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When considering the probabilistic approach to neural networks in the framework of statistical
pattern recognition we assume approximation of class-conditional probability distributions by finite
mixtures of product components. The mixture components can be interpreted as probabilistic neurons
in neurophysiological terms and, in this respect, the fixed probabilistic description contradicts the
well known short-term dynamic properties of biological neurons. By introducing iterative schemes of
recognition we show that some parameters of probabilistic neural networks can be “released” for the
sake of dynamic processes without disturbing the statistically correct decision making. In particular, we
can iteratively adapt the mixture component weights or modify the input pattern in order to facilitate
correct recognition. Both procedures are shown to converge monotonically as a special case of the well

known EM algorithm for estimating mixtures.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The concept of probabilistic neural networks (PNNs) relates to
the early work of Specht (1988) and others (cf. Haykin (1993),
Hertz, Krogh, and Palmer (1991), Palm (1994), Streit and Luginbuhl
(1994) and Watanabe and Fukumizu (1995)). In this paper we
consider the probabilistic approach to neural networks based on
distribution mixtures with product components in the framework
of statistical pattern recognition. We refer mainly to our papers
on PNNs published in the last years (cf. Grim (1996a) -Grim,
Somol, and Pudil (2005)). In order to design PNNs we approximate
the unknown class-conditional distributions by finite mixtures of
product components. In particular, given a training data set for
each class, we compute the estimates of mixture parameters by
means of the well known EM algorithm (Dempster, Laird, & Rubin,
1977; Grim, 1982; McLachlan & Peel, 2000; Schlesinger, 1968). Let
us recall that, given the class-conditional probability distributions,
the Bayes decision function minimizes the classification error.

The mixture-based PNNs do not provide a new biologically
motivated technique of statistical pattern recognition. Neverthe-
less, the interpretation of a theoretically well justified statistical
method provides an opportunity to understand complex functional
principles of biological neural networks which are rarely observ-
able in a pure form. The main idea of PNNs is to view the compo-
nents of mixtures as formal neurons. In this way there is a possi-
bility of explaining the properties of biological neurons in terms
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of the component parameters. Therefore, the primary motivation
of our previous research was to demonstrate different neuromor-
phic features of PNNs. Simultaneously, the underlying statistical
method has been modified in order to improve its compatibility
with biological neural networks.

We have shown that the estimated mixture parameters can be
used to define an information preserving transform with the aim
of a sequential design of multilayer PNNs (Grim, 1996a, 1996b;
Vajda & Grim, 1998). In the case of long training data sequences,
the EM algorithm can be realized as a sequential procedure
which corresponds to one “infinite” iteration of the EM algorithm,
including periodic updating of the estimated parameters (Grim,
1999b; Grim, Just, & Pudil, 2003; Grim et al., 2005). In pattern
recognition the classification accuracy can be improved by parallel
combination of independently trained PNNs (Grim, Kittler, Pudil,
& Somol, 2000; Grim, Pudil, & Somol, 2002). The probabilistic
neuron can be interpreted in neurophysiological terms at the level
of the functional properties of a biological neuron (Grim et al.,
2003; Grim, Kittler, Pudil, & Somol, 2002). In this way we obtain
an explicit formula for synaptic weights which can be seen as
a theoretical counterpart of the well known Hebbian principle
of learning (Hebb, 1949). The PNN can be trained sequentially
while assuming the strictly modular properties of the probabilistic
neurons (Grim, 1999a; Grim et al., 2003). Weighting of training
data in PNNs is compatible with the technique of boosting which
is widely used in pattern recognition (Grim et al., 2002). In this
sense the importance of training data vectors may be evaluated
selectively as it is assumed e.g. in connection with “emotional”
learning. Also, there is a close relationship of PNNs with self-
organizing maps (Grim, 2000).
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One of the most obvious limitations of the probabilistic
approach to neural networks has been the biologically unnatural
complete interconnection of neurons with all input variables.
We have proposed a structural mixture model which avoids the
biologically unnatural condition of complete interconnection of
neurons. The resulting subspace approach to PNNs is compatible
with the statistically correct decision making and, at the same
time, optimization of the interconnection structure of PNNs can be
included in the EM algorithm (Grim, 1999b; Grim et al., 2002; Grim,
Pudil, & Somol, 2000).

Another serious limitation of PNNs arizes from the conflicting
properties of the estimated fixed mixture parameters and of the
well known short-term dynamic processes in biological neural
networks. The mixture parameters computed by means of the EM
algorithm reflect the global statistical properties of training data
and uniquely determine the performance of PNNs. Unfortunately,
the “static” role of the mixture parameters is sharply contrasted
by the short-term dynamic properties of biological neurons.
Motivated by this contradiction, we propose in this paper iterative
schemes of recognition. In particular, we propose the iterative use
of Bayes formula in order to adapt a priori component weights
to a specific input. Simultaneously, with the same theoretical
background, we consider iterative modification of input patterns
in order to facilitate the recognition. In this way some mixture
parameters may participate in the short-term dynamic processes
without disturbing the statistically correct decision making

In the following we first describe the structural mixture model
(Section 2) as applied to recognition of handwritten numerals
(Section 3) and summarize the basic properties of PNNs (Section 4).
In Section 5 we describe the proposed principles of iterative
recognition and prove the convergence properties. Finally the
results are summarized in the Conclusion.

2. Structural mixture model

In the following sections we confine ourselves to the problem
of statistical recognition of binary data vectors

X=(x1,%,...,%0) €X, X={0,1}" (1

to be classified according to a finite set of classes 2 =
{w1, wa, ..., wg}. Assuming a probabilistic description of classes
we can reduce the final decision making to the Bayes formula

p(wlx) = m'})“’(iig(“’), (2)
P(x) =) P(Xlw)p(w), X€X

where P(x|w) represents the class-conditional probability distribu-
tions and p(w), w € 2 denotes the related a priori probabilities of
classes. We recall that, in the case of exact probabilistic description,
the Bayes decision function

d(x) = argmax{p(wlx)}, xe€ X (3)

minimizes the probability of classification error.

Placing us in the framework of PNN, we approximate the
conditional distributions P(x|w) by finite mixtures of product
components

P(x|lw) = Y F(x|m)f(m)
meM,
= > fm) [[ftalm), Y fm)=1. (4)
meM neN meM

Here f(m) > 0 are probabilistic weights, F(x|m) denote the
component specific product distributions, .M,, are the component
index sets of different classes and  is the index set of variables.

In order to simplify notation we assume consecutive indexing of
components. Hence, for each component index m € .M,, the related
class w € 2 is uniquely determined and therefore the parameter w
can be partly omitted in the above notation.

In the case of binary data vectors we assume the components
F(x|m) to be multivariate Bernoulli distributions, i.e. we have

F@XIm) = [ fualm), me My, N ={1,...,N} (5)

neN

Fo(alm) = O3, (1 = O) '™, 0 <6y <1, n€N. (6)

We recall that any discrete probability distribution can be
expressed in the form (4) when the number of components is
sufficiently large (Grim et al., 2002).

The basic idea of PNNs is to view the component distributions
in Eq. (4) as formal neurons. If we define the output of the m-th
neuron in terms of the mixture component F(x|m)f(m) then the
posterior probabilities p(w|x) are proportional to partial sums of
neural outputs:

p(@)

PO Y F@lm)f(m). 7)

meMy

p(w|x) =

The well known disadvantage of the probabilistic approach to
neural networks is the biologically unnatural interconnection of
neurons with all input variables. The complete interconnection
property follows from the basic paradigms of probability theory.
For the sake of Bayes formula, all class-conditional probability
distributions must be defined in the same space and therefore each
neuron must be connected with the same (complete) set of input
variables.

In order to avoid the undesirable complete interconnection
condition, we make use of the structural mixture model (Grim,
1999b; Grim et al., 2000, 2002) originally proposed in multivariate
statistical pattern recognition (Grim, 1986). In particular, we set

F(xjm) = FX|0)G(X|m, ¢m), m € M, (8)

where F(x]|0) is a “background” probability distribution, usually
defined as a fixed product of global marginals

F(x/0) = [] fi(xal0) = [ 6. (1 — 60)' ™,

neN neN

(Oon = P{xn=1}) (9)

and the component functions G(x|m, ¢,,) include additional binary
structural parameters ¢,,, € {0, 1}

o [fi@alm) 70
oim, gm) = 1 [fn<xn|0>}

emn X 1 - an =% fm
H[(0><1 9) ] ’ (10)
neN On — Uon
An important feature of PNNs is the possibility of optimizing the
mixture parameters f(m), 6,,, and the structural parameters ¢y,
simultaneously, by means of the EM algorithm (cf. e.g. Grim et al.

(2002)). Given a training set of independent observations from the
classw € 2

8y =&V, .. a0

we obtain the maximum-likelihood estimates of the mixture (4),
(8) by maximizing the log-likelihood function

L= ﬁ v log[ v F(XIO)G(XIm,¢m)f(m)]- (11)

XE84 meMg
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Table 1

Classification accuracy

Experiment no.: 1 2 3 4 5 6 7 8 9
Number of components 100 393 520 540 663 756 852 1015 1327
Number of parameters 87525 342593 377822 408 461 478473 515715 642623 539453 848557
Bayes decision rule 6.51 4.10 3.71 3.82 3.56 3.46 3.38 3.45 3.15
Manipulated weights 9.22 7.50 7.30 7.43 493 5.55 5.67 5.24 5.24
Iterated weights 6.52 4.11 373 3.85 3.59 3.48 3.40 3.46 3.17
Adapted input vector 6.52 4.10 3.71 3.83 3.57 3.47 3.39 3.45 3.16
Extended test data

Bayes decision rule 5.39 3.27 2.85 2.95 2.74 2,61 2.55 2.68 2.34
Manipulated weights 5.42 3.46 3.00 3.07 2.83 2.74 271 2.77 2.46
Iterated weights 5.41 3.35 2.92 3.03 2.76 2.69 2.53 2.69 2.35
Adapted input vector 5.46 3.29 291 2.98 2.76 2.65 251 2.69 233

Recognition of numerals from the NIST SD19 database. Classification error in % obtained by different methods and for differently complex mixtures.

For this purpose we can derive the following EM iteration
equations (Grim, 1986; Grim et al., 2002): (n € M,, n € N, X €
80)

G(x|m, ¢pm)f (m)

= — 12
T = =5 i, )7 G) (12)
JEMy
1
fim)y=—— 3" f(mx), (13)
180l ve5,
;o 1
mn — |5w[f/(m) Xez{gwxnf(mlx)s (14)
) / g;nn / (1 — Qr/nn)
Vi = (M) [Omn log % +(1-6,,)log a0 ] ,
oL vmel,
o = {07 APTOE (15)
F/ C {yr,nn}meeMw nenN s |F/| =T (16)

Here f'(m), ¢/, and ¢, are the new iteration values of the mixture
parameters and I"’ is the set of a given number of highest quantities
Yin AS can be seen, the structural optimization naturally arizing
from the EM algorithm is controlled by the criterion y;,, which is
proportional to Kullback-Leibler information divergence. In this
sense the structural EM algorithm prefers the most informative
variables. We also note that the structural mixture model can be
applied to continuous data e.g. by considering Gaussian mixtures
of product components (Grim, 1986; Grim, Haindl, Somol, & Pudil,
2006).

The iterative Egs. (12)—(15) generate a nondecreasing sequence
{LW}% converging to a possibly local maximum of the log-
likelihood function (11). However, in our experience, the meaning
of local maxima is less relevant in case of large data sets and
mixtures of several tens of components.

3. Recognition of handwritten numerals

Throughout the paper we illustrate the properties of PNNs
by considering a practical problem of recognition of handwritten
numerals. In order to estimate the class-conditional distributions
we have used the well known NIST Special Database 19 (SD19)
containing about 400 000 handwritten digits (Grother, 1995).
Unlike our previous experiments (Grim & Hora, 2007), we have
normalized the digit patterns to a 32 x 32 binary raster instead of
16 x 16, in order to achieve more precise pattern representation. In
this way each digit pattern is described by an N-dimensional binary
vector (N = 1024 = 32x32), where the binary variables x, € {0, 1}
in (1) correspond to the raster fields in a given fixed order. Let us
recall that the structural mixture model is invariant with respect
to arbitrary permutation of variables in the vector ¥ because the
products in components are commutative.

The SD19 numerals have been widely used for benchmarking
of classification algorithms. Unfortunately, there is no generally
accepted partition of NIST numerals into training or testing
subsets. In order to guarantee the same statistical properties of
both data sets we have used the odd samples of each class for
training and the even samples for testing.

The classification problem has been solved in the original
1024-dimensional binary space without employing any feature
extraction or dimensionality reduction method. However, in order
to increase the variability of hand-written numerals, the data sets
have been extended by including additional rotated variants of the
original patterns. In particular, each digit pattern has been rotated
by —20, —10 and 10 degrees and the corresponding variants of
the original pattern were included in the training data set. The
idea of generating additional shifted or slightly rotated variants
of the original patterns (Grim et al., 2002) is motivated by the
well known microscopic movements of the human eye observing
a fixed object (so called “saccadic” movements). Obviously the
principle is applicable both to the training- and test data sets.

Using the extended training data, we have estimated the class-
conditional mixtures of different complexity in nine different
experiments by means of the EM algorithm of Section 2. In
the experiments the initial number of mixture components was
chosen identically in all classes with the component parameters
initialized randomly. However, the structural optimization may
cause some components to “lose” all specific parameters. The
resulting “nonspecific” components can be replaced by a single
one and therefore the final number of components may decrease.
The total numbers of mixture components and of the specific
parameters in each experiment are given in the second and
third row of Table 1 respectively. Fig. 2 displays examples of the
estimated component parameters 6,,, in raster arrangement. We
may expect the component “means” to correspond to the typical
variants of digit patterns from the respective classes.

The white raster fields in Fig. 2 represent the “unused” variables
with the respective structural parameters ¢,, = 0. Unlike Eq.
(15) the structural parameters ¢,,, have been chosen by using the
computationally more efficient thresholding:

¢/ _ 15 )/r/nnEOIV(/]’
m 0, Y, < 0.1y, 0

1
/= - 17
%= 0N S Vi (17)

meMy neN

Here y; is the mean value of the individual informativity of
variables y;,.. The chosen coefficient 0.1 is relatively low because
all variables are rather informative and the training data set
is large enough to get reliable estimates of all the parameters.
Hence, in each component the threshold value 0.1y, actually
suppresses only those variables which are in fact superfluous, as
can be seen in Fig. 2. For each experiment the resulting total
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Fig. 1. Examples of the NIST numerals. Hand-written numerals from the NIST-database normalized to 32x32 binary raster and the respective class-means (“mean images”).
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variants of digit patterns from the respective classes. The white raster fields denote the “unused” variables specified by ¢mn = 0.

number of component specific variables (},, >, ¢mn) is given in
the third row of Table 1. The EM algorithm has been stopped by
the relative increment threshold AL = 107°. In this way, the
estimation procedure usually resulted in several tens (10 < 40) of
EM iterations.

We have verified the achieved recognition accuracy by using
an independent test set and by considering four different types of
decision making. We remark that in all comparable experiments
the results are distinctly better than in the case of 16 x 16
raster resolution (Grim & Hora, 2007). The fourth row of Table 1
corresponds to the standard Bayes decision rule (3) based on
the estimated class-conditional mixtures. In this case the mean
recognition error decreases with the total number of mixture
parameters from 6.51% (87 525 parameters, 100 components) to
2.34% (848557 parameters, 1327 components). The next three
rows of Table 1 relate to the iterative procedures of Section 5.

All classification rules have been applied to the extended test
data set in an analogous way (cf. row 9 - 12). The four variants
of each test pattern (original pattern and three rotations) have
been first classified independently. The final Bayes decision rule
(3) has been applied to a posteriori weights obtained by summing

the respective four a posteriori probability distributions p(w|x). In
the case of the extended data set the mean recognition error of
the standard Bayes rule is essentially lower, in particular, in the
experiments 1to9itisdecreasing from 5.39% to 2.34% respectively.
Fig. 3 contains examples of incorrectly classified patterns from the
last experiment.

4. Probabilistic neural networks

The main advantage of the structural mixture model is the
possibility of cancelling the background probability density F(x|0)
in the Bayes formula, since then the decision making may be
confined only to “relevant” variables. In particular, introducing
notation

Wi = p(w)f(m), (18)

and making substitution (8) in (4), we can express the uncondi-
tional probability distribution P(x) in the form

P(x) = D p(w) Y F&lm)f(m)

wWEN meMey,

> FRIO)GEIM, pp)Wn. M = ] Mo

meM wenN

me M, we

(19)
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Fig. 3. Examples of misclassified numerals from the last numerical experiment (cf. last column of Table 1).

Further, considering the conditional component weights

F(x|m)wy, G(x|m, ¢pm)wp,
W= ") T X G dyw’ (20)
JeEM
we can write
_ P(X|w)p(w)
p(wlx) = W
% G(X|m, pm)Wn,
_ MmeMo _ ) 21
¥ G o 2 atmix) (21)
je

Thus the posterior probability p(w|x) becomes proportional to a
weighted sum of the component functions G(x|m, ¢,), each of
which can be defined in a different subspace. Consequently the
input connections of a neuron can be confined to an arbitrary
subset of input neurons or, in other words, the “receptive fields”
of neurons can be arbitrarily specified.

The structural mixture model represents a statistically correct
subspace approach to Bayesian decision making. It is directly
applicable to the input space without employing any feature
selection- or dimensionality reduction method (Grim, 1986,
1999b; Grim et al, 2000, 2002). In the literature subspace
approaches usually refer to the “subspace projection method”
originally proposed by Watanabe (1967) and Watanabe and
Pakvasa (1973) and later modified by many other authors (Hertz
et al., 1991; Oja, 1983, 1989; Oja & Kohonen, 1988; Prakash &
Murty, 1997; Workshop: Subspace, 2007). The subspace projection
approaches are computationally advantageous but they do not
provide a statistically correct decision scheme because they are not
properly normalizable.

In multilayer neural networks each neuron of a hidden layer
plays the role of a coordinate function of a vector transform T
mapping the input space X into the space of output variables Y.
We denote

T:X—>%Y, YcCR,
y=Tx = T1(»), T2(x), ..., Ty(®) € Y. (22)

It has been shown (cf. Grim (1996b); Vajda and Grim (1998))
that the transform defined in terms of the posterior probabilities

q(m|x):
Ym = Tn(x) = logq(m|x),

preserves the statistical decision information and minimizes
the entropy of the output space Y. Loosely speaking, the
transformation (23) “unifies” only the points ¥ € X of identical a
posteriori probabilities g(m|x) and therefore the implicit partition

XeX,meM (23)

of the input space X induced by the inverse mapping T~! does not
cause any information loss. Simultaneously, the induced partition
of the input space can be shown to be the “simplest” one in the
sense of the minimum entropy property.

From the neurophysiological point of view, conditional proba-
bility g(m|x) can be naturally interpreted as a measure of excitation
or probability of firing of the m-th neuron given the input pattern
x € X.In view of Egs. (10) and (20) we can write

Ym = Tn(X) = log g(m|x)
_ Ja(xa|m)
= logwy, + gjv% log Gl

— log LZ G(xlj, ¢;)w]} : (24)
jeM

The logarithm in Eq. (24) expands the excitation quantity q(m|x)
into different additive contributions. Consequently, we may
assume the first term on the right-hand side of Eq. (24) to be
responsible for the spontaneous activity of the m-th neuron. The
second term in Eq. (24) summarizes contributions of the input
variables x, (input neurons). The choice of input variables is
specified by means of the binary structural parameters ¢,,, = 1.
In this sense, the term

gmn(xn) = Ingn(xn|m) - lngn(xnlo) (25)

represents the synaptic weight of the n-th neuron at the input of
the m-th neuron, as a function of the input value x,.

The synaptic weight (25) is defined generally as a function of
the input variable x, and therefore separates the weight g, from
the particular input values x,. The effectiveness of the synaptic
transmission, as expressed by the weight function (25), combines
the statistical properties of the input variable x, with the activity
of the “postsynaptic” neuron “m”. In other words, the synaptic
weight (25) is high when the input signal x, frequently takes part
in excitation of the m-th neuron and it is low when the input signal
x, rarely contributes to the excitation of the m-th neuron. This
formulation resembles the classical Hebb’s postulate of learning
(cf. Hebb (1949), p. 62):

“When an axon of cell A is near enough to excite a cell B and
repeatedly or persistently takes part in firing it, some growth process
or metabolic changes take place in one or both cells such that A’s
efficiency as one of the cells firing B, is increased.”

Recall that the last term in (24) corresponds to the norming
coefficient responsible for competitive properties of neurons.
It can be interpreted as a cumulative effect of special neural
structures performing lateral inhibition. This term is identical for
all components of the underlying mixture and, for this reason,
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Fig. 4. Example of permutation of variables. The recognition accuracy based on the conditional distributions (21) is invariant with respect to the order of raster fields in
the vector x. Fig. 4 shows numerals and class-means from Fig. 1 for a fixed random permutation of raster fields. The permutated patterns can be recognized with the same

accuracy.

the Bayesian decision making would not be influenced by its
inaccuracy.

However, at the level of hidden-layer neurons, there is a
problem of correspondence of lateral inhibition connections.
In the case of an information preserving transform the lateral
inhibition should exactly norm the output signals of neurons
which constitute the transform. Unfortunately, such an exact
correspondence is hardly possible in biological neural systems.

We recall in this connection the invariance of the information
preserving transform with respect to weighting of data (Grim
et al., 2002). If we assume that correspondence of neurons in the
lateral inhibition structure is violated, then the resulting improper
norming can be included in a weighting function:

G(x|m, d)wi,
Z_ G(lev ¢j)Wj

JEM

Z,/:y{ G(xlj, pj)w;
<’ =X .
S Gl d)j)qu(mIX) (*)q(m|x)

jeM

q(m|x) =

Here M denotes the improper set of neurons. In view of the
asymptotic invariance of EM-learning with respect to weighting,
the final recognition would not be influenced by the latent
weighting function A(x).

Finally, let us recall the invariance of the structural mixture
model with respect to permutation of variables. In order to
illustrate this property Fig. 4 shows the raster patterns of Fig. 1
reordered according to a fixed randomly chosen permutation.
Obviously, by using permutated data of the type shown in Fig. 4, we
would achieve the same recognition accuracy as in Table 1. In other
words, the structural mixture model does not use any topological
properties of the raster.

In view of this fact it can be understood that some misclassified
numerals in Fig. 3 appear quite “readable”. They may be incorrectly
recognized e.g. because their position is unusual. On the other
hand there is a good chance of achieving high recognition accuracy
in the case of data which has no “natural” topological properties
(e.g. binary results of medical tests). The topological invariance of
PNNs is a rather essential neuromorphic feature since in biological
neural networks (ascending pathways) the information about the
topological arrangement of input layer neurons is not available at
higher levels.

5. Iterative principles of recognition

Let us note that, in biological terms, the estimation of mixture
parameters in Eq. (24) can be seen as a long-term process, the
results of which reflect the global statistical properties of training
data. We recall in this connection that, in the case of exactly
estimated class-conditional distributions P(x|w), the Bayes rule (3)
provides a minimum classification error, which can be reduced
only by means of some additional external knowledge. Obviously,
any change of mixture parameters may strongly affect the outputs
of hidden layer neurons (24) and the Bayes probabilities (21) with
the resulting unavoidable loss of decision-making optimality. In
view of this fact the “static” nature of PNNs strongly contradicts
the well known short-term dynamic processes in biological neural
networks. The fixed parameters cannot play any role in the short-
term synaptic plasticity or in the complex transient states of neural
assemblies.

In this section we show that some parameters of PNNs can be
“released” for the sake of short-term dynamic processes without
adversely affecting the statistically correct decision making. In
particular, by means of the recurrent use of Bayes formula, we can
adapt the component weights to a specific data vector on input. On
the other hand, by using similar theoretical background, the input
pattern can be iteratively adapted to a more probable form in order
to facilitate correct recognition.

5.1. Recurrent bayesian reasoning

Let us recall first that the unconditional distribution mixture
P(x) formally introduces an additional low-level “descriptive” de-
cision problem (Grim, 1996a). In this sense the mixture compo-
nents F(x|m) may correspond to some “elementary” properties or
situations. Given a vector ¥ € X;, the implicit presence of the ele-
mentary properties can be characterized by the conditional proba-
bilities g(m|x) which are related to the a posteriori probabilities of
classes by (21).

In Eq. (20) the component weights w,, represent a priori
knowledge of the descriptive decision problem. Given a particular
input vector x € X, the a priori weights w,, can be replaced
by the more specific conditional weights q(m|x). The idea can be
summarized by the following recurrent Bayes formula

_ Fxlm)w(

(t+1) _ 4O
=4 mi) = e (26)
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PO = > Fxmw?, (27)
meM
wf,?) =Wy, meM,t=0,1,....

The recurrent computation of the conditional weights q® (m|x)
resembles the natural process of cognition as iteratively improving
understanding of input information. Also it is related to the original
convergence proof of the EM algorithm proposed by Schlesinger
(1968). We recall that Eq. (26) is a special case of the iterative
inference mechanism originally proposed in probabilistic expert
systems (Grim & Vejvalkova, 1999). In a simple form restricted
to two components, iterative weighting has been considered in
pattern recognition, too (Baram, 1999).

It can be easily verified that the iterative procedure defined by
(26) converges. In particular, we introduce a simple log-likelihood
function corresponding to a single data vector x € X:

£L(w, x) = log P(x) = log {Z F(x|m)wm] . (28)

meM

Considering the well known property of Kullback-Leibler informa-
tion divergence

()
g (mlx)
1@VCR) 1 ¢V ¢1x) =) ¢ (mlx) log —————~ > (29)
¥ dvmnog o
we can write (cf. (26)) the following inequality
(t+1)( )
6]
g (m|x) log ————
Py P
F(x|m)w(tD
() m
> ) q”(mlx)log [ (30)
n%:l F(X[m)wiy
which can be equivalently rewritten in the form
P(r+1) (X) (t+1)
(t) W
g = 2, 0" (i) log " (31)

Again, considering the substitution w{*V = ¢®(m|x), we
can see that the right-hand side of (31) is the non-negative
Kullback-Leibler divergence and therefore the sequence of values
{L(WO, %)}, generated by the iterative Eq. (26) is nondecreasing.

It follows that the formula (26) defines the EM iteration
equations to maximize (28) with respect to the component
weights w,,. Moreover, the nondecreasing sequence {.L(w®, )},
converges to a unique limit .£(w*, x) since the criterion (28) is
easily verified to be strictly concave as a function of w (for details
cf. Grim and Vejvalkova (1999)). Consequently, the limits of the
component weights w’, are independent of the initial values w(® =
wp,. Simultaneously, we remark that the log-likelihood function
£L(w, x) achieves an obvious maximum by setting the weight of
the maximum component function F(x|mg) to one, i.e. for wy,, =
1. For this reason the limit values w}, can be specified without
computation as follows

mo = arg max{F(x|m)}, (32)
meM
« _[1, m=mg,
Wi=10, mem > MEM (33)

We have verified the computational aspects of the recurrent Bayes
formula (26) in the numerical experiments of Section 3. In order to
illustrate the limited relevance of the initial values of component
weights in (26) we have repeated all experiments with strongly
manipulated weights. In particular, approximately one half of the
weights (randomly chosen) has been almost suppressed by setting
wn, = 1078 with the remaining weights being equal to w,, =
10 without any norming. The fifth row of the Table 1 shows
the influence of the component weight manipulation. It is not

surprising that the corresponding classification accuracy is much
worse than that of the standard Bayes rule in all experiments.
On the other hand, the sixth row shows how the “spoiled”
weights can be repaired with the aid of iterative weighting (26).
The achieved accuracy illustrates that the classification based on
iterated weights is actually independent of the initial weights — in
accordance with the theoretical conclusion.

For the extended test data set we have obtained analogous re-
sults as it can be seen in the last three rows of Table 1. Nevertheless,
it is surprising that the consequences of manipulation of weights
are less apparent than in the case of the non-extended test data set.
It appears that the additional rotated variants of digit patterns suc-
ceed to correct the “spoiled” recognition accuracy almost entirely.
Further, by using the iterated weights, we obtain recognition errors
which are nearly equal to that of the standard Bayes rule.

The mechanism of recurrent use of the Bayes formula
could intuitively seem to be suitable to explain the theoretical
background of short-term synaptic plasticity. On the other hand
the adaptively changing component weights w,,, correspond more
to the spontaneous activity of neurons (cf. Section 4), and the
synaptic weights (25) seem to be responsible for the highly specific
long-term statistical information to guarantee the final correct
recognition. From this point of view any short-term adaptive
changes of the synaptic weights appear to be rather unlikely unless
they would be interrelated with the spontaneous activity of the
respective neuron.

5.2. Adaptively modified input

Let us further note that the log-likelihood criterion (28) can also
be maximized as a function of ¥ by means of the EM algorithm in a
similar way. We denote
F(x®|m)wp,
P(x®)
and, in analogy with (30), (31) we can write
P(x(tJrl)) ®
— > x“) 1o
0y = g{ q(m|x"”) log
Further, considering substitution (8), we obtain the following
inequality
P(X([H))
P(x®)

q(m|x®) = meM, x99 =x1t=0,1,... (34)

F(x“*” |m)

I W m)
o8 FxO|m)

(35)

log

F(x™D10)G(x D |m, ¢y,)

> Y] 36
2 2 A o8 T )G T, ) (36)
which can be rewritten in the form
PXHD) =+ _ ©yo®
log @Oy rEA:/(X —x,))Q, (37)
by using notation
9 mn(1 - 90n)
© = Jog + mnq(m|x®) lo 1o 38
Q)7 =108 -+ 3 dmad(mix?) log ot (38)

Now, in order to guarantee the right-hand part of (37) to be non-
negative, we define the new modified input data vector ¥+ by
Egs.:

KD 1, Q¥ >o,
(+1) —

o ob <0, neN,t=0,1,.... (39)

Consequently, starting with an initial value @, the sequence of
data vectors (¥}, maximizes the criterion .£(w, X) as a function
of x. In particular, the sequence {.£(w, ¥©)}>; is nondecreasing
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Fig. 5. Examples of iteratively modified input patterns. In most cases the modified input pattern x converges in several steps to a local extreme of P(x), which corresponds
to a more probable form of the numeral. However, some unusual patterns may be destroyed or modified incorrectly.

and converges to a local maximum of P(x). In our experiments, the
convergence of the iteration Eqs. (34), (38) and (39) has usually
been achieved in a few steps — as illustrated by Fig. 5.

In other words, given an initial input vector x, we obtain a
sequence of data vectors x with increasing probability

P(X?) < P(™), £=0,1,... (40)

and therefore the modified vectors should be more easily classified.
In most cases the modified input pattern adapts to a more
typical form but some unusual patterns may be damaged or
even destroyed by the adaptation procedure (cf. Fig. 5). As
the adaptation procedure does not provide any new external
knowledge, the classification accuracy of the modified input
pattern is only comparable with the standard Bayes rule (cf. the
seventh row of Table 1). In the case of the extended test data set
this conclusion is still more obvious (cf. the last row of Table 1).

The considered adaptive modification of input patterns can
be viewed as a theoretical model of the well known fact that
the perception of visual stimuli by the human eye tends to be
influenced by previously seen images.

6. Conclusion

Considering PNNs in the framework of statistical pattern
recognition we obtain formal neurons strictly defined by means of
parameters of the estimated class-conditional mixtures. A serious
disadvantage of PNNs in this respect is the fixed probabilistic
description of the underlying decision problem, which is not
compatible with the well known short-term dynamic processes in
biological neural networks. We have shown that, by considering
the iterative procedures of recognition, some mixture parameters
may take part in short term dynamic processes without disturbing
the statistically correct decision making. In particular, the mixture
component weights can be iteratively adapted to a specific input
pattern or the input pattern can be iteratively modified in order to
facilitate correct recognition.

Acknowledgements

This research was supported by the Czech Science Foundation
project No. 102/07/1594 and partially by the projects 2C06019
ZIMOLEZ and 1M0572 DAR of the Czech Ministry of Education.

References

Baram, Y. (1999). Bayesian classification by iterated weighting. Neurocomputing, 25,
73-79.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum-likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 39,
1-38.

Grim, J. (1982). On numerical evaluation of maximum — likelihood estimates for
finite mixtures of distributions. Kybernetika, 18(2), 173-190.

Grim, ]. (1986). Multivariate statistical pattern recognition with non-reduced
dimensionality. Kybernetika, 22(3), 142-157.

Grim, ]. (1996a). Maximum-likelihood design of layered neural networks.
In International conference on pattern recognition. Proceedings (pp. 85-89). Los
Alamitos: IEEE Computer Society Press.

Grim, J. (1996b). Design of multilayer neural networks by information preserving
transforms. In E. Pessa, M. P. Penna, & A. Montesanto (Eds.), Third European
congress on systems science (pp. 977-982). Roma: Edizioni Kappa.

Grim, J. (1999a). A sequential modification of EM algorithm. In W. Gaul, &
H. Locarek-Junge (Eds.), Studies in classification, data analysis and knowledge
organization, classification in the information age (pp. 163-170). Berlin: Springer.

Grim, J. (1999b). Information approach to structural optimization of probabilistic
neural networks. In L. Ferrer, & A. Caselles (Eds.), Fourth European congress on
systems science (pp. 527-539). Valencia: SESGE.

Grim, ]. (2000). Self-organizing maps and probabilistic neural networks. Neural
Network World, 10, 407-415.

Grim, ], Haindl, M., Somol, P., & Pudil, P. (2006). A subspace approach to texture
modelling by using Gaussian mixtures. In B. Haralick, & T. K. Ho (Eds.),
Proceedings of the 18th international conference on pattern recognition. ICPR 2006
(pp- 235-238). Los Alamitos: IEEE Computer Society.

Grim, J., & Hora, J. (2007). Recurrent bayesian reasoning in probabilistic neural
networks. In Marques de Sa, et al., (Eds.), Lecture notes in computer science: vol.
4669. Artificial neural networks — ICANN 2007 (pp. 129-138). Berlin: Springer.

Grim, J., Just, P., & Pudil, P. (2003). Strictly modular probabilistic neural networks
for pattern recognition. Neural Network World, 13, 599-615.

Grim, J., Kittler, J., Pudil, P., & Somol, P. (2000). Combining multiple classifiers
in probabilistic neural networks. In Kittler J., & F. Roli (Eds.), Lecture notes in
computer science: vol. 1857. Multiple classifier systems (pp. 157-166). Berlin:
Springer.

Grim, ]., Kittler, J., Pudil, P, & Somol, P. (2002). Multiple classifier fusion in
probabilistic neural networks. Pattern Analysis & Applications, 5, 221-233.

Grim, J., Pudil, P., & Somol, P. (2000). Recognition of handwritten numerals
by structural probabilistic neural networks. In H. Bothe, & R. Rojas (Eds.),
Proceedings of the second ICSC symposium on neural computation (pp. 528-534).
Wetaskiwin: ICSC.

Grim, J., Pudil, P., & Somol, P. (2002). Boosting in probabilistic neural networks. In R.
Kasturi, D. Laurendeau, & C. Suen (Eds.), Proc. 16th international conference on
pattern recognition (pp. 136-139). Los Alamitos: IEEE Comp. Soc.

Grim, J., Somol, P., & Pudil, P. (2005). Probabilistic neural network playing and
learning Tic-Tac-Toe. Pattern Recognition Letters, 26(12), 1866-1873 [Special
issue].

Grim, J., & Vejvalkovd, J. (1999). An iterative inference mechanism for the
probabilistic expert system PES. International Journal of General Systems, 27,
373-396.



846 J. Grim, J. Hora / Neural Networks 21 (2008) 838-846

Grother, P. J. (1995). NIST special database 19: Handprinted forms and characters
database, Technical Report and CD ROM.

Haykin, S. (1993). Neural networks: A comprehensive foundation. San Mateo CA:
Morgan Kaufman.

Hebb, D. O. (1949). The organization of behavior: A neuropsychological theory. New
York: Wiley.

Hertz, J., Krogh, A., & Palmer, R. G. (1991). Introduction to the theory of neural
computation. New York, Menlo Park CA, Amsterdam: Addison-Wesley.

McLachlan, G. J., & Peel, D. (2000). Finite mixture models. New York, Toronto: John
Wiley and Sons.

0Oja, E. (1983). Subspace methods of pattern recognition. Letchworth, U.K.: Research
Studies Press.

0Oja, E. (1989). Neural networks, principal components and subspaces. International
Journal of Neural Systems, 1, 61-68.

0Oja, E., & Kohonen, T. (1988). The subspace learning algorithm as a formalism for
pattern recognition and neural networks. In Proceeding 1988 IEEE International
Conference on Neural Networks (pp. 277-284).

Palm, H. Ch. (1994). A new method for generating statistical classifiers assuming
linear mixtures of Gaussian densities. In Proc. of the 12th IAPR international
conference on pattern recognition, Jerusalem, 1994, II. (pp. 483-486). Los
Alamitos: I[EEE Computer Soc. Press.

Prakash, M., & Murty, M. N. (1997). Growing subspace pattern recognition methods
and their neural-network models. IEEE Transactions on Neural Networks, 8,
161-168.

Schlesinger, M. 1. (1968). Relation between learning and self-learning in pattern
recognition. Kibernetika, (Kiev), 6, 81-88 [in Russian].

Specht, D. F. (1988). Probabilistic neural networks for classification, mapping or
associative memory. In: Proc. of the IEEE international conference on neural
networks, I, (pp. 525-532).

Streit, L. R., & Luginbuhl, T. E. (1994). Maximum-likelihood training of probabilistic
neural networks. IEEE Transactions on Neural Networks, 5, 764-783.

Vajda, I, & Grim, J. (1998). About the maximum information and maximum
likelihood principles in neural networks. Kybernetika, 34, 485-494.

Watanabe, S. (1967). Karhunen-Loeve expansion and factor analysis. In Trans. of the
fourth Prague conf. on information theory (pp. 635-660). Prague: Academia.
Watanabe, S., & Fukumizu, K. (1995). Probabilistic design of layered neural networks
based on their unified framework. IEEE Transactions on Neural Networks, 6(3),

691-702.

Watanabe, S., & Pakvasa, N. (1973). Subspace method in pattern recognition. In Proc.
int. joint conf. on pattern recognition (pp. 25-32).

Workshop: Subspace 2007. Workshop on ACCV2007. Tokyo, Japan, Nov. 19, 2007
http://www.viplab.is.tsukuba.ac.jp/ ss2007/downloadsite.html.



