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Abstract

In this paper, we are concerned with the exponential complexity of the Circuit Satisfiability
(CircuitSat) problem and more generally with the exponential complexity of NP-complete
problems. Over the past 15 years or so, researchers have obtained a number of exponential-time
algorithms with improved running times for exactly solving a variety of NP-complete problems.
The improvements are typically in the form of better exponents compared to exhaustive search.
Our goal is to develop techniques to prove specific lower bounds on the exponents under plausible
complexity assumptions. We consider natural, though restricted, algorithmic paradigms and
prove lower bounds on the exponent of the success probability. Our approach has the advantage
of clarifying the relative power of various algorithmic paradigms.

Our main technique is a a success probability amplification technique, called the Exponential
Amplification Lemma, which shows that for any f(n, m)-size bounded probabilistic circuit family
A that decides CircuitSat with success probability at least 27" for a < 1 on inputs which
are circuits of size m with n variables, there is another probabilistic circuit family B that
decides CircuitSat with size roughly f(an, f(m,n)) and success probability about 2-°°". In
contrast, the standard method for boosting success probability by repeated trials will improve
it to (1 — (1 —272")") (= 272" for t = O(2%™)) using circuits of size about ¢ f(n,m).

Using this lemma, we derive tight bounds on the exponent of the success probability for decid-
ing the CircuitSat problem in a variety of probabilistic computational models under complexity
assumptions. For example, we show that the success probability cannot be better than 2-"+°()
for deciding CircuitSat by probabilistic polynomial size circuits unless CircuitSat (thereby
all of NP) on polynomial size instances can be decided by 2" size deterministic circuits for
some p < 1, which is considered an unlikely event. As another example, we show that proba-
bilistic quasilinear size circuits cannot achieve success probability better than 2-"+°(") unless
CircuitSat (as well as NP) has O(m!2!8™) size deterministic circuits, which is very close to
the statement NP € P/poly, a highly unlikely scenario.
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authors and do not necessarily reflect the views of the National Science Foundation.



1 Introduction

It is well-known that all NP-complete problems are equivalent as far as polynomial-time solvability
is concerned. However, much less is known about the exact complexity of these problems. If we
assume NP # P or other appropriate complexity statement, what can we say about the exact
worst-case complexity of NP-complete problems? An important context for this question is the
development of a series of exact exponential-time algorithms with improved run times for a number
of problems including IndependentSet, k-SAT, and k-colorability. The series of improvements are
typically in the form of better exponents compared to exhaustive search. However, exact worst-
case complexity of these problems seem to differ considerably. These improvements prompt several
complexity questions, chief among them is whether we can expect continued improvements in the
exponent. Is there a limit beyond which one should not expect improvement? How do these limits
differ for different problems? Can we explain the differing limits in terms of the structural properties
of the problems? What are the likely exact complexities of various NP-complete problems? Are
the likely complexities of various problems related?

The current state of the art in complexity theory is far from being able to resolve these questions,
especially the question of best exponents, even under reasonable complexity assumptions. We
believe that it would be productive to approach these questions from the viewpoint of known
algorithmic paradigms. Such an approach might be able to clarify the relative power of various
algorithmic paradigms and might even be able to shed light on the best exponents in natural,
though restricted, computational models under complexity assumptions. Furthermore, the study
of the limitations of algorithmic paradigms might result in sharper versions of existing problems
and suggest new directions of research. This paper presents an attempt in this direction and obtains
nontrivial, interesting new results.

We propose to approach the randomized exact algorithms for NP-complete problems by study-
ing the important subclass OPP of algorithms and its generalizations. OPP is the class of one-
sided probabilistic polynomial-time algorithms. This class captures a common design paradigm for
randomized exact exponential-time algorithms: to repeat sufficiently many times a one-sided error
probabilistic polynomial-time algorithm that is correct with an exponentially small probability so
that the overall algorithm finds a witness with constant probability. OPP includes Davis-Putnam-
style backtracking algorithms developed in recent times to provide improved exponential-time up-
per bounds [BE95, Bei99, PPZ99, Epp01, DGH 02, Epp03, Bys03, GHNRO03, FGKO06] for a variety
of NP-hard problems. While the original versions of some of these algorithms are couched as
exponential-time algorithms, one can observe from a formalization by Eppstein [Epp06] that these
algorithms can be converted into probabilistic polynomial-time algorithms whose success probabil-
ity is the reciprocal of the best exponential-time bound. OPP also includes local search algorithms
such as Schoning’s [Sch99]. OPP is interesting not just because of ubiquity, but because such algo-
rithms are ideal from the point of view of space efficiency, parallelization, and speed-up by quantum
computation. What are the limitations of such algorithms for deciding NP-complete problems?
Could the best algorithm for a canonical NP-complete problem such as CircuitSat (the problem
of deciding whether a circuit is satisfiable) be in OPP?

In addition to OPP, there are several other important algorithmic paradigms for designing ex-
act algorithms for NP-hard problems, for example, exponential-time divide-and-conquer [Law76,
Sak98], inclusion-exclusion/Mobius inversion [Kar82, Koi06, BH06, BKK07, BKKO08], dynamic pro-
gramming [HK61, Rob86], group algebra [Kou08, Wil09], and sieve algorithms [AKS01, MV09].
However, we argue that OPP and its generalizations could serve as an excellent starting point for
the study of exponential-time algorithms for NP-complete problems in general.

Consider the problem of k-colorability for & > 3. The best-known algorithm [Koi06, BHO6]



for this problem applies the inclusion-exclusion principle to achieve an 6(2") algorithm where
n in the number of vertices of the graph. This algorithm and the prior best-known algorithms
[Sak98, Epp03, Bys05, BK06] do not belong to the class OPP. This raises a natural question
whether we can expect an OPP algorithm for k-colorability whose success probability is at least
27", Beyond this, can we expect OPP-style optimal algorithms for k-colorability? Does there
exist any OPP algorithm for k-colorability whose success probability is at least ¢~ where c is
independent of k? Negative answers (or evidence to that effect) for these questions would provide
convincing proof (or evidence) that exponential-time inclusion-exclusion and dynamic programming
paradigms are strictly more powerful than that of OPP. On the other hand, algorithmic results that
would place k-colorability in the class OPP with ¢~" success probability would be exciting. Similar
situation exists with respect to the Hamiltonian path problem where we know of no OPP algorithms
that succeed with significantly better than 1/n! success probability whereas it is well-known that
there are O(n?2") algorithms [Bel62, Kar82] based on exponential-time dynamic programming and
inclusion-exclusion techniques. It seems that resolution of the question, whether OPP-style optimal
algorithms exist for k-colorability and Hamiltonian path is related to a fundamental issue regarding
the trade-off between time and success probability which in turn may hold one of the keys (the
others being P versus NP and derandomization) for the complexity theory of exact algorithms for
NP-complete problems.

To study the exponents in the exact complexity of NP-complete problems, it is useful to pa-
rameterize NP problem instances with two parameters. Usually, NP problem instances are param-
eterized by the size of the input. However, for the purpose of capturing the exponential complexity,
it is more natural to parameterize the instances in terms of an additional complerity parameter.
For example, the CircuitSat problem instances are parameterized by the number of variables n
and m, the length of the input, which is a description of a circuit. A graph problem such as k-
colorability is parameterized by n, the number of vertices and m, the length of the representation
of the graph. These parameters are natural and robust with respect to the representation of the
input. We assume that problems are presented together with a complexity parameter. It is also
useful to endow the class NP with a canonical complexity parameter so we can state properties of
NP in terms of the complexity parameter and the size of the input. Consider an NP predicate in
the form Jx®(y, x) where y is the input instance, x the witness, and ® is a polynomial-time (in the
length of y) computable predicate. We canonically parameterize NP problem instances by n, the
length of the witness as well as m, the length of the input. Focus on the length of the witness is
natural when we consider exponential-time exact algorithms.

We sometimes use the notation NP (n,m) and CircuitSat(n,m) to be explicit about the pa-
rameterization. Complexity bounds are usually expressed as functions of both n and m. We would
like to observe that any problem instance in NP(n,m) can be reduced to a CircuitSat(n,m’)
instance in time ¢ preserving the witness length, where ¢ and m’ are polynomially bounded in m.

The results in the paper concern the more general class OP(T'(n,m)) of one-sided probabilistic
algorithms that run in time 7'(n,m). We usually want the success probability to be bounded by
a small exponential function in n, independent of m. In addition to the case where T'(n,m) is
polynomially bounded in m, we consider other natural cases. In fact, several of the branch-and-
bound algorithms mentioned earlier run in quasilinear time where the success probability is inverse
of the exponential run time. We will also consider more powerful models where the algorithm
can check exponentially many candidates to find a witness. In particular, we consider the class
OP(T'(n,m)) of algorithms for the following cases of T'(n, m):

e T'(n,m) is polynomially bounded in m,

e T(n,m) is quasilinearly bounded in m (of the form O(mlg® m) for some k > 0),



e T'(n,m) is subexponential in n and quasilinear in m, and
e T'(n,m) is a small exponential in n and quasilinear in m.

Our results include lower bounds on the success probability for deciding the CircuitSat problem
in all of the models mentioned above subject to various complexity assumptions. These bounds are
tight in the sense they achieve the best possible constant in the exponent. In particular, we show
that the CircuitSat problem cannot be decided with success probability better than 2-"+°() by
probabilistic polynomial-time algorithms unless there are 20" 187" m) size deterministic circuits
with p < 1 for deciding CircuitSat(n, m) (Theorem 4). In particular, the latter condition implies
that CircuitSat(n,m) (and consequently NP(n,m)) can be decided by deterministic circuits of
size 2" for p < 1 if m is polynomially bounded in n, which is considered an unlikely event.
Assuming that this event does not happen, we get that there is no OPP algorithm for deciding
CircuitSat with success probability better than 2-"+°()

We will also prove similar lower bounds on the success probability for quasilinear probabilistic
circuits. However, in this case, a much weaker assumption suffices. In particular, we show that
the success probability cannot be better than 2-nto(n) iy quasilinear probabilistic models unless
CircuitSat(n,m) (and consequently NP(n,m)) has O(poly(m)n'88™) deterministic size circuits.
The statement that CircuitSat(n, m) has O(poly(m)n'8!8™) size deterministic circuits is very close
to the statement NP € P/poly, which is a highly unlikely event.

We will further show that the success probability in the subexponential model cannot be better
than 2=+ unless CircuitSat(n,m) (and consequently NP (n,m)) has 2°0"poly(m) determin-
istic circuits (Theorem 6). In particular, the latter condition violates ETH.

We will also show an optimal lower bound on the probability for small exponential time models
of the form 2°*m1g"m for a < 1. We show that the success probability in this model cannot be
better than 2-(—a=)nto() for any £ > 0 unless CircuitSat(n,m) (and consequently NP (n,m))
has 2°"poly(m) size deterministic circuits where 3 = 1/(1+¢/a) < 1. Although the latter statement
is weaker, it still would be surprising if there is a constant factor reduction in the number of
existential quantifiers for all of NP.

Our results essentially rule out any but exhaustive search algorithms for CircuitSat in the
OPP and the corresponding quasilinear time models. We believe that our results are the first
of their kind. We hope that these results would put a new emphasis on obtaining similar results
for combinatorial problems such as k-colorability and Hamiltonian path as well as on the general
question of time-success probability trade-offs. In the following we present some related prior work
followed by an informal description of the key ideas.

1.1 Related Prior Work

While there is a large amount of literature on the topic of the satisfiability problem, we will focus
in this section on previous research dealing with lower bounds on the exponential complexity of
CircuitSat and related NP-complete problems.

Stearns and Hunt in their 1990 paper [SH90| considered the concept of power index to charac-
terize the exponential complexities of basic NP-complete problems. Power index is defined to be
the infimum of all # for which the problem is in DTIME(Qme) where m is the length of the input.
They have hypothesized that the power index of the CNF Satisfiability problem is 1 (Satisfiability
Hypothesis) and using this assumption they have shown that the power index of the Clique problem
is % (in terms of the number of edges in the graph). They get their results mainly by analyzing
how reductions change input lengths. The less a reduction blows up the input size, the tighter the
connection between the power indices of the problems.



While their results are interesting, they are more sensitive to how the input is represented. We
feel that it is more natural to parameterize NP in terms of witness size as well as input size, since
the obvious exhaustive search algorithm is strongly exponential in the witness size, but may only
be weakly exponential (as in the case of the Clique problem) in the input size. More importantly,
while [SH90] assumed the Satisfiability Hypothesis to obtain lower bounds on the power indices
for other NP-complete problems, in this paper we provide a justification for their assumption by
showing that an analogous power index (for the success probability) for a closely related problem,
CircuitSat, is 1 in OPP-style models under complexity assumptions that seem to be intimately
related to the P versus NP question. Moreover, success probability is parameterized using the
more natural and robust parameter, the witness length.

In an earlier paper, Schnorr [Sch78] considered the problems in the classes NQL, the nonde-
terministic quasilinear time and QL, the deterministic quasilinear time, under quasilinear time
reductions. He showed that the CNF Satisfiability problem (and there by the CircuitSat prob-
lem) are complete for NQL under quasilinear time reductions. In fact, Stearns and Hunt cite this
result to provide an indirect justification for the Satisfiability Hypothesis since the power index of
the CNF Satisfiability problems is at least as large as the power index of any language in NQL.
Schnorr in this paper comments that P # NP implies QL # NQL but the converse is not clear.
Our Theorem 5 provides certain strengthening of the forward implication: the probabilistic version
of QL cannot achieve better than 272" success probability unless NP has almost polynomial
size circuits.

More recently, Impagliazzo, Paturi and Zane [IPZ98] explored the question whether we can
expect continued improvements in terms of better exponents for the exact complexity of problems
such as k-SAT, k-colorability and Independent Set and showed that the possibility of arbitrarily
small exponents for various NP-complete problems is one and the same. In particular, they defined
the notion of subexponential time reduction families (SERF) and showed that several search prob-
lems including k-SAT, IndependentSet, k-Set Cover, Clique, Vertex Cover and k-colorability are
SERF-equivalent. They also showed that some of these problems such as k-SAT and k-colorability
are SERF-complete for the class of SNP of search problems expressible by second order existential
formulas whose first order part is universal. If any of these problems can be solved subexponen-
tially (in terms of witness length), then every problem in SNP can be solved in subexponential
time (in terms of witness length). The key to the equivalence is a lemma called the Sparsification
Lemma which shows one can achieve witness size-preserving reductions among these problems in
subexponential time.

In a subsequent paper [IP01], Impagliazzo and Paturi considered the exact complexity sy, of k-
SAT where s, = inf{e|3 a 2" randomized algorithm for deciding k-SAT}. Under the assumption
s3 > 0, called the Exponential Time Hypothesis (ETH), they showed that the sequence is increasing
infinitely often as k increases. Even under ETH, it is an open question to prove a specific lower
bound for s3, that is, to prove s3 > ¢ for some specific ¢ > 0. It is also open whether s,, = 1 where
Soo = limy_, o Sk More generally, it is an open question to prove optimal exponential lower bounds
for any NP-complete problem under plausible complexity assumptions.

Adopting ETH as an axiom casts light on the complexity of many other problems. Marx
[Mar07a, Mar07b] used Sparsification Lemma to show that ETH implies that the complexity of
database queries is determined by their treewidth. Very recently, Traxler [Tra08] has shown that
ETH implies (k,2)-CSP has k" complexity where ¢ is an absolute constant, thus ruling out the
possibility (under ETH) of a ¢ time algorithm where ¢ is independent of k. In contrast, k-
coloring, a very important case of (k,2)-CSP, has long been known to have such a ¢” algorithm for
¢ independent of k, and very recently, the ¢ has been improved to 2 [BH06, Koi06].

There are a number of results that relate the complexity of CircuitSat in terms of the tractabil-



ity of parameterized problems. Abrahamson, Downey and Fellows have shown that the existence
of 20(”)poly(m) algorithms for CircuitSat problem for circuits of size m and n variables is equiv-
alent to the problem of the tractability of the class of fixed parameter problems [ADF95]. Other
interesting results regarding the connection between the possibilities of somewhat improved algo-
rithms for parameterized problems and subexponential time algorithms of the form 20(”)poly(m)
for CircuitSat can be found in [CHKXO06].

While the work of [IPZ98] and the subsequent results based on ETH as well as the results
connecting the complexity of CircuitSat with fixed parameter tractability are interesting and
represent progress, we still do not have specific lower bounds on the exponents even under ETH as
the constants in results based on ETH (such as those in [Tra08]) depend on the assumed constant
s3 in ETH. In contrast, our results do obtain a specific lower bound on the exponent of the success
probability for OPP and other models under reasonable complexity assumptions. Interestingly,
our work suggests the possibility that the question of specific lower bounds on the exponents is
related to the questions of P versus NP and time-success probability trade-off for NP-complete
problems.

We would also like to mention the recent time-space lower bounds (see [vMO07] for a survey):
the Formula Satisfiability problem cannot be decided by a deterministic random-access machine
that runs in time m'8% and space m°®) where m is the input length. Unlike our results, these
results do not depend on any complexity assumptions. On the other hand, our results deal with
exponential time/probability and related algorithmic paradigms.

1.2 Key ldeas

A key idea in our approach is to obtain a simultaneous trade-off between computational resources
and instance parameters which in turn would lead to complexity relationships. Several basic condi-
tions are needed to obtain such a trade-off. One of them is to parameterize the problem instances by
two parameters, one of them is witness size and the other input size. Another is to parameterize the
computational models with two resources or complexity parameters (as functions of the instance
parameters). For example, size and success probability are the computational resources in the
case of probabilistic circuit models. We then need a non black-box reduction technique where the
computation itself (after hashing down) is the reduced instance. Identity of the space of instances
and the space of computations seems to be crucially necessary for the reduction technique. These
basic ideas can be brought together to obtain a simultaneous trade-off between computational re-
sources and between instance parameters to prove our key lemma, the Exponential Amplification
Lemma (Lemma 2). The Exponential Amplification Lemma is a success probability amplification
technique which shows that for any f(n, m)-size bounded probabilistic circuit family A that decides
CircuitSat with success probability at least 27" on inputs which are circuits of size m with n
variables, there is another probabilistic circuit family B that decides CircuitSat with size roughly
flan, f(m,n)) and success probability about 2-°"n_In contrast, the standard method for boosting
success probability by repeated trials will improve it to (1 — (1 —2797)!) (= 127" for t = O(2°"))
using circuits of size about tf(n, m).

Elements of our technique are present in [IP01] where instances of CNF satisfiability are param-
eterized by the number of variables and the maximum width of the clauses and a subexponential
time reduction was used to trade up the width for reducing the number of variables thereby ob-
taining relationships among the exponents. Traxler [Tra08] also obtains a similar trade-off between
the size of the domain and the number of variables for constraint satisfaction problems. Whereas
the techniques in [IP01, Tra08] only involve reductions among instances trading one parameter for
another, our current technique for CircuitSat obtains simultaneous trade-offs between algorithmic



resources and instance parameters by effecting them in terms of each other.

The proof of the lemma goes as follows: Circuits in the family B use specializations of circuits
in the family A as instances. Specialization of the circuit C'(z,y) at * = Z is the circuit C*(y)
obtained by plugging in a specific value ¥ for the input z. C%(y) is now a function of the random
variables of the original probabilistic circuit. If the input Z represents a satisfiable circuit on n
variables, C%(y) will have a large number of satisfying assignments if the family A has better than
27" success probability. Using a technique of Valiant and Vazirani [VV86], we can hash down
the circuit C*(y) to obtain another circuit H with reduced number of variables in such a way that
C?(y) and H are satisfiability equivalent. The description of H is then fed to an appropriate circuit
in the family .4 to amplify the success probability. It turns out that the probabilistic circuit family
B can be designed to implement this amplification.

2 Circuits and Circuit Satisfiability

In this paper, problem instances as well as computational objects are circuits with a single output
over the standard, bounded fan-in basis AND, OR, and NOT. Let C denote the class of such
circuits. For C' € C, each source node in the directed acyclic graph of C' is either labeled by a
random variable or by an input variable or by a constant. Let n = n(C') denote the total number of
variables of C, the sum of the number of input variables and the number of random variables. Let
size(C') denote the count of gates in the circuit where each source node is counted as a gate. For
input variables y and random variables z, C(y, z) denotes the output of the circuit. C'¥(z) denotes
the specialization of the circuit when its first argument is fixed at the value y. Let Pr[C¥(z) = 1]
denote the probability that the circuit C' outputs 1 for the input y, where the random variables z
of C' take the values 0 or 1 with equal probability.

In our constructions, we also deal with circuits which multiple outputs. Earlier notions and
notation extend naturally to such circuits.

Input instances for the CircuitSat problem are encodings of circuits and are parameterized by
the number of variables and the length of the encoding. Encoding of a circuit contains two parts:
the first part encodes the number of variables in unary notation and the second part is a standard
encoding of the circuit as a binary string. For a circuit C, let desc(C') denote the encoding of the
circuit and let m(C) = |desc(C)|. m(C) is at least n(C) and is O(size(C) lg(size(C))).

2.1 Circuit Satisfiability and Circuit Families

We are primarily concerned with CircuitSat, the Circuit Satisfiability problem: given an encoding
of C' € C, does there exist a x € {0, 1}"(0), that is, a setting of the variables of C' such that C with
setting x outputs 1. In such a case, we say that the circuit C is satisfiable.

We consider probabilistic circuit families indexed by instance parameters as computational
models. A family F of circuits is a collection {F}, ,|n,m > 1} where F), ,, is a probabilistic circuit
whose inputs are encodings of circuits with n input variables and of encoding length m. For
f:NxN— R, we say that a circuit family {F), ,,} is f-bounded if size(F), ,,) < O(f(n,m)). We
say that a circuit family {F}, .} decides CircuitSat with success probability p(n) if for all inputs
which are encodings of circuits with n variables and of encoding length m, F), ,,, outputs 1 with
probability at least p(n) for all satisfiable circuits and otherwise outputs 0 with probability 1. In
other words, p(n) = inf,, , Pr[Fy ,(z) = 1], where y is a length m string which is an encoding of a
satisfiable circuit with n variables and z denotes the string of random variables of F}, ,.

Let F be a circuit family {F, ,,,} deciding CircuitSat with success probability p(n). We define
the (exponential) complexity of F for deciding CircuitSat for inputs which are circuits with n



variables as
ECircuitSat(fa n) = lg(l/p(n))/n

The idea is that Fcircuitsat(F,n) captures the exponent ¢ of the success probability p(n) when
expressed as (27™)¢. The larger the exponent, the higher the complexity of F. The complexity of
F is defined as Ecircuitsat(F) = limsup Ecircuitsat(F, 7).

We define the complexity Fcircuitsat(f) of deciding CircuitSat as the best exponent achievable
by an f-bounded probabilistic circuit family. More precisely,

Ecircuitsat(f) = inf{e|3 a f-bounded, CircuitSat deciding family F such that Egircuitsat(F) < €}

We are interested in f-bounded circuit families where f(n,m) = O(2*™"*mF1g! m) where a(n)
is 0,0,(1), or constant, k > 1, and [ > 0. Such circuit families support computing paradigms where
one can evaluate 2%"" witnesses to find a satisfying solution since a circuit of encoding length m
can be evaluated at a given input by a circuit of size mlg! m for some [ > 0 [Pip77, PF79]. We use
the notation O( f) to suppress polylogarithmic factors in f to express circuit size bounds.

When a(n) = 0 and £ > 1, we refer to the circuit families as polynomially bounded. We
single out the subclass of quasilinearly bounded circuit families when a(n) = 0 and k = 1. Let
ECircuitsat (mX) and ECircuitSat(é(m))) denote the complexity of deciding CircuitSat by poly-
nomially and quasilinearly bounded circuit families respectively.

ECircuitSat(2°(“) mk) (ECircuitSat(2°(n)6(m))) denote the complexity of deciding CircuitSat
by f-bounded circuit families where f(n,m) = O(2°WmF) with k > 1 (k = 1). ECircuitsat(2°*O(m))
denotes the complexity of deciding CircuitSat by f-bounded circuit families where f(n,m) =
200 (m) with a < 1.

3 Complexity of Circuit Satisfiability

It is clear that Ecircuitsat(2°™0(m)) < Ecircuitsat(m*) < Ecircuitsat(O(m)) < 1. Moreover,
Ecircuitsat(2°"0O(m)) < 1—a. It is open whether any of these complexities can be lower bounded.
In this paper, we prove Ecircuitsat(2°™O(m)) = Ecircuitsat(M*) = Ecircuitsat(0(m)) = 1 under
complexity assumptions. We also prove that for any o < 1 and € > 0, Ecircuitsat(2°"O0(m)) >
1 — a — ¢ under a certain complexity assumption. Our key lemma, the Exponential Amplification
Lemma, shows how to construct a circuit family for deciding CircuitSat with improved success
probability from a given circuit family that decides CircuitSat. An important ingredient in the
proof of the Exponential Amplification Lemma is the construction of a circuit Sparse(C'), which
is satisfiability-equivalent to the circuit C', but with fewer variables. This construction is closely
related to that of the unique satisfiability construction of Valiant and Vazirani [VV86] and is
captured in the following hash-down lemma, Lemma 1.

Let C € C be a satisfiable circuit with n variables and let m denote its description length. Let
S C {0,1}" be the nonempty set of satisfying assignments to the variables of C. Let s = [1g|S¢||—2;
we will assume that s > 0.

The intuition for the construction of Sparse(C) is as follows. If the set S is intersected with
a random subcube of dimension (n — s), we expect to get a nonempty intersection. Therefore,
(n — s) bits are sufficient to locate a satisfying assignment in the intersection. This intuition is
operationalized by restricting C' to inputs from a random coset of a random linear transformation
from {0,1}" to {0,1}*. Such a restriction turns out to be satisfiability-equivalent since the random
coset contains a satisfying assignment with sufficiently high probability. Moreover, members of the
coset can be generated by a small-size circuit given their (n — s)-bit address in the coset. The
details are provided below.



We follow the standard idea of using pairwise independent functions for hashing. However,
rather than using random linear transformations we will use random Toeplitz matrices to achieve
the desired pairwise independence. It requires only linear number of bits to specify a random
Toeplitz matrix over GF(2). Linear randomness together with fast GCD and convolution algorithms
[BGY80, Pan01] will only require a quasilinear computation to select a random coset and to address
its members. While we can live with polynomial overhead for some of our theorems, quasilinear
hashing is necessary when we work with quasilinear size circuit models.

Let n be fixed and let t = (t 41, ,t_1,t0,t1, - ,tn_1) € {0,1}>"~1. We will denote by T} the
Toeplitz matrix determined by ¢, which is the matrix defined by T4(7, j) = t(;_; for 0 <4,j <n—1.
For a column vector z € {0,1}", let (T3(z))s denote the column vector of the first s bits of T;(z).
For t € {0,1}?"! and w € {0,1}*, define the affine linear transformation hy,(2) = (T;2)s + w. It
is well-known that {h;,,} is a pairwise independent family of functions from {0,1}" to {0,1}".

We would like to parameterize the cosets Hy,, = {z|htw(2) = 0}. For w € {0,1}* and = €
{0,1}"5 we will define the column vector (w; x) to be the concatenation of w and . For w € {0,1}*
and t such that T} is invertible, we define J; , () := T, (w; ) to obtain the needed parameterization
of the coset Hy,. When T; is nonsingular, it is easy to see that Image(J; ) = Hyy. Indeed,
if z € Hyy, then by definition hy,(2) = (T3(2))s + w = 0. This implies that there exists an
x € {0,1}"*® such that T3(z) + (w;x) = 0. Since we are working over GF(2) and since T} is
nonsingular, it follows that z = T, ' (w; x) = J; »(2). Similarly, if 2 € Image(J; ), then z € Hy .

The circuit Sparse’” (C) with (n—s) variables is the composition of .J; ,, with C, i.e., Sparse”™ (C)(x) =

C(Jtw(x)).

Lemma 1. C and Sparse"”(C) are satisfiability-equivalent with probability at least 1/4. Fur-
thermore, Spar:set’“’(C’) can be constructed in size O(m) and its description can be computed by a
circuit of size O(m) given desc(C),t and w.

Proof of Lemma 1 can be found in the Appendix. We now state and prove the Exponential
Amplification Lemma.

Lemma 2. Exponential Amplification Lemma: Let F be an f-bounded family for some f :
N x N — R such that Ecircuitsat(F) < 0 for 0 < 6 < 1. Assume f(n,m) > m for alln. Then there
exists a g-bounded circuit family G such that, for all sufficiently large n, EGircuitsat(G) < 62 where

g(n,m) = O(f([on] +5,0(f (n,m)))).

Proof. Let F}, ,, be the probabilistic circuit from the family F that decides CircuitSat for circuits
of description size m and n variables. F, ,, itself has m input variables which encode the description
of a circuit D of n variables. Also F}, ,, has r random variables y. By assumption size(F, ,,) =
O(f(n,m)), r = O(f(n,m)), and the success probability p(n) of F,,,, is greater than 27" for all
sufficiently large n.

Let n/ = [dn] + 5 and s = r — n’. It follows that p(n) > 2~". We will construct a g-bounded
family G of probabilistic circuits that decides CircuitSat with success probability p(r — s) = p(n’)
for circuits with n variables where g(n,m) = O(f(n’,O(f(n,m)))). A key idea is, for a given circuit
D, to view F), ;,(desc(D),y) as a (deterministic) boolean circuit C(y) := Sf,sbc(D) (y) of r variables.
When D is satisfiable, it follows that C(y) has at least 2(r=[on1) solutions for all sufficiently large
n. We apply the Sparse() function to C' to obtain a circuit with n’ variables which is satisfiability-
equivalent to D. We then apply the description of Sparse(C') as input to an appropriate circuit
from the family F to improve success probability. The details of this construction are presented in
the following algorithm and figures.



Circuit Gy, (see Picture 1):

1 Input: desc(D) of D € C with n variables and description length m.
2 Cy) = Ffﬁi"([’) (y), the specialization of F,, ,,, to the input desc(D).

3 Ifr>n/,
4 Select random ¢ € {0,1}?"~! and w € {0,1}*.
5 If T; is invertible, compute the description of a circuit J;,,(z) that computes T; t_l(w; x)

for z € {0,1}".
6 Sparse”” (C)(z) := C(Jp.w(x)).
7 H(z) := Sparse®”(C)(z) where z € {0,1}". (see Picture 2)
8 else
9 H(xz) = C(x) where z € {0,1}".
10 PrepCkt: Compute the description of the circuit H. Let m' = |desc(H)].
11 Apply F,r py to desc(H) where n” = n' if r > n/, otherwise n” = r.
12 Output: F» v (desc(H)).

We will first argue that D and H are satisfiability-equivalent. It is clear that if D is unsatisfiable,
H is unsatisfiable. If D is satisfiable, then it follows from Lemma 1 that Sparse’™(C) is satisfiable
with probability at least 1/4. Since n” < [dn] + 5, by assumption Fy» s outputs 1 on input
desc(H) with probability at least 279" which implies that the success probability of G, ,, is at
least 279'97=68'=5 for some & < 8. It then follows that EGircuitsat(G,n) < 62 for all sufficiently
large n.

We will now upper bound the size of Gy, ,,. By Lemma 1, Sparse’”(C)(z) can be described
using at most m’ = O(f(n, m)) bits and the description itself can be computed by a circuit of size

O(f(n,m))). It follows that the size of H is also bounded by O(f(n,m)) whether > n’ or not.
Thus, the size of G, ,,, is upper bounded by

F@"m") +O(f(n,m)) < f([on] +5, ON(Ji(mm))) +O(f(n,m))
< O(f([én] +5,0(f(n,m)))) since f(n,m) > m.

O

We think that the following lemma may be of independent interest, which uses the hash-down
technique to boost the probability. This lemma presents an alternative technique to boosting the
success probability by repeated independent trails. Its proof can be found in the Appendix.

Lemma 3. If C is a probabilistic circuit of size M deciding CircuitSat with success probability
q > 0 for a set of inputs, then there exists a deterministic circuit D of size O(M?)/q that decides
CircuitSat on the same set of inputs. The same holds for any set in NP in place of CircuitSat.

3.1 Results

For a variety of f(n,m), we will argue it is implausible that the success probability could be as large
as 279" for § < 1 for any f (n,m)-bounded probabilistic circuit family deciding CircuitSat. Our
technique is essentially the following: if the success probability is large, (by repeated applications
of the Exponential Amplification Lemma followed by an application of Lemma 3) we can construct
small size deterministic circuits for deciding CircuitSat(n,m) (or equivalently NP (n,m)), which
implies implausible events. The size of the deterministic circuit for deciding CircuitSat(n, m) de-
pendson f(n,m). The smaller the f, the smaller the size of the circuit for deciding CircuitSat(n,m).



However, the implausibility of the consequence for deciding CircuitSat(n, m) could also depend on
the relative size of m with respect to n. Note that CircuitSat(n, m) can be decided by circuits of
size 2O (m). If m is exponentially large in n (for example, m = 2") and if f is growing sufficiently
fast with m (for example, f(n,m) = Q(m?poly(Ilgm))), then f(n,m)-bounded circuit can decide
the CircuitSat problem with success probability 1.

In the following we select certain examples of f and state the resulting consequence for deciding
CircuitSat(n, m) if the success probability is large enough. While our results hold for arbitrary
parameters n and m, in the remarks following the theorems we point out the implausibility explicitly
if it requires focusing on certain values of m as a function of n.

“)

Theorem 4. Either Ecircuitsat(m~) = 1 or there exists a u < 1 such that CircuitSat(n,m) (and

consequently NP (n,m)) can be decided by deterministic circuits of size 20" lg' =+ m)

Remarks: Consider the second clause in the disjunction in the statement of the theorem: there ex-
ists a y1 < 1 such that CircuitSat(n, m) can be decided by deterministic circuits of size 29" lg'~"m)
This statement implies that CircuitSat(n,m) can be decided by O(2™") size deterministic circuits
for p < 1 for the case where m is bounded by a polynomial in n. It is currently believed that
such circuits are unlikely to exist. Even if m = 2°("), we get that CircuitSat can be decided by
deterministic circuits of size 2°"), which is also considered implausible. For example, this event
contradicts ETH. Given these implausibilities, we can conclude that OPP algorithms cannot
achieve success probability better than 27"+ If m > 2" for some constant ¢ > 0, the theorem
becomes a trivial statement.

Outline of the Proof: We assume that there exists a family F of probabilistic circuits of size
O(mk) for some k > 1 achieving success probability 279" for some § < 1. We apply the Exponential
Amplification Lemma d = (lg 21gm++(lglgm)) / (lg(% + lgk) times followed by an application of

(n#1g'~#m)

Lemma 3 to obtain a deterministic circuit family of size 2° where 4 < 1 depends on k

and 4.

Theorem 5. Either Ecircuitsat(O(m)) = 1 or CircuitSat(n,m) (and consequently NP (n,m))
can be decided by deterministic circuits of size O(poly(m)n©Uglem)y,

Remarks: The consequence of better success probability is that CircuitSat(n,m) can be decided
by quasi-polynomial size deterministic circuits which is very close to the statement NP € P /poly.
This highly improbable statement lets us conclude that we can only succeed with probability
2" +0(n) when we decide CircuitSat(n, m) using quasilinear probabilistic circuits. Theorem 5 can
be proved by applying the Exponential Amplification Lemma about O(lgn) times.

We will also get tight lower bounds on the success probability when f(n,m) is subexponential
or exponential in n and quasilinear in m.

Theorem 6. Either Ecircuitsat(2°™O(m)) = 1 or CircuitSat(n, m) (and consequently NP (n,m))
can be decided by deterministic circuits of size 20(”)poly(m).

Remarks: Theorem 6 is proved by applying the Exponential Amplification Lemma a number of
times which grows with n. When we restrict m to be polynomial in n, the second statement in the
theorem implies that CircuitSat(n,m) has subexponential size circuits which contradicts ETH.

Theorem 7. For every a,e > 0, either ECircuitSat(2o‘“6(m)) > 1— a — ¢ or CircuitSat(n,m)
(and consequently NP (n,m)) can be decided by circuits of size 2™/ (1 F¢/poly(m).

Remark: In other words, if the success probability is better than 2~(1—®n+o(n) e get that
CircuitSat(n, m) can be decided by deterministic circuits of size 2“"poly(m) where c = 1/(1+ %) <
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1. It should be noted that the standard success boosting technique (as opposed to the Exponential
Amplification Lemma) would give deterministic circuits of size 20=5)"poly(m). It is easy to see
that ¢ < (1 —¢) as long as a < 1.

It is useful to interpret our results as time-probability trade-offs. Consider t := f(n, m)-bounded
circuit families that decide CircuitSat. As defined earlier, let p := ECircuitsat(f) denote as the
best exponent achievable by an f-bounded probabilistic circuit family that decides CircuitSat.
Consider p as a function of . From the standard probability boosting technique, we conclude that
as t increases that p must at least decrease at a rate of 1. In other words, the quantity lgt/n + p
cannot increase. Our results say that if CircuitSat can be solved with probability 27" for § < 1
at any t (ranging from quasilinear to small exponential function), probability will decrease at a rate
higher than 1 as time increases. The rate of decline depends on § as well as the earliest time at
which such an advantage in guessing a satisfying solution can be achieved. If § is already less than
1 already at quasilinear time, p will decline quite rapidly to yield a superpolynomial time algorithm
for NP.

Acknowledgments: The authors would like to thank Boaz Barak, Chris Calabro, Russell Im-
pagliazzo, Mike Saks, Avi Wigderson, and Ryan Williams for helpful discussions.
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4 Appendix

Lemma 1: C and Sparse™”(C) are satisfiability-equivalent with probability at least 1/4. Fur-
thermore, Spar:set’“’(C’) can be constructed in size O(m) and its description can be computed by a
circuit of size O(m) given desc(C),t and w.

Proof. Our goal is to prove

Pr;,[S¢ NTmage(J;.) # 0] > 1/4,
where we are assuming the uniform distribution of ¢ € {0,1}?"~! and w € {0,1}°. However,
Image(J; ) = Hyap if Ty is nonsingular. We will first argue that Pry,,[SY N Hy, # 0] > 3/4.

We then use the result of Kaltofen and Lobo [KL96] which states Pr[T} is nonsingular] > 1/2 to
conclude

Prt,w[SC N Image(J; ) # 0] Pr; , [SC N Hy,y # 0] — Pr[T; is singular]

1/4

For z € SY, let g;.,(2) denote the indicator function for the event z € Hy y,, i.¢e., hy(2) = 0. Let

Qtw = Y ,eg0 Qw(z). We have Qy,, # 0 iff S¢nN H; ., # 0. We will upper bound the probability
Var(Qt,w)

>
>

of the event Q,, = 0 using Chebyshev’s inequality: Pr[Q;., = 0] < (IR Using the property
of pairwise independence of the functions h; ., we get ’
Var[Q:u] = E[Q7,] —ElQru)” = (1S — 5927 4 59[27% — |59]7272 = |5|(27* —27%).
Hence
Cl(o—s _ 9—2s __o—s __ o—s
Var(Q¢,w) _ |S“(2 2 ):1 2 Sl 2 <1/4.
E[Qr.0]? |5C 2225 |SC25 4

This completes the proof that C' and Sparse’”(C) are satisfiability equivalent.

Using fast GCD and convolution algorithms as well as the Gohberg-Semencul formula for the
inverse of a Toeplitz matrix [BGY80, Pan0Ol], one can compute Jy,(r) = T, '(w;z) with bit
complexity O(n). Since m > n, it turns out that the circuit Sparse’*(C) can be constructed in
O(m) size. It is also easy to check that the description of Sparse’”(C) can be computed by a
circuit of size O(m). O

Lemma 3: If C is a probabilistic circuit of size M deciding CircuitSat with success probability
q > 0 for a set of inputs, then there exists a deterministic circuit D of size O(M?)/q that decides
CircuitSat on the same set of inputs. The same holds for any set in NP in place of CircuitSat.

Proof. Let C = C(xz,y), where the input variables are z and the random variables are y. Let
r the number of random variables. Let J;, : {0,1}"7® — {0,1}" be as in Lemma 1, where
s =1+ [lgq| — 2. Consider the probabilistic circuit

\/ C(w,th(z)),
z€{0,1}7—s
with input variables x and random bits ¢ and w. This circuit computes CircuitSat with success
probability 1/4 as shown in the proof of Lemma 1. The standard error reduction argument using
the disjunction of about M independent (in terms of the selection of random ¢ and w) copies of the
probabilistic circuit obtains an exponentially small error probability. This ensures that there exists

a setting Qf the random bits that always produces the correct answer. The size of the resulting
circuit is O(M?/q). O

15



n” < [on]+5
desc(H) = PrepCkt(F}, ,,, desc(D),t, w)
H(x) = Fin®™” (Ji(x))

)

Fn”,m’

desc(H)

repCkt(F, ., desc(D),t, w)

RERRR AR

random bits ~ random bits: ¢, w desc(D)

Figure 1: Circuit G,
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L

pseudorandom bits

Jt,w(x) = (Tt)_l(w; €

RERER

desc(D)

input (x)

Figure 2: H(z) = FygenSLC(D)(Juw(x))

17




