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Abstract

The paper deals with matching of two sets of objects, which differ from each other by translation, rotation and scaling.
A new two-stage algorithm for feature-based object matching has been developed. In order to reach accurate matching
results and to reduce computing complexity, it uses local information (represented by a set of invariant features) as well as
information about object-to-object distances in the image plane. To measure the reliability of determining correspondence
between two objects, matching likelihood coefficients are introduced.

An improved version of shape matrix method for description of 2-D shapes is introduced in this paper. The shape matrices
are used as the features in the first stage of the matching algorithm.
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1. Introduction

Analysis of two digital images of the same scene
taken at different times, from different places or by
different sensors often requires automatic matching of
the images. By image matching we understand the pro-
cess of determining mutual correspondence between
two sets of objects.

The problem of image matching seems to be similar
to the well-known feature-based classification (when
the objects in the first image represent classes and the
objects in the second image represent unknown pat-
terns), but in image matching an important additional
information is available:

e Each object of the first image cannot have more
than one corresponding object in the second image,
i.e. each class either contains only one element or
is empty;

* Email: flusser@utia.cas.cz

e The images differ from each other by some kind of
geometric transformation which is supposed to be
known (its coefficients, however, are unknown).
Object detection can be done by well-known seg-

mentation techniques (see (Haralick and Shapiro,

1985) for a survey). Two binary images with ex-

tracted objects are obtained as the results of the

segmentation.

There were described many matching methods in
the literature. These methods are based on combina-
torial approach (Goshtasby and Stockman, 1985),
graph matching (Zahn, 1974), parameters cluster-
ing (Stockman et al., 1982), probabilistic relaxation
(Ranade and Rosenfeld, 1980) and logical tree clas-
sification (Ventura et al., 1990). Generally, most of
them have high computing complexity or low re-
liability. The algorithm described below combines
local and global approaches in order to reduce the
computing complexity and to reach high robustness.

0167-8655/95/$09.50 © 1995 Elsevier Science B.V. All rights reserved

SSDI0167-8655(95)00032-1



894 J. Flusser/Pattern Recognition Letters 16 (1995) 893-900

2. Object matching algorithm

Let us consider matching of two images which dif-
fer from each other by a similarity transform (i.e. by
translation, rotation and scaling). Let us denote N and
M the numbers of objects in the first and second im-
ages, respectively.

We suppose that any object A is represented by its
feature vector A, which is invariant under similarity
transform. At this moment, it is not essential what kind
of features is used, because the proposed matching
algorithm is feature-independent.

We suppose that a similarity relation p(A, B) be-
tween the objects A and B is defined. If the feature
space is a metric one with metric g, p(A, B) can be
defined for instance by the following formula:
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The presented algorithm for object matching con-
sists of two stages. The first stage is performed in the
feature space, the second one is performed in the im-
age space.

In the first stage, the local information about the
objects represented by their feature values is used to
find two pairs of the most likely corresponding objects.

Let us denote Fi,... Fy and Gy, ... Gy the objects
detected in the first and second images, respectively.
Define the N x M matrix K by the relation
Kj=p(F.G;), i=1,....N;j=1,....M

For each i find j; < M such that K;j, = max; K;;.

In order to minimize the possibility of the false
match, we define the matching likelihood coefficients.
For each i we find an index ¢, < M such that Ky, =
max;« j; K,‘j.

The matching likelihood coefficient d; is defined by
the formula

d,'=K,‘_,‘l.'(K,‘j,——K,‘p'), [=1,A..,N

and expresses the degree of reliability, with which ob-
jects F; and G, correspond with each other.

Now we can find indexes iy and i; which describe
the most reliable matching:
di()

= max d;, d;, = maxd,.
i IEal!
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In this way, we have determined two pairs of objects
corresponding with maximum likelihood:

Fy=G; and F, =Gj .

In the second stage, having two pairs of corre-
sponding points (the centres of gravity of the objects
Fy,Gj, . Fy and G;, ), the parameters of the geomet-
ric transformation between the images can be simply
estimated. The type of the transformation is supposed
to be

u=c(x-cosa —y-sina) +a
v=c(x-sina+y-cosa)+ b, (2)

where (x, y) and (u,v) are the coordinates in the first
and second images, respectively, a and b denote the
translation in horizontal and vertical directions, ¢ is
the scaling factor and « is the angle of rotation.

Knowing the parameters, we can map the objects
of the first image into the second image. Object-to-
object correspondence is then established by the near-
est neighbour rule. However, some rejection threshold
should be applied to avoid false match.

More formally, the whole algorithm can be de-
scribed as follows:

Algorithm MLC (Matching by Matching Likelihood

Coefficients)
1. Denote Fi,...,Fy the objects in the first image
and Gy,. .., Gy the objects in the second one.

2. Construct two point sets
Q={(xi,y) | xi,y; are coordinates of
the center of gravity of object F;},

S={(uj,v;) | uj,v, are coordinates of
the center of gravity of object G }.

3. Compute the N x M matrix K
K =p (F.G)).

4. fori=1to N
find indexes j; and ¢; such that

K;; = max Kj;, Ky, = max K;;
j

*Ji
and compute the matching likelihood coefficient
d; =Ky, - (Kij, - Ki,) .

endfor
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5. Find indexes iy and {; such that

d;, =maxd,.

di, = max d;,
! 1#1

6. Solve the following system of linear equations with
variables ¢ - cosa, ¢ - sina, a and b:

“p,=¢ (x!'n ‘cosa — yj, -sin a) +a
vj, =€ (x,-o -sina + yj, - cos a) +b
Uj, =c¢ (Xn <Ccos @ — y;, - sin a) +a
vj, =¢ (Xn -sina 4 y;, - cos a) + b.

7. Define a distance threshold r > 0 .
for i =1 to N compute

u=c(x;j-cosa —y;-sina) + a
v=c(x;-sina+y;-cosa) + b.

Let (u;,v;) € S be the closest point to (u,v). If
(u—up)?+ (v —v)? <r?

then F; and G; are considered as a corresponding
pair, otherwise the object F; is marked to have no
corresponding object in the second image.
endfor

8. Final check. Define a rejection threshold r € (0; 1).
For each couple of corresponding objects F and
G compare p(F,G) with t. If p(F,G) < t, reject
the objects F and G from the list of corresponding
objects.

Now we shall discuss some basic properties of al-
gorithm MLC.

o Computing complexity. Computing complexity of
the algorithm is O(M - N) regardless of the type of
features used (computing complexity of object fea-
ture evaluation does not depend on the total number
of objects).

e Robustness. The first stage of algorithm MLC (i.e.
steps 1-5) could generate a false match in some par-
ticular cases. If all objects have very similar shapes,
their feature vectors are close to each other and the
objects are not well-separated in the feature space.
The matching results could be then significantly af-
fected even by small noise or by inaccurate segmen-
tation of object boundaries. The second stage (i.e.
steps 6 and 7) cannot fail, if the first stage produced
a correct match.

The robustness can be controlled by appropriate
threshold selection in steps 7 and 8. The less the
threshold r is (and similarly the higher the threshold
t is), the less likely the false match is but, however,
the less number of corresponding pairs is found.

The matching results in every particular task are
also affected by the features used for object de-
scription (especially by their stability with respect
to shape distortions and random noise). Anyway,
algorithm MLC gives much better results than
minimum-distance shape matching in the feature
space.

e Adaptability. The algorithm can be simply modi-
fied to deal with more general geometric transfor-
mations between the input images (affine or pro-
jective transform for instance). Let the transform
be uniquely determined by P pairs of correspond-
ing points (P = 2 for similarity transform, P = 3
for affine transform, P = 4 for projective transform,

etc.). In step S, we find P indexes ip,...,ip—1 SO
that
di= max d;, j=0,1,...,P—~1.

’ F1gyeeslj—1

A system of 2P equations is then solved in step
6 to estimate the transform coefficients which are
requiered in step 7.

3. The features for shape description

Although the algorithm MLC can work with any
kind of features, the selection of appropriate shape
descriptors plays an important role and can affect the
matching results. Traditionally, the features used for
2-D shape description are categorized into five groups:
e Visual features (i.e. features directly describing a

shape, such as shape vector (Peli, 1981) and shape

matrix (Goshtasby, 1989; Taza and Suen, 1989;

Flusser, 1992));

o Transform coefficient features (Fourier descrip-
tors (Lin and Chellappa, 1987; Kiryati, 1988) or
Hadamard coefficients (Kuncheva, 1988));

e Algebraic features (based on matrix decomposition
of the image (Hong, 1991));

o Moment-based invariants (Hu, 1962; Flusser and
Suk, 1993; Reiss, 1993);
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¢ Differential invariants (used specially for curved

objects (Weiss, 1988)).

In this paper, we present a new shape descriptor
belonging to the first category which is called shape
matrix (SM).

The idea of a shape matrix was originally introduced
by Goshtasby (1989) and performs a generalization
of Peli’s shape vector (Peli, 1981). The main idea is to
define polar coordinates with the origin in the center of
gravity of the object. Then, starting from the maximum
radius, the binary object B is sampled with steps ¢ and
A, where § =2m/m, A= L/n, L is the length of the
maximum radius and m, n are desired dimensions of
the shape matrix. In this way, each sample uniquely
corresponds to one element of binary shape matrix B.
If the point with polar coordinates (i - 8, j - 4) lies
inside the shape, then B;; = 1; otherwise B;; = 0.

The method described in (Goshtasby, 1989) has
a major weakness. The density of sample points is
higher near the center then near the outermost circle.
Therefore, the elements of the shape matrix in different
columns contain different type of information about
the original shape. This is a significant phenomenon.

Several attempts to overcome this weakness have
been recently published. Taza and Suen (1989) intro-
duced the “weight” for each column of the shape ma-
trix. The weight of a column is directly proportional
to the order of this column. However, this technique
improves original Goshtasby’s method only slightly.

In this section, the shape matrix method is signif-
icantly improved and a new type of the shape ma-
trix construction is introduced. Uniform sampling in
a square grid is proposed instead of polar sampling.
Therefore, the sample points are equidistantly dis-
tributed over the shape. In this way, the shape is en-
coded into a binary matrix with optional resolution.
The presented method is able to describe every planar
object. There is no limit to the scope of the shapes
that the shape matrix can represent. The ability to de-
scribe even shapes with holes is a very important prop-
erty of the shape matrix. In many instances, informa-
tion about internal geometry of a shape considerably
enhances the shape recognition. Naturally, the “new”
shape matrix keeps all nice properties of the “old” one
- it is simple to construct, shape preserving and in-
variant under translation, rotation and scaling.

For given planar object B we define its shape matrix
of size n x n as follows.

Algorithm SMC (Shape Matrix Construction)

1. Find the centre of gravity T = (xr, yr) of object B.

2. Find point R = (xg,yg) such that R € B and
e¢(R,T) = maxxepe(X,T), where ¢ is the Eu-
clidean metric in the plane.

3. Construct the square with the centre at 7 and with
the side length 2-e(R.T). Point R lies at the centre
of a side of the square.

4. Divide the square into n x n subsquares S;; &, j =

I,...,n
5. Define the n x n binary shape matrix B as follows:

g 1 R (SyNB) > u(s) /2
Y700 otherwise,

where u(F) denotes the area of the planar region
F.

It is easy to prove that the shape matrix is invariant
to translation, rotation and scaling of the object. More-
over, the shape of the object can be reconstructed from
the shape matrix. The accuracy of the reconstruction
is given by the size of the subsquares Sy;, i.e. we can
reach more accurate (and, of course, more computa-
tionally expensive) shape description by increasing n.
An algorithm for determination of optimal shape ma-
trix dimension can be found in (Flusser, 1992).

To determine the degree of similarity between two
objects, their shape matrices A and B are compared.
However, the dimensions of the matrices must be
equal. The similarity relation p(A, B) is defined by
the following formula:

I n n
P(AB)=1- =3 > |A;—Byl. (3)

J=l =1
Note that it always holds
0<p(A,B) <L (4)

However, there exist shapes with more than one
maximum radius (i.e. more than one point R is found
during the second step of algorithm SMC) which
could produce different shape matrices depending on
the maximum radii used. Let the object A be de-
scribed by s different shape matrices A!, ..., A% and
the object B be described by g different shape matri-
ces B!, ..., B% We define the similarity p(A, B) by
the following relation:
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(a)

(b)

Fig. 1. Two sets of objects to be matched.

Table |
Matrix K and the matching likelihood coefficients (all values of
K were multiplied by 100)

Table 2
Distances (in pixels) between the centres of gravity of the objects
calculated in Step 7 of Algorithm MLC

] 2 3 4 5 6 d A B C D E F G
A 88 61 68 83 45 76 440 1 146 259 0 253 376 171 288
B 62 85 81 69 80 65 340 2 143 0.1 259 134 153 267 276
C 96 65 68 84 49 78 1152 3 108 131 142 118 234 149 208
D 81 73 71 93 59 77 1116 4 211 134 253 0.1 140 174 145
E 77 53 56 72 37 65 385 5 243 267 171 173 312 0.1 128
F 49 82 73 59 88 58 528 6 315 277 289 145 254 128 0
G 79 66 65 76 60 98 1862

Table 3

p(A,B) =max p (A, B),

k=1,...,s; £=1,...,q (5)
where

) L '
(A By =1- ;ZZ'AE - Bl (6)

j=1 =1

Some failures might be caused by random noise in
the original image from which the objects were ex-
tracted and consequently by inaccurate boundary de-
tection. It is well-known that the centre of gravity 7T is
sufficiently stable under noise but the maximum radius
point R could be detected in a false position. To over-
come this, noise removal as well as boundary smooth-
ing are required prior to the shape matrix construction.

Correspondence between two test sets of objects determined by
Algorithm MLC

(a) 1 2 4 5 6
(b) C B D F G

4. Numerical experiments

To measure the performance of the proposed object
matching algorithm, the following experiments were
carried out.

In the first experiment, algorithm MLC was applied
to match simple shapes. Two test binary images of the
size 512 x 512 pixels were formed by a graphic editor
(see Fig. 1). The images differ by a translation, rota-
tion (30%) and scale (1 : 0.8). There are six objects
in the first image and seven objects in the second one.

First, the shape matrices of the size 16 x 16 of all
objects were found. The similarities between the ob-
jects were calculated for each possible pair and the
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Fig. 2. (a) Reference image (SPOT subscene, 512 x 512 pixels, band 3). (b) Sensed image (Landsat TM subscene, 512 x 512 pixels,
band 5). (c) Closed-boundary regions of the reference image. (d) Closed-boundary regions of the sensed image.

matrix K was constructed. Then the matching likeli-
hood coefficients were computed (see Table 1). It is
visible from Table 1 that two pairs of objects which
correspond with each other with maximum reliability
are6~ Gand | = C.

The following values of the parametres of the ge-
ometric transformation between the images were ob-
tained in step 6 of algorithm MLC: a = —32.4, b =
237.1, ¢ =0.8 and @ = /6. The correspondence be-
tween the other objects was established in step 7 (see
Table 2 and Table 3). Threshold values r = 1 and ¢ =
0.85 were used in steps 7 and 8 of the algorithm.

It can be seen clearly by visual comparison of both

images that the final correspondence determined by
algorithm MLC is correct everywhere.

An interesting result was obtained in the case of two
multitemporal images of the same part of Czech terri-
tory, taken from satellites SPOT and Landsat. The first
image was taken by SPOT HRYV sensor in Septem-
ber 1987 (see Fig. 2a), the second one was taken by
Landsat TM in August 1988 (see Fig. 2b). Subscenes
of the size 512 x 512 pixels from the original images
were used. Since the both sensors produce multispec-
tral images, only one spectral band was selected for
this experiment (band 3 from SPOT HRV and band 5
from Landsat TM images).
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Table 4
Matrix K and the matching likelihood coefficients of the regions from satellite images (all values of K were multiplied by 100)
™ SPOT d
1 2 3 4 5 6 7 8 9 10 11 12
A 81 84 83 87 81 74 73 77 83 86 79 83 87
B 86 86 90 89 84 76 75 82 89 89 85 86 90
C 82 81 79 82 79 67 77 78 82 78 77 84 168
D 92 81 9l 91 81 74 81 81 86 84 88 84 92
E 78 97 81 79 93 82 71 86 92 88 79 93 388
F 85 85 89 90 84 72 79 82 88 82 84 86 90
G 71 77 73 72 79 85 62 67 75 83 77 78 170
H 87 74 89 90 73 66 87 73 77 74 83 76 90
1 78 92 82 79 89 84 68 82 88 93 82 89 93
J 70 83 71 69 84 88 63 71 78 83 76 81 352
K 82 69 78 78 70 61 92 73 76 64 78 73 920
L 85 87 81 82 88 74 78 92 9l 79 8s 88 92
M 85 89 84 84 91 79 78 89 92 86 85 94 188
N 85 74 86 87 74 68 86 74 78 75 85 75 87
Table 5

The geometric transformation between the images
is affine, but we consider it as approximately similarity
transform. In order to extract several closed-boundary
regions, the following technique was used in the both
images. (Note that our aim was not the complete im-
age segmentation, but only detection and extraction
of several homogeneous regions with high local con-
trast.)

First, each image was filtered by eight 3 x 3 Sobel
masks to detect edges in various directions. The edge
image was created as the maximum of those eight
oriented-edge images. The edge image was binarized
by low threshold (4 = 40). After that, most of pixels
were signed as “edge”. In the binary image, closed
boundary regions were found. Only the regions having
perimeter between 10 and 100 pixels were taken into
account.

Finally, the region boundaries were refined by
contour-tracing technique in original images (not in
the thresholded ones).

In this way, twelve regions from the SPOT image
and fourteen regions from the Landsat TM image were
extracted (see Figs. 2¢ and 2d). The extracted regions
represent mostly fields and water bodies (lakes and
ponds). However, there were some regions that ap-
peared in one of the images only.

The matrix K and the matching likelihood coeffi-
cients are shown in Table 4. It is visible from Table
4 that two pairs of the regions which correspond with
cach other with maximum reliability are 7 ~ K and
2 =~ E. In steps 7 and 8 of algorithm MLC, the fol-
lowing values of parametres were used: r = 5 and

Correspondence between two sets of closed-boundary regions from
satellite images determined by Algorithm MLC
SPOT 1 2 5 6 7
Landsat TM D E I Al K

11
N

8
L

M

t = 0.85. Table 5 summarizes the matching results.
All regions were matched correctly which is really a
hopeful result.

5. Summary and conclusion

In this paper, the problem of object matching has
been addressed and a new matching algorithm has
been presented. This algorithm uses the object de-
scription by a set of invariant features and combines
it with relations in the image space. The performance
of the proposed image matching algorithm has been
demonstrated by experiments on the artificial test im-
ages and remotely sensed satellite images. All objects
in the both experiments have been matched correctly.

Moreover, a new space- and scale-invariant descrip-
tion of planar shapes by coding into binary shape ma-
trix has been developed and presented in this paper.
The shape matrix has been successfully used as a shape
descriptor in MLC algorithm.

The presented technique of image matching may
have numerous practical applications in the field of
pattern recognition, computer vision and remote sens-

ing.
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