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Abstract—The paper deals with moment invariants, which are invariant under general affine transformation
and may be used for recognition of affine-deformed objects. Our approach is based on the theory of
algebraic invariants. The invariants from second- and third-order moments are derived and shown to be
complete. The paper is a significant extension and generalization of recent works. Several numerical
experiments dealing with pattern recognition by means of the affineé moment invariants as the features

are described.
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1. INTRODUCTION

A feature-based recognition of objects or patterns
independent of their position, size, orientation and
other variations has been the goal of much recent
research. Finding efficient invariant features is the key
to solving this problem. There have been several kinds
of features used for recognition. These may be divided
into four groups as follows:

(1) visual features (edges, textures and contours);

(2) transform coefficient features (Fourier descrip-
tors,""*2) Hadamard coefficients;®

(3) algebraic features (based on matrix decomposition
of image, see reference (4) for details); and

(4) statistical features (moment invariants).

In this paper, attention is paid to statistical features.
Moment invariants are very useful tools for pattern
recognition. They were derived by Hu'® and they were
successfully used in aircraft identification,'® remotely
sensed data matching” and character recognition.®
Further studies were made by Maitra® and Hsia'?
in order to reach higher reliability. Several effective
algorithms for fast computation of moment invariants
were recently described in references (11-13).

All the above-mentioned features are invariant only
under translation, rotation and scaling of the object.
In this paper, our aim is to find features which
are invariant under general affine transformations and
which may be used for recognition of affine-deformed
objects. Our approach is based on the theory of al-
gebraic invariants."® The first attempt to find affine
invariants in this way was made by Hu,”” but his
affine moment invariants were derived incorrectly.

Several correct affine moment invariants are derived
in Section 2, and their use for object recognition and
scene matching is experimentally proved in Section 3.

Algebraic invariants

Moment invariants

2. AFFINE MOMENT INVARIANTS

The affine moment invariants are derived by means
of the theory of algebraic invariants. They are invariant
under general affine transformation

Uu=dg+a;x+a,y
v="by+b;x+b,y. (1

The general two-dimensional (p + g)th order mo-
ments of a density distribution function p(x,y) are
defined as:

o

my, =[] x*¥p(x,y)dxdy p,g=0,1,2,... (2)

For simplicity we deal only with binary objects in
this paper, then p is a characteristic function of object
G, and

my,=f{x"¥dxdy p,q=0,1,2,... (3)
G

It is possible to generalize all the following relations
and results for grey-level objects.

The affine transformation (1) can be decomposed
into six one-parameter transformations:

l.Lu=x+a 2 u=x 3. u=wx
v=y v=y+f v=w'y

4 u=904x S u=x+ty 6. u=x
v=y v=y v=1t"x+y.

Any function F of moments which is invariant under
these six transformations will be invariant under the
general affine transformation (1).

From the requirement of invariantness under these
transformations we can derive the type and param-
eters of the function F.

If we use central moments instead of general mo-
ments (2) or (3), any function of them will be invariant
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under the translations 1 and 2. The central moments
Iy are defined as:

tpg= [ (x=%)P(y — 7Pp(x, y)dxdy p,g=0,12,...
“4)

where X =m,,/my, and y=my,,/my, are the co-
ordinates of the centre of gravity of a given object.

We will assume the function F has the form of a
polynomial of the central moments

F= Y kit g™ v )
:

The demand of invariantness under scaling 3 implies
the condition of correct normalization of members of
the polynomial F. The simplest way is to divide the
members of F by the correct power of ug,, i€. the
area of object G. For moments we have

M=t 2y (6)

especially
2
Hop = @7 oo
where u;q are the central moments after a transform-
fition: The function F of quotients y,,/ulE "2+ 1 jg
mvariant under scaling. Then the function F does not
have the form (5), but

= . /29
F Zk'“pm)qun Hpecntivacn! oo v
T

where

(i) i
z(i) = ( Y (P + q‘j(i)J) {2+ c(i).
j=1 !

For F to be invariant under one-axis scaling 4, the
members of the polynomial F must be isobars, i.e. the
sum of pth indexes of each member must be equal to
the sum of gth indexes. Substituting 4 into integral
(4), we obtain the following relation between H,, and
Hpg:

u;q:d"mlym. (8)

Introducing it into (7) we obtain the condition

c(i) (i)

Y pi) =Y a0 ©)

i=1 j=1
We will denote this sum as w. If a member consists
of r kth-order moments, ' k'th-order moments, etc.,
for this sum w holds

2w=kr+k'r' + - 10)
The number w is called the weight of the invariant.
For instance, the member 304,449, can be a member
of an invariant of weight w=4 (2.4 =32+ 2.1).
If 6 = — 1, the transformation is a mirror reflection.
Then

F=(—1"F. (11)

If w is odd, the invariant changes sign under trans-
formations that include mirror reflection, i.e. where
the determinant of the transformation J = a,b, — a,b,
1s negative. These are called skew invariants,

If F is invariant under skew transformation 5 with
parameter ¢, the derivative of F with respect to ¢ is
equal to zero

. SF du
DF’=di=ZZU ”m:(), (12)
dt T 0p dt
rq
Because it holds that
dm,, d
— A =— || (x+tylyldxd
a4 dljcj( Y y
=[{p(x+ 1y~ 1y"" tdxdy
G
:pmjp‘m)r1 (13)

and because a similar relation is satisfied also for the
central moments, then it holds that
oF'
DF =Zzl’ﬂp» rqr15 =0
P a ou

pq
and also

oF
DF:ZZp#pwl,q+la77=0‘
[ OH

rq

(14)

Equation (14) is called the Cayley—Aronholdschen dif-
ferential equation. It determines coefficients of members
of the polynomial F. Similarly, from transformation
6 we can derive the equation

5 Sty 1g s, =0 3
poa a‘upq
From the mirror reflection
u=y
v=x (16)
we can derive the condition of symmetry
F(ly o) = (= D" Fltgyo by o) (1)

If this condition and equation (14) are satisfied,
then equation (15) is satisfied too.

There are some special theorems about invariants,
e.g.

(I) Apolar:

k
[k
% Z (- 1)'( .)”i.k—i’lk—i,i (18)
i=0 i
after normalization is invariant if k is even.
(I1) Hankel determinant:
Hox Hig—1 Hg—1x-q+1
Hyg—1 Hak-2 Hak—q
Mu—tk-u+1 Huk-u Hu+g—2k-u—g+2
Hox Hik -1 He—1h—g+1 (19)
Hip -1 Hox -2 Hok' —q
Ho-1k-v+1 Mok v Hovg-20k-v-g+2
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after normalization is invariant, k=g +u—2, k' =
g+ v —2,... are orders of moments.
(IT) Discriminant of polynomial:

Lok ;
i=0

after dividing by p,, and normalization is invariant.
Note: Discriminant of a general polynomial

f(xX)=apx"+a,;x" "+ - +a, (21)

is equal to

a, a, a, 0 00

0 aq a, , a, 0---0
(— 1y 102 0 0 aga, a, a, |2

bo byb,y O 0 0

0 by by b,, O 0

0 - 0by b, by b,

where by, by, ...
a;(n— j).

Proofs of assertions (I)—~(II) can be found in
reference (14).

,bn 1 are coefficients of ["(x), ie. b; =

2.1. Invariants from second- and third-order moments
The simplest invariant consists of second-order

moments. It is the apolar
Iy = (aotto2 — 1411/t (23)

(We normalized by fourth power of p,,, because
20p+q@)2+ 1)=22/72+ 1)=4)
For the third-order moments, the discriminant of
the polynomial
03X + 34y ,X7 + 345, X + py (24

;

is, according to (22), equal to

Hos 3tz 3Har Hao !
0 Hos 32 32 Hio
— 13103 6u12 33 O 0 .25
0 3uos 6bpyy 3ua O
0 0 3pes 6uyy 3pgy

The corresponding invariant is

I = (“go:“és I TR TR TN TR T
+ 43 1oy — 313, 17 (26)
From second- and third-order moments we can
make up the Hankel determinant
Hoz  Hir HMao
Moz Mz Ha1f (27)
J#i2 Mot Hio

The corresponding invariant is

I3 =(pa0(ttz1H03 — H%z) — t11(#t30M03 — Ha1#12)
+ ttoa(H30k1 2 — 131))/to0- (28)

There is another invariant, whose members consist
of three second-order moments and two third-order
moments. Its weight is (2.3 + 3.2)/2 = 6; see Relation
(10). According to the condition of isobars we look
for all possible partitions of the number 6 to a sum
of three integers from O to 2 (p,,p,,p;) and two
integers from 0 to 3 (p,, ps):

P1 P2 P3 Pa Ps Members of the invariant

242424040 Ky 0Ho,
242414140 kzligo.“”:“\z“os
242404240 K3t30k02H 1 Ho s
242404141 KatGohosH5
241414240 1\'5!420:“31'“21“03
24l4t+141 kottyoht 11
241+0+43+0 Kottty 1 Hoatsotos
241404241 Kebtyoby  Hosly By,
240+0+3+1 K3ty ligataolt, 5
240+0+2+2 Kattyolg,H3,
141414340 Kot} fyohy,
I+1+1+2+1 kloﬂilﬁ‘m“lz
1+14+0+3+1 kS.“fp“nz”xw“lz

1+1+0+2+2
1+0+0+3+2
0+0+0+3+3

2 2
kb‘“l 1Mozt
2
AZ/‘l 1Hg2M 508
3,2
l‘l/‘gzﬂ;n

(29)

q3=2—p,.
qs=3-ps,

4 =2-p,,
gs=3—ps.

The form of the invariant is given in the right column.
According to the condition of symmetry (17), the
symmetric members have the same coefficients.
From equation (14) we can derive a system of linear
equations with 10 unknown coefficients, whose rank
is 8. If we choose coefficients k, and k , the solution is

ky
k, = — 6k,
ky= — 6k, —kyo

ky =9k +kiq

ks =12k, +kyo

ko= —kyo

ks =6k + ko

ky=— 18k  —kyo

ky=—8ky —kyqo

kyo- (30)

If we choose k;, =0, k,, =1, we obtain invariant
—1I-15. If we choose ky = 1, k;, =0, we obtain a new
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independent invariant

Ly = (130155 — 6150y  Hy 3 Hos — O3 lo sl Moy
+ Mooz 1y + 1205007 1 11 oy
+ 6504, 1 Bgalagtoy — 180l Hoalty My s
= 813 Hohgy — Ol yoH, Haghy 5 + o0 H0, 3,
1205 ottty , — OBy 1G5 Ha oMy

+ g5 130 Hog- (31)

2.2. The number of invariants

The number of invariants is dealt with in the Cayley-
Sylvester theorem, whose statement and proof are in

Y N@2,#3,25w) =

ol

r+3s=w r+3s=w

(1 _,,XZ”)(I WXIf’)(l _x3+25)(1 _x2+25)(1 ! tzs)
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Generally
Ak, k' r k"8

k] K+ |:k"+r”:|
ok K K"

Nk, r k', k" F" . ow)

[k k’+r’:”:k"+r”]
Lok K K’

The entire number of independent non-constant
invariants with second- and third-order moments of
weight w is equal to

;W)

w

(38)

w

w

= 2

r.s
rt+3s=w

(1 —x)(1 — x2)3(1 — x%)

reference (14). It implies that if we denote as A(k.r,w)
the number of partitions of the number w to the sum
of r integers from O to k, the number N(k,r,w) of
independent non-constant invariants consisting of

members with r kth-order moments is
Nk, r,w)= Ak, r,w)— A(k,r,w — 1) (32)

where w = kr/2 is the weight of the invariant. A similar
relation is satisfied for invariants with more complex

structure:
Nik,ry k' ¥ k" e
— Ak, K F K w1,

w)=A(k,r k', r'; k" " ow)
(33)
For instance, in the case of I, we have the number of
partitions of the number 6 to the sum of three integers
from 0 to 2 and two integers from 0 to 3
A(2,3;3,2;6)=16
A(2,3;3,2:5) =14
N(2,3;3,2,6)=16 — 14 =2,

see the left column of (29)

(34)

The number of invariants can be also found by
means of Gauss polynomials. They are defined as

n ym by __ yn—m+1
[n:]:(lfx)(l x ) (L=x"™0 54
m (1 —x)(1 —x%)---(1 —x™)
For A(k,r,w) holds
A(k,r,w)———|:k+r} :|:k+r} (36)
ro k.

where [ ],, denotes the coefficient at wth power of the
polynomial. Then the number of invariants is

Nk rw) = (1— x)[k : 'l _ [k : ’]* (37)

After relatively complex modification this becomes

1+ x°

e 39
(1= x?)(1 = x*)(1 —x°)? )

w

This means that there is one invariant of weight 2 (I,),
one invariant of weight 4 (/) and two invariants of
weight 6 (I, and 1,). There is also one skew invariant
of weight 9, but its second and higher powers are
dependent. Therefore its sign is independent, but its
absolute value is algebraically dependent on invariants
I.,1,,15and I,.

For complete proofs of theorems and detailed dis-
cussion of the properties of invariants see reference (15).

3. NUMERICAL EXPERIMENTS

In order to show the performance of the affine
moment invariants as features for pattern recognition,
several experiments on test and real images were
carried out. It was proved that in the case of affine-
deformed patterns we can reach very accurate results.
Moreover, it is shown that affine moment invariants
are successfully applicable for recognition of projective-
deformed patterns.

In the following experiments, three features I,, I,
and /; were used for object recognition. Classification
was performed by minimum distance in 3D Euclidean
feature space. Of course, more precise classification
algorithms which consider contextual information
could be used in the case of scene matching (see
references (15, 16) for details).

3.1. Experiment 1—Iletters

The first experiment deals with recognition of capital
letters. Figure 1(a) shows original letters—templates.
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Fig. 1. (a) Templates; (b) the letters to be recognized.

W
. @
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(b

Fig. 2. (a) Templates; (b) the shapes to be recognized.

Table 1. Affine moment invariants of letters in Experiment 1
Fig. 1(a) Fig. I(b)
Letter I[1074%]  1,[1078]  I,[107°]  I,[107%] I,[107®] I,[107°]
A 330 6 —133 336 10 —137
B 292 0 —15 294 0 —16
C 715 1286 192 719 1290 186
D 468 -8 —64 470 -8 —65
E 367 120 62 376 123 62
F 315 —245 —318 315 —234 —311
G 516 -30 —139 519 —33 —146
H 408 0 0 411 0 0
I 218 0 0 219 0 0
J 601 3423 —1240 599 3405 —1227
K 511 550 187 518 586 195
L 523 —2295 —1950 526 —2110 —1952
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Figure 1(b) shows the same set of letters deformed by
affine transform. The task was to recognize the de-
formed letters. The values of invariants I, I, and I,
are given in Table 1. It can be seen clearly that the
moment invariants really are invariant under affine
transform and that the classification is performed
without any errors.

3.2. Experiment 2— geometric shapes

The test image of the size 512 x 512 pixels (see
Fig. 2(a)) consists of six simple geometric shapes. The
image was deformed by affine transform and two new
objects were added (see Fig. 2(b)). Then the classifi-
cation of objects in Fig. 2(b) into six shape classes
given in Fig. 2(a) was performed by means of moment
invariants I, I, and I;.

The values of moment invariants are shown in
Table 2. Table 3 contains the distances between each
two objects in the feature space. The results of classi-
fication by minimum distance are given in Table 4.

There are two misclassifications there: 2 ~ C and
3 ~ D. They are caused by low separability of classes
2 and 3 in the feature space.

3.3. Experiment 3—satellite images

The third experiment deals with the recognition of
closed-boundary regions which were detected in satel-
lite images. Moreover, we try to use the invariants I,,
I, and I, for recognition of projective-deformed regions
and the regions extracted from a digitized map.

Four input digital images are given (see Fig. 3):
original image of the size 512 x 512 pixels taken by
satellite Landsat TM, its affine and projective trans-
forms and digitized map of the same area on a scale
1:25,000.

Several closed-boundary regions were detected via
adaptive thresholding and region growing in the orig-
mnal image; on the Earth’s surface they represent fields
and lakes. The same regions were found in both
transformed images. Ten regions were manually selec-
ted in the map. All extracted regions are shown in
Fig. 4. The regions from the original Landsat image
served as templates.

Table 3. Distance matrix

Fig. 2(a)

Fig. 2(b) 1 2 3 4 5 6

A 1.0 680 677 393 691 1761
B 53.6 154 15.0 18.5 17.2 2282
C 66.9 1.0 14 320 50 2396
D 66.5 1.4 1.0 314 6.0 2393
E 68.7 5.1 6.1 354 00 2412
F 39.1 334 328 1.0 361 2136
G 261.0 3235 3233 2987 3241 86.8
H 179.0 243.0 2427 216.6 2439 2.8

Table 4. Shape classification by minimum distance method

Fig. 2(a) 1 2 3 4 5 6
Fig. 2(b) A cC D F E H

Firstly, the recognition of the regions from the
affine-deformed image was carried out. According to
the theoretical presumptions, the classification was
correct everywhere.

Secondly, we classified the regions from the projec-
tive-deformed image. Note that I,, I, and I,
theoretically are not invariant under projective trans-
formation. Nevertheless, the result was also perfect—
all regions were recognized correctly. Successful re-
cognition resulted from the slight effect of non-linear
terms of projective transform with respect to the size
of the regions.

Finally, the recognition of the map regions was
performed. The situation is much more complicated
than in the previous cases, because the original image
and map differ from each other by unknown shape-
non-preserving distortion.

The distances between map regions and templates
are shown in Table 5. The classification by minimum
distance (with rejection threshold = 50) yields six
corresponding pairs (see Table 6). There is only one
misclassification among them (8 ~ D); all other regions
are classified correctly.

Table 2. Affine moment invariants of shapes in Experiment 2

Fig. 2(a) Fig. 2(b)
Object  I,[107*] I,[10°%] I,[107¢] Object [,[10°*] I[,[107*] [,[107%]
1 92 —-32 —55 A 93 ~32 —55
2 69 0 0 B 75 -2 —14
3 70 0 0 C 69 0 —1
4 89 —7 —25 D 70 0 —1
5 64 0 —1 E 64 0 ~1
6 143 —168 —155 F 90 -7 —25
G 145 —241 —202
H 143 —~170 —157




Fig. 3. From left to right and from top to bottom: original Landsat TM image, its affine transform, its
projective transform, digitized map on a scale 1:25,000.
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Fig. 4. Closed-boundary regions extracted from Fig. 3.
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Table 5. Distance matrix

Image

Map A B C D E F G
1 55 17 13 37 108 34 152
2 39 14 13 20 94 23 136
3 18 41 50 24 67 36 9
4 46 11 32 32 104 24 146
5 43 53 64 33 43 56 85
6 54 16 12 36 107 33 152
7 46 11 45 31 104 25 146
8 37 4.1 16 17 91 23 133
9 20 31 30 35 98 9 129

10 54 16 13 36 107 34 151

Table 6. Correspondence of regions in the original image
and in the map

Mapregions 1 2 3 4 S 6 7 8 9 10
Templates — B A CE — — D F —

The results of the above-described experiments prove
that pattern recognition by affine moment invariants
is sufficiently accurate and that it can be used even
in the case of more general transformation of patterns.

4. SUMMARY

The paper deals with feature-based recognition of
affine-deformed objects and patterns. The set of new
invariant features is presented. Affine moment
invariants are used as features. The affine moment
invariants were derived by means of decomposition
of affine trafkformation into six one-parameter trans-
formations. Results of the theory of algebraic invariants
were used for this derivation. In this sense, our paper
is a significant extension and generalization of recent
works.(5710

Affine moment invariants were successfully used in
several experiments for recognition of affine-deformed
objects and patterns. It was proved that they can be
applied even in the case of more general deformations.

Pattern recognition by affine moment invariants
can be used in many practical tasks, for example
in image matching, multitemporal image sequence
analysis, shape classification, character recognition

and so on. The approach has numerous applications
in remote sensing and medical imaging.
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