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Abstract. The affine moment invariants are important tool for recognition of geometrically de-
formed images for many years. Nevertheless, the proof of independence of a chosen set of them is
still problem. This contribution presents a new approach tothese proofs, the affine moment invari-
ants are compared with the corresponding set of the normalized moments. The normalized moments
are complete and independent and if the values of the normalized moments can be computed unam-
biguously from the values of the affine moment invariants andvice versa, then the set of the affine
moment invariants is complete and independent, too. The proof for invariants up to the fourth order
is presented directly. The proof for higher orders can be more complicated, but it can be simplified,
if we compute the solution not in the whole space of the feature values, but in some suitably chosen
specific values.
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INTRODUCTION

Moment invariants have become a powerful tool for recognizing objects regardless of
their particular position, orientation, viewing angle, and other variations. We have var-
ious sets of moment invariants, each of them is invariant to different type of transfor-
mation. We will deal with the geometric transformations only and there are two major
groups among them: similarity transform and affine transform. The similarity transform
includes translation, scaling and rotation and there is a well elaborated theory on rota-
tion moment invariants [1, 2, 3, 4] including creation of complete and independent sets
[5, 6], which have been successfully used in numerous applications. The affine trans-
form includes the similarity transform and in addition to that stretching (anisotropic
scaling) and second rotation. A projective transform, modeling photographing a planar
scene by a pin-hole camera, can be approximated by an affine transform for small objects
and large camera-to-scene distance. Thus, having powerfulaffine moment invariants for
object description and recognition is in great demand. The theory of affine moment in-
variants has its pioneer era after it, too [7, 4], but problems with creation of complete
and independent set of affine moment invariants remain untilnow.

The using incomplete set of features means we cannot recognize two objects that
could be recognized by the same number of complete features.If we use dependent
features, then they do not contribute to the result at all andif they are noisy, then they can
even worsen the result. Therefore the using complete and independent sets of features in
pattern recognition is very important.
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The affine moment invariants can be derived by means of the classical theory of
algebraic invariants, e.g. [8], by some better automated method (method of tensors [9],
method of graphs [10, 11]) or by newly arisen method of normalization [12, 13, 14]. The
invariants derived by the normalization are callednormalized momentsto distinguish
them from the traditionalaffine moment invariants. The normalized moments have some
advantages in comparison with the affine moment invariants,namely easy creation of
complete and independent sets, and one drawback, they are discontinuous on symmetric
objects. Therefore affine moment invariants remain important mean for recognition of
the affinely distorted objects. The theme of this paper is using the normalized moments
for verification of the independence of the affine moment invariants.

AFFINE MOMENT INVARIANTS

The affine transformation can be expressed as

u = a0 +a1x+a2y
v = b0 +b1x+b2y. (1)

The geometric two-dimensional(p+ q)-th order moments of an imagef (x,y) are
defined as

mpq =

∞
∫

−∞

∞
∫

−∞

xpyq f (x,y)dxdy p,q = 0,1,2, . . . (2)

Invariance to translation can be provided by using central moments. They are defined
as

µpq =

∞
∫

−∞

∞
∫

−∞

(x−xt)
p(y−yt)

q f (x,y)dxdy, (3)

where p,q = 0,1,2, . . . , and xt = m10/m00, yt = m01/m00 are the coordinates of the
centroid. If we use quotients

νpq = µpq/µ(p+q+2)/2
00 , (4)

then their function is invariant under scaling, too.
Now, the affine moment invariants can be derived e.g. by the method of graphs [10].

Here is example of the invariants up to the fourth order:

I1 = (µ20µ02−µ2
11)/µ4

00

I2 = (−µ2
30µ2

03+6µ30µ21µ12µ03−4µ30µ3
12−4µ3

21µ03+3µ2
21µ2

12)/µ10
00

I3 = (µ20µ21µ03−µ20µ2
12−µ11µ30µ03+ µ11µ21µ12+ µ02µ30µ12−µ02µ2

21)/µ7
00

I4 = (−µ3
20µ2

03+6µ2
20µ11µ12µ03−3µ2

20µ02µ2
12−6µ20µ2

11µ21µ03−6µ20µ2
11µ2

12
+12µ20µ11µ02µ21µ12−3µ20µ2

02µ2
21+2µ3

11µ30µ03+6µ3
11µ21µ12

−6µ2
11µ02µ30µ12−6µ2

11µ02µ2
21+6µ11µ2

02µ30µ21−µ3
02µ2

30)/µ11
00

388



I5 = (µ3
20µ30µ3

03−3µ3
20µ21µ12µ2

03+2µ3
20µ3

12µ03−6µ2
20µ11µ30µ12µ2

03
+6µ2

20µ11µ2
21µ2

03+6µ2
20µ11µ21µ2

12µ03−6µ2
20µ11µ4

12+3µ2
20µ02µ30µ2

12µ03

−6µ2
20µ02µ2

21µ12µ03+3µ2
20µ02µ21µ3

12+12µ20µ2
11µ30µ2

12µ03

−24µ20µ2
11µ2

21µ12µ03+12µ20µ2
11µ21µ3

12−12µ20µ11µ02µ30µ3
12

+12µ20µ11µ02µ3
21µ03−3µ20µ2

02µ30µ2
21µ03+6µ20µ2

02µ30µ21µ2
12

−3µ20µ2
02µ3

21µ12−8µ3
11µ30µ3

12+8µ3
11µ3

21µ03−12µ2
11µ02µ30µ2

21µ03

+24µ2
11µ02µ30µ21µ2

12−12µ2
11µ02µ3

21µ12+6µ11µ2
02µ2

30µ21µ03

−6µ11µ2
02µ2

30µ2
12−6µ11µ2

02µ30µ2
21µ12+6µ11µ2

02µ4
21−µ3

02µ3
30µ03

+3µ3
02µ2

30µ21µ12−2µ3
02µ30µ3

21)/µ16
00

I6 = (µ40µ04−4µ31µ13+3µ2
22)/µ6

00

I7 = (µ40µ22µ04−µ40µ2
13−µ2

31µ04+2µ31µ22µ13−µ3
22)/µ9

00

I8 = (µ2
20µ04−4µ20µ11µ13+2µ20µ02µ22+4µ2

11µ22−4µ11µ02µ31+ µ2
02µ40)/µ7

00

I9 = (µ2
20µ22µ04−µ2

20µ2
13−2µ20µ11µ31µ04+2µ20µ11µ22µ13+ µ20µ02µ40µ04

−2µ20µ02µ31µ13+ µ20µ02µ2
22+4µ2

11µ31µ13−4µ2
11µ2

22−2µ11µ02µ40µ13

+2µ11µ02µ31µ22+ µ2
02µ40µ22−µ2

02µ2
31)/µ10

00

I10 = (µ3
20µ31µ2

04−3µ3
20µ22µ13µ04+2µ3

20µ3
13−µ2

20µ11µ40µ2
04−2µ2

20µ11µ31µ13µ04

+9µ2
20µ11µ2

22µ04−6µ2
20µ11µ22µ2

13+ µ2
20µ02µ40µ13µ04−3µ2

20µ02µ31µ22µ04

+2µ2
20µ02µ31µ2

13+4µ20µ2
11µ40µ13µ04−12µ20µ2

11µ31µ22µ04+8µ20µ2
11µ31µ2

13
−6µ20µ11µ02µ40µ2

13+6µ20µ11µ02µ2
31µ04−µ20µ2

02µ40µ31µ04

+3µ20µ2
02µ40µ22µ13−2µ20µ2

02µ2
31µ13−4µ3

11µ40µ2
13+4µ3

11µ2
31µ04

−4µ2
11µ02µ40µ31µ04+12µ2

11µ02µ40µ22µ13−8µ2
11µ02µ2

31µ13+ µ11µ2
02µ2

40µ04

+2µ11µ2
02µ40µ31µ13−9µ11µ2

02µ40µ2
22+6µ11µ2

02µ2
31µ22−µ3

02µ2
40µ13

+3µ3
02µ40µ31µ22−2µ3

02µ3
31)/µ15

00

I11 = (µ20µ30µ12µ04−µ20µ30µ03µ13−µ20µ2
21µ04+ µ20µ21µ12µ13+ µ20µ21µ03µ22

−µ20µ2
12µ22−2µ11µ30µ12µ13+2µ11µ30µ03µ22+2µ11µ2

21µ13

−2µ11µ21µ12µ22−2µ11µ21µ03µ31+2µ11µ2
12µ31+ µ02µ30µ12µ22

−µ02µ30µ03µ31−µ02µ2
21µ22+ µ02µ21µ12µ31+ µ02µ21µ03µ40

−µ02µ2
12µ40)/µ10

00

I12 = (µ3
20µ2

12µ04−2µ3
20µ12µ03µ13+ µ3

20µ2
03µ22−4µ2

20µ11µ21µ12µ04

+4µ2
20µ11µ21µ03µ13+2µ2

20µ11µ2
12µ13−2µ2

20µ11µ2
03µ31+2µ2

20µ02µ30µ12µ04

−2µ2
20µ02µ30µ03µ13−2µ2

20µ02µ21µ12µ13+2µ2
20µ02µ21µ03µ22+ µ2

20µ02µ2
12µ22

−2µ2
20µ02µ12µ03µ31+ µ2

20µ02µ2
03µ40+4µ20µ2

11µ2
21µ04−8µ20µ2

11µ21µ03µ22

−4µ20µ2
11µ2

12µ22+8µ20µ2
11µ12µ03µ31−4µ20µ11µ02µ30µ21µ04

+4µ20µ11µ02µ30µ03µ22+4µ20µ11µ02µ2
21µ13−4µ20µ11µ02µ21µ12µ22

+4µ20µ11µ02µ2
12µ31−4µ20µ11µ02µ12µ03µ40+ µ20µ2

02µ2
30µ04

−2µ20µ2
02µ30µ21µ13+2µ20µ2

02µ30µ12µ22−2µ20µ2
02µ30µ03µ31+ µ20µ2

02µ2
21µ22

−2µ20µ2
02µ21µ12µ31+2µ20µ2

02µ21µ03µ40−8µ3
11µ2

21µ13+16µ3
11µ21µ12µ22
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−8µ3
11µ2

12µ31+8µ2
11µ02µ30µ21µ13−8µ2

11µ02µ30µ12µ22−4µ2
11µ02µ2

21µ22

+4µ2
11µ02µ2

12µ40−2µ11µ2
02µ2

30µ13+4µ11µ2
02µ30µ12µ31+2µ11µ2

02µ2
21µ31

−4µ11µ2
02µ21µ12µ40+ µ3

02µ2
30µ22−2µ3

02µ30µ21µ31+ µ3
02µ2

21µ40)/µ14
00

These invariants are irreducible, i.e. they cannot be expressed as a polynomial of other
invariants, but a more complicated dependency can be among them. The number of the
independent invariants can be computed by so calledrule of thumb: The numbern of
independent invariants equals

n = m− p, (5)

wherem is the number of independent measurements of some object, inour case it is
the number of moments, andp is the number of independent constraints, which must be
satisfied (see e.g. [15]). Mostly it equals the number of parameters of the transformation.
This formula is called "rule of thumb", because often it is not easy to find, which
measurements and constraints are independent and which not. In our case, the moments
are independent and if we have the moments to the second orderonly, then there is one
dependency among the constraints, so we have 6-5=1 invariant of the second order. If
we use the moments of higher orders, then the constraints areindependent, and we have
10-6=4 independent invariants of the third order and 15-6=9independent invariants of
the fourth order.

NORMALIZED MOMENTS

The moments (4) are normalized to translation and scaling. We can continue with the
normalization to achieve affinely invariant normalized moments. The affine transform
(1) can be decomposed into six simple one-parameter transforms1

Horizontal translation : vertical translation : Scaling :
u = x−x0 u = x u= ωx
v = y v= y−y0 v = ωy

First rotation : Stretching : Second rotation :
u = xcosα −ysinα u = δx u= xcosρ −ysinρ
v = xsinα +ycosα v = 1

δ y v= xsinρ +ycosρ.

(6)

It is advantageous to use complex moments for the normalization to the rotation. The
complex momentcpq of order(p+q) is defined as

cpq =
∫ ∞

−∞

∫ ∞

−∞
(x+ iy)p(x− iy)q f (x,y)dxdy, (7)

1 This decomposition does not include the affine transforms with negative Jacobian, we would have to
insert mirror reflection. The consequences of not doing it will be commented later.
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where i denotes imaginary unit. Each complex moment can be expressed in terms of
geometric momentsmpq as

cpq =
p

∑
k=0

q

∑
j=0

(

p
k

)(

q
j

)

(−1)q− j · ip+q−k− j ·mk+ j,p+q−k− j . (8)

If we use momentsνpq normalized to translation and scaling instead of thempq in (8),
we obtain complex moments normalized to translation and scaling. The reverse formula
is

mpq =
1

2p+qiq

p

∑
k=0

q

∑
j=0

(

p
k

)(

q
j

)

(−1)q− j ·ck+ j,p+q−k− j . (9)

In polar coordinates, (7) becomes the form

cpq =
∫ ∞

0

∫ 2π

0
r p+q+1ei(p−q)θ f (r,θ)drdθ . (10)

After the rotation by an angleα the complex moment becomes

c′pq = ei(p−q)α ·cpq . (11)

We can use the complex moments either for the normalization or for the creation of
the rotation invariants. During the normalization we choose some suitable normalizing
momentcp0q0 and then we ask it become real and positive. It can be done by virtual
rotation of the image by the angle

α = − 1
p0−q0

arctan

(

ℑ(cp0q0)

ℜ(cp0q0)

)

, (12)

i.e. each complex moment is multiplied as in (11), where theα is from (12). The
ℜ(cp0q0) andℑ(cp0q0) are real and imaginary parts of thecp0q0.

It is suitable to use the complex momentc20 for the normalization to the first rotation.
The principal axis is then horizontal. The normalization tothe stretching is provided so
thec20 becomes zero after it. From it we can compute the normalizingcoefficientδ

δ = 4

√

c11−
√

c20c02

c11+
√

c20c02
. (13)

We scale the image horizontally by it and vertically by the coefficient 1/δ . It can be
performed simply in case of geometric moments

m′
pq = δ p−qmpq , (14)

but it is more complicated in case of complex moments. We can convert them to the
geometric ones by (9), normalize them by (14) and then convert back by (8).
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Now we could finish the normalization to the affine transform by the normalization to
the second rotation byc21, but it emerged that simpler equations can be obtained, when
we use rotation invariants instead. The product

Φ =
n

∏
i=1

cki
piqi

is invariant to rotation, if
n

∑
i=1

ki(pi −qi) = 0, (15)

wheren≥ 1, ki, pi, andqi (i = 1, · · · ,n) are non-negative integers. Some other details
about rotation moment invariants can be found in [16].

During the normalization, thec10, c01, c20 as well asc02 become zero, thec00 becomes
one and rotation invariantsΦ from (15) become affine invariants.

The main idea of the proof of independence and completeness of some set of affine
moment invariants is following: we choose some suitable complete and independent set
of the normalized moments of the same orders and if we can unambiguously compute
values of a set from the other set and vice versa, then the other set is complete and
independent, too.

We can compute values of the affine moment invariants directly from the complex
moments by means of the following theorem.

Theorem 1: Let us denote the value of the invariant computed from the geometric
momentsI(µpq) andI(cpq) the value obtained by substitution the complex momentscpq
instead ofµpq. Then there is relation between them

(−2i)wI(µpq) = I(cpq) , (16)

wherew is the weight of the invariant.
Proof: We use a special affine transform

x′ = x+ iy
y′ = x− iy. (17)

Its JacobianJ = −2i. According to (7) the value of the moment after the transform

µ ′
pq =

∫ ∞

−∞

∫ ∞

−∞
(x+ iy)p(x− iy)q|J| f (x,y)dxdy= |J|cpq (18)

(the coordinates of the centroid remains unchanged). From the fundamental theorem
[7, 4] we have for the values of the invariants without normalization byµ00: I(µ ′

pq) =

Jw|J|kI(µpq) and from (18)we haveI(µ ′
pq) = |J|kI(cpq). Since c00 = µ00, it imply

directly (16).
The former normalization is a special case of an affine transform, so we can compute

affine moment invariants by Theorem 1 with constraintsc20 = c02 = 0 andc00 = 1.
First, we would like to check, if the first four affine moment invariants of the 2nd and
3rd orders are complete and independent

(−2i)2I1 = −c2
11

(−2i)6I2 = −c2
30c

2
03+6c30c21c12c03−4c30c3

12−4c3
21c03+3c2

21c
2
12

(−2i)4I3 = −c11c30c03+c11c21c12

(−2i)6I4 = 2c3
11c30c03+6c3

11c21c12.

(19)
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Solving these equations we obtain

c11 = 2
√

I1, c21c12 = 1√
I1
(2I3− I4

I1
),

c30c03 = − 1√
I1
(6I3 + I4

I1
), ℜ(c30c3

12) = 8I2−12I2
3
I1

+
I2
4

I3
1
.

(20)

The setc11, c21c12, c30c03 and ℜ(c30c3
12) is used as the other set of invariants. This

system of rotation invariants is independent and complete except the sign ofℑ(c30c3
12).

It relates with fact that the setI1, I2, I3, I4 cannot distinguish two objects differing by
mirror reflection. The general affine transform include the mirror reflection, therefore
the setI1, I2, I3, I4 is complete from this point of view, obversely, we should useab-
solute values of the invariants with odd weights. If we insert I5 there, we can com-
puteℑ(c30c3

12) = 4I5/(
√

I1)3, but we can compute absolute value ofℑ(c30c3
12) also as

|ℑ(c30c3
12)| =

√

c30c03(c21c12)3−ℜ2(c30c3
12) , therefore the setI1, I2, I3, I4, I5 is com-

plete, but dependent.
Now, we need to insert invariants of the 4th order. If we add the invariantsI6, I7, I8, I9

andI10, we obtain

(−2i)4I6 = c40c04−4c31c13+3c2
22

(−2i)6I7 = c40c22c04−c40c2
13−c2

31c04+2c31c22c13−c3
22

(−2i)4I8 = 4c2
11c22

(−2i)6I9 = 4c2
11c31c13−4c2

11c
2
22

(−2i)9I10 = −4c3
11c40c2

13+4c3
11c

2
31c04 .

(21)

Solving these equations we obtain

c22 = I8
I1
, c31c13 =

I2
8

I2
1
−4I9

I1
, ℜ(c40c2

13) = 32I7 +8I6I8
I1

−12I8I9
I2
1

+
I3
8

I3
1
,

c40c04 = 16I6 +
I2
8

I2
1
− I9

I1
, ℑ(c40c2

13) = 8I10
(
√

I1)3 .

(22)
We can see the absolute value ofℑ(c40c2

13) can be computed by two ways, from

|ℑ(c40c
2
13)| =

√

c40c04(c31c13)2−ℜ2(c40c2
13) (23)

and from the last equation in (22), while the phase of thec31c2
12 cannot be computed.

The setI1, . . . , I4, I6, . . . , I10 is neither complete nor independent.
From the graph method, we have 66 irreducible invariants up to the fourth order.

There is no space to present them here, we can show the most interesting examples. The
simplest equations can be obtained, when we substitute theI10 in the set by theI12

(−2i)8I12 = −8c3
11c

2
21c13+16c3

11c21c12c22−8c3
11c

2
12c31 . (24)

The last equation in (22) is then

ℜ(c31c
2
12) =

1√
I1

(

2
I3I8
I1

− I4I8
I2
1

−2
I12

I1

)

. (25)
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The setc11, c21c12, c30c03, ℜ(c30c3
12), c22, c31c13, c40c04, ℜ(c40c2

13) andℜ(c31c2
12) is

complete and independent and therefore the setI1, I2, I3, I4, I6, I7, I8, I9, I12 is complete
and independent, too.

We may want to useI11 instead ofI12 because it is simpler, then the last equation from
(21) becomes

(−2i)6I11 = −2c11c30c12c13−2c11c21c03c31+2c11c30c03c22−2c11c21c12c22

+2c11c2
21c13+2c11c2

12c31
(26)

We can arrange it in the form

32
I16

c11
= 2ℜ(c31c

2
12)ℜ(

c30c3
12

c2
21c

2
12

−1)+2ℑ(c31c
2
12)ℑ(

c30c3
12

c2
21c

2
12

−1)−c30c03c22+c21c12c22 .

(27)

If we substitute|ℑ(c31c2
12)| =

√

c31c13(c21c12)2−ℜ2(c31c2
12), we obtain a quadratic

equation

ℜ2(c31c2
12)(ℜ

2(
c30c3

12
c2

21c2
12
−1)+ℑ2(

c30c3
12

c2
21c

2
12
−1))

−ℜ(c31c2
12)ℜ(

c30c3
12

c2
21c2

12
−1)(32I16

c11
+c30c03c22−c21c12c22)

+1
4(32I16

c11
+c30c03c22−c21c12c22)

2−ℑ2(
c30c3

12
c2

21c2
12
−1)(c31c13c2

21c
2
12) = 0 .

(28)

It has two solutions

ℜ(c31c
2
12) =

ℜ(
c30c3

12
c2

21c2
12
−1)(32I16

c11
+c30c03c22−c21c12c22)

±ℑ(
c30c3

12
c2

21c
2
12
−1)

√

√

√

√

(32I16
c11

+c30c03c22−c21c12c22)
2

+4c31c13c2
21c

2
12(ℜ

2(
c30c3

12
c2

21c2
12
−1)+ℑ2(

c30c3
12

c2
21c

2
12
−1))

2(ℜ2(
c30c3

12
c2

21c2
12
−1)+ℑ2(

c30c3
12

c2
21c2

12
−1))

.

(29)
You can see that a real solution always exists, i.e. the set set I1, I2, I3, I4, I6, I7, I8, I9, I11
is independent, but also increasing complexity of the equations. Using of some other
invariants, similarly simple asI11 leads the final equation to be quartic. It leads to effort
for simplification of the equations. If we need not have general formulas, but only
dependence test, the solution in some points might be satisfactory. We obtain simple
equations, if we choose the values of the affine invariants sothe values of rotation
invariants would be 1, but it cannot be kept, when it could lead to a zero denominator.

In our case, if we chooseI1 = 1/4, I2 = 0, I3 = 0, I4 = −1/8, then we obtainc11 =
1, c21c12 = 1, c30c03 = 1, c30c3

12 = 1. Similarly, if I6 = 0, I7 = 0, I8 = 1/4, I9 = 0, then
c22 = 1, c31c13 = 1, c40c04 = 1, c40c2

13 = 1. Now, if we useI10, then the last equation
becomesℑ(c40c2

13) = 64I10 , but from the previous equations we haveℑ(c40c2
13) = 0 ,

therefore we cannot chooseI10 freely, it is dependent. If we useI12 instead ofI10, then the
last equation becomesℜ(c31c2

12) = 1−16I12 . We can chooseI12 freely, if I12 = 0, then
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TABLE 1. The numbers of errors from 1000 cases for various
sets of invariants. The first 8 invariants was alwaysI1, I2, I3, I4,
I6, I7, I8 andI9, the 9th invariant is in the first row.

9th invariant - I10 I11 I12

number of errors 259 259 209 209

c31c2
12 = 1. TheI12 is independent. If we useI11, then the last equation becomesI11 = 0.

It looks like theI11 would be dependent, but if we change e.g.I2 =−1
4, thenc30c3

12 =−1
and we obtainℜ(c31c2

12) =−8I11 . TheI11 can be chosen freely, it is independent. If we
look at the general formula (29), we found that the values of the affine invariants must be
chosen so the denominator would be non-zero. This is the biggest problem with limited
solution in one point. There are singular points in the spaceof invariants and if we choose
such a point, the dependency test fails in spite of the invariants are independent.

NUMERICAL EXPERIMENT

To show differences in recognizing abilities of various sets of invariants, the following
numerical experiment was carried out. The images of ten digits from 0 to 9 were created,
then each digit was 100 times affinely deformed and additive random noise was inserted
to the rectangle circumscribed each digit. The random affinetransform was composed
from first rotation by uniformly distributed angle, scalingand stretching with coefficients
with mean one and standard deviation 0.1 and second rotationby uniformly distributed
angle. Too extreme scaling and stretching with parameters less than 0.5 or greater than
2 were refused. The noise had zero mean and standard deviation 1/20 of the range
from black to white. The results are in Tab. 1, the example of the original digit and
the deformed digit are in Figs. 1a and 1b respectively.

The noise was chosen so heavy the number of errors to be significant. The values of
the invariants were normalized by their standard deviationall over the whole set of the
images so the invariants to have the same range of values. First, the incomplete set of
8 invariantsI1, I2, I3, I4, I6, I7, I8 andI9 was used, then the dependent invariantI10 was
inserted. The error rate did not change. Then theI10 was substituted by the independent
invariant I11. The error rate significantly decreased. When theI11 was substituted by
another independent invariantI12, the error rate stayed decreased.

CONCLUSION

The affine moment invariants are important tool for recognition of geometrically de-
formed images for many years. Nevertheless, the proof of independence of a chosen set
of them is still problem. This contribution presents a new approach to these proofs by
comparison with the normalized moments. The proof for invariants up to the fourth or-
der is presented directly, the proof for higher orders can bemore complicated, but it can
be simplified, if we compute the solution not in the whole space of the feature values,
but in some suitably chosen specific values.
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FIGURE 1. a) The example of the original digit, b) The example of the affinely deformed noisy digit

ACKNOWLEDGMENTS

This work has been supported by the grant No. 102/04/0155 of the Grant Agency of the
Czech Republic.

REFERENCES

1. M. K. Hu, IRE Trans. Information Theory8, 179–187 (1962).
2. Y. S. Abu-Mostafa, and D. Psaltis,IEEE Trans. Pattern Analysis and Machine Intelligence6, 698–

706 (1984).
3. C. H. Teh, and R. T. Chin,IEEE Trans. Pattern Analysis and Machine Intelligence10, 496–513

(1988).
4. J. Flusser, and T. Suk,Pattern Recognition26, 167–174 (1993).
5. J. Flusser,Pattern Recognition33, 1405–1410 (2000).
6. J. Flusser,Pattern Recognition35, 3015–3017 (2002).
7. T. H. Reiss,IEEE Trans. Pattern Analysis and Machine Intelligence13, 830–834 (1991).
8. D. Hilbert,Theory of Algebraic Invariants, Cambridge University Press, Cambridge, 1993, 1st edn.
9. T. H. Reiss,Recognizing Planar Objects using Invariant Image Features, vol. 676 ofLNCS, Springer,

Berlin, 1993, 1st edn.
10. T. Suk, and J. Flusser, “Graph method for generating affine moment invariants,” inICPR 2004, 17th

International Conference on Pattern Recognition, IEEE Computer Society, 2004, pp. 192–195.
11. T. Suk, and J. Flusser, Tables of affine moment invariantsgenerated by the graph method, Research

Report 2156, Institute of Information Theory and Automation (2005).
12. S. C. Pei, and C. N. Lin,Image and Vision Computing13, 711–723 (1995).
13. D. Shen, and H. H. S. Ip,IEEE Trans. Pattern Analysis and Machine Intelligence19, 431–440 (1997).
14. T. Suk, and J. Flusser, “Affine Normalization of Symmetric Objects,” inAcivs 2005, Advanced

Concepts for Intelligent Vision Systems, Springer, 2005, pp. 100–107.
15. E. P. L. Van Gool, T. Moons, and A. Oosterlinck,invited paper for Image and Vision Computing13,

259–277 (1995).
16. J. Flusser, and T. Suk, “Construction of complete and independent systems of rotation moment

invariants,” inCAIP 2003, Computer Analysis of Images and Patterns, Springer, 2003, pp. 41–48.

396


