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Abstract—The paper is devoted to the feature-based description of blurred images acquired by a linear
shift-invariant imaging system. The proposed features are invariant with respect to blur (this means with
respect to the system point spread function), are based on image moments and are calculated directly from
the blurred image. This way, we are able to describe the original image without the PSF identification and
image restoration. In many applications (such as in image recognition from a database) our approach is
much more effective than the traditional “blind-restoration” one. The derivation of the blur invariants is
the major theoretical result of the paper. Several experiments are presented to illustrate the efficiency of the
invariants for blurred image description. Stability of the invariants with respect to additive random noise
and boundary effect is also discussed and is shown to be sufficiently high.
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1. INTRODUCTION

One of the most frequent tasks in image processing is
restoration, recognition or other processing of an image
which was captured by an imperfect imaging system.
The acquired image usually represents the scene in an
unsatisfactory manner. Since real imaging systems as
well as imaging conditions are imperfect, an observed
image represents only a degraded version of the original
scene. Blur is introduced into the image during the
imaging process by such factors as diffraction, lens
aberration, motion of the scene, wrong focus and at-
mospheric turbulence. The recent difficulties with the
Hubble Space Telescope show the necessity of having
appropriate tools for dealing with blurred images.
The widely accepted standard linear model'"’ de-
scribes the imaging process by convolution of an un-
known original (or ideal) image f(x, v) with the space-
invariant point spread function (PSF) h(x, y):

glx, vi={(f*h)(x.y) (1)
where g(x, y) represents the observed image. The PSF
h{x.y) describes the imaging system and in our case it
is assumed to be unknown.

The classical “blind-restoration™ approach consists
of the following two steps:

e Estimation of the PSF h(x. y):
e Estimation of the ideal image f(x.v) via restor-
ation of the blurred image g(x, v).

Both of these steps have been dealt with extensively
in the literature during the last two decades.

Linear imaging system

Symmetric blur

One group of methods for PSF identification is
based on the investigation of zero patterns in the
spectral domain2™* or spike patterns in the cepstral
domain.'"” Another group of methods is based on
modeling of the image by a stochastic process. The
original image is modeled as an autoregressive (AR)
process and the blur as a moving average (MA) process.
The blurred image is then modeled as a mixed auto-
regressive moving average (ARMA) process and the
MA process identified by this model is considered as a
description of the PSF. In this way the problem of PSF
estimation is transformed into the problem of deter-
mining the parameters of an ARMA model.¢” "

After the PSF has been identified, the original image
can then be estimated via restoration of the blurred
image by an inverse filter, a Wiener filter or by any
other similar technique [see'!*'?’ or''® for a survey].

As a rule the above mentioned approach to image
restoration is very complicated and time-consuming.
In many cases, we do not need to know the original
image itself; we only need to know some representation
of it (a typical example is a recognition of a blurred
image against a database). However, such a represen-
tation should be independent of the imaging system
and should really describe the original image, not the
degraded one. In this paper, we present a set of features
for image description which are invariant with respect
to blur (this means that the feature values of g(x, y) do
not depend on h(x, y) and that they are the same as the
feature values of f(x, y)). Image recognition may then
be accomplished via classification in the feature space.
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In this way, we get rid of the necessity of the PSF
identification and image restoration.

It should be noted that a similar approach has been
used many times for the description of images with
geometric degradations [see''* for instance] but our
work presents the first attempt to apply a feature-
based technique in the case of radiometric degradations
given by equation (1).

The blur-invariant features introduced in this paper
are based on image moments. In Section 2 we deal with
ordinary and central moments of a blurred image and
we express them as functions of moments of an ideal
image and the PSF. Then our attention will be focused
on symmetric blur, which involves long-term atmo-
spheric blur and out-of-focus blur as special cases.
Section 3 is devoted to the derivation of invariant
features. An original algorithm for derivation of the
invariants is presented and the invariants up to the 7th
order are shown in explicit form. In Section 4. their
invariance and discriminability are demonstrated by
experiments. Stability of the invariants with respect to
additive random noise as well as to boundary effects
is discussed in Section 5.

2. MOMENTS OF A BLURRED IMAGE

The two-dimensional (p + g)th order ordinary moment
m\,) of an image f(x, y) is defined by the integral

mpg =

J xPyifix,y)dxdy. 2)

The point (x*, y/!) given by the relations
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is called the center of grarity or centroid of the image
S(x,y). The (p + g)th order central moment 1) is then
defined as

= § T =X =y ydady. (3)

The following theorem expresses the moments of the
blurred image given by equation (1) in terms of moments
of the original image and the PSF.
Theorem 1. Let f(x,y) be a function describing an
original image and A(x, y) a shift-invariant PSF of a
linear imaging system. The functions f(x, y) and h(x, v)
are assumed to be piecewise continuous and non-zero
only on bounded supports. Let g(x.y) be a blurred
tmage given by the convolution

gle y) = (fxh)(x, ).
Then the relation
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holds for every p and g.
Proof.

9= [ (x—x®P(y—y@) g(x,y)dxdy

= f }(X*Xﬁf’—ﬂ"’)"(y—ﬂ”—ﬂ"’)“
x (f*h)(x,y)dx dy

= | | c—=xP = xMp(y -yt — yiye
x | | m@b)fix—ay—b)dadb)dxdy

= } } h(a’b)( ] } (X—x‘rf)_xgh))p
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3. SYMMETRIC BLUR INVARIANTS

fi
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In this Section, we derive moment-based image fea-
tures which are independent of blur, i.e. independent
of the type and parameters of h(x, y). The feature B is
called blur invariant if and only if BY? = BY*» = BY for
every h(x, y).

We consider symmetric blur only, this means that
h(x, y)is assumed to be symmetric with respect to both
axes and both diagonals. More formally, h(x,y) is
assumed to satisfy the following conditions (conditions
of symmetry):

hix,y)=h(—x.y),
h(x,y)= h(y. x).

Note that every PSF with radial symmetry h(x, y) = h(r)
is a special case of symmetric blur as defined above.
Therefore two very frequent types of blur—long-term
atmospheric turbulence blur and out-of-focus blur—
belong to our class of symmetric blur.

Moreover, the degradation system is assumed to be
energy-preserving, i.e.

x

[ § hixoyydxdy=pfd =1 4)

- x
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Lemma 1. 1If h(x, y) satisfies the conditions of symmetry
then

o ul = ud) for every p and ¢;

e if p or g is odd, then pl = 0.

The proof of Lemma 1 is straightforward.

3.1. Derivation of the invariants

Blur invariants are supposed to be functions of
central moments of an image, i.e. they should have the
form B = B(pgo, Hag,-- .- 1t,g). By the order r of the
invariant B we understand the order of the highest
moment p,,, i.e.r=p+4.

Derivation of the invariants up to the 3rd order is
almost trivial. It is quite easy to prove by means of
Theorem 1 and Lemma 1 that pgy, 1,1, i20-Ho 20 M1 2-
U3 1, o3 and u;, are invariant with respect to symmetric
blur. Note that g, = p15, = 0 for any image and there-
fore there are no first-order invariants.

We propose the following algorithm for the cons-
truction of symmetric blur invariants of order r > 3.

(1) Let r > 3 be the order of the desired invariant
B. Let p,, be any central moment of order r. Then we
start by setting

K= [(r - 4)//2]
(the symbol [x] denotes the integer part of x),

[0 :.upq

if p and/or ¢ is odd and

fo= Hpg = Hgp

if pand g are even and p # g. If pis even and p = ¢, no
invariant is generated by the moment .
(2) forn=0to K

Define D, as
D=1 1.
D, has the form

Dy= 3 Fip' i, + Ryip" ™)
i=1

where F,..., F, arefunctions of the central moments
of the image f(x, y) only and "} are central moments
of the highest order of A(x, y). No moment of h(x, y) of
the same order is contained in R (', u™). The moments
of g(x, y) were evaluated by means of Theorem 1. It
follows that

ay+by=a,+by==a, +h, =2AK —n+1).

Due to the symmetry of h{x, v}, all 4; and b, are even

for each nand satisfy the relation a, > h,. Define [, ., | as
Liov=5= " % Filipas,

Hoo i1

end for

(3) Set
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However, it is not clear whether every function B
produced by this algorithm is really blur invariant. The
answer is given by the following Lemma.

Lemma 2. Consider the situation in Step 2 for the last
n(ie. n=K). Then

® s, =1.a,=2and b, =0. Therefore Dy has the
form
Dy = F(u")u$s.
e If the function F(y) is a blur invariant, then the

function B produced as a result of the above mentioned
algorithm is also blur invariant.

Proof.

e Proof of the first assertion is straightforward.
.
F(u )l

)
udh

BO =1, =19 -

F(u®) (uld p + p%
rg - RO TR p

Hoo
FuN )
=1 — (+ (f))ﬂm:I(Kfll=B‘“ 0
Hoo

It follows from the algorithm description that the
number n, of independent invariants of order r is

n=r+1

if r is odd (each moment u,,, of order r generates one
independent invariant) and

n, = [(3r + 2)/4]

if r is even (moments p,, and u,, generate dependent
invariants if both p and ¢ are even).

Note that the above mentioned formulae are not
validforr=0and r=1:

ng =1,

n, =0.

3.2. Metric spuce of the invariants

Since invariants should serve as features for image
similarity or dissimilarity assessment, it is sometimes
inconvenient to use the invariants described above
directly.

The tnvariants should be normalized in two ways:
to be independent of the average gray-level value of
the image and to have the same “weight” in an Euclidean
metric space. To achieve this, we use normalized blur
incariants

, B
(NJ2) " poo
where N is the size of the image and r is the order of
B. Moreover, s a result of this normalization, all the
B’ remain invariant even in the case of a non energy-
preserving imaging system where assumption (4) does
not hold.
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The set 4, of invariants B’ up to the rth order has e 6th order.

r ¢ pzapt 3z,
No= 3o Bio=tyy— =" 5~ Hooltisr + 1113)
k=2 Hoo Hoo

elements. The N -dimensional metric space (4, ¢} where = 3y 20 + o)l

¢ 1s the Euclidean metric is a suitable feature space for

L . . —64u,,)B !
evaluating image-to-image distances. Wao = 61022)B, _ 110

- ”2*(/10039 + 63%),
Hoo Hoo

B~ =4y — pag t

3.3. Symmetric blur invariants in explicit form 15
Bis=leo — Hoo — ~(tts0B: + t120Bo),

By applying the above described algorithm, we can Hoo

construct blur invariants of any order and express
c Sltaoftss + 24t2087)

them in explicit form. A set of invariants up to the 7th Bio=1l,s— - ,
order is listed below: Hoo
e Zero-order. _ Spaotyy + 2p50Bs)
Byy=isy — - ) - .
Bo = oo Hoo
e Ist order. e 7th order.
none. 3Sposttao 2luseBiy
By =gy — = — R
e 2nd order. oo Hoo
B, =y, B,,=yu 715,“1,,2,,“{4,9_1,5,610313
22 = Hie s
By = (50— o, Hoo Hao
e 3rd order. B..— SuziMao  10uospz; 0Py
23— Hos— ——— 7~ T T
By=p, Hoo Hoo Hoo
By =5, where
Bi=uy, 30 10,
: Ha1lz0 o3ltao + Ho2)
B = Py=pos + 10y — 55 —
o = Ko Hoo Hoo
e 4th order.
By, =1 Hsottao  18i1aftay  3tz0P;
3 =3y o T
B-=p:— 2ot T Hoo Hoo Hoo
Hoo where
RITPT!
By =3, — Haol " 2pz0tt20 Oty 2flao + Ho2)
) Hoo Py=ypy4+2p;3; - - ,
Hoo Hoo
61150B,
By = pi4n — ttos 072, B u 35uzoita0  21120B s
Hoo 25 = H7o — - s
Hoo Hoo
e 5th order.
15051 15u,0B
Gery + 3020 By = gy — ——r0 — A2
By =p;, ~ _ . Hoo Hoo
Hoo
B - _‘31121 *+ Hosliao 327=/152~5u12uA9—£)f130#22—M—3,
1 ) Hoo Hoa Koo
Hoo
where
Bir= ity — 012120
S u ’ -~ 30p1 3030 10p30(120 + 1o2)
o0 Py = 5o+ 10p;35 — - )
610, 2450 Hoo Hoo
Biy=p,— .
Hoo By =y Hosttao  18pt211t20  3p30P,
28 = Haz ——— — - = s
104034050 Hoo Hoo Hoo
By =gips — .
Moo where
10 s 2 ¢ 6 +
By<= pisy — ﬂso/l_o_ Py= iy + 223 — Hoslao U21(tao #02).

Hoo

Hoo Hoo
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3.4. Efficiency of the invariants

The computing complexity of the blur invariants is
determined by the computing complexity of the central
moments y,,. However, in the case of digital image f,
of the size N x N we have to use a discrete version of
equation (3) for moment evaluation:

N N
fpg= 3 U= XD = vy (5)

i=1 -1
Direct evaluation of y,, requires O(N?) operations.
Although several methods for fast moment computing
have been published recently [see''* for a survey].
they are not applicable in the case of gray-level images.
It is well-known that the central moments p,, con-
tain redundant information. This is caused by the fact
that the basis x”)71s not orthogonal. To overcome this.
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1t would be possible to use any orthogonal basis for
moment definition and to derive blur invariants using
orthogonal moments (Zernike moments for instance).

3.5, Uniqueness of the invariants

By uniqueness of the invariants we mean the ability
to distinguish (in the feature space) among “similar”
images. The experimental results have shown the suffi-
ciently high discriminability of the portrait photo-
graphs by means of the symmetric blur invartants.
However, from the theoretical point of view, the set
of invariants 4, is an incomplete feature system for
every r. That means there may exist two different
images f,(x.y)and f,(x,y)such that

B'itfl (- B;_(Jz) j=0,1,2,... N,

Fig. 1. Top row: (a) Lena original, (b) out-of-focus blur (PSF radius = 7 pixels), (c) out-of-focus blur

(PSF radius = 15 pixels); middle row: atmospheric turbulence blur with additive Gaussian random noise.

(d) STD =0, (¢} STD = 10, (f) STD = 30; bottom row: (g) averaging by the mask with a hole in the center.
(h) averaging by the mask with negative values on the boundary, (i) Lisa original.
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4. NUMERICAL EXPERIMENTS

In order to demonstrate the performance of the
proposed blurred image features, a number of experi-
ments were carried out. A major goal of the experiment
described below was to prove the invariance of the
features with respect to various degradation systems.

In this experiment, an image was successively cor-
rupted by various types of symmetric blur (see Fig. 1).
In the top row of Fig. 1 one can see the original Lena
image of size 256 x 256 pixels, a slightly defocused
image (support of the PSF had a radius 7 pixels) and
a heavily defocused image (15 pixel-radius of the PSF
support). In the middle row the Lena image is blurred
by simulated atmospheric turbulence (the PSF was a
Gaussian with 6 pixel-radius support) and corrupted
by additive zero-mean Gaussian noise with standard
deviation 0, 10 and 30, respectively. In the bottom row
one can see the Lena image degraded by two special
filters: averaging over a 33 x 33 neighbourhood with
a 29 x 29 hole in the center and averaging over a
21 x 21 neighbourhood with negative values on the
boundary. The last image —portrait of Lisa— was in-
corporated into the test set to show the discriminability
of the invariants.

The invariants B, B5,..., B4y were calculated for
each image [equation (5) was used for moment evalu-

J. FLUSSER et al.

distances of each image from the original Lena image
in 28D Euclidean space (4, ¢) are shown in the last
row of Table 1. It is clear from Table 1 that B\, B},...,
B¢ are invariant with respect to PSF, sufficiently
stable under additive noise and object discriminatory.
Stabitlity of the invariants is discussed in detail in the
following Section.

5. STABILITY OF THE BLUR INVARIANTS

Features which we want to use for image description
should have the property of stability. Generally speak-
ing, if two images are similar in some manner:(in [,
norm for instance), then their feature values should be
similar too, and vice versa.

In this Section, we will discuss how the blur in-
variants B; satisfy this criterion.

There are three different kinds of stability to be
investigated in the case of blur invariants: stability
under additive random noise, stability with respect to
boundary effect and stability with respect to PSF dis-
tortions.

5.1. Stability under additive random noise

So far we have considered the noise-free model (1)

ation]. Their values are summarized in Table 1. The only. Now let us consider an imaging model with

Table 1. The values of the invariants of the images in Fig. | and the distances of the images from the original Lena image

(last row).
(a) (b) (c) (d) (e) (f (g) (h) @

B 0.0396 0.0396 0.0396 0.0396 0.0399 0.0393 0.0396 0.0396 —0.1187
B, —0.0018 —0.0018 —00018 —0.0018 -0.0019 —-0.0016 —0.0018 —0.0018 0.2366
B —-0.0171 —-0.0171 —-0.0171 -0.0171 —-0.0169 —-00168 —~0.0171 —0.0171 0.0291
B 0.0162 0.0162 0.0162 0.0162 0.0160 0.0170 0.0162 0.0t62  —0.0582
B 0.0347 0.0347 0.0347 0.0347 0.0350 0.0352 0.0348 0.0347 0.0080
B, —0.0835 —0.0835 —00835 —0.0835 —0.0834 00845 —00835 —0.0835 0.1344
B —0.0363 —-0.0363 -00362 -00363 00366 —0.0356 —0.0363 —0.0363 0.1443
By —0.0355 —0.0355 —0.0355 -00355 —0035 —-0.0352 —0.0355 —0.0355 0.1115
B, 0.0275 0.0275 0.0275 0.0275 0.0276 0.0276 0.0275 0.0275 —0.6116
B —0.0047 —-0.0047 00047 —0.0047 -0.0048 —0.0046 —0.0047 —0.0047 —0.0797
B, —0.0249 —00249 —0.0249 -00249  —0.0247 00255 —-0.0249 —-0.0249 0.0647
B, —0.0353 —0.0353 —-00353 -0.0353 —00349 —-0.0368 —0.0353 -—-0.0353 0.1824
B; 0.0315 0.0315 0.0315 0.0315 0.0310 0.0311 0.0315 0.0315  —0.0658
B —0.1125 —0.1126 —-0.1125 —0.1125 -0.1132  -0.1138 —-0.1126 —0.1125 —0.0404
B« 02713 0.2713 0.2714 0.2713 0.2708 0.2741 0.2713 02714  —0.6950
B'e 0.0283 0.0283 0.0283 0.0283 0.0285 0.0280 0.0283 0.0283 —0.1203
B - 0.0008 0.0008 0.0008 0.0008 0.0008 0.0006 0.0008 0.0008 —0.0144
B —0.1580 —0.1578  —0.1581 —-0.1579 —-0.1582  —0.1583 —0.1580 —0.1579 4.1227
By 0.1089 0.1090 0.1089 0.1090 0.1101 0.1068 0.1090 0.1090  —0.649¢6
B, 0.1113 0.1113 0.1113 0.1113 0.1114 0.1102 0.1113 0.1113  —04703
B, 0.7357 0.7359 0.7356 0.7358 0.7395 0.7425 0.7361 0.7355 0.3932
B, —0.1438  —0.1438  —0.1439  —0.1437 -0.1414 —0.1418 —0.1438 —0.1438 0.4256
B, 0.0852 0.0852 0.0852 0.0853 0.0845 0.0870 0.0852 0.0852 —0.2888
B., 0.0073 0.0073 0.0073 0.0073 0.0075 0.0072 0.0073 0.0073 0.1926
B —-1.7723 —1.7721 —1.7726  —1.7723 -1.7676  —1.7860 —1.7722 —1.7727 6.8090
B¢ 0.1639 0.1638 0.1638 0.1639 0.1620 0.1701 0.1639 0.1639  —1.2782
B,- 0.0174 0.0174 0.0174 0.0174 0.0175 0.0173 0.0174 0.0174 0.3733
By 0.0566 0.0566 0.0566 0.0567 0.0562 0.0575 0.0566 0.0566 —0.1916

173.1 4.2 43 98688

o[107%) - 37 34 1.8 71.0
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additive zero-mean random noise n(x, v):
glx, vy =(f+h(x,¥) + nix, v). (6)

Since the image g(x.y) is then a random field, all its
moments and all invariants can be viewed as random
variables. It holds

E(u‘,;'q)):E< [ .\””y“‘n(‘\'.y)dxd}')

= \ J X"y EmUx, v dxdy =0

and

L(“(’;]ql) — E“l(j»cm' + E“l(m) — ﬂlfth).

rq Pq Pq

where E(X) denotes the mean value of the random
variable X.
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In practice, however, only a single image g(x, y) (i.e.
only one realization of a random field) is available in
most cases. We obtain g but we are not able to
estimate the mean values E(u?). Since the moments
are computed by summation over the whole image,
they should be affected by additive noise very little.
This means that the moments u\9) are supposed to be
close to E(u$g) and we can use u') directly for the
computation of the invariants B;.

The accuracy of such a description is illustrated by
the following experiment. Denote an image corrupted
by additive Gaussian zero-mean noise n(x,y) with
standard deviation o as g,(x, y). The stability of the
invariants is characterized by the distance g(f,g,) as a
function of o in 4, space. The results in the case of Lena
image, o values from 5 to 50 and r =7 are shown in
Fig. 2 (the values of ¢ displayed on the vertical axis are

- N}
- o [N} w»

(o]
w

Distance from the onginal

5 015 20

25 30 35 40 45 50
Standarg deviation

Fig. 2. Stability of the invariants with respect 1o additive Gaussian zero-mean random noise. Horizontal
axis: standard deviation of noise: vertical axis: the distance (multiplied by 100) between the corrupted and
original images in .%4- space.

Fig. 3. Left: the original image: right: the image corrupted by additive Gaussian zero-mean random noise,
STD = 50.
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in units of 10~ ?). One can see that the stability of the
invariants is sufficiently high: even for the most cor-
rupted image (which is very difficult to recognize by
human vision, see Fig. 3) the distance from the original
is about 0.02, whereas the distance between Lena and
the other portrait image 1s usually higher than 1.

5.2. Stability with respect to boundary effect

We now consider a discrete form of equation (1).
Provided that the size of the original image is N x N
pixels and the size of the PSF support is M x M pixels,
the correct size of the acquired image should be (N +
M — 1) x (N + M — 1) pixels. However, in practice the
value of M is unknown and the original and acquired
images are assumed to have the same size. If M « N,
the errors of invarant calculation caused by boundary
effect are negligible. If M is relatively large (in case of
heavy blur), the boundary effect might lead to more
significant errors of the values of invariants. Stability
of the invariants with respect to boundary effect 1s
investigated in the following experiment. which is very
similar to that described in Section 5.1.

Two portrait images of size 256 x 256 pixels were
successively blurred by convolving with a square mask
of size M x M with constant coefficients. The convol-
ution was calculated by means of mirror extension on
the image boundaries. The blurred image was cut off
so that its size is the same as the size of the size of the
original, independent of M. The distance between the
original and blurred images in .4, space as a function
of the mask size M i1s shown in Fig. 4 for the Lena as
well as for the Eve images. Note that the distances
between the most blurred images and the originals (see
Fig. 5)are only 0.04 and 0.14, respectively, whereas the
distance between the originals of Lena and Eve 1s
about 4.

The results of thts experiment show that the blur
invariants are sufficiently stable under boundary effect.

J. FLUSSER et al.

5.3. Stability under PSF distortions

Stability of the invariants under two special cases of
the PSF distortion should be investigated thoroughly
in the near future:

® h(x.y)does not satisfy the condition of symmetry
exactly;
e h(x.y) itself is random, i.e. it can be modeled as

hix,v)=h{x,y)+n,(x, ),

where h,(x. y) is the deterministic part of the PSF and
n,(x.y) is zero-mean random noise. This model is
usually used for description of a randomly vibrating
imaging system."'®

Although we have not carried out a representative
experiment on this topic, stability under PSF distor-
tions should be probably a little bit lower than in the
two previous cases.

6. SUMMARY

The paper was devoted to the construction of image
features invariant with respect to blur. The images
were supposed to be formed by a linear shift-invariant
imaging system, where the blur can be modeled by
convolving an original image with a system point
spread function.

A set of blur invariants based on image moments
was introduced in this paper. The derivation of the
invariants is a major theoretical result of the paper.

Invariance of the features as well as their ability to
distinguish among different images was demonstrated
experimentally. Stability of the invariants with respect
to additive random noise and boundary effect was also
discussed and was shown to be sufficiently high.
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Fig. 4. Stability of the invariants with respect to boundary effect. Horizontal axis: the mask size; vertical
axis: the distance (multiplied by 100) between blurred and original images in 4, space.
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Fig. 5. Left: original images; right: blurred images (the mask size was M = 47),
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