt|Pa∗t ,Θi). (4.30)

(c) Perform the conditional time updating

f(xt|Pa∗t ,Θi) =
∫
x∗t−1

f(xt|xt−1,Θi,Pa∗t , at)f(xt−1|Pa∗t ,Θi) dxt−1. (4.31)

(d) Evaluate the conditional prediction

f(∆t|Pa∗t , at,Θi) =
∫
x∗t

f(∆t|xt,Pa∗t , at,Θi)f(xt|Pa∗t ,Θi) dxt. (4.32)

(e) Update probabilities of individual grid points

f(Θi|Pa∗t+1
) ∝ f(∆t|Pa∗t , at,Θi)f(Θi|Pa∗t ). (4.33)

2. Compute the approximate outer model of the system

f(∆t+1|Pa∗t+1
, at+1) =

∑
i∈i∗

f(∆t+1|Pa∗t+1
, at+1,Θi)f(Θi|Pa∗t+1

). (4.34)

Remark(s) 4.5

1. Essentially, a bank of filters “indexed” by Θi is run and probabilities of individual predictors
are updated in a standard Bayesian way.

2. The approach relies on feasibility of individual filters and on the low dimension of the grid.
Bootstrap type estimator, [55] and see Section 4.3.2, seems to be an efficient way how to
reach it. The time variations of the used grid bring, however, additional troubles.

Problem 4.4 (How to select the grid and exploit results?) Acceptable dimensionality of
the grid is of a vital importance and it is often reached by adopting additional techniques of a
“branch-and-bound” type. It is straightforward to remove Θi with low probabilities f(Θi|Pa∗t ) but
generating of new promising values Θi is not easy. Moreover, the exploitation of the filtering
results obtained so far has no systematic solution in multi-step control tasks [56].
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4.3.2 Bootstrap type methods

Knowing the posterior pdf or pdfs describing filtration it would be easy to select a low di-
mensional non-uniform grid sufficient for a good approximation of the whole pdf. This simple
observation forms a basis of a whole set approximate filters that use random samples from
the current approximate pdfs for generating new approximations and exploitation of new data
for data updating [57]. We describe a version of such bootstrap filtration methods that exploit
interpretation of random samples as a variable grid.

Under natural conditions of decision making (2.36), we search for practically feasible filtra-
tion ft|t(Θ) ≡ f(Θt = Θ|Pa∗t+1

, at+1) = f(Θt = Θ|Pa∗t+1
). The internal quantities Θt evolve

according to the time evolution model (2.35) f(Θt|Θt−1,Pa∗t , at) and reflect in the observa-
tion model f(∆t|Θt,Pa∗t , at), see Requirement 2.5. During the filtering also the prediction
ft+1|t(Θ) ≡ f(Θt+1 = Θ|Pa∗t+1

, at+1) of Θt is computed, see Proposition 2.13. Let Θi;t|t−1, i ∈
i∗ ≡ {1, . . . , i̊ <∞} denote random independent samples of Θ taken from the approximate pdf
ft|t−1(Θ). We assume that the values ft|t−1(Θi;t|t−1) are known. Then, data updating (2.39)
gives simply values

ft|t(Θi;t|t−1) ∝ f(∆t|Θi;t|t−1,Pa∗t , at)ft|t−1(Θi;t|t−1).

We use the pairs {Θi;t|t−1, ft|t(Θi;t|t−1)}i∈i∗ for a rough approximation of ft|t(Θ), Θ ∈ Θ∗. The
simplest approximation by empirical pdf is used here

ft|t(Θ) ≡
∑
i∈i∗

δ(Θ−Θi;t|t−1)wi;t|t, wi;t|t ∝ ft|t(Θi;t|t−1). (4.35)

δ is Dirac delta and
∑
i∈i∗ wi;t|t = 1. With the approximation (4.35), the time updating (2.40)

is given by the formula

ft+1|t(Θ) =
∑
i∈i∗

f(Θt+1|Θi;t|t−1,Pa∗t+1
, at+1)wi;t|t.

The filtering recursion is then closed by generating random independent samples Θi;t+1|t, i ∈ i∗
from this pdf. The predictive pdf is obtained simply by approximating the pdf ft+1|t(Θ) by
empirical pdf on the latest samples and using the standard prediction formula (2.38). Let us
summarize

Algorithm 4.5 (Bootstrap filtering)

Off-line phase
Generate independent samples {Θi;1|0}i∈i∗ from the prior pdf f1|0(Θ) ≡ f(Θ1|Pa∗1) and set time
t = 0.

On-line phase, do for t ∈ t∗

1. Collect the newest data ∆t, at.

2. Perform data updating on samples

wi;t|t ∝ ft|t(Θi;t|t−1) ∝ f(∆t|Θi;t|t−1,Pa∗t , at)ft|t−1(Θi;t|t−1), i ∈ i∗. (4.36)

3. Perform time updating

ft+1|t(Θ) =
∑
i∈i∗

f(Θt+1 = Θ|Θi;t|t−1,Pa∗t+1
, at+1)wi;t. (4.37)
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4. Generate independent samples {Θi;t+1|t}i∈i∗ from the pdf ft+1|t(Θ) and evaluate wi;t+1|t ∝
ft+1|t(Θi;t+1|t).

5. Compute (approximate outer) system model

f(∆t+1|Pa∗t+1
, at+1) =

∑
i∈i∗

f(∆t+1|Θi;t+1|t,Pa∗t+1
, at+1)wi;t+1|t. (4.38)

Remark(s) 4.6

1. The algorithm is conceptually simple and universal. It needs a large number of samples.
Their generating is generally far from being trivial. For a more complex cases it might
make the algorithm infeasible. In other cases sophisticated techniques like Gibbs sampler
[58] or adaptive generating [47] might be needed.

2. A massive parallelism might be used for making the algorithm computationally efficient.

3. Less crude approximations of pdfs than the empirical pdfs are desirable and necessary when
time evolution is degenerated and some entries of Θt are time invariant. Typically, smooth
approximations of Dirac delta are used. A narrow Gaussian pdf “sitting” on the sample
may be used. This can be interpreted as addition of an external noise to the original
samples. Spline-type or mixture approximations might be used in some cases.

4. This group of methods is very adaptive, see Section 4.1 It generates approximations locally
around measured behavior.

Problem 4.5 (How to make work bootstrap complete?) A lot has been reached in devel-
opment of methods of this type. The state is, however, far from being finished. Problems range
from sensitivity to initial values, efficient generating of samples, choice of approximating pdfs
up to the choice of the number of samples and numerical (parallel) implementation.

4.3.3 Extended Kalman filtering

Filtering can be exactly solved if both observation and time-evolution models are Gaussian with
mean values depending linearly on the unknown Θt and with known covariances. All involved
pdfs are Gaussian if the prior pdf is. Then, the filtering reduces to an algebraic evolution of two
conditional moments, [10, 59]. In this case, the time-evolution model can be characterized by

E [Θt+1|Θt,Pa∗t+1
, at+1] = A(Pa∗t+1

, at+1)Θt +B(Pa∗t+1
, at+1) (4.39)

cov[Θt+1|Θt,Pa∗t+1
, at+1] = R(Pa∗t+1

, at+1).

A is a square matrix, B is a vector and R is positive semi-definite square matrix.

Similarly, the observation model is characterized by

E [∆t+1|Θt+1,Pa∗t+1
, at+1] = C(Pa∗t+1

, at+1)Θt+1 +D(Pa∗t+1
, at+1) (4.40)

cov[∆t+1|Θt+1,Pa∗t+1
, at+1] = r(Pa∗t+1

, at+1).

C is a matrix, D a vector, and r is a positive semi-definite square matrix.

All arrays can be known functions of available data and time.
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The extended Kalman filter is obtained if we approximate the treated conditional expectation
E [Θt+1|Θt,Pa∗t+1

, at+1] by the affine term of Taylor expansion around the latest point estimate

Θ̂ of Θt and cov[Θt+1|Θt,Pa∗t+1
, at+1] by the absolute term at the same point. Through a similar

expansion for the observation model we arrive to forms (4.39), (4.40) and use them for an
approximate updating of two moments of the considered filtration by using ordinary Kalman
filter. These estimates serve for updating the expansion point.

Remark(s) 4.7

1. Obviously, the local approximation used in extended Kalman filter is a rather crude. Con-
sequently, a careful start up and various modifications based on a detailed analysis are
needed in order to prevent divergence of {Θ̂t}t∈t∗ from {Θt}t∈t∗, [60].

2. The smoother the model is the higher is chance for success.

Problem 4.6 (How to combine techniques?) Naturally, the extended Kalman filtering can
be combined with partitioning approach, bootstrap methods or mixture estimation, see Section
4.2.3. A systematic way is (to our best knowledge) not available.

4.4 Suboptimal design

4.4.1 Receding horizon

The reduction of the design horizon is the most obvious way to a simplified (suboptimal) design.
The reduction obtained by planning just one-step-ahead has been popular for a long time.
Dynamic decision making, however, means that consequences of a decision are encountered far
behind the time moment of its application. Consequently, the decision that is optimal when
judged from a shortsighted perspective might be quite bad one from the long-term viewpoint,
[9].

This observation has stimulated search for a compromise between the ideal planning over whole
horizon of interest and shortsighted, locally optimizing decisions. Knowing that the constructed
plan is just an approximation, it is reasonable to correct it permanently. After applying the
initial decision(s) implied by the temporary design and after acquiring and exploiting a new
measured knowledge about the system state, the design should be repeated. This is essence of
the design technique called receding horizon strategy. Let us describe its algorithm in the case of
additive loss function (2.22), recall (2.31), and for a pre-specified value T of the receding horizon
T < t̊.

Algorithm 4.6 (Receding-horizon strategy) Repeat for t = 1, . . . , t̊,

1. Find the strategy R(t t+ T ) = (Rt, . . . ,Rt+T ) approximately minimizing

E
[
t+T∑
τ=t

z(∆(τ), a(τ))|Pa∗t

]

2. Apply at|t−1 ≡ Rt(Pa∗t ) for the available Pa∗t .

3. Measure new data ∆t, at and use extended experience (perform filtration or estimation)
for obtaining improved outer model of the system.
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4.4.2 Super-cautious strategy

Let us consider the receding horizon strategy applied at time t. Then, a substantial degree
of its complexity is caused by the use of predictive pdfs {f(∆τ |Pa∗τ , aτ )}

t+T
τ=t obtained through

Bayesian estimation. They have the form, see Proposition 2.14,

f(∆τ |Pa∗τ , aτ ) =
∫
Θ∗
f(∆τ |Θ,Pa∗τ , aτ )f(Θ|Pa∗τ ) dΘ. (4.41)

For a relatively short planning horizon T and a reasonably concentrated parameter estimate
f(Θ|Pa∗t ), the predictors (4.41) can be approximated as follows

f(∆τ |Pa∗τ , aτ ) ≈
∫
Θ∗
f(∆τ |Θ,Pa∗τ , aτ )f(Θ|Pa∗t ) dΘ, τ = t, . . . , t+ T. (4.42)

This approximation relies on the approximate equality

f(Θ|Pa∗τ ) ≈ f(Θ|Pa∗t ), τ = t, . . . , t+ T. (4.43)

The receding horizon strategy combined with the approximation (4.42) is called super-cautious as
it is based on assumption that we learn nothing about unknown parameters during the planning
horizon. The uncertainty of the parameter estimates (4.43) projected into the predictors through
the formula (4.42) inhibits excessive decision values. It makes the strategy (typically controller)
(super)cautious.

4.4.3 Cautious strategy

The assumption (4.43) is often too strong and it is reasonable to weaken it to

f(Θ|Pa∗τ ) ≈ F (τ, f(Θ|Pa∗t )), τ = t, . . . , t+ T, Θ ∈ Θ∗. (4.44)

The mapping F (τ, ·) modifies the estimate f(Θ|Pa∗t ) to other, more concentrated, pdfs. The
mapping F is chosen beforehand and does not use data belonging to ignorance Fa∗t . Typically,
the generated pdf has the same 1st moment (expectation) as f(Θ|Pa∗t ) but its covariance Cτ |t
decreases with increasing distance τ−t in a pre-specified way. Often, Cτ |t = b(τ−t)Ct ≡ b(τ−t)×
covariance computed for f(Θ|Pa∗t ). The following non-negative scalar functions b(κ) serve as
representative examples

b(κ) = 1/κ or b(κ) =

{
1 if κ = 1
0 otherwise

. (4.45)

4.4.4 Certainty-equivalence strategy

This strategy is the most wide spread one. It replaces unknown parameter in the parameterized
model by a current point estimate Θ̂t of unknown parameters

f(∆τ |Pa∗τ , aτ ) ≈ f(∆τ |Θ̂t,Pa∗τ , aτ ), τ = t, . . . , t+ T. (4.46)

which corresponds to the approximate parameter estimate

f(Θ|Pa∗τ ) ≈ δ(Θ− Θ̂t), τ = t, . . . , t+ T. (4.47)

where δ(·) is Dirac delta function, a formal pdf of the measure concentrated on zero value.
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4.4.5 Predictive strategies

Up to now, the reduction of complexity of predictors have been reached by simplifying parameter
estimates. There is, however, a whole set of strategies that simplify prediction by working only
with point predictions of outputs.

Due to a bit unlucky vocabulary they are known as predictive strategies [49, 61]. Obviously,
such an approximation may be quite rough when there is a non-negligible uncertainty (lack of
knowledge or influence of noise). On the other hand, the gained simplification allows the user to
respect hard bounds on behavior. The importance of technologic restrictions implies popularity
of such a treatment.

4.4.6 Active strategies

All outlined strategies are passive: when planning their decisions they do not care about learning.
At the same time, it is known [5, 6] that the optimal strategy is dual strategy. It cares both
about immediate decisions and learning process in a balanced way. This motivates a use of
measures that support learning. The resulting strategies are known as active strategies. Two
basic ways are used:

• an external stimulating signal is feeded into the closed loop (added to optional quantities
like inputs or set points),

• a term is added to the loss function that reflects quality of learning even when a passive-
type design is applied [62].

Remark(s) 4.8

1. The essence of suboptimal designs is demonstrated mostly in combination with estimation.
Similar techniques are applicable in conjunction with filtering.

2. Quality of approximations depends very much on quality of the parameterized model and on
parameter estimates f(Θ|Pa∗t , at). Thus, the care devoted to the construction of the param-
eterized model and the prior pdf f(Θ), see Section 3.1.4, might decide on a success/failure
of the decision making. This observation has been at roots of designing of algorithmic and
software tools for the prior design of adaptive controllers [?, 63, 64].

3. A substantial effort with significant results has been put into analysis of various approxi-
mations. Mostly, however, the results are of an asymptotic nature. A little is known about
practically significant finite time-properties of such approximations.

4. It is fair to say that the “dangerous” certainty equivalent strategies dominate applications.
They are simple, understandable and they can be simply extended to the combination of
the design with a state estimator.

5. For a large T < t̊, the receding horizon strategy gives away majority of computations and it
is always in danger that the chosen horizon is too short. Thus, it is reasonable to take the
strategy found with the estimate f(Θ|Pa∗t ) as an initial guess of the strategy re-computed
for f(Θ|Pa∗t+1

). This idea is known as iterations spread in (learning) time, [9]. It has been
found quite useful but at the same time sensitive to the time variations of the estimated
parameters.
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6. Active strategies are rarely used [3] in spite of known, theoretically proved, danger of passive
strategies.

Problem 4.7 (Is the back of trick a final stage?) Still, the approximate design can be called
more back of tricks than a systematic framework. Naturally, a systematic solution like the equiv-
alence approach is desirable.

Problem 4.8 (Is the fully probabilistic strategy active?) The strategy generated by the
fully probabilistic design, see Proposition 2.11, is randomized. It can be interpreted as a com-
bination of a deterministic feedback with a dither noise. Thus, there is a chance that it is
“naturally” active. This hypothesis, however, has to be inspected in detail.

4.5 Decomposition of decision making

Repeatedly, splitting of the decision-making task in a chain of subtasks is declared as the way
of converting optimal design to an approximation of the practical optimal design. At the same
time, it is known that any violation of the golden decision-making rule (3.1) makes the solution to
depart from optimality. Lack of the formal tools for the decomposition leaves us with empirical
rules in this area.

Here give as an example the list describing such decomposition in the case of adaptive control
with learning part based on parameter estimation. Each item in the list has been found as a
relatively self-containing decision sub-problem. Whenever possible, we give a reference to the
relevant support within the text. The design, as any human activity is iterative. Naturally, the
majority of iterations should be concentrated in the off-line phase in order to minimize expenses
related to the commission of the controller.

4.5.1 Off-line phase

The following indicative list of subtasks is solved, often with internal iterations, until the poten-
tial user is satisfied.

• Formulate the addressed problem, see Chapter 2

– get the specification of technical control aims,

– get the specification of the system,

– get the specification of the available data, system inputs and outputs

– get the specification of technologic and complexity restrictions

– collect the knowledge available

• Perform experimental design and collect data.

• Make data pre-processing, see Section 3.1.1

• Select class of parameterized models, see Section 3.1.3

• Quantify prior knowledge, see Section 3.1.4
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• Estimate model structure and control period, see Proposition 3.5

• Estimate forgetting factor, see Propositions 3.4, 3.5

• Perform generalized Bayesian estimation based on prior knowledge and available data; the
result will be used as the prior and/or alternative pdf in on-line phase, see Algorithm 3.2

• Select the loss function (typically, weights of quadratic loss or ideal in fully probabilistic
design, see Sections 3.1.5, 2.4.2
Do until the results cannot be improved

– Select suboptimal control design and its parameters

– Perform prior design of controller and prediction of closed loop (coupling system
↔ controller) behavior by transforming all uncertain quantities into to user-defined
quality indicators, formal solution provides Proposition 2.5, generally Monte Carlo
evaluation is needed that becomes feasible using stopping rules, see Section 3.4.1

– Compare results with user’s specification; set estimation is useful to it, see Section
3.3.2

4.5.2 On-line phase

These decision-making subtasks are solved in real time for t ∈ t∗. Here, there is almost no
freedom for iterative trial-and-error solutions. Of course, it is wise to store the data collected
during the on-line phase and use them for an improved off-line design.

• Collect and pre-process data, see Section 3.1.1

• Generate reference signals

• Estimate with stabilized forgetting, see Section 4.2.2

• Use receding horizon or iterations-spread-in time design, see Section 4.4.1, in an appropri-
ate version, see Section 3.4.1

• Generate input using the designed strategy and measured data

• Check possible discrepancies and make a finer tuning of optional parameters of the design;
this supervision can be based on theory of operator control [65], that exploits mixture
estimation, see Sections 3.1.3, 4.2.3

Problem 4.9 (Completion of the design support) The presented description just outlines
the complexity of the overall chain. Obviously, some steps are weakly supported by the presented
theory and algorithms. Some of them are not supported at all. In spite of this our experience
indicates that the presented theory provides the most complete unified support available. Still
even a partial completion of this support represents significant research challenge.
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4.6 Some numerics

The presented theory should lead to algorithms implemented in computers. Thus, their numeri-
cal realization form a substantial part of the decision making as applied science. Naturally, each
decision task requires its specific approach. There is, however, common or wide spread problems
that are worth to be mentioned independently. This is done here.

4.6.1 Sharp likelihoods

Probability density functions are the basic object we are dealing with. The main numeri-
cal problems with them are encountered in parameter estimation and in testing hypothesis.
In these cases, they have tendency to converge to very sharp functions close to Dirac delta.
This fact follows from Proposition 2.15. It means that we have to work with logarithms
of likelihood functions, ln[L(Θ,Pa∗t )] and before converting them into posterior pdfs subtract
maxΘ∈Θ∗ ln[L(Θ,Pa∗t )]. It is possible because the likelihood is determined uniquely up to a Θ
independent factor. It is advantageous as it prevents overflows and the dynamical range of the
posterior pdfs causes at most underflows for values for which the posterior pdf is negligible.

4.6.2 Monte Carlo techniques

Monte Carlo (MC) techniques evaluate complex formulae by generating samples with a specific
distribution and by forming (typically point) estimators of the results of interest. They rely on
laws of large numbers that guarantee convergence of such estimators to the target value. There
is a numerous variants and problems that have to be resolve in order to make this idea work
efficiently. Here, we can only touch this rich, useful and interesting area.

Generating of samples

For MC techniques samples from a pre-specified distribution have to be generated. We need
them, for instance, in bootstrap-based filtering, see Section 4.3.2.

We denote x ∼ f if the sample x is generated according to the pdf f .

Majority of software tools, like MATLAB, provide (pseudo)random number generators that
provide independent samples uniformly distributed on interval (0,1), its pdf we denote U(0, 1),
or normally distributed with zero mean and unit variance, its pdf we denote N (0, 1). Thus,
we assume further on that samples of this type are at disposal. The results summarized in the
following proposition serve often for solution to the task addressed.

Proposition 4.2 (Samples obtained from uniform and normal pdfs) 1. Let f(x) be
a pdf of a univariate real variable x ∈ x∗ ≡ (−∞,∞) and r ∼ U(0, 1). The xr ∼ f if it
solve the equation

r =
∫ xr

−∞
f(x) dx. (4.48)

2. Let the entries of a vector e be independent and each of them ei ∼ N (0, 1) ⇔ e ∼ N (0, I)
where I = unit matrix. Then,

g ≡ µ+Ge ∼ N (µ,GG′) (4.49)
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for any vector µ and matrix G of appropriate dimensions.

Proof: ad 1. The equation (4.48) has a unique solution as the integral as a function of the upper
bound is continuous non-decreasing function covering interval (0,1] due to the non-negativity and
normalization of pdf f , see Proposition 2.4.

Using Proposition 2.5 with α = xr, β = r fT (β) = U(0, 1) ≡ 1 on (0, 1), we find |J(α)| = f(α)

ad 2. Using Proposition 2.5, it can be verified that the considered affine transformation maps
preserves normality. Transformation of moments is implied either by the same Proposition or can be
simply verified using basic properties of expectation, see Proposition 2.6. ♦

Usefulness of the transformation (4.48) depends heavily on our ability to solve efficiently this
equation. A bunch of other techniques has been developed to cope with (predominant) cases to
which it cannot be used.

Prediction of achievable quality

This section presents an example of application of Monte Carlo technique for prior prediction
of achievable quality of the optimal strategy [?, 63, 66].

The basic scenario is as follows. For a chosen parameterized model, prior pdf f(Θ) is supposed
to be constructed. Let us assume that for each Θ we are able to find the stationary optimal
strategy (̊t→∞) that is not admissible as it depends on unknown parameter. Without too much
loss of generality, we can assume that strategy is determined by a repetitive use of a single rule
RΘ. With this strategy, the achieved values of the considered stationary loss function become
a function, say Q(Θ) of Θ only. These values represent lower bound on achievable quality.
The admissible strategy can achieve this bound only when it successfully learn the unknown
parameters.

As we are uncertain about Θ we are uncertain about values of Q(Θ). This quality indicator,
however, has been computed through a very deterministic optimization. Thus, conceptually we
can get pdf of Q by using Proposition 2.5. Practically, the proposition cannot be used as the
mapping T : Θ∗ → Q∗ is non-linear, many to one and its values are mostly evaluated numerically.
Here, Monte Carlo technique can be directly used. Simply, independent samples Θi ∼ f(Θ), i ∈
i∗ are generated and independent samples Qi ≡ Q(Θi) computed in the mentioned deterministic
way. Then, the desired pdf f(Q) is estimated.

The estimation of the pdf f(Q) is simple as Q is scalar variable.

The estimation of the pdf f(Q) is complex as each sample Q result from demanding optimization.
For this reason, all measures have to be taken in order to get results within acceptable time.
For instance,

• A parameterized version of f(Q) is estimated [?].

• Sequential stopping rules [47], see Section 3.4.1, are employed.

• Partial characteristics of f(Q), like credibility intervals, see Section 3.3.2, are searched for.
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4.6.3 Quadratic forms

Optimal designs with quadratic loss functions and Gaussian models with expected value formed
by a l inear function of parameters and observed data are often practically optimal. Both learning
and optimization reduce to manipulations with positive semi-definite quadratic forms. This fact
is behind the predominant use of this so called LQG design. Moreover, other decision problems
are often approximated by an LQG one. This explains why we present the summary within this
general chapter.

Agreement 4.3 (Quadratic forms) Quadratic form ψ′Qψ is the function of a real column
vector ψ ∈ ψ∗, specified by a symmetric matrix Q = Q′. A quadratic form is said positive semi-
definite if it is non-negative for any ψ ∈ ψ∗. It is called positive definite if ψ′Qψ > 0, ∀ψ ∈ ψ∗\0.
The matrix Q is called kernel of the form and the introduced terminology is used also for it. It
means that positive (semi)definite kernel specifies positive (semi)definite quadratic form.

Proposition 4.3 (Factorized kernels) The kernel Q is positive definite iff it can be uniquely
expressed (factorized) as follows

Q = LL′ = UU ′ = LDL′ = UDU ′, where (4.50)

L, (U) is lower (upper) triangular matrix with positive diagonal entries

L, (U) is lower (upper) triangular matrix with unit diagonal entries

D,D are diagonal matrices with positive entries.

Proof: Let the first decomposition exist. Then, ψ′Qψ =
∑
i z

2
i ≥ 0 with z ≡ L′ψ. The matrix L

is regular and consequently maps non-zero ψ on non-zero z. Thus, the last inequality is sharp for
ψ 6= 0. The similar arguments apply for the alternative decompositions.

Let Q be positive definite matrix and let us search for the first decomposition. If we write the
desirable identity entry-wise exploit the definition of L and symmetry of Q, we get formal algorithm
for computing L

Algorithm 4.7 (Choleski algorithm)

i ∈ i∗ = {1, . . . , i̊}

Lii =
√
Qii −

∑
k≤i−1

L2
ik

j = {i+ 1, . . . , i̊}

Lji =
Qij −

∑
k≤i−1 LikLjk
Lii

end j
end i

The direct inspection shows that all quantities on right-hand side are available in time if we understand
sums over empty set as zero. It remains to judge whether square-root and division make sense. If
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we, however, assume that it is not true at an ith step then we get the contradiction with positive
definiteness by trying the vector ψ which is zero except of the unity on the ith position.

The LD factorization is obtained from the Choleski ones by extracting diagonal entries from L.
Similar considerations verify the factorizations with upper triangular matrices. ♦

Remark(s) 4.9

1. The expressions LL′ = U U ′ are called Choleski factorizations as the name of the algorithm
indicate.

2. Algorithms providing LD or UD factorizations can be derived in the same way. They are
even computationally simpler as they do not need to compute square roots. It gives them
alternative name square-root free factorizations.

3. LD (UD) factorizations are easily extended (not uniquely) to positive definite Q: whenever
Dii = 0, (Dii = 0) the corresponding non-diagonal entries in ith column (row) of L, (U)
are set to zero.

4. The factorization Q = AA′ with a general A is not unique even for positive definite Q. It
is sufficient to consider any orthogonal matrix T for which TT ′ = I =unit matrix. Then,
obviously, also AT is a factor of Q if A is.

Proposition 4.4 (Minimization with factorized kernels) Let ψ′ = [u′, x′] and Q = LDL′

with

L =

[
Lu 0
Lxu Lx

]
, D =

[
Du 0

Dx

]
where dimensions of of Lu, Du are compatible with the dimension of u. Then,

u = −(L′u)
−1L′xux = arg min

u∈u∗
ψ′LDL′ψ′. (4.51)

The reached minimum is
min
u∈u∗

ψ′LDL′ψ′ = x′LxDxL
′
xx

′ (4.52)

Proof: The minimized quadratic form can be written as as a sum of squares of two weighted quadratic
norms

ψ′LDL′ψ = ||u′Lu + x′Lxu||2Du + ||x′Lx||2Dx .

Only the first one depends on the optional u. It reaches minimum for the zero argument which gives
the unique minimizer. The second one gives the minimum reached. ♦

Remark(s) 4.10

1. The minimization of a quadratic form is very simple when the kernel is a factorized ver-
sion. More importantly, it is numerically safe as the work with factors guarantees that the
minimized form is always at least positive semi-definite even if L is evaluated with errors.
The original Q lacks this property.
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2. The advantageous numerical properties of factorized versions might be preserved when we
do not need to created the complete kernel during manipulations encountered. We indicate
the basic algorithm with such a property in case when two kernels should be summed.

Let Q = LDL′ and li, di ith column of L and ith diagonal entry of Di respectively. Then,
Q =

∑
i∈i∗ lidil

′
i where l′i = [0, . . . , 0︸ ︷︷ ︸

(i−1)

, 1, x, . . . , x] where x denotes entries with arbitrary

values. If the similar notation is used for another kernel Q̃ = L̃QL̃′ we have

Q+ Q̃ =
∑
i∈i∗

(
lidil

′
i + l̃id̃i l̃

′
i

)
(4.53)

It is straightforward to derive an algorithm for dyadic reduction recomputing a sum of two
weighted dyads with a common leading unit into sum of two dyads where the second gets
zero of the leading unity. Taking into account (4.53), it is sufficient to take the first dyad
from both decompositions, to reduce one of by the dyadic reduction. Then the reduction is
called twice on the triple of dyads having unit on the second position, etc. In this way, LD
decomposition of the sum of kernels is directly obtained from factor of summed terms.

The factorized version of precision matrix, i.e. inversion of of covariance matrix of a vector ψ
having normal pdf allows us to evaluate simply conditional and marginal pds of its sub-vectors.

Proposition 4.5 (Conditioning and marginalization for normal pdfs) Let ψ′ = [u′, x′]
be normally distributed with zero mean and Q ≡ [cov(ψ)]−1 = LDL′ with

L =

[
Lu 0
Lxu Lx

]
, D =

[
Du 0

Dx

]

where dimensions of of Lu, Du are compatible with the dimension of u. Then, f(u|x) is normal
with conditional mean and precision matrix

E [u|x] = −(L′u)
−1L′xux, [cov(u|x)]−1 = LuDuL

′
u. (4.54)

The marginal pdf f(x) of x is zero mean with precision matrix

[cov(x)]−1 = LxDxL
′
x (4.55)

Proof: It is obvious by writing the quadratic form in exponent of multivariate normal form exactly
as in proof of Proposition 4.4 and recall chain rule for pdfs f(u, x) = f(u|x)f(x). ♦

Remark(s) 4.11

1. Notice that the position of the variable with respect to which minimization or conditioning
is performed is important and dependent on the factorization used. This simple observation
is often overlooked.
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Chapter 5

Model with normal noise

This chapter illustrates the general theory on a simple example of the normal, single-input
single-output, auto-regression system with external input (ARX model).

5.1 Construction elements

5.1.1 Data

The data set is formed by continuous outputs yt and continuous inputs ut, measured in discrete
time instants t = 1, 2, . . . , t̊.

Notation

In accordance with the general conventions, we use the following notations.

dt = [yt, ut]′ the data item at time t
d(t) = [yt, ut, yt−1, ut−1, . . . , y0, u0]′ all data up to time t, including prior data
ϕt−1 = [dt−1, . . . , dt−ϕ̊]′ the regression vector with past data (at time t)
ψt = [ut, ϕ′t−1]

′ the regression vector with actual control (at time t)
Ψt = [yt, ψ′t]

′ = [yt, ut, ϕ′t−1]
′ the extended regression vector (data vector)

5.1.2 Decisions

Individual tasks have their own decisions. e.g. input values for optimal control, point estimates
of parameters for the task of parameter estimation, optimal output value for the prediction etc.
In summary, to be or not to be a decision is an integral part of the problem formulation not an
absolute property.

5.1.3 Parameterized model

The scalar autoregressive model with external normal noise (ARX model) is supposed here

yt = b0ut +
n∑
i=1

(aiyt−i + biut−i) + c+ et = ψ′tθ + et, (5.1)

87
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where
{b0, ai, bi, c}, i = 1, . . . , n are unknown regression coefficients
et is discrete white normal noise with constant variance r
θ = [b0, a1, b1, . . . , an, bn, c]′

n = ϕ̊ is the system order.

Equivalently, expressed by the pdf,

f(∆t|Θ,Pa∗t , at) ≡ f(yt|Θ, ψt) = (5.2)

= (2πr)−0.5 exp
{
− 1

2r
(
yt − θ′ψt

)2} =

= (2πr)−0.5 exp
{
− 1

2r
tr(ΨtΨ′

t[−1, θ′]′[−1, θ′])
}

where
Θ = {θ, r} are unknown model parameters
tr denotes matrix trace.

This form corresponds to the general form of a model from the exponential family (2.53) with

A(Θ) = (2πr)−0.5

B(Ψ) = ΨtΨ′
t

C(Θ) = − 1
2r

[−1, θ′]′[−1, θ′]

5.1.4 Prior pdf

The parameterized model belongs to the exponential family, see Agreement 2.14. Thus the
conjugate prior pdf (Agreement 3.1) has the form

f(Θ) = (2πr)−0.5ν0 exp
{
− 1

2r
[−1, θ′]V0 [−1, θ′]′

}
χ(Θ) = (5.3)

= (2πr)−0.5ν0 exp tr
{
− 1

2r
[−1, θ′]′[−1, θ′]V0

}
χ(r)

where
ν0, V0 are prior statistics; ν0 is scalar V0 is a (Ψ̊, Ψ̊)-matrix
χ(Θ) = χ(r) is characteristic function and it holds

χ(r) = 1 for r > 0
= 0 otherwise
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5.1.5 Loss function

The quadratic loss function (3.19) is used. For example in the case of the control task it means

Z =
T∑
τ=1

[(yτ − wτ )2 + ωu2
τ ] (5.4)

where

T > 1 is time horizon of the design
wτ is user specified required value of the output
ω > 0 is penalization constant.

5.2 Derived elements

5.2.1 Likelihood

It is a product of models with data substituted, see definition (3.20). Here, it has the form

L(Θ,Pa∗t+1
) = L(Θ, d(t)) =

t∏
τ=1

f(yτ |ψτ ,Θ).

and for model (5.2) it holds

Proposition 5.1 (Likelihood for general ARX model) For general ARX model (5.2) the
likelihood function is

L(Θ, d(t)) = (2πr)−t/2 exp tr

{
− 1

2r

t∑
τ=1

Ψ′
τΨτ [−1, θ′]′[−1, θ′]

}
(5.5)

Proof: It follows directly from the likelihood definition. ♦

Example:

The first order system described by yτ = b0uτ + a1yτ−1 + eτ is considered. It means that
θ = [b0, a1], Ψ = [yτ , uτ , yτ−1]. The likelihood for this model is

L(Θ, d(t)) = (2πr)−t/2 exp {− 1
2r

t∑
τ=1

(y2
τ + b20u

2
τ + a2

1y
2
τ−1− 2b0yτuτ + 2b0a1uτyτ−1− 2a1yτyτ−1)}

Expression in the exponent can be rearranged as follows

y2
τ − 2yτ (b0uτ + a1yτ−1) + (b0uτ + a1yτ−1)2 = (yτ − ŷτ )2

where
ŷτ = b0uτ + a1yτ−1 is the conditional mean of yτ and the likelihood is then

L(Θ, d(t)) = (2πr)−t/2 exp

{
− 1

2r

t∑
τ=1

(yτ − ŷτ )2
}
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5.2.2 Integral

The particular form of (3.21) for this case is

I(Pa∗t+1
) = I(d(t))

and it holds

Proposition 5.2 (Normalization integral I for the ARX model) For likelihood function
(5.5) and prior pdf (5.3) the integral I (3.21) is

I(d(t)) =
∫

(2πr)−νt/2 exp
[
− 1

2r
tr{[−1, θ]′[−1, θ]Vt}

]
χ(r > 0)dΘ (5.6)

where the statistics νt, Vt are updated according to (5.9)

Proof: Simple substitution of (5.5) and (5.3) into the definition (3.21). ♦

After integration the following form is obtained

I(d(t)) = 2π−0.5(νt−ψ̊) Γ(νt−ψ̊+2
2 )

λ
0.5(νt−ψ̊+2)
t |Vψ;t|0.5

(5.7)

where
Vψ;t is part of the statistic Vt according to (5.11)
νt is statistic updated by (5.9)
ψ̊ is a length of the regression vector ψ
λt is defined in (5.13)
Γ is Gamma function Proof: In [10] ♦

5.2.3 Posterior pdf

The fact that our model belongs to the exponential family (2.53) allows us to apply directly
Proposition 2.16. The posterior pdf keeps the form

f(Θ|Pa∗t+1
) = f(Θ|d(t))

and it holds

Proposition 5.3 (Posterior pdf for the normal ARX model and its evolution) Let the
system be described by the parameterized model (5.1), natural conditions of decision making
(2.36) hold and a conjugate prior pdf (5.3) be used. Then, for Θ ∈ Θ∗ it holds

f(Θ|d(t)) ∝ L(Θ, d(t))f(Θ) = (2πr)−νt/2 exp
[
− 1

2r
tr{Vt [−1, θ′]′[−1, θ′]}

]
χ(r > 0) (5.8)

where
νt, Vt are sufficient statistics, νt is scalar, Vt is a (Ψ̊, Ψ̊)-matrix
the normalizing factor is the integral (5.6).
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The form (5.8) is self-reproducing with two parameters νt and Vt, which can be updated according
to (5.9)

Vt = Vt−1 + ΨtΨ′
t = V0 +

∑t
τ=1 ΨtΨ′

t

νt = νt−1 + 1 = ν0 + t
(5.9)

The recursive form of the posterior pdf is

f(Θ|d(t)) ∝ f(yt|Θ, ut, d(t− 1)) = (2πr)−0.5 exp
{
− 1

2r
tr(ΨtΨ′

t[−1, θ′]′[−1, θ′])
}
f(Θ|d(t− 1)),

(5.10)
starting with the prior pdf f(θ) (5.3) where in the role of the normalization integral appears the
predictive pdf (5.15).

If the matrix Vt is partitioned in the following way

Vt =

[
Vy;t V ′

y,ψ;t

Vy,ψ;t Vψ;t

]
(5.11)

where Vy;t is scalar, Vy,ψ;t of dimension (Ψ̊, 1), Vψ;t of dimension (Ψ̊, Ψ̊), then the posterior pdf
(5.8) can be given in the form

f(Θ|d(t)) ∝ (2πr)−νt/2 exp
[
− 1

2r
[θ − θ̂t]′Vψ;t[θ − θ̂t] + λt

]
χ(r) (5.12)

where

θ̂t = CtVy,ψ;t (5.13)
Ct = V −1

ψ;t

λt = Vy;t − V ′
y,ψ;tCtVy,ψ;t

The maximum of the posterior pdf (5.12) lies in the point θ = θ̂t, r = ν−1
t λt. Proof: The form

(5.12) imply from the completion of squares, proof of the maximum is in [10] ♦

The characteristics θ̂t, Ct, λt can be updated recursively instead of calculating them for each t
according to formulae (5.13).

θ̂t = θ̂t−1 +
1

1 + ζt
Ct−1ψtê

′
t (5.14)

λt = λt−1 +
1

1 + ζt
êtê

′
t

Ct = Ct−1 −
1

1 + ζt
Ct−1ψtψ

′
tCt−1

where
ζt = ψ′tCt−1ψt
êt = yt − θ̂′t−1ψt is prediction error. Proof: Evolution of the sub-matrices in Vt and substitution
5.13. For details see [10] ♦

The matrix Vt or equivalently the triad {θ̂t, Ct, λt} is the sufficient statistic for estimating the
unknown parameters.
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5.2.4 Predictive pdf

The general formula (3.24) has the form

f(∆t+1|at+1,Pat+1) = f(yt+1|ut+1, d(t)) =
I(d(t+ 1))
I(d(t))

=
I(yt+1, ut+1, d(t))

I(d(t))

and it holds

Proposition 5.4 (Predictive pdf for the normal ARX model) The predictive pdf is given
by the general formula (3.24) with the integrals (5.6) and statistics Vt, νt defined by (5.9) and
partitioned according to (5.11)

f(yt+1|ut+1, d(t)) =
Γ(νt−ψ̊+3

2 )

Γ(νt−ψ̊+2
2 )

[π(1 + ζt+1)λt]−0.5

(
1 +

ê′t+1λ
−1
t êt+1

1 + ζt+1

)−0.5(νt−ψ̊+3)

(5.15)

where
êt+1 = yt+1 − θ̂′tψt+1

λt = Vy;t − V ′
y,ψ;tV

−1
ψ;t Vy,ψ;t

ζt+1 = ψ′t+1V
−1
ψ;t ψt+1

For details see (5.13), (5.14).

5.2.5 Multi-step predictive pdf

For predictions over several steps ahead without current data measurement we need the following
multi-step predictive pdf.

Proposition 5.5 (Multi-step predictive pdf for normal ARX model) For the ARX nor-
mal model (5.2) (for which the one-step ahead predictive pdf is given by (5.15)) and for given
model f(ut+1|d(t)) for evolvement of the input variable u, the k-step ahead predictive pdf can be
expressed in the following form

f(yt+k|ut+1, d(t)) = (5.16)

=
∫
D

f(yt+1|ut+1, d(t))
k∏
j=2

f(yt+j |ut+j , d(t+ j − 1))f(ut+j |d(t+ j − 1))

 dD,
for yt+k ∈ R, given data [ut+1, d(t)] and the denotation D = {ut+k, yt+k−1, ut+k−1, . . . , ut+2, yt+1}.

Proof: The result follows immediately if the missing variables ut+k, yt+k−1, ut+k−1 . . . yt+1 are
substituted into the predictive pdf and at the same time they are integrated out. By application of
the chain rule to the joint pdf, we get the result. ♦

In the case of the advance inputs and the ARX model given by (5.2 ) the multi-step predictive
pdf is

f(yt+k|ut+k, ut+k−1, . . . , ut+1, d(t)) = (5.17)

=
∫
D1

[f(yt+k, yt+k−1, . . . , yt+1,Θ|ut+k, ut+k−1, . . . , ut+1, d(t))] dD1 =

=
∫
D1

[f(yt+k|ψt+k,Θ)f(yt+k−1|ψt+k−1,Θ) . . . f(yt+1|ψt+1,Θ)f(Θ|d(t))] dD1,
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for yt+k ∈ R, given data [ut+k, . . . , ut+1, d(t)] and the denotation D1 = {yt+k−1, . . . , yt+1,Θ},
where
f(yt+i|ψt+i,Θ), i = 1, . . . , k are known model pdf’s
f(Θ|d(t)) is the estimated pdf of the parameters

Proof: The chain rule (??) and the natural condition of control (??) are applied ♦

5.3 Static tasks

The basic static tasks related to the normal ARX model will be elaborated in this section.

5.3.1 Point estimation

The point estimate is the mean value of the posterior pdf f(Θ|d(t)) (5.8). The estimation within
the exponential family 2.16 is simple. The parameter estimates are obtained from the sufficient
statistics Vt, νt updated according to (5.9) as follows

Proposition 5.6 (Point estimation for the normal ARX model) For the ARX model (5.2)
with the statistics Vt, νt defined by (5.9) and Vt partitioned according to (5.11) it holds

θ̂ = V −1
ψ;t Vy,ψ;t (5.18)

r̂ = νtλ
−1
t (5.19)

where
θ̂, r̂ are point parameter estimates
λt is computed according to (5.13)

Proof: In [10]. ♦

5.3.2 One-step-ahead prediction

This task is generally formulated in (3.34) and the explicit solution for quadratic criterion is
given in (3.35).

In this case
∆̂(D) = ŷt+1 = E[yt+1|ut+1, d(t)] =

∫
y∈y∗

y f(y|ut+1, d(t))dy

The predicted output value yt+1 is determined on the basis of the previous data items. The
predictive pdf (5.15) is used and its mean value provides the desired result.

Proposition 5.7 (Point one-step-ahead prediction for the normal ARX model) For the
normal ARX model (5.2) with the point parameter estimates according to the Proposition 5.6 it
holds

ŷt+1 = ψ′t+1θ̂t (5.20)

where
ŷt+1 is the one step output prediction in the time t
θ̂t is the point parameter estimate
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5.3.3 One-step-ahead control

The general formula for generating the optimal control is (3.3.5) with Z being the loss function.
In terms of our case this formula gets the form

ut(d(t− 1)) = arg min
u∈u∗

∫
y∈y∗

Z(y, u, d(t− 1))f(y|u, ϕt−1)dy.

For known model parameters, the predictive pdf f(y|u, ϕt−1) is directly given by the model with
parameter values substituted and it holds

Proposition 5.8 (One-step control with known parameters) Let us consider the ARX
normal model (5.2) and the loss function Z defined in (5.4) with T = 1 where y is modelled
variable, u is control, d is vector of past data. Then, the optimal control law is given by the the
solution of the minimization task

Vu;t(d(t− 1)) = (2πr)−0.5
∫
y∈y∗

[(yτ − wτ )2 + ωu2
τ ] exp

{
− 1

2r
tr(ΨtΨ′

t[−1, θ]′[−1, θ])
}

ût(d(t− 1)) = arg min
u∈u∗

Vu;t(d(t− 1))

Proof: The result is just the general formula above with the model pdf (5.2) and the loss function
(5.4) substituted. ♦

Example:

The first order system (5.1) described by yt = b0ut+a1yt−1 + b1ut−1 + et is considered. The loss
function Z (5.4) with control horizon T = 1 and required output value wt = 0 is chosen,

Z = y2
t + ωu2

t .

The optimal control is then

ut+1 = −(b20 + ω2)−1b0(a1yt + b1ut)

Proof: This example is computed in detail in [67] ♦

5.4 Dynamic tasks

5.4.1 Recursive estimation

In this section, sequential decisions about the model parameter values in dependence on currently
measured data is evaluated.

Due to the fact, that the normal ARX model (5.2) belongs to the exponential family (2.53) the
task of sequential estimation is simple, as it reduces to algebraic recursion for statistics Vt, νt for
t ∈ t∗. The recursion for data collection and the form of posterior pdf (5.10) of the estimated
parameter Θ is given in the following proposition.

Proposition 5.9 (Sequential estimation for the normal ARX model) For the normal ARX
model (5.2) and given prior pdf (5.3) the posterior pdf is (5.10) with the statistics Vt, νt according
to (5.9).

Proof: The result is due to the Proposition 5.3. ♦
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5.4.2 Multi-step-ahead prediction

The multi-step output prediction for the normal ARX model is the following.

Proposition 5.10 (Multi-step output prediction for the normal ARX model) For the
ARX model (5.2) with unknown parameter θ the multi-step output prediction is

ŷt+k = E [yt+k|ut+1, d(t)] =
∫
y∈y∗

yt+k f(yt+k|ut+1, d(t)), (5.21)

where the multi-step predictive pdf is given in (5.17).

Proof: See (5.5). ♦

The computation of the previous general formula is too complex. For the illustration we will
consider simple example of the two steps ahead prediction for auto-regression normal model
with known parameters and known advanced inputs.

Example:

The first order system (5.2) described by yt = a1yt−1 + et, et ∼ N (0, σ2), with known a1, σ
2 is

considered. The corresponding pdf is

f(yt|yt−1) =
1√

2πσ2
exp

{
− 1

2σ2
(yt − a1yt−1)2

}
(5.22)

The task is to compute the output prediction ŷt+2. Predictive pdf is

f(yt+2|y(t)) =
∫
f(yt+2|yt+1)f(yt+1|yt)dyt+1 = (5.23)

=
(

1√
2πσ2

)∫
exp

{
− 1

2σ2
(yt+2 − a1yt+1)2

}
exp

{
− 1

2σ2
(yt+1 − a1yt)2

}
=

=
1√

2πσ2(a2
1 + 1)

exp

{
− 1

2σ2(a2
1 + 1)

(yt+2 − a2
1yt)

2
}

This is normal distribution with mean value a2
1yt and variance σ2(a2

1 + 1).

The point output prediction ŷt+2 is then ŷt+2 = a2
1yt.

Proof: the result is obtained after completing the argument of the integral to the square in yt+1.
After this recomputation we obtain argument of the the integral in the form of the product containing
two normal distributions - the first one for the variable yt+1 and the second one which don’t depend
on yt+1. Then the integral over the first one is equal to 1 and the second one is the result of the
integration. ♦

Remark:

In the practice the multi-step-ahead prediction can be solved as the sequence of several one-
step-ahead predictions (see Proposition 5.7) where the output prediction from the previous step
is taken as the real output in the next step. The algorithm for the k-steps-ahead prediction is
as follows:
For i = 1 : k
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1. data d(t+ i− 1) at disposal

2. generation of ut+i

3. one-step-ahead prediction ŷt+i

4. if i < k, assignment yt+i = ŷt+i

5.4.3 Multi-step-ahead control

This task is generally described in the Section 3.4.4. Here suboptimal strategies of receding
horizon (4.4.1) and certainty equivalence strategy (4.46) are used.

The principle of receding horizon is that the control variable u is designed N step ahead - we
obtain the time sequence {ut+N , . . . , ut+1}. Then the ut+1 is applied and yt+1 is obtained. The
control variable is again computed N steps ahead with time index shifted.

Certainty-equivalence strategy replaces unknown parameter in the parameterized model by a
current point estimate Θ̂t of unknown parameters.

Example:

The ARX model (5.1) described by yt = b0ut + a1yt−1 + et is considered. The loss function Z
(5.4) with control horizon T = N , required output value wt = 0 and penalization constant ω > 0
is chosen,

Z =
T∑
τ=1

[y2
τ + ωu2

τ ].

The optimal control is then

ut = −rtyt−1, t = 1, 2, . . . , N

with following control low for t = N,N − 1, . . . , 1 and initial condition sN+1 = 0

rt =
(1 + st+1)a1b0

(1 + st+1)b20 + ω

st =
a1ω

b0
rt

(5.24)

Proof: This example is computed in detail in [?] ♦



Chapter 6

Model with discrete variables

This chapter deals with discrete model. It can be interpreted as controlled tossing of a coin with
memory. On a solution of the tasks for this model, majority of aspects of decision making can
be clearly illustrated.

6.1 Construction elements

The considered system is interpreted as a tossed coin that can fall with head or tail up. The
result of the tossing might be influenced by the way in which coin is laid on the tossing hand
(control) and by the side on which it fell last times (memory).

6.1.1 Data

A sequence of outputs yt, t = 1, 2, . . . , t̊ is observed. The items of the sequence have finite number
of different values. The values can be labelled in an arbitrary way that distinguishes different
outcomes. We will consider two different values (evoking connection with a tossed coin) and use
their binary representation y ∈ y∗ ≡ {0,1}, where 0 and 1 represent two numbers, mostly 0,1
or 2,1. An extension to more different values of the output is straightforward.

Even in this simple case an simplification is used: cases when the coin disappears during the
toss or the coin would finally land on its edge are not considered as possible outcomes of the
experiment.

Two valued inputs u ∈ u∗ ≡ {0,1}, the position of the coin on the tossing hand before toss are
considered. The restriction to two valued variables, representing a coin, is due to better clarity
and with respect to the extension to more than two values it is not crucial.

Notation

In accordance with the general conventions we will use the following notations.

Data item at time t
dt = [yt, ut]′, (6.1)

97
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All data up to time t, including prior data

d(t) = [yt, ut, yt−1, ut−1, . . .], (6.2)

Regression vector with past data (at time t)

ϕt−1 = [yt−1, ut−1, . . . , yt−ϕ̊, ut−ϕ̊, the rest]′, (6.3)

where ”the rest” stands for the remaining items of ϕt−1 represented either by older inputs
or outputs, in dependence on the individual lengths of memories. The number of common
delayed items is denoted by ϕ̊, the total number of delayed outputs is ϕ̊y and of inputs ϕ̊u.

Regression vector with actual control substituted (at time t)

ψt = [ut, ϕ′t−1]
′, (6.4)

Extended regression vector
Ψt = [yt, ψ′t]

′ = [yt, ut, ϕ′t−1]
′. (6.5)

Experimental design

Obviously, if we want to learn properties of our system (tossed coin) we should perform proper
experiments. We cannot improve our prior estimate of the probability of yt = 0 conditioned on
ut = 0 when we do not choose ut = 0 during our experiment. We stress this simple fact as it is
often overlooked in more complex situations.

Data pre-processing

Even in this simple case, some data pre-processing is needed. Typically, the cases a priori
excluded by problem formulation but practically appearing, like coin ending on its edge, are
excluded from the set or treated as missing data: we hope that the coin will eventually fall on
one of the considered sides but we do not know to which one.

6.1.2 Decisions

The considered inputs are typical decisions to be taken in control tasks. As it will be seen below,
we shall deal with parameter estimation, output prediction, structure estimation etc. Each of
those tasks will have its decision (like point estimates of parameters or decision on continuation
of a sequential experiment). In summary, to be or not to be a decision is an integral part of the
problem formulation not an absolute property.

Restrictions

Everywhere, we insist on information restriction: our decision can be selected using at most the
observed data and prior information.

The fact that two-valued input only is allowed is a technological restriction for the control
design. Again, it is our option that can be modified by allowing, for instance, any spatial initial
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position of the coin. If this restriction is violated by an undisciplined player we have to take an
appropriate decision (get rid of him, stop the game, etc.).

It will be seen in Section 6.4.6 that the complexity restrictions are relevant even in this simple
case.

6.1.3 Example

A general case of the discrete dynamic model can sometimes be too complex for a clear presen-
tation. That is why a simper example is appended. It is called CCM problem and it represents
model of a Controlled Coin with one step Memory.

Agreement 6.1 (CCM problem) By CCM problem we will denote the following task:

1. The model (6.9) has two-valued outputs yτ ∈ {0, 1} and inputs uτ ∈ {0, 1} for all τ =
1, 2, . . . , t̊.

2. The regression vector is ψτ = [ut, yt−1]′ ∈ ψ∗, i.e. length of the model memory is one.

3. The set of admissible parameters Θ∗ is a cartesian product of marginals Θ∗
ψ

Θ∗ =
⊗
ψ

Θ∗
ψ, (6.6)

with Θ∗
ψ ⊂ {[Θ0|ψ,Θ1|ψ] : Θ0|ψ > 0,Θ1|ψ > 0,Θ0|ψ + Θ1|ψ = 1}.

The marginal regions Θ∗
ψ are one dimensional and after substitution they are represented by

intervals (θlψ, θ
u
ψ) ⊂ (0, 1). For unrestricted model they are intervals (0, 1) for all ψ ∈ ψ∗.

6.1.4 Parameterized model

Two-valued system output y ∈ y∗ ≡ {0,1} is observed. The system input u is also two-valued,
u∗ = y∗. Outputs are uncertain (random), they depend on current input and lagged values of
output and input. We assume that this dependence

- is incompletely known
- is time-invariant
- has finite memory, i.e. the probability of a particular output yt is determined by the

finite-dimensional regression vector ψt.

Thus, the general parameterized model (2.41) has the form

f(∆t|Θ,Pa∗t , at) ≡ f(yt|Θ, ψt). (6.7)

The most general finite-dimensional parameterization takes values of the individual probabilities
f(yt = y|Θ, ψt = ψ) ≡ Θy|ψ as unknown parameters

Θ ∈ Θ∗ ⊂ {Θy|ψ : Θy|ψ ≥ 0,
∑
y∈y∗

Θy|ψ = 1}. (6.8)
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The form of the widest meaningful set Θ∗ of Θ is restricted by the fact that Θy|ψ are conditional
probabilities.

For a compact and useful description of the general parameterized model (6.7), we use the
multivariate version of Kronecker delta (7.1). With it,

Discrete model

f(yt|Θ, ψt) =
∏
ψ∈ψ∗

∏
y∈y∗

Θδ(y,yt)δ(ψ,ψt)
y|ψ . (6.9)

Remark(s) 6.1

1. The parameterized model belongs to exponential family (Agreement 2.14), as it can be
expressed in the following way

f(yt|Θ, ψt) = exp

[ ∑
Ψ∈Ψ∗

δ(Ψ,Ψt) ln[Θy|ψ]

]
(6.10)

with A(Θ) = 1, B′(Ψt) = row vector with Ψ̊-entries δ(Ψ,Ψt), Ψ ∈ Ψ∗,

C(Θ) = column vector with Ψ̊-entries ln[Θy|ψ], y ∈ y∗, ψ ∈ ψ∗.

2. The use of Kronecker delta in (6.9) helps us to express the parameterized model in the
product form that fits well to the product form of Bayes rule (??). It is advantageous to
use this “trick” whenever possible.

3. Logarithms in (6.10) make sense for positive arguments only. We assume only such data
vectors Ψ ∈ Ψ∗ for which it holds. Thus, the considered set Θ∗ is a proper subset of the
widest possible set (6.8): zero transition probabilities are a priori fixed. This seemingly
technical remark opens a way to a more parsimonious description of the system. For
instance, if we know from physical modelling that some transitions ψ → y are impossible
we can use it efficiently for fighting with the estimation complexity, see [68, 69, 70].

4. It is instructive to try an alternative parameterization using the “completion” Proposition
3.1. It is quite hard to stay within the favorable exponential family. Consider, for instance,
the case when expected value of the output is a linear function of the regression vector.

5. The general notation we are using makes the results directly applicable to all discretely-
controlled finite-memory Markov chains [71, 72, 73] for which output and input sets y∗, u∗

have an arbitrary but finite amount of possible values.

Example:

The model (6.9) used for the CCM problem reduces to

f(yt|ψt,Θ) =
∏
ψ∈ψ∗

Θ0|ψΘ1|ψ =
∏
ψ∈ψ∗

θψ(1− θψ) (6.11)

where

yτ ∈ y∗ = {0,1} and uτ ∈ u∗ = {0,1} for all t ∈ t∗ are inputs and outputs,
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ψτ = [ut, yt−1]′ ∈ ψ∗ = {[0,0]′, [0,1]′, [1,0]′, [1,1]′} is regression vector – used as a
multi-index for indexing items of parameter and statistics,

Θ = Θy|ψ can be described by a table

ut, yt−1 yt = 0 yt = 1

0 0 Θ0|00 Θ1|00

0 1 Θ0|01 Θ1|01
1 0 Θ0|10 Θ1|10

1 1 Θ0|11 Θ1|11

Θ0|ψ > 0
Θ1|ψ > 0

Θ0|ψ + Θ1|ψ = 1

and after introducing the restrictions

ut, yt−1 yt = 0 yt = 1

0 0 θ00 1− θ00

0 1 θ01 1− θ01
1 0 θ10 1− θ10

1 1 θ11 1− θ11

Θ0|ψ = θψ
Θ1|ψ = 1− θψ
θψ ∈ (0; 1)

Remark(s) 6.2

From the table expression of the model parameter it can be clearly seen, that the
controlled coin with memory can be interpreted as four plain coins indexed by the
multi-index ψ – the regression vector of the model (6.11). The individual plain coin
parameters occur at rows of the parameter table.

6.1.5 Prior pdf for discrete model

The parameterized model belongs to exponential family. Thus, according to Proposition 3.3,
there is a conjugate prior pdf of the form

Prior pdf

f(Θ) ∝
∏
ψ

∏
y

Θ
Vy|ψ;0−1

y|ψ χ(Θ), (6.12)

where the optional scalars Vy|ψ;0, y ∈ y∗, ψ ∈ ψ∗ create the optional prior statistics V0 and
χ(Θ) denotes the indicator of Θ∗ according to (6.8).

The term −1 in exponent of (6.12) is used for notational convenience only. The need to normalize
the prior pdf determines the admissible range of the optional values V0. It is implied by the
following auxiliary proposition.

Proposition 6.1 (Existence of the prior pdf) Let a pdf of the form (6.12) be considered
with the indicator χ(Θ) that is non-zero on the biggest open subset of the set (6.8) of possible
parameters. Then, the function is pdf (integrable) iff the statistics V0 has positive entries. The
corresponding normalizing factor, see Proposition 2.16, has the form

I(V0, ν) ≡ I(V0) =
∫
Θ∗

∏
ψ

∏
y

Θ
Vy|ψ;0−1

y|ψ dΘ = B(V0), (6.13)

where B(V0) is a multivariate beta function (7.10) which for two-valued output equals to a product
of normal beta functions.
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Remark(s) 6.3

1. The used conjugate prior pdf (6.12) is known as Dirichlet prior pdf.

2. It is known that Γ(x) = (x − 1)! for integer arguments. This indicate that a logarithmic
version has to be used whenever numerically evaluated for a bit larger x.

3. A more restrictive definition of Θ∗ leads mostly to incomplete gamma and beta functions
and thus makes evaluation much harder. For this reason, it is useful to rely more on soft
prior restrictions through an appropriate choice of the statistics V0.

4. The counter ν occurring in the general form of a conjugate prior pdf, see 3.1.4, is not
explicitly present here as A(Θ) = 1. The sum of entries of V0 is, however, such a (possibly
shifted) counter.

Example:

For the CCM problem the prior pdf according to (6.12)

has the form

f(Θ) ∝
∏
ψ

Θ
V0|ψ;0−1

0|ψ Θ
V1|ψ;0

−1

1|ψ χ(Θ), (6.14)

with the prior statistics

V0 = Vy|ψ;0 :

ut, yt−1 yt = 0 yt = 1

0 0 V0|00 V1|00

0 1 V0|01 V1|01
1 0 V0|10 V1|10

1 1 V0|11 V1|11

(6.15)

and indicator function χ(Θ) expressing the conditions (6.6).

6.1.6 Loss function

One of the advantages of the discrete case is that there is a finite number of elements and they
can be set value-vise. This advantage can be utilized also for construction of the loss function
which can be defined as a penalization table

Z(y, u, d) = ωy,u,d, (6.16)

where y is modelled variable, u is control, d is vector of past data and values of ωy,u,d represent
penalties for individual value configurations of y, u, d.

A single common warning should be made: numeric values of inputs and outputs are arbitrary
and have to be interpreted as labels only.
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Example:

For the CCM problem the loss function according to (6.16) can be written as a table

ωy|ψ :

ut, yt−1 yt = 0 yt = 1

0 0 ω0|00 ω1|00

0 1 ω0|01 ω1|01
1 0 ω0|10 ω1|10

1 1 ω0|11 ω1|11

(6.17)

6.2 Derived elements

6.2.1 Likelihood function

It is a product of models with data substituted, see (3.20). Here, it has the form

L(Θ,Pa∗t+1
) = L(Θ, d(t)) =

t∏
τ=1

f(yτ |Θ, ψτ ).

and for model (6.9) it holds

Proposition 6.2 (Likelihood for discrete model) For general discrete model (6.9) the like-
lihood function is

Likelihood

L(Θ, d(t)) =
∏
ψ

∏
y

Θ
Ṽy|ψ;t

y|ψ , (6.18)

Proof:
∏t
τ=1

∏
ψ

∏
y Θδ(y,yτ )δ(ψ,ψτ )

y|ψ =
∏
ψ

∏
y Θ
∑t

τ=1
δ(y,yτ )δ(ψ,ψτ )

y|ψ and Vy|ψ =
∑t
τ=1 δ(y, yτ )δ(ψ,ψτ ).

♦

Example:

For the CCM problem (Agreement 6.1) the likelihood function has a form

L(Θ, d(t)) =
∏
ψ

Θ
Ṽ0|ψ;t

0|ψ Θ
Ṽ1|ψ;t

1|ψ , (6.19)

for ψ ∈ {[0,0]′, [0,1]′, [1,0]′, [1,1]′}

6.2.2 The integral I

The particular form of (2.46) for this case is

I(Pa∗t+1
) = I(d(t))

and it holds
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Proposition 6.3 (Normalization integral I for discrete model) For likelihood function (6.18)
and prior pdf (6.12) the integral I (2.46) is

Integral

I(d(t)) =
∫
Θ∗

∏
ψ

∏
y

Θ
Vy|ψ;t−1

y|ψ dΘ = B(Vt) (6.20)

where

Vt = Ṽt + V0 according to (6.18) and (6.12) and
beta function B =

∏
ψ∈ψ∗ Bψ with Bψ =

∏
y∈y∗ Γ(Vy|ψ)/Γ(

∑
y∈y∗ Vy|ψ) is defined in (7.10).

Proof: Simple substitution of (6.18) and (6.12) into the definition (3.21) and using definition of
beta function (7.10). ♦

Example:

For the CCM problem (Agreement 6.1) the integral is

I(d(t)) =
∫
Θ∗

∏
ψ

Θ
V0|ψ;t−1

0|ψ Θ
V1|ψ;t

−1

1|ψ dΘ =
∏
ψ

B([V0,ψ;t, V1,ψ;t]) (6.21)

where Vψ;t = [V0,ψ;t, V1,ψ;t] is partial statistics, concerning particular choice of the
regression vector ψ.

6.2.3 Posterior pdf

The fact that our model belongs to the exponential family (2.53) allows us to apply directly
Proposition 2.16. The posterior pdf (3.23) now reads

f(Θ|Pa∗t+1
) = f(Θ|d(t))

and it holds

Proposition 6.4 (Posterior pdf for discrete model and its evolution) Let the system be
described by the parameterized model (6.9), natural conditions of decision making (2.36) hold
and a conjugate Dirichlet prior pdf (6.12) with V0 > 0 (entry-wise) be used. Then, the posterior
pdf (Proposition 2.14) has also Dirichlet form and for Θ ∈ Θ∗ it holds

Posterior pdf

f(Θ|d(t)) ∝
∏
ψ

∏
y

Θ
Vy|ψ;t−1

y|ψ , (6.22)

with the sufficient statistics Vt = [V1|ψ;t, V0|ψ;t] (6.20) whose entries evolve in time according to
the recursion

Vy|ψ;t = Vy|ψ;t−1 + δ(Ψ,Ψt), Ψ ∈ Ψ∗ (6.23)

starting with V0.

The normalizing factor of this pdf is I(Vt) ≡ B(Vt) =
∏
ψ B(V1|ψ;t, V0|ψ;t), according to (6.20).
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Proof: According to (2.44) the posterior pdf is f(Θ|d(t)) ∝
∏t̊
t=1 f(yt|ut, ϕt−1)f(Θ). Substituting

(6.9) for the model pdfs and (6.12) for the prior pdf and dragging the product sign into the exponent
as a sum sign, we directly obtain the form of the posterior as well as the recursion for the statistics
evolution. ♦

Example:

For the CCM problem (Agreement 6.1) the posterior pdf has the form

f(Θ|d(t)) ∝
∏
ψ

Θ
V0|ψ;t−1

0|ψ Θ
V1|ψ;t

−1

1|ψ , (6.24)

with the following update of the statistics

V0|ψ;t = V0|ψ;t−1 + δ(0, yt)δ(ψ,ψt)
V1|ψ;t = V1|ψ;t−1 + δ(1, yt)δ(ψ,ψt)

for ψ ∈ ψ∗ and t = 1, 2, . . . , t̊.

6.2.4 Predictive pdf

The general formula (3.24) has the form

f(∆t+1|at+1,Pat+1) = f(yt+1|ut+1, d(t))

and it holds

Proposition 6.5 (Predictive pdf for discrete model) The predictive pdf is given by the
general formula (3.24) with the integrals (6.20)

Predictive pdf

f(yt+1|ut+1, d(t)) =
B(Vt+1)
B(Vt)

=
Vyt+1|ψt+1;t∑
y∈y∗ Vy|ψt+1;t

, (6.25)

with ψt+1 according to (6.4).

Proof: The first equality follows directly from (3.24) expressing the predictive pdf as a ratio of two
integrals and (3.21) where, for the discrete model, the integral is shown to be a multivariate beta
function.

Now, as for the second equality. In the appendix, it is shown (7.10) that the multivariate beta function
has the form B(V ) can be expressed as a product of ”partial” beta functions indexed by various
regression vectors, i.e. B(V ) =

∏
ψ∈ψ∗ B(Vψ), where Vψ = [Vỹ1|ψ, Vỹ2|ψ, . . . , Vỹẙ |ψ] is ”partial”

statistics (by ỹ we denoted values of y). The evolution of the statistics is given by (6.23) which can
be written in the form Vy|ψ;t+1 = Vy|ψ;t+δ(y, yt+1)δ(ψ,ψt+1). From this, it can be clearly seen, that
only the partial statistics concerning the regression vector ψ = ψt+1 and thus only the corresponding
partial beta function is changed. From it follows, that in the ratio of beta functions all terms
are cancelled up to those indexed by ψ = ψt+1. It is B(Vt+1)/B(Vt) = B(Vψt+1;t+1)/B(Vψt+1;t),
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where, according to (7.10) the partial beta function is B(Vψ) =
∏
y∈y∗ Γ(Vy|ψ)/Γ(

∑
y∈y∗ Vy|ψ).

And again, the update of the partial statistics concerns only the term indexed by y = yt+1, it is
Vyt+1|ψt+1;t+1 = Vyt+1|ψt+1;t+δ(y, yt) the rest remaining unchanged. Thus the ratio of beta functions
has the final form, (see also (7.4))

Γ(Vyt+1|ψt+1;t+1)

Γ(
∑

y∈y∗ Vy|ψt+1;t+1)

Γ(Vyt+1|ψt+1;t)

Γ(
∑

y∈y∗ Vy|ψt+1;t)

=
Vyt+1|ψt+1;t∑
y∈y∗ Vy|ψt+1;t

.

This was to be proved. ♦

Example:

For the CCM problem (Agreement 6.1), the beta function is (??) and the predictive
pdf gets a simple form

f(yt+1|ut+1, d(t)) =


V1|ψ;t

V1|ψ;t
+V0|ψ;t

for yt+1 = 1,

V0|ψ;t

V1|ψ;t
+V0|ψ;t

for yt+1 = 0,
(6.26)

where ψ = ψt+1 = [ut+1, yt].

Proof: The result follows directly from the previous general formula. ♦

6.2.5 Multi-step predictive pdf

For predictions over several steps ahead without current data measurement we need the following
multi-step predictive pf.

Proposition 6.6 (Multi-step predictive pdf for discrete model) For the discrete model
(6.9) (for which the one-step ahead predictive pf is given by (6.25)) and for given model f(ut+1|d(t))
for evolvement of the input variable u, the k-step ahead predictive pdf can be expressed in the
following form

f(yt+k|ut+1, d(t)) = (6.27)

∑
D

f(yt+1|ut+1, d(t))
k∏
j=2

f(yt+j |ut+j , d(t+ j − 1))f(ut+j |d(t+ j − 1))

 ,
for yt+k = 1, 2 and given data ut+1, d(t) and D = {ut+k, yt+k−1, ut+k−1, . . . , ut+2, yt+1}.

Proof: The result follows immediately if the missing variables ut+k, yt+k−1, ut+k−1 . . . yt+1 are
substituted into the predictive pf and at the same time they are summed out. Application of the
chain rule to the joint pf, we got, gives the result. ♦

6.3 Static tasks

Here, we elaborate common static tasks related to coin tossing.
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6.3.1 Point estimation

The usage of Kronecker delta in (6.10) implies that Vy|ψ;t is the number of observed configurations
Ψ = Ψτ , τ ≤ t increased by Vy|ψ;0. From it follows

Proposition 6.7 (Moments of the Dirichlet distribution) Let Jy|ψ, y ∈ y∗, ψ ∈ ψ∗, be
an integer multi-index with Jy|ψ ∈ {0, 1, 2, . . .}. Then, Jth moment of the Dirichlet distribution
is

Point estimates

E

 ∏
ψ∈ψ∗

∏
y∈y∗

(
Θy|ψ

)Jy|ψ ∣∣∣∣Pa∗t+1

 =
B(Vt + J)
B(Vt)

. (6.28)

For the first moment and second central moments it follows:

E [Θỹ|ψ̃|Pa∗t+1
] =

Vỹ|ψ̃∑
y∈y∗ Vy|ψ̃

(6.29)

cov[Θỹ|ψ̃,Θŷ|ψ̂|Pa∗t+1
] =

=



0 for any ỹ, ŷ and ψ̃ 6= ψ̂

E [Θỹ|ψ|Pa∗t+1
]E [Θŷ|ψ|Pa∗t+1

]
[ ∑

y∈y∗ Vy|ψ∑
y∈y∗ Vy|ψ+1

− 1
]

for ỹ 6= ŷ and ψ̃ = ψ̂ = ψ

(
E [Θỹ|ψ|Pa∗t+1

]
)2
[ ∑

y∈y∗ Vỹ;t∑ẙ

y∈y∗ Vỹ;t+1

Vỹ;t+1
Vỹ;t

− 1

]
for ỹ = ŷ and ψ̃ = ψ̂ = ψ

(6.30)

Proof: The mean value in (6.28) can be expressed in the integral form with posterior (6.22) as
follows

E

 ∏
ψ∈ψ∗

∏
y∈y∗

(
Θy|ψ

)Jy|ψ ∣∣∣∣Pa∗t+1

 =
1

B(Vt)

∫
Θ∗

Θ
Jy|ψ
y|ψ

∏
ψ∈ψ∗

∏
y∈y∗

Θ
Vy|ψ;t−1

y|ψ dΘ =

1
B(Vt)

∫
Θ∗

∏
ψ∈ψ∗

∏
y∈y∗

Θ
Vy|ψ;t+Jy|ψ−1

y|ψ dΘ =
B(Vt + J)
B(Vt)

The last step is due to the definition of multivariate beta function (7.10).

First moments:

E [Θỹ|ψ̃|Pa∗t+1
] =

1
B(Vt)

∫
Θ∗

Θỹ|ψ̃
∏
ψ∈ψ∗

∏
y∈y∗

Θ
Vy|ψ;t−1

y|ψ dΘ =

=
1

B(Vt)

∫
Θ∗

∏
ψ∈ψ∗

∏
y∈y∗

Θ
Vy|ψ;t+δ(y|ψ,ỹ|ψ̃)−1

y|ψ dΘ =

=
1

B(Vψ̃;t)

Γ(V1|ψ̃;t)Γ(V2|ψ̃;t) . . .Γ(Vỹ|ψ̃;t + 1) . . .Γ(ẙ|ψ̃; t)

Γ(V1|ψ̃;t + . . .+ Vẙ|ψ̃;t + 1)
=
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=
1

B(Vψ̃;t)

Γ(V1|ψ̃;t)Γ(V2|ψ̃;t) . . .Γ(Vỹ|ψ̃;t)(Vỹ|ψ̃;t) . . .Γ(ẙ|ψ̃; t)

Γ(V1|ψ̃;t + . . .+ Vẙ|ψ̃;t)(V1|ψ̃;t + . . .+ Vẙ|ψ̃;t)
=

Vỹ|ψ̃;t

V1|ψ̃;t + . . .+ Vẙ|ψ̃;t

where

δ(y|ψ, ỹ|ψ̃) denotes matrix of corresponding delta-functions,

B(Vψ̃;t) denotes the term of the multivariate beta function (7.10) corresponding to ψ̃ (the remaining
terms got cancelled).

Second moments (co-variance):

For different ψ the terms are independent and so their co-variances are equal to 0. That is why,
in the following, we will omit the index ψ and we will consider just a single regression vector. The
result for more than one regression vectors are identical (similarly as for mean value, the unchanged
terms are cancelled)

Co-variance for common regression vector:

cov[ΘỹΘŷ|Pa∗t+1
] = E [(Θỹ − E [Θỹ|d(t)]) (Θŷ − E [Θŷ|d(t)])| d(t)] =

= E [Θỹ Θŷ| d(t)]− E [Θỹ| d(t)] E [Θŷ| d(t)] =
B(Vt + J)
B(Vt)

− E [Θỹ| d(t)] E [Θŷ| d(t)]

where Vt is row vector of statistics corresponding to the single regression vector and J is a row vector
of zeros up to two ones at positions of ỹ and ŷ.

Let us notice the first term

B(Vt + J)
B(Vt)

=
1

B(Vt)
Γ(V1;t) . . .Γ(Vỹ;t + 1) . . .Γ(Vŷ;t + 1) . . .Γ(Vẙ;t)

Γ(V1;t + . . .+ Vẙ;t + 2)
= †

where in the numerator, the only two terms with arguments increased by one are those indicated.
The rest are V (i, t) for i 6= ỹ and i 6= ŷ. Now, the terms whose arguments are increased can be
expressed according to (7.4)

Γ(Vỹ;t + 1) = Γ(Vỹ;t)Vỹ;t, Γ(Vŷ;t + 1) = Γ(Vŷ;t)Vŷ;t and

Γ(V1;t + . . .+ Vẙ;t + 2) = Γ(V1;t + . . .+ Vẙ;t)(
∑ẙ
i=1 Vi;t + 1)(

∑ẙ
i=1 Vi;t).

After cancelling with the beta function in denominator we obtain

† =
Vỹ;tVŷ;t

(
∑ẙ
i=1 Vi;t + 1)(

∑ẙ
i=1 Vi;t)

=
Vỹ;t∑ẙ
i=1 Vi;t

Vŷ;t∑ẙ
i=1 Vi;t

∑ẙ
i=1 Vi;t∑ẙ

i=1 Vi;t + 1
=

= E [Θỹ|d(t))]E [Θŷ|d(t))]
∑ẙ
i=1 Vi;t∑ẙ

i=1 Vi;t + 1
.

Completing this term with the skipped product of the mean values from the beginning off this
derivation we obtain

E [Θỹ|d(t))]E [Θŷ|d(t))]
( ∑ẙ

i=1 Vi;t∑ẙ
i=1 Vi;t + 1

− 1

)
which is the result to be proved.

Second moments (variance):
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Again with omitted regression vector as multi-index we have

var[Θỹ|Pa∗t+1
] = E

[
(Θŷ − E [Θŷ|d(t)])2

∣∣∣ d(t)] = E
[
Θ2
ŷ

∣∣∣ d(t)]− E [Θŷ| d(t)]2

With similar steps as in the previous case we can express

E
[
Θ2
ŷ

∣∣∣ d(t)] =
B(Vt + J)
B(Vt)

= †

with J all zeros but a single item 2 at the position of ỹ.

† =
1

B(Vt)
Γ(V1;t) . . .Γ(Vỹ;t + 2) . . .Γ(Vẙ;t)

Γ(
∑ẙ
i=1 Vi;t + 2)

=
(Vỹ;t + 1)(Vỹ;t)

(
∑ẙ
i=1 Vi;t + 1)(

∑ẙ
i=1 Vi;t)

=

=

[
Vỹ;t∑ẙ
i=1 Vi;t

]2 [ ∑ẙ
i=1 Vi;t∑ẙ

i=1 Vi;t + 1

Vỹ;t + 1
Vỹ;t

]
The whole expression, with the square of mean values that has been omitted, is

(E [Θŷ|d(t)])2
[ ∑ẙ

i=1 Vi;t∑ẙ
i=1 Vi;t + 1

Vỹ;t + 1
Vỹ;t

− 1

]

which is the proved expression. ♦

Remark(s) 6.4

1. Notice that the expected values, “natural point estimates”, coincide with relative frequencies
of occurrence of the particular situation observed in past. It makes the result intuitively
appealing. Note that the relative frequency is modified by the prior choice. The influence
asymptotically disappear, cf. Proposition 2.15, if the number

∑
ȳ∈y∗ Vȳ|ψ approaches infin-

ity. For it, this specific condition has to appear infinitely often times. If this condition is
not fulfilled the (potentially positive) influence of the prior pdf persists. Note, that under
insufficient excitation (when the denominator in moments is finite) there is no estimator
that can estimate the unknown parameter consistently.

2. Note that the estimation runs independently for a respective fixed conditions. The depen-
dence is introduced just through restrictions on Θy|ψ that are set independently for each
condition ψ.

3. Restricting of some entries of Θy|u,ỹ to fixed values (zeros or given numbers) is a non-trivial
practically feasible and significant special case that allows us to respect a smoothness of the
sampled continuous signals [68].

6.3.2 Set estimation

According to (3.27), integrals

Set estimate ∫
Θ∗
f(Θ|d(t))dΘ =

∫
Θ∗

∏
ψ

∏
y

Θ
Vy|ψ;t−1

y|ψ dΘ (6.31)

are necessary to be evaluated. This is generally a difficult task requiring numerical integration.
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Example:

The situation gets simpler, if rectangular areas (6.6) for Θ∗ are considered. Thus,
for the CCM problem with model pdf (6.22) it holds∫

Θ∗
f(Θ|d(t))dΘ =

∏
ψ

∫
θ∗
ψ

Θ
V0|ψ;t−1

0|ψ Θ
V1|ψ;t

−1

1|ψ dΘψ =
∏
ψ

[
BVψ;t

(θuψ)− BVψ;t
(θlψ)

]
,

(6.32)
where BVψ;t

(θuψ) and BVψ;t
(θlψ) are incomplete beta functions (7.9) and Θ∗

ψ → (θlψ, θ
u
ψ).

6.3.3 Testing of hypotheses

Here, the general formulae (3.33) are specified for the considered model (6.9) and cartesian
admissible parameter sets (6.6).

Let us suppose, that the structure of the model is valid and we are testing several hypotheses
Hh, h = 1, 2, . . . , h̊ about various areas Θ∗

h to which the parameter Θ ≡ Θh belongs. Thus, the
hypotheses are

Hh : Θh ∈ Θ∗
h, h = 1, 2, . . . , h̊. (6.33)

We have parameters Θψ,h for ψ ∈ ψ∗ and h = 1, 2, . . . , h̊.

Example:

Generally, for arbitrary parameter regions Θ∗
h the task is not analytically solvable

and we restrict ourselves to the CCM problem with admissible sets of parameters
according to (6.6).

For model (6.9), hypotheses (6.33) with Θ∗
h according to (6.6) and with conjugate

priors f(Θψ,h) (6.12) and prior on hypotheses f(h) it holds

f(h|d(t)) =
Ih(d(t))

Ih(d(t− 1))
f(h), (6.34)

Ih(d(t)) =
∏
ψ

[
BV1|ψ;t

,V0|ψ;t
(θuψ,h)− BV1|ψ;t

,V0|ψ;t
(θlψ,h)

]
(6.35)

Proof: The formula (6.34) is according to (3.33). ♦

The integrand in (6.35) is a product of likelihood and parameter prior, both accord-
ing to hypothesis h. The likelihood is (??) and the conjugate prior (??) which in
product gives the form of un-normalized posterior pdf (??). For rectangular area of
integration (??) the integral of product gets product of integrals and it is

Ih(d(t)) =
∏
ψ

∫
θ∗
ψ,h

Θ
V0|ψ;t

0|ψ,hΘ
V1|ψ;t

1|ψ,h dΘψ,h

which gives (6.35).
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6.3.4 One-step-ahead prediction

This task is generally formulated in (3.34) and the explicit solution for quadratic criterion is
given in (3.35). Its adaptation for this task is

∆̂(D) = ŷt+1 = E[yt+1|ut+1, d(t)] =
∑
y∈y∗

y f(y|ut+1, d(t))

Proposition 6.8 (Point one step quadratic prediction) For the discrete model (6.9) and
quadratic criterion the one step prediction ŷt+1 is

Point prediction

ŷt+1 =
∑
y∈y∗ y Vyt+1|ψt+1;t∑
y∈y∗ Vy|ψt+1;t

. (6.36)

Proof: Generally, the prediction is given by (3.34). For quadratic criterion, the point-prediction can
be explicitly expressed by the relation (3.35), which, for discrete model (6.9), can be written in the

form ŷt+1 =
∑
y∈y∗ y f(yt+1|ut+1, d(t)), where f(yt+1|ut+1, d(t)) =

Vyt+1|ψt+1;t∑
y∈y∗ Vy|ψt+1;t

is predictive pdf

(6.25). Substitution for the predictive pdf gives the proved formula
∑
y∈y∗ y Vyt+1|ψt+1;t/

∑
y∈y∗ Vy|ψt+1;t.

♦

Example:

Point one step prediction for quadratic

For the CCM problem, the one step prediction ŷt+1 with quadratic loss function, is

ŷt+1 =
V1|ψ;t

V1|ψ;t + V0|ψ;t
. (6.37)

Proof: For quadratic loss function assumed, the point prediction is conditional mean
value of the output, conditioned by all measured data d(t) (see Remark to (3.34)). The
predictive pdf is (6.25). ♦

Point one step prediction for absolute criterion

For the CCM problem, the one step ahead prediction ŷt+1, according to with absolute
loss function |yτ − ŷτ |, the point prediction ŷτ is the value of yτ with the maximal
value of predictive pdf f(yτ |d(τ − 1), uτ ). This gives one-step prediction

ŷt+1 =

{
1 for V1|ψ;t ≥ V0|ψ;t,

0 for V1|ψ;t < V0|ψ;t.
(6.38)

Proof: According to (3.34) for point prediction ŷ it holds ŷ = arg minŷ
∑
y |ŷ − y|

where the predictive pdf f(y|Py) = [f1, f0] is (6.25). So we look for minimum of
|ŷ − 1|f1 + |ŷ − 0|f0 which is f0 for ŷ = 1 and f1 for ŷ = 0. From it and from (6.25)
follows the proved relation. ♦

Remark(s) 6.5
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1. No point estimation of the parameter is needed for making predictions.

2. The relative frequency is modified by the prior values of the sufficient statistics n0. Its
influence may be significant especially when the number of observed situation is small. It
may happen due to the insufficient richness of the input sequence and not only for small
extent of measured data. This situation called insufficient excitation is more rule than
exception in controlled systems.

6.3.5 One-step-ahead control

The general formula for generating the optimal control is (3.3.5) with Z being the loss function.
In terms of our case this formula gets the form

ut(d(t− 1)) = arg min
u∈u∗

∑
y∈y∗

Z(y, u, d(t− 1))f(y|u, ϕt−1).

For known model parameters, the predictive pdf f(y|u, ϕt−1) is directly given by the model and
it holds

Proposition 6.9 (One-step control with known parameters) Let us consider the discrete
model (6.9) and the loss function defined in as a penalization table

Z(y, u, d) = ωy,u,d, (6.39)

where y is modelled variable, u is control, d is vector of past data and values of ωy,u,d represent
individual penalties (constant for all t ∈ t∗). Then, the optimal control law is given by the the
solution of the minimization task

One step control

Vu;t(d(t− 1)) =
ẙ∑

y=1
ωy,u,d(t−1)Θy|u,ϕt−1

ût(d(t− 1)) = arg min
u∈u∗

Vu;t(d(t− 1))

Proof: The result is just the general formula above with the model pdf (6.9) and the penalization
table (6.39) substituted. ♦

We will deal with the CCM problem (see Agreement 6.1), again.

Example:

One-step control with known model parameters

For the CCM problem with known model parameters and tabular loss function
Z(d(t)) = ωyt,ut we define the control criterion

Vu;t = ω0,uΘ0|u,ϕt−1
+ ω1,uΘ1|u,ϕt−1

. (6.40)

The generator of the optimal control variable ût is then

ût =

{
1 for V0;t−1 ≥ V1;t−1

0 for V0;t−1 < V1;t−1.
(6.41)

Proof: The result is just the previous one with y∗ = u∗ = {0,1}. ♦
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Example:

One-step control with unknown model parameters

For the CCM problem with unknown model parameters and tabular loss function
Z(d(t)) = ωyt,ut the previous result holds with the only difference, that the parame-
ters are substituted by their point estimates

θu,ϕ → θ̂ut,ϕt−1

according to (6.29). Proof: The criterion is
∑
yt ωyt|utf(yt|ut, d(t − 1)), where the

predictive pdf is the ratio of beta functions (6.25) which, according to (6.28) and (6.29)
defines point estimate of parameter. ♦

6.4 Dynamic tasks

6.4.1 Sequential estimation

Due to the fact, that the discrete model (6.9) belongs to the exponential family (6.10) the task
of sequential estimation is simple, as it reduces to algebraic recursion for statistics δ(Ψ,Ψt) for
t ∈ t∗. The recursion for data collection and the form of posterior pdf of the estimated parameter
Θ is given in the following proposition.

Proposition 6.10 (Sequential estimation for discrete model) For the discrete model (6.9)
and given prior pdf (6.12) the posterior pdf is (6.22) with the statistics Vy|ψ, y ∈ y∗, ψ ∈ ψ∗

according to (6.23).

Proof: The result is due to the Proposition 6.4. ♦

6.4.2 Sequential estimation with stopping rule

The estimation of CCM model parameters is described by the equations (6.50) and (6.51). The
stopping rule, in general, is defined in (3.38).

For the example, considered here, we suppose:

1. The loss, connected with data measurements, is fix; i.e. c(d(t− 1)) = c = const.

2. The loss, connected with the inaccuracy of parameter estimates, is quadratic; i.e.

Z(d(t− 1),Θ, Θ̂t) = (Θ− Θ̂t)2 (6.42)

3. Model of input variable ut in the form

f(ut|yt−1) = buθut|yt−1 (6.43)

4. Indeed, the CCM model (6.9) for output variable is considered.
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Under these assumptions, the condition (3.38) can be written in the form

E [(θ− θ̂t)2− (θ− θ̂t+k)2−k.c|d(t−1)] = E [(θ− θ̂t)2|d(t−1)]−E [(θ− θ̂t+k)2|d(t−1)]−C, (6.44)

with C = k.c =const.

As the optimal point estimate of the parameter θ is conditional mean value, the expectation
of the first two terms form the variance and k-step ahead prediction of the variance of the
parameter estimate. The first one is given by (6.30), the second one is necessary to compute
and the third one is finished.

The result for the second term (prediction of parameter variance) is given by the following
proposition

Proposition 6.11 (Prediction of parameter estimates variance) For the CCM model (6.9)
and input generator model via (6.43), the k-step ahead prediction of parameter estimates vari-
ance is

E
[
(θ − θ̂k+1)2|ut, d(t− 1)

]
=

=
∑
D

s2(ut+k, d(t+k−1))f(ut+k|d(t+k−1))f(yt+k−1|ut+k−1, d(t+k−2))f(ut+k−1|d(t+k−2)) . . .

. . . f(yt+1|ut+1, d(t))f(ut+1|d(t))f(yt|ut, d(t− 1)),

where

D = {ut+k, d(t+ k − 1 t+ 1), yt}.

Proof: Using chain rule, the expectation can be expressed in the form

s2p = E
[
(θ − θ̂k+1)2|ut, d(t− 1)

]
= E

[
E [(θ − θ̂k+1)2|ut+k, d(t+ k − 1)]

∣∣∣ut, d(t− 1)
]
.

The inner expectation is variance of parameter estimates at time t+ k given by (6.30). We denote
it by

s2(ut+k, d(t+ k − 1)) = E [(θ − θ̂k+1)2|ut+k, d(t+ k − 1)],

and, using chain rule again, we have

s2p = E
[
s2(ut+k, d(t+ k − 1))

∣∣∣ut, d(t− 1)
]

=

=
∑
D

s2(ut+k, d(t+k−1))f(ut+k|d(t+k−1))f(yt+k−1|ut+k−1, d(t+k−2))f(ut+k−1|d(t+k−2)) . . .

. . . f(yt+1|ut+1, d(t))f(ut+1|d(t))f(yt|ut, d(t− 1)),

with D given above. ♦

The computation of the variance prediction can be done according to the following algorithm:

• Generate all possible value combinations of the data sequence D. It can be constructed
like all binary numbers of the length equal to the length of D starting form all zeros and
sequentially adding 1 till all ones.
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• Starting with prior statistics comprising data {ut, d(t − 1)} evaluate the statistics up to
time t+ k − 1 for each of the possible data combination D.

• For each step of the evaluation above compute one step predictive pf (normalized statistics
according to (6.25)) and make products indicated in (6.11). Each final product represents
a probability of the considered possible path on the prediction horizon.

• Similarly like an element of the predictive pf compute the parameter estimate variance
according to (6.30) corresponding to the chosen path.

• The weighted sum of products of predictive pf elements with corresponding variances gives
the computed expectation - the prediction of the variance.

Algorithm 6.1 (Sequential estimation with stopping rule) The sequential estimation of
parameters of the CCM model (6.9) using the stopping rule (3.38) can be performed as follows

1. Set:

• the maximum data length for estimation (nd),

• the length of parameter estimate variance prediction (np),

• the prize for data on the prediction horizon (C).

2. Run the estimation of the CCM parameter according to Proposition 6.10 and at each
step of the estimation compute one-step and np-step predictions of the parameter estimate
variance according to 6.11.

3. Compare the difference of predicted variances and the prize according to (6.44). If the
condition is fulfilled, stop the estimation, otherwise, continue by measuring another data
pair.

6.4.3 Multi-step filtering

The multi-step filtering for the CCM model can be specified in the following way. For this task,
let us consider unmeasurable time varying state, denoted by xt. This state develops internally
affected by last state value and current input value, only. This development can be monitored
through the measured output. The models, describing the state development and the state
influence onto the output are both of the CCM type

f(xt|xt−1, ut) = bxθxt|xt−1,ut , (6.45)

f(yt|xt, ut) = byθyt|xt,ut . (6.46)

Proposition 6.12 (CCM multi-step pf for filtering) For the CCM models (6.45) and (6.46)
with known parameters bxθ and byθ the needed pf is

f(xt−j |d(t− 1)) =
xt−1∑
xt−j+1

t−1∏
τ=t−j+1

byθyτ |xτ ,uτ
bxθxτ |xτ−1,uτ × (6.47)

× byθyt−j |xt−j ,ut−jf(xt−j |d(t− j − 1))

where the state pfs are formed by column vectors of dimensions 2.
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Proof: The result is due to (3.40) with pfs (6.45) and (6.46) substituted. ♦

Proposition 6.13 (State filtering) For the CCM models (6.45) and (6.46) with known pa-
rameters bxθ and byθ the optimal decision about filtered state value x̂t−j|t−1 with optimality
criterion (3.39) is

x̂t−j|t−1 =

{
1 for f(xt−j = 1|d(t− 1)) > f(xt−j = 2|d(t− 1)),
2 othervise.

(6.48)

Proof: The result follows directly from the criterion definition (3.39). ♦

6.4.4 Multi-step prediction

The multi-step output prediction for the CCM model is the following.

Proposition 6.14 (CCM multi-step output prediction) For the CCM model (6.9) with
unknown parameter θ (6.8) the multi-step output prediction is

ŷt+k = E [yt|ut+1, d(t)] =
ẙ∑

yt+k=1

yt+k f(yt+k|ut+1, d(t)), (6.49)

where the multi-step predictive pf is given in (6.27).

Proof: See (6.27). ♦

6.4.5 Multi-step control

Proposition 6.15 (Coin dynamic control) For the CCM problem Agreement 6.1 with the
first order model f(yt|ut, yt−1) = Θyt|ut,yt−1

i.e. with ϕt−1 = yt−1, known parameters Θ and the
control horizon t̊ the general formula (2.23) can be expressed in the following two steps:
mean value

Vt(ut, yt−1) =
[
ω0|ut,yt−1

+ V∗t+1(0)
]
Θ0|ut,yt−1

+
[
ω1|ut,yt−1

+ V∗t+1(1)
]
Θ1|ut,yt−1

(6.50)

and minimum

V∗t (yt−1) = min{Vt(0, yt−1),Vt(1, yt−1)}, ⇒ u∗t (6.51)

for t = t̊, t̊− 1, . . . , 1, with the initial condition V∗
t̊+1

(0) = V∗
t̊+1

(1) = 0.

Algorithm 6.2 (Coin dynamic control) The algorithm of the computation of control law
and its realization is as follows

Control law computation

V∗
t̊+1

(0) = 0,V∗
t̊+1

(1) = 0

for t = t̊ : −1 : 1
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for yt−1 = 0 : 1
for u = 0 : 1

Vt(u, yt−1) = [ω0|u,yt−1
+V∗t+1(0)]Θ0|u,yt−1

+[ω1|u,yt−1
+V∗t+1(1)]Θ1|u,yt−1

end % for u

[V∗t (yt−1), ut(yt−1)] = min{Vt(0, yt−1),Vt(1, yt−1)}

end % for yt−1

end % for t

Control law realization

for t = 1 : t̊

1. Measure yt−1

2. Select optimal ut = ut(yt−1)
3. Apply optimal ut

end % for t

Derivation

The relations (6.50) and (6.51) are obtained from the general formulae for mean

Vt = E[ωyt,|ut,yt−1
+ V∗t+1|ut, d(t− 1)] (6.52)

and minimum
V∗t = min

ut
Vt ⇒ u∗t (yt−1) (6.53)

that follow from the basic optimization Proposition 6.2 for sequential minimization of an additive
loss function.

We start minimization in the last time instant t̊. The mean is

Vt̊(ut̊, ẙt−1) =
1∑

y=0

ωy|ut̊,ẙt−1
Θδ(y,0)
y|ut̊,ẙt−1

Θδ(y,1)
y|ut̊,ẙt−1

= ω0|ut̊,ẙt−1
Θ0|ut̊,ẙt−1

+ ω1|ut̊,ẙt−1
Θ1|ut̊,ẙt−1

For all possible values of ψt̊ = [ut̊, ẙt−1]
′ we obtain the criterion in the form of table, i.e. as a

discrete function of ut̊, ẙt−1.

Table of Vt̊(ψt̊) for ψt̊ = [ut̊, ẙt−1]
′configuration of ψt̊ criterion Vt̊(ψt̊)

ut̊, ẙt−1 : 0,0 ω0|0,0Θ0|0,0 + ω1|0,0Θ1|0,0
1,0 ω0|1,0Θ0|1,0 + ω1|1,0Θ1|1,0

ut̊, ẙt−1 : 0,1 ω0|0,1Θ0|0,1 + ω1|0,1Θ1|0,1
1,1 ω0|1,1Θ0|1,1 + ω1|1,1Θ1|1,1

Note: All elements of this matrix can be computed right now. The first two rows hold for
ẙt−1 = 0 and the second two for ẙt−1 = 1. For each couple of rows we take minimum and denote
it by V∗

t̊
(ẙt−1). Thus

V∗
t̊
(0) = min{Vt̊(0,0),Vt̊(1,0)} first couple

V∗
t̊
(1) = min{Vt̊(0,1),Vt̊(1,1)} second couple
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The value of ut̊ in the minimum item of each couple defines the optimal control

u∗
t̊
(ẙt−1) =

{
0 if Vt̊(0,0) ≤ Vt̊(1,0) and 1 if Vt̊(0,0) > Vt̊(1,0) for ẙt−1 = 0
0 if Vt̊(0,1) ≤ Vt̊(1,1) and 1 if Vt̊(0,1) > Vt̊(1,1) for ẙt−1 = 1

Note: As we do not know the value of ẙt−1, we are not able to decide about the optimal control,
at the moment.

This concludes the last step. The last but one step of minimization is for time t̊ − 1. The rest
from the previous step is V∗

t̊
(ẙt−1). The mean value is – see (6.52)

Vt̊−1(ut̊−1, ẙt−2) =
1∑

y=0

[ωy|ut̊−1,ẙt−2
+ V∗

t̊
(ẙt−1)]Θ

δ(y,0)
y|ut̊−1,ẙt−2

Θδ(y,1)
y|ut̊−1,ẙt−2

=

= [ω0|ut̊−1,ẙt−2
+ V∗

t̊
(0)]Θ0|ut̊−1,ẙt−2

+ [ω1|ut̊−1,ẙt−2
+ V∗

t̊
(1)]Θ1|ut̊−1,ẙt−2

Again, it can be expressed as a table for all possible values of ẙt−2.

Table of Vt̊−1(ψt̊−1) for ψt̊−1 = [ut̊−1, ẙt−2]
′

configuration of ψt̊−1 criterion Vt̊(ψt̊−1)
ut̊−1, ẙt−2 : 0,0 [ω0|0,0 + V∗

t̊
(0)]Θ0|0,0 + [ω1|0,0 + V∗

t̊
(1)]Θ1|0,0

1,0 [ω0|1,0 + V∗
t̊
(0)]Θ0|1,0 + [ω1|1,0 + V∗

t̊
(1)]Θ1|1,0

ut̊−1, ẙt−2 : 0,1 [ω0|0,1 + V∗
t̊
(0)]Θ0|0,1 + [ω1|0,1 + V∗

t̊
(1)]Θ1|0,1

1,1 [ω0|1,1 + V∗
t̊
(0)]Θ0|1,1 + [ω1|1,1 + V∗

t̊
(1)]Θ1|1,1

As we came to the same form like in the previous step, the recursion is completed and can be
expressed in the Algorithm 6.2.

6.4.6 Dual control

Now we come to a complex task of dynamic (n-step ahead) control with simultaneous estimation
of parameters. In this task, the optimal control law for time instants 1, 2, . . . , t̊ is to be pre-
computed, without knowledge of the true values of parameters Θ. We denote the current time
t = 1 - i.e. we know prior data d(0) and we perform sequential minimization of the loss function
for time instants τ = t̊, t̊− 1, . . . , 1 in which the needed data uτ , d(τ − 1) are unknown, yet.

As the parameters Θ are unknown, the mean value of the actual part of the loss function from
(2.23) has to be expressed in terms of the predictive pdf (6.25). This pdf, in difference with the
model one, depends on all historical data. That is why the dual control is so complex, that it
cannot be practically realized.

Proposition 6.16 (Coin dual control) For the CCM problem Agreement 6.1 with the first
order model f(yt|ut, yt−1) = Θyt|ut,yt−1

i.e. with ϕt−1 = yt−1, unknown parameters Θ and the
control horizon t̊ the general formula (2.23) can be expressed in the following two steps:
mean value

Vt(ut, d(t− 1)) =

∑1
y=0

[
ωy|ut,ϕt−1

+ V∗t+1(y, ut, d(t− 1))
]
Vy|ut,ϕt−1;t−1∑1

y=0 Vy|ut,ϕt−1;t−1

, (6.54)
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with Vyt,ut,ϕt−1;t−1 =
∑t−1
τ=1 δ(yt|ut, ϕt−1; yτ |uτ , ϕτ−1) + Vyt,ut,ϕt−1;0.

and minimum

V∗t (yt−1) = min{Vt(0, yt−1),Vt(1, yt−1)}, ⇒ u∗t (6.55)

for t = t̊, t̊− 1, . . . , 1, with the initial condition V∗
t̊+1

(0) = V∗
t̊+1

(1) = 0.

Algorithm 6.3 (Coin dual control) The algorithm of (i) the computation of control law and
(ii) its realization is as follows

Control law computation

V∗
t̊+1

([ut̊, ẙt−1, ut̊−1, . . . , y1, u1]) = 0, ∀ configurations of the argument

for t = t̊ : −1 : 1

d(t− 1) = [ut−1, yt−2, ut−2, . . . , y1, u1]

for d(t− 1) ∈ d(t− 1)∗

for yt−1 = 0 : 1
for u = 0 : 1

V0|u,yt−1;t−1 = V0|u,yt−1;0 +
∑t−1
τ=1 δ([0|u, yt−1]; [yτ |uτ , yτ−1])

V1|u,yt−1;t−1 = V1|u,yt−1;0 +
∑t−1
τ=1 δ([1|u, yt−1]; [yτ |uτ , yτ−1])

Vt(u, yt−1, d(t− 1)) =

=
[ω0|u,yt−1

+V∗t+1(0,d(t−1))]V0|u,yt−1;t−1+[ω1|u,yt−1

+V∗t+1(1,d(t−1))]V1|u,yt−1;t−1

V0|u,yt−1;t−1+V1|u,yt−1;t−1

end % for u

[V∗t (yt−1, d(t− 1)), ut(yt−1, d(t− 1))] =

= min{Vt(0, yt−1, d(t− 1)),Vt(1, yt−1, d(t− 1))}

end % for yt−1

end % for d(t− 1)

end % for t

Control law realization

for t = 1 : t̊

Measure yt−1

Compose d(t− 1) = [ut−1, yt−2, ut−2, . . . , y1, u1]

Select optimal ut = ut(yt−1, d(t− 1))

Apply optimal ut

end % for t

Derivation
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The optimization is performed by sequential computation of mean value and minimization ac-
cording to Algorithm 6.3.

Mean:
Vt(ut, d(t− 1)) = E[ωyt,|ut,ϕt−1

+ V∗t+1(yt, ut, d(t− 1))|ut, d(t− 1)] (6.56)

Minimum:
V∗t (d(t− 1)) = min

ut
Vt(ut, d(t− 1)) ⇒ u∗t (d(t− 1)) (6.57)

For computation of the mean value, the predictive pdf (6.26) is needed. It is

f(yt|ut, d(t− 1)) =
Vyt|ut,ϕt−1;t−1∑1
y=0 Vy|ut,ϕt−1;t−1

, for yt = 0,1

where

Vyt,ut,ϕt−1;t−1 =
t−1∑
τ=1

δ(yt|ut, ϕt−1; yτ |uτ , ϕτ−1) + Vyt,ut,ϕt−1;0. (6.58)

With this, the mean value in general step t is as stated in Proposition 6.16 with Vy|u,ϕ according
to (6.58).

After evaluating Vt(ut, d(t−1)) for all possible configurations of ut, d(t−1) we can chose optimal
u∗t (d(t−1)) for all configurations of d(t−1) (which are numbers for each specific d(t−1)). Thus,
the rest of the criterion V∗t (yt−1, ut−1, d(t − 2)) is evaluated for each possible configuration of
d(t− 1).

Starting with V∗
t̊+1

(ẙt, ut̊, d(̊t− 1)) = 0 the procedure is closed.

Example

For better understanding of the structures mentioned in the previous derivation we will demon-
strate an example of dual control synthesis on the control horizon with length 2 - two step ahead
dual control; with 1st order model, i.e. model

f(yt|ut, yt−1) = θyt|ut,yt−1
, (6.59)

with regression vector ϕt−1 = yt−1. Even in this simple case the computations are rather large.

The general formula (??) for the last time t = t̊ = 2 with prior information d(0) = y0 reads

V2(u2, y1, u1, y0) =
∑1
y=0 ωy|u2,y1Vy|u2,y1;1∑1

y=0 Vy|u2,y1;1

, (6.60)

with V∗3 (y, u2, y1, u1, y0) = 0 omitted and Vy|u2,y1;2 = δ(y|u2, y1; y1|u1, y0) + Vy|u1,y0;0.

This expression must be evaluated for each configuration of its argument u2, y1, u1, y0 so that
we could find minimum over ut: i.e. for each configuration of y1, u1, y0 compare values corre-
sponding to u2 = 0 and u2 = 1 and to select minimum. Thus we obtain minimum depending on
y1, u1, y0 that is denoted V∗1 (y1, u1, y0). Argument of this minima represents the optimal control
u∗2(y1, u1, y0).

But sooner this is said than done. The number of configurations in this simple case (2 steps
ahead) is 24 = 16. The possible expressions of the criterion V2(u2, y1, u1, y0) for all possible
configuration of u2, y1, u1, y0 are given in the
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Table of V2(u2, y1, u1, y0)
configuration of data criterion

u2, y1, u1, y0 : 0,0,0,0 {ω0|0,0[1 + V0|0,0;0] + ω1|0,0V1|0,0;0}/{[1 + V0|0,0;0] + V1|0,0;0}
1,0,0,0 {ω0|1,0V0|1,0;0 + ω1|1,0V1|1,0;0}/{V0|1,0;0 + V1|1,0;0}

u2, y1, u1, y0 : 0,0,0,1 {ω0|0,0V0|0,0;0 + ω1|0,0V1|0,0;0}/{V0|0,0;0 + V1|0,0;0}
1,0,0,1 {ω0|1,0V0|1,0;0 + ω1|1,0V1|1,0;0}/{V0|1,0;0 + V1|1,0;0}

u2, y1, u1, y0 : 0,0,1,0 {ω0|0,0V0|0,0;0 + ω1|0,0V1|0,0;0}/{V0|0,0;0 + V1|0,0;0}
1,0,1,0 {ω0|1,0[1 + V0|1,0;0] + ω1|1,0V1|1,0;0}/{[1 + V0|1,0;0] + V1|1,0;0}

u2, y1, u1, y0 : 0,0,1,1 {ω0|0,0V0|0,0;0 + ω1|0,0V1|0,0;0}/{V0|0,0;0 + V1|0,0;0}
1,0,1,1 {ω0|1,0V0|1,0;0 + ω1|1,0V1|1,0;0}/{V0|1,0;0 + V1|1,0;0}

u2, y1, u1, y0 : 0,1,0,0 {ω0|0,1V0|0,1;0 + ω1|0,1V1|0,1;0}/{V0|0,1;0 + V1|0,1;0}
1,1,0,0 {ω0|1,1V0|1,1;0 + ω1|1,1V1|1,1;0}/{V0|1,1;0 + V1|1,1;0}

u2, y1, u1, y0 : 0,1,0,1 {ω0|0,1V0|0,1;0 + ω1|0,1[1 + V1|0,1;0]}/{V0|0,1;0 + [1 + V1|0,1;0]}
1,1,0,1 {ω0|1,1V0|1,1;0 + ω1|1,1V1|1,1;0}/{V0|1,1;0 + V1|1,1;0}

u2, y1, u1, y0 : 0,1,1,0 {ω0|0,1V0|0,1;0 + ω1|0,1V1|0,1;0}/{V0|0,1;0 + V1|0,1;0}
1,1,1,0 {ω0|1,1V0|1,1;0 + ω1|1,1V1|1,1;0}/{V0|1,1;0 + V1|1,1;0}

u2, y1, u1, y0 : 0,1,1,1 {ω0|0,1V0|0,1;0 + ω1|0,1V1|0,1;0}/{V0|0,1;0 + V1|0,1;0}
1,1,1,1 {ω0|1,1V0|1,1;0 + ω1|1,1[1 + V1|1,1;0]}{V0|1,1;0 + [1 + V1|1,1;0]}

This table represents a mapping [y1, u1, y0] → u2 (i.e. control variable u2 as a discrete function
of past variables y1, u1 and y0).

Note: This table can be completely evaluated, as each its row depends on specific values of its
variables.

For given (measured) vector [y1, u1, y0] the optimal control u2 is is given as follows:

• take the two rows of the table corresponding to the vector [y1, u1, y0],

• evaluate them and choose the one with the less value,

• assign to u∗2 the value of u2 of the chosen row

Note: The optimal value u∗2 cannot be chosen immediately, as we do not know, which values of
the variables y1, u1, y0 will be measured.

This ends the computation of the control law at the time instant 2 and we go to the time instant
1. For this (according to (??)) it holds

V1(u1, y0) =
∑1
y=0[ωy|u1,y0 + V∗2 (y, u1, y0)]Vy|u1,y0;0∑1

y=0 Vy|u1,y0;0

, (6.61)

with V∗2 (y, u1, y0) being the minimum from the previous step and Vy|u1,y0;0 the prior statistics.
Similarly as for the time instant 2 we can evaluate it for all possible values of its variables u1, y0.
Here is the corresponding

Table of V1(u1, y0)
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data config. criterion
u1, y0 : 0,0 {[ω0|0,0 + V∗2 (0,0,0)]V0|0,0;0 + [ω1|0,0 + V∗2 (1,0,0)]V1|0,0;0}/{V0|0,0;0 + V1|0,0;0}

1,0 {[ω0|1,0 + V∗2 (0,1,0)]V0|1,0;0 + [ω1|1,0 + V∗2 (1,1,0)]V1|1,0;0}/{V0|1,0;0 + V1|1,0;0}
u1, y0 : 0,1 {[ω0|0,1 + V∗2 (0,0,1)]V0|0,1;0 + [ω1|0,1 + V∗2 (1,0,1)]V1|0,1;0}/{V0|0,1;0 + V1|0,1;0}

1,1 {[ω0|1,1 + V∗2 (0,1,1)]V0|1,1;0 + [ω1|1,1 + V∗2 (1,1,1)]V1|1,1;0}/{V0|1,0;0 + V1|1,0;0}

This is similar table as from the step 2 but shorter (it represents a function of less variables) and
involving nonzero term from the previous minimization V∗2 (·, ·, ·). All the table can be evaluated
immediately, as it is computed for specific values of the variables.

Note: Even the function V2 can be evaluated as the previous table can be evaluated and we can
immediately decide about the minima of all the couples of rows on which the minimum depends.

Now, when we are at the beginning of the interval, for which the control is planned, which is
the current time instant t = 1, we have at disposal the measured data d(0) = y0. Thus we can
chose the corresponding two rows for minimization (the first two for y0 = 0 and the last two for
y0 = 1), and to get the optimal control u∗1 as the value of u1 in the minimum row.

This value of u∗1 can be applied and we can measure the value of the output y1. Thus we have
the vector [y1, u1, y0] which is necessary for choosing the optimal control u∗2 from the step 2.

In this way we obtained the optimal control on the horizon with length 2.

6.5 Concluding remarks

1. When dealing with discrete models it is not necessary to concern about the problem of
linearity. They are naturally nonlinear, nevertheless, the solutions with them are simple.

2. The crucial assumptions for easy solutions are those about the CCM problem (6.1). Most
of the solutions presented here are derived just for these assumptions.

3. The simplicity of the solutions with discrete models lies in the construction of algorithms,
not in computational time. The dynamic tasks, known from the continuous domain as
unsolvable (like dual control), can be easily evaluated here, but can be computed in rea-
sonable time only for short horizon (up to 10-12 steps).



Chapter 7

Appendix

7.1 Kronecker function

The Kronecker delta function is defined (for possibly vector arguments x and x̃) as follows

δ(x, x̃) =

{
1 if x = x̃ (for all items),
0 otherwise.

(7.1)

7.2 Dirac function

The Dirac delta function is defined as a functional assigning to (reasonable) functions g(x)
their values at zero argument. It has Riezs integral representation, [74],∫

x∗
g(x)δ(x) dx = g(0) (7.2)

where δ(x) has to be taken as generalized function [75].

7.3 Gamma function

The gamma function is defined by the following second type Euler integral

Γ(x) ≡
∫ ∞

0
zx−1 exp(−z) dz. (7.3)

It is finite for real x > 0.
It holds:

Γ(x+ 1) = xΓ(x) for x ∈ R, (7.4)

Γ(n+ 1) = n! for n ∈ N. (7.5)

7.4 Beta function

The beta function is defined by the following first type Euler integral

B(x, y) =
∫ 1

0
zx−1(1− z)y−1 dz (7.6)
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It is finite for x > 0 and y > 0.
It holds

B(x, y) =
Γ(x)Γ(y)
Γ(x+ y)

, (7.7)

B(x+ 1, y) =
x

x+ y
B(x, y). (7.8)

The incomplete beta function is defined

Bx,y(t) =
∫ t
0 z

x−1(1− z)y−1dz

B(x, y)
(7.9)

The multivariate beta function B(V ), where V ∈ y∗ × ψ∗ with items Vy|ψ is defined by the
relation

B(V ) =
∏
ψ∈ψ∗

∏
y∈y∗ Γ(Vy|ψ)

Γ(
∑
y∈y∗ Vy|ψ)

. (7.10)

Recall that Euler gamma function, (7.3), is finite for positive real arguments.

Proof: For a pair of different “regressor” indices ψ 6= ψ̃, the corresponding parameters Θ·|ψ and
Θ·|ψ̃ are defined on unrelated domains of the integrated function. Thus, integration over them can
be performed independently and the overall integral is just product of respective factors. Then, we
can fix ψ and suppress it in the notation. The integrand of a single factor is

∏
y∈y∗ ΘVy−1

y and we
integrate over the set {Θy > 0 :

∑
y∈y∗ Θy = 1}. For ẙ = 2, it defines directly Euler beta function

B(n,m) ≡
∫ 1
0 z

n−1(1− z)m−1 dz, that is related to the gamma function through the formula to be
proved, [76]. In the general case, we take into account that one entry of the array Θ is on Θ∗ fully

determined by the other entries. Thus, the integrand becomes (1−
∑ẙ−1
ỹ=1 Θỹ)Vẙ−1∏ẙ−1

y=1 Θy and the

integration domain is
{
Θy > 0,

∑ẙ−1
ỹ=1 Θỹ < 1

}
. Then, it is sufficient to extract the term 1−

∑ẙ−2
ỹ=1

and substitute Θẙ−1 →
Θẙ−1

1−
∑ẙ−2

ỹ=1

according to Proposition 2.5, i.e. with Jacobian of transformation

equal to 1

1−
∑ẙ−2

ỹ=1

. Then, after arranging the terms of the expression, the two-dimensional beta

function appears as a factor and the same pattern repeats. ♦

Example to the previous proof:
We are to compute the partial integral Iψ = I for a fix ψ

I =
∫
. . .

∫
ΘV1−1

1 . . .ΘVn−1
n dΘ1 . . . dΘn,

with the conditions Θi > 0, i = 1, 2 . . . , n and
∑n
i=1 Θi = 1, which can be rewritten into the form

I =
∫
. . .

∫
ΘV1−1

1 . . .ΘVn−2−1
n−2 ΘVn−1−1

n−1

(
1−

n−2∑
i=1

Θi −Θn−1

)Vn−1

dΘ1 . . . dΘn−1
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We pull out the term 1−
∑n−2
i=1 Θi from the bracket and we get

I =
∫
. . .

∫
ΘV1

1 . . .ΘVn−2

n−2

(
1−

n−2∑
i=1

Θi

)Vn
ΘVn−1

n−1

(
1− Θn−1

1−
∑n−2
i=1 Θi

)Vn
dΘ1 . . . dΘn−1

After substitution Θ̃n−1 = Θn−1

1−
∑n−2

i=1
Θi

with dΘ̃n−1 = 1

1−
∑n−2

i=1
Θi
dΘn−1 we obtain

I =
∫
. . .

∫
ΘV1−1

1 . . .ΘVn−2−1
n−2

(
1−

n−2∑
i=1

Θi

)Vn−1

ΘVn−1−1
n−1

(
1− Θ̃n−1

)Vn−1
×

×(1−
n−2∑
i=1

Θi)dΘ1 . . . dΘn−2dΘ̃n−1 =

=
∫
. . .

∫
ΘV1−1

1 . . .ΘVn−2−1
n−2

(
1−

n−2∑
i=1

Θi

)Vn−1(
Θn−1

1−
∑n−2
i=1 Θi

)Vn−1−1

×

×
(
1− Θ̃n−1

)Vn−1
(1−

n−2∑
i=1

Θi)Vn−1dΘ1 . . . dΘn−2dΘ̃n−1 =

=
∫
. . .

∫
ΘV1−1

1 . . .ΘVn−2−1
n−2

(
1−

n−2∑
i=1

Θi

)Vn−1

Θ̃Vn−1−1
n−1

(
1− Θ̃n−1

)Vn−1
(

1−
n−2∑
i=1

Θi

)Vn−1

d . . .

=
∫
. . .

∫
ΘV1−1

1 . . .ΘVn−2−1
n−2

(
1−

n−2∑
i=1

Θi

)Vn+Vn−1−1

dΘ1 . . . dΘn−2×

∫
Θ̃Vn−1−1
n−1

(
1− Θ̃n−1

)Vn−1
dΘ̃n−1

which gives a univariate beta function multiplied by the same expression but one step smaller.
So, evidently, the result of repeating of this procedure gives

I = B(V1, V2 + . . .+ Vn)B(V2, V3 + . . .+ Vn) . . .B(Vn−2, Vn−1 + Vn)B(Vn−1, Vn)

which, using (7.4), gives the proved (partial) expression

I = Iψ =
Γ(V1|ψ)Γ(V2|ψ) . . .Γ(Vn|ψ)
Γ(V1|ψ + V2|ψ + . . .+ Vn|ψ)
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solution”, Tech. Rep. 1916, ÚTIA AVČR, POB 18, 18208 Prague 8, CR, 1997.

[20] H. Kushner, Introduction to Stochastic Control, Holt, Rinehart and Winston, New York,
1971.

[21] M. Loeve, Probability Theory, van Nostrand, Princeton, New Jersey, 1962, Russian trans-
lation, Moscow 1962.
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[36] M. Kárný, P. Nedoma, and J. Böhm, “On completion of probabilistic models”, in Preprints
of the 2nd European IEEE Workshop on Computer Intensive Methods in Control and Signal
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[65] M. Kárný, E. Sutanto, P. Ettler, J. Kadlec, A. Quinn, and L. Tesař, “Decision support tool
for complex industrial processes based on probabilistic data clustering”, Tech. Rep., UTIA
AVCR, 1998, deliverable of Esprit project ProDaCTools, No. 25729.
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