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Abstract. The affine moment invariants are important tool for recdgnitof geometrically de-
formed images for many years. Nevertheless, the proof @&peddence of a chosen set of them is
still problem. This contribution presents a new approacthése proofs, the affine moment invari-
ants are compared with the corresponding set of the noretalimments. The normalized moments
are complete and independent and if the values of the nareshthoments can be computed unam-
biguously from the values of the affine moment invariants wnd versa, then the set of the affine
moment invariants is complete and independent, too. Thef fwoinvariants up to the fourth order
is presented directly. The proof for higher orders can beencomplicated, but it can be simplified,
if we compute the solution not in the whole space of the featatues, but in some suitably chosen
specific values.
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INTRODUCTION

Moment invariants have become a powerful tool for recogugyabjects regardless of
their particular position, orientation, viewing angledasther variations. We have var-
lous sets of moment invariants, each of them is invariantfterdnt type of transfor-
mation. We will deal with the geometric transformationsyoahd there are two major
groups among them: similarity transform and affine tramafdrhe similarity transform
includes translation, scaling and rotation and there is laelaborated theory on rota-
tion moment invariants [1, 2, 3, 4] including creation of quete and independent sets
[5, 6], which have been successfully used in numerous agipits. The affine trans-
form includes the similarity transform and in addition tathstretching (anisotropic
scaling) and second rotation. A projective transform, niagephotographing a planar
scene by a pin-hole camera, can be approximated by an atim&orm for small objects
and large camera-to-scene distance. Thus, having povadfifud moment invariants for
object description and recognition is in great demand. Tieery of affine moment in-
variants has its pioneer era after it, too [7, 4], but proldemith creation of complete
and independent set of affine moment invariants remain oo

The using incomplete set of features means we cannot resdwD objects that
could be recognized by the same number of complete featlire® use dependent
features, then they do not contribute to the result at alifthey are noisy, then they can
even worsen the result. Therefore the using complete amghardient sets of features in
pattern recognition is very important.
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The affine moment invariants can be derived by means of thesick theory of
algebraic invariants, e.g. [8], by some better automateithote(method of tensors [9],
method of graphs [10, 11]) or by newly arisen method of noizasibn [12, 13, 14]. The
invariants derived by the normalization are calle@malized moment® distinguish
them from the traditionadffine moment invarianty he normalized moments have some
advantages in comparison with the affine moment invariar@s)ely easy creation of
complete and independent sets, and one drawback, theysamtinuous on symmetric
objects. Therefore affine moment invariants remain impdntaean for recognition of
the affinely distorted objects. The theme of this paper isgiie normalized moments
for verification of the independence of the affine momentiiavds.

AFFINE MOMENT INVARIANTS

The affine transformation can be expressed as

U=ap+aiX+agy (1)
V = bg + bix+ byy.

The geometric two-dimensionép + g)-th order moments of an imagi(x,y) are
defined as

mpq://xpyqf(x,y)dxdy pg=0,12,... (2)

—00 —00

Invariance to translation can be provided by using centhents. They are defined
as

oa= | [ (x=x)Ply—y)%f (x)dxdy @

—00 —00

wherep,q=0,1,2,..., andx = mo/Moo, Yt = Mo1/Moo are the coordinates of the
centroid. If we use quotlents

Vpq = Hpa/ Nop+q+2)/ ; (4)

then their function is invariant under scaling, too.
Now, the affine moment invariants can be derived e.g. by thia@deof graphs [10].
Here is example of the invariants up to the fourth order:

l1="(Maotoz— HZ1)/ HSo

l2 = (—M5oUgs+ BLz0L21 12103 — AH30UT, — 413 oz + 315, UZy) / L3S
l3="(Uz0t21Hos — H2oHZ — H11M30Mos3 + H11Hz1Ha2 + HozHsoHa2 — Hoz2l3y) / Hdo
la=(—H3UGs+ BLZH11 12103 — 3#201102L112 61120H111121H03 6Li20U7 U7,

+12M20H11H02I121M12 3#20#@21121 + lellllsoﬂos + 6H1%IJ21I112
—6uZ; HozH30H12 — 6% Hoold; + 61115, H30H21 — MG,H50) / Mo
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|5 = (U3gH30U3s — 3HSot21 121G + 21H50H 5,103 — B3 11 H30M12HEs
+620H1 1151 U3 + B150H11 Ho1 HEoHos — Blgoka 1T, + 3HE0 02k 301 2HO3
— 62 o257 12103 + 3HZgHo2H21 3, + 120012 HaolZo o3
—2401p0liZy M3y Ha2Hos + 120002y Ho1 5y — 12011 Ho2H30H;
+12Lp0p11 Ho2M31 Ho3 — 3Ho0HEH30H51 Hos + BH20HE, Haot21 1T,
—3L20HGH31 H12 — B3y HaoHT, + BT 3 Hoz — 12445 HooH30H51 Ho3
+24UZ, [oalsoH21 17, — 12UZ; toali3y M2+ 611G HE0 21 Hos
— 611 UG HEgHE, — BH11 UG H30HE1 H12 + BU11HEHS 1 — UgoH30H03
+3US S Ho1 12 — 21,3013y ) / HES

le = (HaoHoa— 4zt +3U3,)/ S,
I7="(MaoMo2Mos — Il4oIJf3 - M§1H04 + 2312213 — IJ232)/ ué’o
lg = (U3otoa— Aot 113+ 2La0Holo2 + U2 oo — A1 tozHar + HEalao) / Mo

lo = (MZpht22H0s— HaohZs — 2120M11H31H04 + 2120M11H22H13 4 H2oHo2Ha0Mo4
—2Hp0o2131H13 + H20H02MZ, + AU U1 — AuZ M, — 211 o2MaoH13
+2U11Ho2H31 122 + H32H40I122 - “52“3%1)/ H&g

l10=" (M3 311G, — BU3yLo2t13H04 + 2U50H35 — UBoH11Ha0HG, — 2150H11H31 11 3H04
+OUZoH11 M5 Hoa — L5 1 o2+ USoHo2HaoM 1 3H0a — 35002131 Ho2 o4
+ 250 02H31 125 -+ AH20UZ; Maot13Hos — 121202 Ha1looHoa + BlizoMEy Ha1 iy
—6H20I111I~102I140Hf3 + 6#20#11#02#3%1#04 - H20H32H40H31H04
+3Up0UGHaoH22 113 — 2H20UGHE; H13 — A3 Haollis + 415 51 Hoa
— 42 HopHaotat Hoa + 120421 HooHaokaoH13 — 81 Hook3, a3 + 11 M3 Mg o4
+ 211 4G Haok31H13 — IU11 MG a0k, + BU1L UG ME o2 — UM Z0H13
+31U5,Haok31H22 — 21551431) / Mo

l11 =" (U20M30M12H04 — H20M30H03M13 — u20H221H04+ HM2oH21M12HM13 + H20M21Ho3H22
— HooHZ5Ho2 — 211 H30H1 203 + 211430 Hoak22 + 2111143, 13
— 21 H21H12H22 — 2H11H21 Hosa1 + 2H1 15,31 + Ho2lsol12H22
—Ho2M30H03H31 — H02H221H22 ~+ Ho2HM21H12M31 + Ho2H21Ho3M40
— Ho2HZ,140) / H3S

lio= (IJg’onzIJM - ZIJSOIleHosHls + U 3ou§3uzz - 4#220H11H21N12H04
+AUZoH 121 Hoatas + 2Uagte 1113 — 212011 s ka1 + 2U30Ho2 30112 o4
— 250 o2H30H03 13 — 2Msp o221 2113 + 2130 o221 Hostoz + UagtozHZo a2
—2H220H02H12H03IJ31 + szoIJolegsMo + 4H20IJf 1#221H04 - 8uzoIJf 1H21Ho3H22
— A oo U252 + Bliaop?) U1 otosHa1 — 4HzoH11 Moz 3021 Hoa
+4 o0t 1 o230 otz + 4HzoH11Mo2la iz — 4lzota 1 Mozl Ha2kz2
+4N20H11H02H122IJ31 — 4poH11 o2 2 0340 + uzou§2u§ouo4
—2hool3 302113 + 2H20HEH30M 2122 — 2H0HEH30H03H31 + Hooldala, o2
—2Up0lE,Ho1 121431 + 220G, 21 Hoslao — B3 s Has -+ 1613 tioa i obizo
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—8u 3111%2!131 + 8uf1uozﬂsou21u13 - 8I~‘121U02I130L112H22 - 4Hflllozl~1221ﬂ22
+ALE HooZ 5 a0 — 2111 MG M50 113 + AH 1 HE H30H 2131 + 2H1 1 HEHS Ha1
— 411U, H1 12140 + Mo 30ko2 — 213, 30t21 a1 + USoHa Hao) / Moo

These invariants are irreducible, i.e. they cannot be egackas a polynomial of other
invariants, but a more complicated dependency can be anheng {The number of the
independent invariants can be computed by so caliézl of thumb The numbem of
independent invariants equals

n=m-p, (5)

wherem is the number of independent measurements of some objeatly inase it is
the number of moments, amis the number of independent constraints, which must be
satisfied (see e.g. [15]). Mostly it equals the number of patars of the transformation.
This formula is called "rule of thumb", because often it is nasyeto find, which
measurements and constraints are independent and whidh oat case, the moments
are independent and if we have the moments to the secondantyethen there is one
dependency among the constraints, so we have 6-5=1 invafidine second order. If
we use the moments of higher orders, then the constrainisdgpendent, and we have
10-6=4 independent invariants of the third order and 1548&d@pendent invariants of
the fourth order.

NORMALIZED MOMENTS

The moments (4) are normalized to translation and scaliregycévi continue with the
normalization to achieve affinely invariant normalized nemts. The affine transform
(1) can be decomposed into six simple one-parameter tnansfo

Horizontal translation : vertical translation: Scaling :

U=X—Xo u=x U= wx
v=y V=Y—Yo V= wy

| | _ | 6)
First rotation : Stretching : Second rotation :
U= xcosa —ysina u= 0x U= XCOSp —ysinp
v=xsina+ycosa  V=3y V= XSinp + ycosp.

It is advantageous to use complex moments for the normaliztd the rotation. The
complex momentpq of order(p+-q) is defined as

coa= [ [ (xeriy)Plx—iy)91 (x y)dxay. )

1 This decomposition does not include the affine transforntk wegative Jacobian, we would have to
insert mirror reflection. The consequences of not doinglittve commented later.

390



wherei denotes imaginary unit. Each complex moment can be exmressgerms of
geometric momentsiyg as

p q
_ p) (q) G- . ip+a—K—] . .
c _E z (=D ‘Mt prg—k—j - (8)
b k:sz (k J Pt )

If we use momentsgpq normalized to translation and scaling instead ofrthgin (8),
we obtain complex moments normalized to translation anlihgc& he reverse formula

IS
- - —1\49-1I. : .
Mpg = 2p+aiq kZO jzb (k) (J) (=) Ck+j,p+a—k-j - ()

In polar coordinates, (7) becomes the form
o 27T .
Cog = / / (P (P90 £ (1 g)dirde. (10)
o Jo
After the rotation by an angle the complex moment becomes
We can use the complex moments either for the normalizatidardahe creation of
the rotation invariants. During the normalization we cl®esme suitable normalizing

momentcp,q, and then we ask it become real and positive. It can be donerhyali
rotation of the image by the angle

1 O(Cpogo) )
a=— arctan( ——Po% ) 12
Po— Jo ( 0 (Cpoap) 12)

l.e. each complex moment is multiplied as in (11), where ¢hés from (12). The
O (Cpyg) @and(Cpyq,) are real and imaginary parts of thgq, .

It is suitable to use the complex momegg for the normalization to the first rotation.
The principal axis is then horizontal. The normalizatiothte stretching is provided so
the cyg becomes zero after it. From it we can compute the normalizagdficientd

5 4 C11—+/C20C02 (13)
C11+ /C20C02

We scale the image horizontally by it and vertically by thefficient 1/4. It can be
performed simply in case of geometric moments

n

but it is more complicated in case of complex moments. We caavert them to the
geometric ones by (9), normalize them by (14) and then covaak by (8).
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Now we could finish the normalization to the affine transfoyritiee normalization to
the second rotation bgps, but it emerged that simpler equations can be obtained, when
we use rotation invariants instead. The product

n n
®= .r!cﬁiqi is invariant to rotationif -Zki(pi —q) =0, (15)
1= 1=

wheren > 1, ki, pi, andg; (i = 1,---,n) are non-negative integers. Some other details
about rotation moment invariants can be found in [16].

During the normalization, the o, Co1, C2o as well asy, become zero, theyg becomes
one and rotation invariant® from (15) become affine invariants.

The main idea of the proof of independence and completerfessme set of affine
moment invariants is following: we choose some suitablemete and independent set
of the normalized moments of the same orders and if we can bigawusly compute
values of a set from the other set and vice versa, then the sétds complete and
independent, too.

We can compute values of the affine moment invariants dyréatim the complex
moments by means of the following theorem.

Theorem 1: Let us denote the value of the invariant computed from thergioc
momentd (Lpq) andl (cpq) the value obtained by substitution the complex momegys
instead oftipg. Then there is relation between them

(—=21)"1 (Hpg) = (Cpq) , (16)

wherew is the weight of the invariant.
Proof: We use a special affine transform

X = x+iy
y =x—ly.

Its Jacobiard = —2i. According to (7) the value of the moment after the transform

(17)

ugq:/w/m(x+iy)p(x—iy)q!J|f(X,Y)dXdy: [9/Cpq (18)

(the coordinates of the centroid remains unchanged). Frarfundamental theorem
[7, 4] we have for the values of the invariants without norigelon by Ligo: I(ugq) =
J"JMI (ppg) and from (18)we have (kpq) = 3|1 (Cpg). Since coo = Koo, it imply
directly (16).00

The former normalization is a special case of an affine taansfso we can compute
affine moment invariants by Theorem 1 with constraigig= co» = 0 andcgg = 1.
First, we would like to check, if the first four affine momenvamiants of the 2nd and
3rd orders are complete and independent

(=22l = —cy

(—20)8l; = —c5,C83+ 6C30C21C12C03 — 4C30C3, — 4C3,Co3 + 3C5,C3» (19)
(=2i)*13 = —C11C30C03+ C11C21C12

(—Zi )6|4 = 2C%1030003 + 60%1021012.
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Solving these equations we obtain

1 |
= 2Vh Ca1G12 = ﬁ(zlsﬁﬁ)]z (20)
C30C03 = —\/AH(6I3+:—‘1‘), O(csoc,) = 8|2_12ﬁ+é'

The setcy1, €21C12, C30Co3 and D(csocfz) is used as the other set of invariants. This

system of rotation invariants is independent and compbetep the sign of](c:gocfz).

It relates with fact that the seét,l», 13,14 cannot distinguish two objects differing by
mirror reflection. The general affine transform include thieron reflection, therefore
the setly, 12, 13,14 is complete from this point of view, obversely, we should afe
solute values of the invariants with odd weights. If we indgrthere, we can com-
pute 0(cz0C3,) = 415/(1/T1)3, but we can compute absolute valuelt(csocs,) also as

10(C30C3,)| = \/030003(021012)3— 02(cz0C3,) , therefore the selt, I2,13,14,15 is com-
plete, but dependent.

Now, we need to insert invariants of the 4th order. If we additivariantdg, 17, Ig, lg
andlqp, we obtain

(—=21)M = CaoCosa— 4C31C13+ 3C3,

(—2i)®l7 = Ca0C22C0a — Ca0C23— C51Coa+ 2C31C22C13 — Cy

(—2i)4|8 = 40%1022 (21)
(—2i)8lg = 4cf c31C13— 42 Co,

(=2)%10 = —4c}1CaoCs+4C31C31C04 -

Solving these equations we obtain

|2 |3
Cp = :—i, C31C13 = % — 4:—51), U (C400%3) = 327+ 8% — 12% + %,
13 8l
C40C04 = 16+ rjz — 12, D(caotts) = (3
(22)
We can see the absolute valud]1t4oc%3) can be computed by two ways, from
|D(caocts)| = \/ C40C04(C31C13)2 — 2(Ca0CF) (23)

and from the last equation in (22), while the phase ofdﬁefz cannot be computed.
The setly,...,l4, lg,...,l10 IS neither complete nor independent.

From the graph method, we have 66 irreducible invariantsouthe fourth order.
There is no space to present them here, we can show the nevsisinig examples. The
simplest equations can be obtained, when we substitutediethe set by the1,

(—2i )8| 12 = —80?1051C13 + 160";1021012022 — 80%10%2031 . (24)

The last equation in (22) is then

ek = - (22T -22) (25)
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The setcy1, C21C12, C30C03, [1(C30C3,), Co2, C31C13, Ca0Coa, [ (Ca0C35) and [ (c3iC3,) is
complete and independent and therefore theséi, 13,14,16,17,1g, 19,112 iS complete
and independent, too.

We may want to usk ; instead ofl1» because it is simpler, then the last equation from
(21) becomes

(—2i)®131 = —2C11C30C12C13 — 2C11C21C03C31 + 2C11C30C03C22 — 2C11C21C12C22
+2€11C3,C13+ 2C11C3,Ca1
(26)
We can arrange it in the form
l16 C30C; C30C3
3222 = 200(ca1¢5,) 0] (z—céz — 1) +20(c316%,) O(—5—22 — 1) — CoCoaC2+ C21C12C22 -
C11 21C12 2112
(27)

If we substitute|(cz1¢2,)| = \/ C31C13(C21C12)2 — 02(C31€2,), We obtain a quadratic
equation

3063 €303
52(031‘3%2)(52(;%2 -1+ DZ(%C%; —-1))
—O(ca1c3,)0 (% -1) (32:%1‘_?L + C30C03C22 — C21C12C22) (28)
3
+%(32(I%li + C30C03C22 — C21C12C22)2 — O%( % — 1)(C31€13C3,C3,) = 0.

It has two solutions

3
0(5%%2 — 1)(32128 4 €30003C22 — C21C12C20)

21012 Cu1
0 C30C3, 1 (32(% + C30C03C22 — 021012C22)2
_ ) ,
5, +43101365, G5 (D45 — 1) + DA F — 1)
l (Cg]_C%Z) = . 21 1; 2112
2(02(%%%2 _ 1) 4 [12(%%%2 _ 1
( (C%lCEZ ) T (cglcfz ))

(29)

You can see that a real solution always exists, i.e. the $é{.3¢ 13,14,16,17,1s,l9,111
Is independent, but also increasing complexity of the eqoat Using of some other
invariants, similarly simple alg1 leads the final equation to be quartic. It leads to effort
for simplification of the equations. If we need not have gahérmulas, but only
dependence test, the solution in some points might be aetivsf. \We obtain simple
equations, if we choose the values of the affine invarianttheovalues of rotation
invariants would be 1, but it cannot be kept, when it couldlleaa zero denominator.

In our case, if we choosge =1/4, I, =0, I3=0, I4 = —1/8, then we obtairc;; =
1, c1C12=1, C30C03 =1, 030022 =1 Similarly, if lg = 0, l7 = 0, lg = 1/4, lg= 07 then
Coo =1, C31C13 =1, Ca0C04 = 1, c4oc§3 = 1. Now, if we usel;q, then the last equation
becomes(caoC25) = 64l10 , but from the previous equations we haiécsoc?;) =0,
therefore we cannot chookg freely, itis dependent. If we use instead of 1, then the
last equation becom@;(ce,lcfz) =1-16l1> . We can choosg; freely, if 12 =0, then
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TABLE 1. The numbers of errors from 1000 cases for various
sets of invariants. The first 8 invariants was alwhy$y, I3, 14,
lg, 17, Ig andlg, the 9th invariant is in the first row.

9th invariant - l10 l11 l12
number of errors 259 259 209 209

c3lc§2 = 1. Thel, is independent. If we ude;, then the last equation becomgs= 0.
It looks like thel;1 would be dependent, but if we change éxg- —%1, thenc;;,ocf2 =-1

and we obtairt] (cslcfz) = —8l11 . Thely1 can be chosen freely, it is independent. If we
look at the general formula (29), we found that the valuesefffine invariants must be
chosen so the denominator would be non-zero. This is theebtggoblem with limited
solution in one point. There are singular points in the sphae/ariants and if we choose
such a point, the dependency test fails in spite of the iawésiare independent.

NUMERICAL EXPERIMENT

To show differences in recognizing abilities of variousssgftinvariants, the following
numerical experiment was carried out. The images of tetnsdigim O to 9 were created,
then each digit was 100 times affinely deformed and additmelom noise was inserted
to the rectangle circumscribed each digit. The random affemesform was composed
from first rotation by uniformly distributed angle, scaliagd stretching with coefficients
with mean one and standard deviation 0.1 and second rotayiomiformly distributed
angle. Too extreme scaling and stretching with parame¢sssthan 0.5 or greater than
2 were refused. The noise had zero mean and standard devidfi® of the range
from black to white. The results are in Tab. 1, the examplehef driginal digit and
the deformed digit are in Figs. 1a and 1b respectively.

The noise was chosen so heavy the number of errors to be samifiThe values of
the invariants were normalized by their standard deviagibover the whole set of the
Images so the invariants to have the same range of valuess, thie incomplete set of
8 invariantsly, Io, I3, 14, lg, 17, Ig andlg was used, then the dependent invariagtvas
inserted. The error rate did not change. Thenligevas substituted by the independent
invariantlq1. The error rate significantly decreased. When lthewas substituted by
another independent invariaiap, the error rate stayed decreased.

CONCLUSION

The affine moment invariants are important tool for recagnitof geometrically de-
formed images for many years. Nevertheless, the proof @gaddence of a chosen set
of them is still problem. This contribution presents a neyprapch to these proofs by
comparison with the normalized moments. The proof for irards up to the fourth or-
der is presented directly, the proof for higher orders cambee complicated, but it can
be simplified, if we compute the solution not in the whole spatthe feature values,
but in some suitably chosen specific values.
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FIGURE 1. a) The example of the original digit, b) The example of thenaffy deformed noisy digit
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