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Abstract

Pearson’s x 2 test, and more generally, divergence-based tests of goodness-of-fit are asymptotically x 2-distributed with m — 1
degrees of freedom if the numbers of cells m is fixed, the observations are i.i.d and the cell probabilities and model parameters
are completely specified. Jiang [Jiang, J., 2001. A nonstandard x2-test with application to generalized linear model diagnostics.
Statistics and Probability Letters 53, 101-109] proposed a nonstandard x? test to check distributional assumptions for the case of
observations not identically distributed. Under the same setup, in this paper a family of divergence-based tests are introduced and
their asymptotic distributions are derived. In addition bootstrap tests based on the given divergence test statistics are considered.
Applications to generalized linear models diagnostic are proposed. A simulation study is carried out to investigate performance of
several power-divergence tests.
© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The problem of goodness-of-fit to a distribution in the real line, Hy : F = Fy, is frequently treated by partitioning
the range of data in disjoint intervals and by testing the hypothesis Hy : p = po of a multinomial distribution.

Let Yy, ..., Y, be ii.d. random variables with c.d.f. F. Let Ey, ..., E, be a partition of R = (—00, 00) in m
intervals. Letp = (py, ..., pm) and po = (pot, - - - » pom) be the true and hypothetical probabilities of the intervals
Ei, 1e.

P0k=/ dFy, Pk:/ dF, k=1,....,m.
Ey Ey

Define the observed cell counts

n
Ne=) lwey=#1<j<n:Y;eE), k=1...m,
j=1
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and the estimated cell probabilities p = (py, ..., Pm) With px = N¢/n, k = 1,...,m. To test Hy : p = po the most
commonly used test statistic is Pearson’s x 2 statistic
m s 2
- (Pk — pok)
Kap(Bopo) =n )  ~———, (1)
= po

which is a particular case of the family of power-divergence statistics introduced by Cressie and Read (1984) and
given by

2 m . — r
an(ﬁ’p()):r(r—j—l)];pk [(ﬁ> —1:|, —00 < F < 0. (2)

POk

The test statistics Tno(ﬁ, po) and Tn_l(ﬁ, po) are defined by continuity. Well-known test statistics are obtained from
particular values of r in (2). Some examples are r = 1 for Pearson’s test statistic, r = 0 for the log-likelihood-ratio
statistic, r = —1/2 for the Freeman—Tukey test statistic, »r = —2 for the Neyman-modified test statistic and r = 2/3
for the Cressie—Read statistic.

More generally, 7)) (p, po) is a particular case of the ¢-divergence test statistic

2n 2n & ﬁk)
Dy (p, = — — ], 3
(1) De@-po) ¢//(])k§p0k¢ (pOk 3)

where Dy (-, -) denotes the ¢-divergence of two probability distributions introduced by Csiszar (1963) and Ali and
Silvey (1966) for every ¢ in the set @ of real convex functions defined on [0, co), continuously differentiable in
the neighborhood of 1 and satisfying ¢(1) = ¢'(1) = 0, ¢”(1) > 0. In formula (3) if either por or pox and pi
are zero, expressions 0¢ (x/0) and 0¢ (0/0) are defined as x - lim,— o0 ¢ (1)/u and O respectively. Properties of ¢-
divergences have been extensively studied by Liese and Vajda (1987) and Vajda (1989). Zografos et al. (1990) proved

T ®,po) =

that Tn¢ @, po) i> Xr%z—l as n — oo under Hy : p = po, where i> stands for convergence in law.

It is common to deal with the problem of testing the composite hypothesis that the c.d.f. F is a member of a
parametric family {Fy}pc o for a given open subset @ C R<. In such cases cell probabilities depend on the unknown
parameter 6, i.e.

pkw):/ aFy. k=1.....m.
Ey

so they may be estimated with minimum ¢-divergence estimators satisfying
8 = arg_inf Dy(P.p(9)),
0O

which contains as a particular case the maximum likelihood estimator (MLE) based on the quantized data. Morales
et al. (1996) proved that if regularity conditions given by Birch (1964) hold, then

T ®.p0s) =2 Xm—a-

under Hy : F = Fy for any ¢1, ¢» € . However, if MLE estimator 0 is based on the original data, then the asymptotic
distribution of Tn¢ @, p(g)) under Hy : F = Fp is a linear combination of independent X12 variables. This result was
originally proved by Chernoff and Lehmann (1954) and extended to any ¢ € ¢ by Morales et al. (1996).

If original variables are independent with c.d.f.s Fy, ..., F,, depending on an unknown parameter 6 € @ C R?
open, the hypothesis of interest is

Hy:Y,~Fy,....,Y, ~ Fy,. “4)
Let us define py(0) = Eg[Ny]/n, with Eg[Ni] = Z'}:l Py(Y; € Ey). Jiang (2001) proposed to test Hy with

X1 @.p@) =nY (i — pe(®)’, (5)

k=1
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where 0 is a consistent estimator of §, and gave regularity conditions under which asymptotic distribution of
X,% 7 72 p(@\)) is a linear combination of independent X12 variables.

The targets of this paper are to extend Jiang’s result to the class of test statistics T,f’ 72 p(a)), to introduce their
bootstrap versions and finally to give some recommendations on the choice of ¢ based on the results obtained from
Monte Carlo simulation experiments. The rest of the paper is organized as follows: In Section 2 the asymptotic
distribution of T,fb P, p(é\)) is derived. In Section 3 the corresponding bootstrap tests are introduced. In Section 4
applications to GLM diagnostics are suggested, a simulation experiment is carried out to investigate the finite sample
performance of the introduced test statistics and some conclusions are given.

2. Asymptotic distribution of 7, ,? statistics

In this section we derive the asymptotic distribution of the T,,qb statistics

6
¢”<1> Z”( i <pk(9>) ©

for the class of functions ¢ € @ under the null hypotheses (4). This leads to a goodness-of-fit test, which can be used
to check the distributional assumptions in the model involving independent but not identically distributed random
variables. Essential for us will be the result of Jiang (2001) where asymptotic distribution of the statistics X,% 7 P, p(§))
was given. Let us start with introducing some notation and regularity conditions used in Jiang (2001).

T = T2 3, p®)) =

It is known that the choice of 6 has an impact on the asymptotic distribution of Tf . Throughout this paper it is
assumed that 6 is a consistent estimator of 8 and has an asymptotic expansion

Y 1 <&
Vi@ —6) = A, (ﬁ J;w,-(r,-, 9)) +op(). ()

For example, under some regularity conditions, the MLE of 6 has the expansion (7), where v; is the score function
corresponding to the jth observation and A, is equal to n times the inverse of the Fisher information matrix (based on
all data).
Let further &, = (§u)1<k<m» Where & = Ny — EgNi; pj(0) = (pjx(0))1<k<m and px(0) = Po(Y; € Ey).
Define
10
hnj = (v,eE) — Pik@Di<kzm — | = Z 5gPi O ) Anvr; (¥, 0)

and ¥, = X,(0) =n~! Z?:l Var(h,;). Let Q, be an orthogonal matrix such that

Q;EnQn =D, = diag()\nl, ey )\nm),

where A, > - -+ > Ay, are the eigenvalues of ;.
The following set of assumptions is supposed: (i) Y1, ..., ¥, are independent, (ii) X,, — X as n — oo, (iii) (7)
holds with Ey;(Y;,0) =0, 1 < j < n, and (iv) it holds

1
- max E|A, wJ(Y],9)| — 0, max
ni<j< I<j<n

0
@Pj(Q)‘ = 0(),

and there exists § > 0 such that
1 & 2

— sup —= P
n j;lﬁmsa 067

jk@)“ =0, l<k<m.

Under the assumptions (i)—(iv) Jiang proved that the asymptotic distribution of X,% ; 1s the same as that of
Z?:l ka,% where Zy, ..., Z,, are i.i.d. N(0, 1) random variables and Ay, ..., A, are the eigenvalues of Y.
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First we extend Jiang’s result to the Pearson statistics Xr% P 7 p(é\)) defined in (1). To achieve this aim we need to
put an additional assumption about the partition and the probability model:

pO) = ij ) —> > 4, where g > Oforall k € {1, ..., m}. (8)
] 1

The above-mentioned extension is stated in the following lemma.
Lemma 1. [f the assumptions (1)—(iv) and (8) are fulfilled then the statistic
T, = Xap @.p(©)

has, under the null hypothesis (4), the same asymptotic distribution as Y ;. (Ak/ qr)Z?2, where Z1, ..., Zy are i.id.
N (0, 1) random variables, and Ay > --- > Ay, are the eigenvalues of .

Proof. In the proof of his Theorem 1, Jiang (2001) showed that under the assumptions (i)—(iv) it holds

Xy 20712008, > X ~ N, (0, D), ©)
where D = diag(Ay, ..., Ay). Let us define the random vector

X, £ diag (p(0)""* - X, = By Xy,
where matrix B, has diagonal elements (By)xx = pk(G)_1/2 = (EgNk/n)_l/z, k=1,...,m. Then, (8) imply

B, — B =diag(q; %, ....qm'")
for n — oo and using the Slutsky theorem we get

X, -5 BX ~ N,,(0, BDB").

From this it already follows that the asymptotic distribution of X 4 X n is the same as that of ) ;*_; (A« /qk)Z,%. To finish

the proof we will show that Tn1 =X ! X n +op(1). Let us start with a partial problem. For k = 1, ..., m we can write
~  E;Ny 1 ~ 1 1 & ~
pr@) === == "pi@® ==Y pix@® + =Y (pjx® — pjx(6)). (10)

Using the Taylor expansion

2@ = pr @+ (pi®) @=0)+~@— o) i x(099) ) @ —6)
Pjk Pjk aapjk ) aezpjk >

where 00U+ lies in the line between 6 and 8, we get

1 & ~
= (pir® — pjx(©))
n =

1. 3 1¢~ 02 oy (7
=n_1/2|:<_23_9171k(9)> V@ —6) + f(e—e) ( Zagzptk(e(l’k))) (9—9)} = op (D),

i=1

as follows from the assumptions of the lemma. Substituting this results into (10) for all £ we finally get the asymptotic
relation

p®) =p@®) +op(D). (11)
For the statistic of interest we have
(Pr — pi(0))? (N — gNk) Lt ~\—1
T, =n =n"§,diag(p(®)) &n
,; Pi(0) Z E;Ni/n @)

= n"'¢' Q, diag (p(e)) Q'&, = X! diag (p(e))
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and thus
1, = X%, + X, (diag (p®) ' — diag () "") X, = X, X +0p(1)
as can be seen from (8), (9) and (11). [

The main result of this section stating the asymptotic distribution of T,,¢ is presented in the following theorem.

Theorem 1. If the assumptions (1)—(iv) and (8) are fulfilled then for all ¢ € P the statistics
T? = T .p©))

defined in (6) has, under the null hypothesis (4), the same asymptotic distribution as Z?Zl(kk/qk)Zz, where
Zi,..., 2y arei.id. N(O, 1) random variables, and A\ > --- > Ay, are the eigenvalues of .

Proof. The proof is based on the Lemma 4.1 of Menéndez et al. (1998) which states that for any random stochastic
m-vectors §,, t,, and all functions ¢ € @ it holds

T (Snstn) = Xup(Sns ta) +0p (1)
provided that the conditions
s —tall = Op(n™"/%)
and
II(t,,) = op(1) for no subsequencet,, of ¢, (12)

where I1(t,) = [ tnk, are satisfied.
Since the validity of (12) for ¢, = (9) follows directly from (8) and (11), to prove the assertion we need to check
the condition

P —p®| = 0pmn"?)

and apply Lemma 4.1 of Menéndez et al. (1998) and Lemma 1 of the present paper. From the definition of &,,p and
p(@) it follows that p; — px (9) En/n, k=1, , m, and thus

1 1 1
=R . m . . 2 1 m 2 1 5
Vil —p@| = (n > i — pk<e>>2) - (— Zs,?k) = (—s,isn)
=1 = n

As (1/n)glg, = X,f](ﬁ, p(g)) is the Jiang statistics which has under the assumed conditions the asymptotic
distribution stated in Theorem 1 of Jiang (2001) and is thus Op (1), the proof is finished. [

Let us note that to use the class of statistics Tn¢ for testing, the eigenvalues A, ..., A, as well as the stochastic
vector ¢ = (g1, - - - , gm) have to be replaced by their estimators. From (11) it follows that p(8) = (1/n) Zl}:l p;©)

is a consistent estimator of the vector ¢. If we denote km, .. A,,m the elgenvalues of E,, =X, (@\) then, by Weyl’s

elgenvalue perturbation theorem (e.g. Bhatia (1997)), |knk — Mkl < 1122 (9) — 2@ Wthh can be expected to go to
0 since @ is consistent. By the same theorem it can be seen also that A, — Ax and so Ank is a consistent estimator of
A, k= 1,..., m. The following testing procedure can be thus proposed: Reject Hy if Tn¢ exceeds the critical value

of Y4y Ghnk/ Pk 0)) Z.
3. Bootstrap goodness-of-fit tests

The application of the Jiang statistic (5) and the Tn¢ statistics (6) to test the hypothesis (4) requires the use of
their asymptotic distribution given in Theorem 1 of Jiang (2001) and Theorem 1 of the present paper respectively.
Practitioners will find the following difficulties in applying this approach: (1) in most cases, derivation of X, is not
straightforward and numerical computations may be needed, and (2) J/, is estimated with E =X, (0) and X, (9) is
assumed to be close to X}, (8). Therefore sample size should be large enough to fulfil the desired test size. Bootstrap



M.D. Esteban et al. / Statistics and Probability Letters 78 (2008) 1702—-1710 1707

tests avoid the mentioned difficulties because they only require the calculation of the test statistics in independent
bootstrap samples and they approximate the required distribution under Hy.

Let Yy, ..., Y, berandom variables and let Fyg, ..., Fyp be c.d.f. depending on a common parameter 6 € & C R4
open. The hypothesis (4) under consideration is of the form

Hy:Yy~ Fig,..., Y, ~ F,p independent,f € 6.

LetT, = T,(Y1, ..., Y,) be a given test statistic for this problem and assume that Hy is rejected if 7, > ¢, for a given
critical value ¢, > 0. Let Fr,9(x) = P; (T, < x) be the distribution of 7,, under Hy, where Py is the probability
corresponding to the joint distribution ]_[’}:1 Fjg. Suppose that we have an estimator 6 of 6 such that 8 is consistent
under H in the sense that

Py (Ila— 6|l > &) — 0, foranye > 0.
n—oo
Assuming that F,¢ is continuous a bootstrap estimator of ¢, is
-~ -1
Cn = FT,,§(1 — o),

where a € (0, 1) is the size of the test. The computation of ¢, can be done by Monte Carlo simulation in the following

way. Generate B independent bootstrap samples {Y, ..., Y} from the joint distribution ]_[’}:1 Fig. Then ¢, is
approximated by the {[(1 — o) B] + 1}th order statistic of 7, (Y}, ..., Y),b=1,..., B.
Alternatively bootstrap estimated p-value can be used to decide if Hy is rejected or not. Let Y1 = y1, ..., Y, =y,

be the observed values. For the test of the form 7;, > c, its p-value is defined by
pn =Py (Ty(Y1, ..., Y0) > T,(y1, ..., ),

and hypothesis is rejected if p, < «. A bootstrap estimator of p,, is
Pn = Pu(T (Y], .., Y)) > Ty, -5 ¥n))

where Y| ~ Fi5,..., Y ~ F, are the bootstrap independent data. The computation of p, can be done by Monte
Carlo simulation in the following way. Generate B independent bootstrap samples {Y,, ..., Y} from the joint
distribution []}_; F i5- Then p, is approximated by

 H (TG D > TaOL W)
n — .

B

This approach is also used in Section 4 to calculate the p-value

pn=P (Z(/)\\nk/Pk(é\))le > t)
k=1

when T,fp = t has been observed.

4. Example and simulation

This section contains an example that illustrates results and proposals of Sections 2 and 3, as well as a simulation
study designed to investigate the performance of several test statistics. Let us consider the linear model

Hy:y;j=px;j+e;, j=1,...,n, (13)
with e; i.i.d. N(0, 02). Let & = (B, 0'%) be the unknown parameter and let
n
> Vixj

~ j=1 ~2
p=—7F— 0o =

1 & -
Z()’j —x,;B)*.
=1

n—1
J

(3]

X
1

~

(-
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be the corresponding maximum likelihood estimators. Consider the interval partition defined by the cut points
c1 =14 Fyl,(1/m), ... cm1 =1+ Fyio 1, (m = 1)/m),

ire. Ey = (—oo,ct], Eyy = (cp—1,00]and Ef = (cp—1, ¢k, k=2,...,m— 1.
Let Egp = Eg[Ni] = Z';:l pjk and define

.....

1 & 1 &
zm=;;?mwu &m=;;¥wwmmmg ki # k2, 2= (Sak) g, et

for the A, ’s introduced in Section 2. Let Ap, ..., A, be the eigenvalues of A =n diag(Eg_ll, R E@;bz” then

m
T, @.p®) ~ Y M7},
k=1

where Z1, ..., Z,, areiid. N(O, 1).
Regarding the introduced example a simulation experiment has been implemented to analyze the performance of
Jiang and Cressie—Read statistics

o~

m —~ 2n m Dk r
2 ~ 2 r ~
X =n§ (Px — pPr(0))7, T, =—§ pk[< A) —1] r=-1/2,0,2/3,1.
Y o+ ) H pi(®)

For every considered test statistics, 7}, the simulation follows the next steps.
1. Repeat I = 10000 times (i = 1,...,1)
1.1. Generate a sample (yj(.’), xﬁ’)), j=1,...,n, from model (13) with 8 = 1, 0?2 =1and x}’) 1.1.d. Unif(0, 2).

Calculate B\(i), 520 3y, ,/):m and Tn(i).
1.2. Simulate vy, ..., v4 from Z;”Zl )»,-Zl.z, with Zy, ..., Z,, 1.1.d N(0, 1) and A = 5000. Calculate

. () . i
0 = Hucive =0 g0 |1 if p{i) <0.05
A 0 otherwise.
1.3. Repeat B = 1000 times (b =1, ..., B)
1.3.1. Generate ejf(lb) ~ N(0,5%9D), j =1,...,n. Generate a bootstrap sample (y;.k(lb),xj(.’)), j=1,...,n,
*(ib) _ 20),. @) *(ib)
frommodelyj =B x; te

1.3.2. Calculate p*@), 52 anqg Tn*(ib).

1.4. Calculate b o

#T, " = Ty)
B

1 if o <0.05
0 otherwise.

oz,’:(i) —

and £ = {
2. Output:

1<, 1
=70 &) &= 60
i=1

i=1

It should occur that both &, and &, are close to 0.05. In Table 1 test sizes of bootstrap and asymptotic tests are given.
We observe that bootstrap tests attain the desired size even for small sample sizes (n = 40), where some asymptotic
tests fails. To be sure that asymptotic distribution works properly under the null hypothesis, sample size should not
be much lower than 100. At this point it is worthwhile to emphasize that the asymptotic distribution is in fact also
approximated in some sense because eigenvalues are calculated from the estimated matrix 2, and not from X'

Powers are calculated, and presented in Tables 2—4, for the following alternatives to (13):

L. y; = ga(Bxj) + e}, with g,(x) = x“ and a varying from 0 to 2.5,
2. ¢j ~ (1 = p)N(0,02) + p Gumbel (0, 0}), witho? = 0} = 1 and p = 0,0.2,0.5,0.8, 1,
3. yj =i Bix +ej,with Br = ..., ps = landk = 1,...,5.
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Table 1

Test sizes for @ = 0.05 (asymptotic | bootstrap)

n —-1/2 0 2/3 1 Jiang —1/2 0 2/3 1 Jiang

40 .1000 .0683 .0457 .0462 .0440 .0512 .0537 .0548 .0547 .0547
100 .0571 .0500 .0444 .0445 .0458 .0539 .0534 0524 .0527 .0533
200 .0584 .0545 .0511 .0521 .0518 .0498 .0498 .0493 .0495 .0507
500 .0563 .0543 .0530 .0531 .0533 .0525 .0525 .0523 .0524 .0528

1000 .0537 .0517 .0515 .0516 .0509 .0512 .0506 .0503 .0502 .0510

Table 2

Powers for case 1, « = 0.05 and n = 200 (asymptotic | bootstrap)

a —-1/2 0 2/3 1 Jiang -1/2 0 2/3 1 Jiang
.0 .9408 .9349 9278 .9242 .9822 9397 9397 9359 9326 9844
2 .6188 .6063 5919 .5895 7629 .6079 .6097 .6068 .6029 714
4 2765 2672 2657 2664 3824 .2646 2724 .2802 2818 3937
.6 1234 1212 1224 .1266 .1588 .1100 1152 1213 1243 1587
8 .0705 .0674 .0685 .0694 .0749 .0640 .0680 .0702 .0722 .0759

1.0 .0584 .0545 .0511 .0521 .0518 .0498 .0498 .0493 .0495 .0507

1.2 0725 .0654 .0603 .0592 .0602 .0624 .0617 .0608 .0602 .0635

1.4 .1075 .1007 .0944 .0937 .1035 .1052 .1053 1011 .1006 1130

1.6 .1985 1912 .1881 .1887 2182 .1889 1945 1970 .1998 2314

1.8 3652 3634 3712 3796 4470 3375 3562 3768 .3855 4521

2.0 .5822 5918 .6119 .6282 1557 5413 5773 .6120 .6253 7627

2.5 .9848 9873 .9904 9921 .9998 9779 9852 .9896 9910 9999

Table 3

Powers for case 2, « = 0.05 and n = 100 (asymptotic | bootstrap)

)4 —1/2 0 2/3 1 Jiang -1/2 0 2/3 1 Jiang
.0 .0571 .0500 .0444 .0445 .0458 .0539 .0534 .0524 .0527 .0533
2 0777 .0650 .0579 .0559 .0618 .0647 .0636 .0612 .0598 .0633
5 1622 1313 .1160 1134 .1630 1255 1337 1358 1336 .1656
8 .3265 .1967 .1200 .1018 .1709 .2860 2110 .1470 1304 1737

1 4518 .3140 .1852 .1543 .1667 .3936 .3057 2058 1718 1701

Table 4

Powers for case 3, « = 0.05 and n = 40 (asymptotic | bootstrap)

K -1/2 0 2/3 1 Jiang -1/2 0 2/3 1 Jiang

1 .1000 .0683 .0457 .0462 .0440 .0512 .0537 .0548 .0547 .0547

2 2610 .1249 1239 .1479 2516 .0425 .0800 1371 1522 2588

3 4659 4799 .6483 7290 .9529 .0989 4996 .6941 7142 9554

4 7746 .8600 9525 9740 .9868 7030 9312 9577 .9582 9835

5 .9004 9622 .9928 9967 9764 9713 9916 9931 9915 9746

One can conclude that Jiang’s test statistic has an excellent performance in relation with the more classical power-
divergence statistics. Comparing the Cressie—Read statistics no dramatic differences were observed. Just in the case
2 the Freeman—Tukey statistic (r = —1/2) seems to have the best behavior in the sense of powers, in this case even
better than Jiang’s statistic.
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