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Symbols and Notation

Lt

P: = (x1,..,2¢)

0: = (at,i,jv ﬁt,z‘,ka Vt,ils Ut,i)
(C)]

my

M;

V,

Uy

A

AT

time index

state at time ¢t € {—1,0,1}

action taken at time ¢t € {—2,—1,0,1,2}

price at time ¢

price difference between time t and ¢ + 1

loss function

probability density function (pdf)

conditional probability density function (cpdf)
mathematical expectation

Belmann function

data vector containing information valid at time ¢
value of data channel i at time ¢

information about state of the world at time ¢
model parameters at time ¢

set of all possible parameter values

model structure of data channel ¢

set of all possible model structures of data channel ¢
extended information matrix (square)

sample counter

forgetting factor

denotes transposition of matrix A



Chapter 1

Introduction

In this work we will present Bayesian methods used for prediction of financial
market prices. In other words, we want to find the relation between the future
price of a commodity and the present state of the world. Current state of the
world is taken to be described by a set of related market data, such as previous
closing prices, volume of traded contracts in a day, number of active contracts in
the market and others. In the experiments section of this work we will present
our results on real data. Every trading day we can perform three actions: buy
a contract, sell a contract or do nothing. To make the problem simpler, let us
assume that we can hold a maximum of +1 contract and a minimum of -1 contract
at a time. Our goal is to choose the action which maximizes our profit. In order
to be able to solve the problem numerically, we present chosen restrictions and
approximations throughout the work.

The main problem of this thesis lies in structure determination. Simply said,
we have a large set of possible model structures and we want to choose the one
which suits our data best. We have chosen the way of Bayesian hypothesis test-
ing, because it has some advantages over the classical approach. One of them is
straightforward choice of the best hypothesis from the set of possible ones. The
classical approach usually deals with cases of validity of null hypothesis and the
expansion to presented case is not easy, especially for large hypotheses sets. The
Bayesian approach also allows us to choose our own loss function to influence
the testing results. Another advantage may be seen in the fact that no p-values
have to be chosen, which could be a hard task especially for our high dimensional
problems with large sample size.

As stated in [2], many works dealing with different aspects of the problem of
structure determination have already been published. Our goal is not to extend
the theory, which is beyond the scope of this thesis, but to apply the presented
algorithm to real world data. We improve the existing trading algorithm to use
multiple channel sources by incorporating the structure determination, which is
the main contribution of this work (considering that this method is not much
examined in case of financial time series).



In chapter 2, you can find the basics of underlying theory for Bayesian methods,
together with theory and practical adjustements (loss function, approximations)
of trading algorithm which is used to compare our practical results. The presented
theory is specialized in the problem of structure determination in chapter 3. We
present our practical results in chapter 4 and the work is summarized in chapter 5.



Chapter 2

Price prediction

We will need following basic theorem in our work:

Theorem 1 [Bayes rule] Conditional probability density function f(x|y) of ran-
dom vector X with known'Y is equal to:

f (ly) = f<> <y'w> @)yl fo(
Jon [ () [ (ylz) dz fy) f

for [o f () f (y|) de # 0.

The proof can be found in [1].

We suppose that we are trading in the market from an initial day, which we
call time 1, until now, an n-th trading day, which we call time n. We will denote
the price at time t as y; and our position at time ¢ as s, € {—1,0,1}. In the
beginning, we start at zero position, that means s; = 0. Our profit measured in
money from time ¢ to ¢ + 1 can be written as

z (At, 5t+1) = 51414y,

where A; = y;.1 — y; is the price difference between time ¢ and ¢ + 1. Every
day we choose our action taken in the market, we will indicate an action taken
at time ¢ as a;. Using this notation we can write loss function (negative profit)
equivalently:

x,y)

(y)

z (At, St, at) = — (St + at) At'

In order to receive better practical results we had to make some further modifi-
cations of the loss function, which we present in section 2.6. Let us denote the
sequence of actions taken from time ¢ to time ¢ as a, ; and the sequence of price
differences A; ;. With the assumption of additivity, the loss function equal to
total negative profit at time ¢t is

t

A (Al..ty al..t) = Z z (Au St, at) )

=1
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where s; = 0 and s; = Zf;} a; for t > 1. The assumption of additivity is strong
and should be abandoned in our future work. For example, if we reach certain loss
at some time in sequence of states, we could not continue trading, which means
that the sequence is not applicable, even if it would lead to a high profit at the
end.

2.1 Optimalization

When at certain time ¢, we want to choose best sequence of actions (ay, asy1,-.)
to minimize the negative gain (maximize the profit). We will write for simplicity

z (Ab at) =z (At7 g, St) )

because we always know our state at time ¢ and the future states can be calculated
from our actions taken. We will denote our information about the state of the
world at time t as P; and restrict ourselves to a finite sequence of states (finite
horizon) because we want to be able to solve the problem numerically.

Theorem 2 [Stochastic dynamic programming for additive loss function] Let the
conditions for reqular dynamic programming hold and let the loss function be ad-
ditive. Then, the optimal strategy a; 7 can be constructed value-wise against the
course of time by taking

14 (Pt) = arrgll E[Z (At, Clt) +v (Pt+1) |Pt, at],

where A, are all possible actions at time t (e.g. lead only to state s;4q € {—1,0,1}
and preserve the known s;), and starting from

14 (’Pf+1) = 0.

The proof and details can be found in [4].

Under conditions stated in [4], the symbol E (.) could be interpreted as math-
ematical expectation. We suppose that our capital is little in comparison with
the capital traded in the whole market, which means our actions do not have an
impact on market price evolution probabilities and following equality holds for
conditional probability density functions (cpdfs):

T (AP ar) = f(A|Py).

Then we can write
Elz (Ay, ar) [Py, ar] = / 2 (A, ar) f (A Py) dA.
R

If the probalities f (A¢|P;) were known, we could simply evaluate the integral
and choose the best actions. In ordinary case we unfortunately do not know the



probabilities, but what we try to do is to learn them from the data we obtain. We
split the cpdf into two parts: parameterized model and parameter pdf as follows

(AP = /@ [ (AP, £ (6.P,) 6.,

where © denotes the set of all possible parameter values. We will choose the pa-
rameterized model f (A Py, ;) and the uncertainty will remain only in f (6:|P:).
When we advance to the next trading day, we need to know f (0;y1|Pys1), also
called posterior pdf. The task of getting it is divided into two subtasks — data
updating and time updating.

2.2 Bayesian filtering

When we obtain new data we update the cpdf f(0;|P;) to f(0¢Pir1). We
will denote new data vector obtained at time ¢ + 1 as ax;4;. The vector can
contain information like closing price of a commodity, volume of traded contracts
or opening price. With an assumption that we do not have any further information
in the beginning, we have Piy1 = (@1, .., Xr41) = (P, Tit1).

Proposition 3 [Bayesian filtration - data updating] Under presented conditions:

[ (2441 Py, 0,) (0, Py)

f(8:fPuii) = f (wt—&-l’Pt) 7

where

f@ilP) = [ f@ealPr60) f(8.P:)d6.
e
Proof. Multiple application of Bayes rule:
f(Pis110:) f(0:) [ (xia|Py, 0,) f(P6,) f (6,)

TOP) = = JmalPofP)
_ S @ena|P,6:) [ (01, Py) [ (®441Pr, 61) [ (6:|Py)
f (@1 Py) f(Py) J (@41 Pr) 7

[ (@41 Py) = /@f(wwhet\fpt) de, = /@f($t+1’7’t>9t)f(9t’7)t)d9t-

As we can see this proposition allows us to update the cpdfs by employing new
data. What remains is to select the parameterized model and prior pdf f (6;).
Such a choice should be based on expert knowledge. However, we suppose we
have a lot of data to update the densities, which means that our selection does
not have a big influence. We choose normal distribution because it allows precise
and simple computations.
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Proposition 4 [Bayesian filtration - time updating] Under presented conditions:

f(0t+1|Pt+l) = /@f(etH”PtH,et)f(9t|Pt+1)d9t-

Proof. Marginalization and application of bayes rule:

f<9t+1’Pt+1> :/ f(9t+1,9t|Pt+1>d9t :/ f(9t+1|Pt+1>9t)f(9t|7?t+1)d9t-
® e

The cpdf f(O0:41|Prs1,6:) is called parameter evolution model. It is a very
important part of our design, but unfortunately we do not know the correct model
to be able to write down the cpdf. We deal with this problem by using exponential
forgetting, which is described in section 2.5, though we are aware that this could
be one of the weakest points in our design.

2.3 Parameterized model

The evaluation of presented integrals is too complex if we stay with the general
setup. Because of this we rather choose the family of the cpdfs which is friendly
to computation. Following definition can be found along with more details in [4].

Definition 5 [Ezponential family of parameterized models] The parameterized
model belongs to the (dynamic) exponential family if it can be written in the form

[ (@141]0¢, P1) = A(6,) exp (BT (¥,) C (6y)) ,

where Wy is in our case a finite dimensional data vector determined by experience
P, e. g Wy = (x4_1,2;) for the second order autoregression model,

A(.) is a non-negative scalar function defined on ©,

B(.),C (.) are vector functions.

This model can be a rough approximation for financial time series, but it allows
us to convert updating of pdfs into algebraic calculations. Let us consider for this
moment that the parameters of the model are time invariant, symbolically 8 = 6,
for t > 0.

Theorem 6 [Bayesian estimation in exponential family/ Under the conditions
mentioned above, if prior pdf f (0) is chosen from exponential family as well, the
time evolution of posterior pdf becomes

[ (Vt7 Vt)

P = o
f ($t+1| t) I (thla Vt71>

11



with V=V, 1+ B(¥,),Vo=0,y=1,1+1, 1y=0, and
I(V,v) = / A" (8)exp (VTC (9)) f(0) 46,
e

where f(0) is a prior pdf. The Bayesian parameter estimate (posterior pdf) is

A% (8)xp (VIC(6)) 1 (6
I (V1) '

f (0”Pt+1) =

The theorem above can be found with explanation and remarks in [4]. Unfor-
tunately, we cannot suppose that the parameters are time invariant, because the
relations between data evolve over time. We present an approximative method to
deal with this problem in section 2.5.

Definition 7 [Gauss-Wishart distribution] The conditional probability density func-
tion of future data vector is said to have Gauss-Wishart form, if it can be written

as
f (th”Pt, C,, Wt) =

—m 1 T
(2m) < /2 |Wt’1/2 exp (—5 (:le — Ctht) W, (a:t“ — Ctht)) ,

where my,, (resp. m,) is the dimension of the data vector x; 1 (resp. zi), z
is the regressor, which can be any (also nonlinear) tranformation of past data
P:, C; is the regression coefficients (m., m,) - dimensional matriz and W is
positive definite (my,, m,) - matriz of precision. The matrices W, and C, are
the unknown parameters of the model.

In can be seen that the GW distribution is part of the exponential family,
see Definition 5. The definition of the GW distribution allows to make some
data transformation, like logarithmic transformation, but keeps the computations
simple. It can be shown that if the prior distribution has the GW form, then
after data updating we obtain distribution which is also in GW form. Moreover
if we use exponential forgetting explained in section 2.5, the distribution remains
in GW form even after time updating.

2.4 Autoregression model

For our computation we suppose that the closing price ;1 at time ¢t + 1 can
be calculated from past data using autoregressive model of second order. From
the available information in the market throughout the day, we have chosen the
closing price as the one we want to predict. Our information about the state of
the world P; = (@1, .., ;) includes also this price in the past, i. e. one element
(also called channel) of the vector @ is the closing price. We will denote n the

12



number of elements of vector &, meaning we have n data channels. We want to
know: f (yi+1|P:) = f (24414|P:) for some ¢ € {1,..,n}. From the marginalization
rule we have:

f (xtJrl,i"Pta et) = f ($t+1,1, "7xt+1,n‘Pta 9t) dxt+1,1--dxt+1,i71dxt+1,i+1--dxtJrl,n-
Rnfl

And from the Bayes rule:

/ ($t+1,17 --7$t+1,n|7’t>9t) =f ($t+1,2, --$t+1,n|'Pt, 0t7xt+1,1) f ($t+171|’Pt70t) =..=

=f ($t+1,n|'Pt, 0., Tt41,15 -5 $t+1,n—1) f ($t+1,n—1|'Pt, 0., Tt41,15 -5 $t+1,n—2) .
~f (It+1,1|Pt, Ot)'

The model parameters can be split into the separated parameters of each channel,
therefore we can write:

f ($t+1,1, --$t+1,n"Pt7 0t> =f (xt+1,n|Pt7 Ot,na Tt41,15 -5 xt+1,n71)

f ($t+1,n71"Pt7 9t,n71, Tt41,15 -5 xt+1,n72) f (xt+1,1|Pt; 9t,1) .

In other words, we can calculate the estimate of the first element of future data
vector only from the past data and then recursively calculate all other elements.
For our computations, we suppose that all the predicted data could be estimated
using autoregression model of second order:

n n 1—1
Tiq1, = E Qi iTe—15 + E BrikTer + E Vil Tt+1,0 T Ot i€,
j=1 k=1 =1

where e;; is the noise which is supposed to have normal distribution with 0 mean
and dispersion 1. When using this model our vector of unknown parameters 6,
could be written as

0, = (at,i,j> ﬁt,i,lm Vil Ut,i) )

where the indices i, j, k, [ are all indices of vector . This model can be alterna-
tively rewritten in the form of cpdf which is in Gauss-Wishart form (see Defini-
tion 7).

Possibly, data samples can be large (in our terms n could be a seriously big
number) and sometimes it is not possible to take all channels into account. We
can choose the channels from our expert knowledge or we can use an algorithm
for structure determination, whose presentation is the main goal of this work and
we will focus on it in the next chapter.

13



2.5 Approximations

2.5.1 Time updating

We expect that model parameters evolve in time, but we do not know the rules
of their evolution. To obtain at least very simple model of time updating and
keep the advantages of simple computations, we have chosen so called exponential
forgetting. Simply said, we put less significance on older data. We have:

[ (01| Pry1) = f<9t|’Pt+1>/\7

where ) is forgetting rate, which is usually set to number close to 1. As result,
the only change from the presented Theorem 6 is modified updating of statistics
V and counter v:

Vi=AV,.1 + B(¥,),
Vy = )\Vt—l + 1.

Above presented solution is clearly not the best one. We hope to improve it in
the future at least by using different forgetting factors \; for each data channel.

2.5.2 Parameter estimates

We optimize our action for a horizon of finite length, set to about 15 days of
trading. For every day in the time we should (according to the theory) calculate
the predicted pdf, but we use learned parameters for whole window up to the
horizon and update them when we move the window one day into the future.
This reduces significantly computation time and allows us to use longer horizon.
When calculating the expected value of certain channel, we should integrate as
follows:

E(xt+1,i|Pt> = / l‘t+1,z’f (xt+1,i|Pt) dwip,; =

R
:// iUt+1,z‘f (5Ut+1,i"Pt70t)f(9t"Pt) detdxt+l,i7
RJO

which takes a lot of computer time. Instead of that, we use the parameter es-
timates of (i j, Brik, Vi), ignore the noise oy ,e;; and calculate only following
summation:

ta,gtt—1,5 to,ktt ta,lbt+1,
Qi i + ﬁ kT k—i— ”y 11

We are aware that this is a rough simplification and that we loose part of in-
formation gained. On the other hand, if the model and the time variations of
the parameters would be selected correctly, the cpdfs for the parameters would
concentrate near the mean value.

E *TtJrl i

14



2.5.3 [Iterations spread in time

To be able to calculate the best actions in the market, long horizon may be
needed, but we are able to optimize the actions only on a relatively short horizon.
To correct this we use a procedure called iterations spread in time. When we are
at the horizon, we want to know our expected loss up to the expiry date of the
contract (in case of optimization of futures or option trading) or our expected loss
to infinity (in case of stocks), e.g. in notation of Theorem 2 we want to know
v (Pzy1). This value depends on state s; where we end our optimalization. We
use as the estimate expected loss from previous iteration (starting from the same
state), which means that we need to calculate expected loss for every starting
state in each iteration. In our notation we put:

V(Pi1,5¢) = v (Pio1, 51) -

2.6 Loss function

When calculating our loss, we also have to take transaction costs into account,
which leads to following modification of loss function:

Z(Ahstaat) = - (St + at)At - |at| (C+ S) )

where C stands for commission and S for slippage. We use expert estimates
of slippage values (different for each commodity). The sum of commision and
slippage is called transaction costs (T'= C + 95).

During our practical experiments we deal with the problem of instability, our
algorithm chooses to make many actions in the market, which results in high
transaction costs and, moreover, it usually leads to a loss. We want our algorithm
to act more strategically, e.g. to choose position +1 and hold for some time in
case of price increase and the reverse action in case of price decrease. To correct
this behaviour we use two penalizations to construct a new loss function. The first
one is that we penalize each action even above the transaction costs, denoting new
constant D we have:

2 (A, s, a1) = — (8¢ + ay) Ay — Dlag|T.

Another technique used is that we penalize the state of being in the market (|s;| #
0). This penalization should incorporate the risk which comes from dispersion of
the predicted price. Denoting another constant I’ and o; estimated dispersion of
the predicted price channel in time ¢, we have:

z (At, st,at) = — (St + at) At — D|&t’T — F‘St -+ at\at.

It can be easily seen that after these changes our loss function remains additive.
The practical results of presented modifications can be found in chapter 4. In

15



future we would like to improve the algorithm by using correct utility function
which also incorporates the utility of wealth. Abandoning the presumption of
additive loss function would obviously lead to higher computational complexity,
but we hope that the problem still remains feasible.

16



Chapter 3

Structure determination

Let us assume that, as presented in the previous chapter, the data channels we
have can be predicted using autoregression model of second order, which means:

n n i—1
Tip1 = E Qi iTe-145 T g BrikTr g + g Yt,ilTt4+1,0 T O iCrs-
j=1 k=1 =1

What we want to do is to find channels which do really impact the future values
of each channel, or generally said, we want to choose the best model available
from the set of models M; for the channel i. Let us introduce appropriate flags
a; j,bi, ciy equal to 1 if the corresponding value (x;_1 j, Tk, T¢41,) influences the
predicted one or equal to 0 if not. Then we have that

n

n i—1
Tpy1, = E QiiTe—15 + E BrikTer + E Yt,i 1 Tt41,0 T Ot iCt-

j=1,a; ;=1 k=1,b; =1 I=1,¢;,=1
And M; could be written as
Mi = {(&Lﬁ bi,k7 ci,l) ,j = 1..TL, k = 1n,l = 17, — 1, ai,j: bi,ka Ci,[ € {0, 1}} .

As you can see we suppose the best model structure to be time invariant. This
is a simplification, but it should be noted that solving the prediction with all
data available may not be computationally possible. We could handle the model
structure uncertainty the same way we deal with model parameters and learn them
altoghether, but the calculation of the model structure estimate or integration over
all possible models would bring unfeasible complexity.

3.1 General approach

At first we will look at the problem more generally. Using Bayesian approach,
we could handle the uncertainty about proper model structure m,; € M; for the

17



channel ¢ in the same way we do with model parameters. We will choose the prior
pdf f(m;) and when we receive new data, we will update it. We get posterior
cpdf as follows:

fPealmi) f(mi) [ (@[ P, mi) [ (Pelmi) f(ma)

fmilPe) = f(Pin) N (@41 Py) f(Pr)
_ f (1| P, my) f (my, Py) _ (@1 [P, my) f(my|Py)
(@1 Py) f(Pr) f (@1 Py) ’

f@alPo= [ miPyam = [ f(@alPom) f mP) dm.

The predictive cpdf f (xyy1|P:, m;) could be computed as follows:

f(wt+1’Pt7mi) :/ f(wt+1|Pt>mi79t)f(0t|Pt>mi) de,.
e

This can be done because we can achieve the cpdf f (68;|P;, m;) using the tech-
niques decribed in previous chapter.

The article [2] refers that it can be proven, that the posterior cpdf f (m;|P;)
concentrates under rather general conditions on a single point. This means that
for a large class of loss functions, we could choose the maximum of the cpdf as
our structure and we would not loose much generality, although we would reduce
the complexity of computations significantly.

The whole algorithm can be now summarized in these steps: In time t = 0
choose the prior pdf f (m;|Py) = f (m;). While data are available do following:

e Evaluate f (x;1|P;, m;) for all possible structures m; based on the new
data xs .

e Update f (m;|P;) to f(m;|Py1) as shown above.

e Update the time varying parameters f (6;|P;, m;) to f (0141|Pisr1, m;) for
all possible models using the method od Bayesian filtration explained in the
previous chapter.

e Set time ¢t =t + 1 and repeat.

The most computational complexity of this algorithm lies in the number of
possible structures, e.g. |M;| = n; could be a really big number, which complicates
storing all the cpdfs and performing integration over M;. Let us imagine that for
30 channels and the model of second order we have at least 2°° ~ 10'8 possible
structures. It is written in [2] that the model found under the assumption of
time invariant parameters contains the best model found without the specified
assumption. According to this, we can perform the algorithm in two stages, as
written in detail in [2]:

18



e We find a set of competitive structures under the assumption of time invari-
ant parametes.

e The complete algorithm is applied only to the set of structures found in
previous step.

3.2 Application to regression-type models

To be able to run the algorithm and receive the results in acceptable time, we
have to make some further simplifications. We suppose that the conditional ex-
pectation of future values of predicted channels has the Gauss-Wishart form, see
Definition 7.

The fact that we restricted ourselves to a special class of hypotheses about the
model structure, specifically we only want to know which data channels we can
omit, leads to a further simplification - the omitted channel corresponds with zero
row of matrix C} in notation of Definition 7. This allows a further rearrangement
and simplification of our computations, details can be found in [2]. Even though
we have made many simplifications, the practical task is still not solvable in real
time. We had to give up the exact solution of the problem and use the following
two-stage algorithm.

In the first stage we suppose the model parameters to be time-invariant. We
have a set of available hypotheses M; and we need to choose the best one of them.
We use the maximum likelihood method which reduces the problem to a search
for the global maximum of learnt cpdf f (m;|P;) after we finish processing all
available data. This is unfortunately again complicated by a high number of al-
lowed models, because the function is high dimensional and it has been also found
to be multi-modal. What we do is that we start with an initial guess of structure
and we calculate the probability. Then we calculate the probabilities in a small
neighborhood of the initial guess (e.g. with specified set My = {a;;, bix, ciy} we
get new models in a neighborhood of M by changing always only one value in
M;) and we compare them to the old one. We take the highest value of all the
probabilities and the according model as a new guess and continue until we find
a local maximum or repeat too many times (not likely to happen). After there
is no new maximum in the neighborhood we make some other initial guess and
repeat. If we are to find the same local maximum, we increase the probability that
we had found the global one. Usually it is sufficient to start with full and empty
regressor as initial guesses, because it is likely that we reach the same regressor
starting from both, which greatly increases the probability that we have found
the global maximum.

In the second stage we use the structure found in the first stage and we perform
the full algorithm with forgetting over the set of all submodels of the found model
(e.g. all models that omit more or equal channels than the first one). It should be
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noted that the lesser forgetting factor we use, the lower number of data channels
in regressor should be expected.

The real implementation uses also additional techniques to reduce the compu-
tation complexity, using L-D factorization of the information matrix and further
tricks. The details can be found with short explanation in [2]. We will discuss the
results we obtained on our real world data in the next chapter.
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Chapter 4

Practical results

We perform our practical experiments on U.S. commodity futures data. We have
about 30 data channels which contain daily open, high, low, close prices, volume,
commitment of traders data and expert channels supplied by Colosseum a.s. The
data contain information from about 4000 trading days. Our testing scripts are
programmed in Matlab environment [3]. We use half of the data (about 2000
days) to learn the model structure and parameter estimates and on the second
half we start trading the market. We calculate the real gain or loss, which is the
main criterion for comparing different settings of our algorithm.

4.1 Structure determination

We use the implementation of structure determination algorithm provided by Mr.
Kérny (programmed in C). When we use all data channels to fill the maximal
regressor, we receive almost the same structure as the maximal one and it takes
a long time for the algorithm to finish. This leads us to the opinion that we have
to take a smaller subset with channels which we think really do impact the future
price.

We have carefully chosen the set of 8 channels, including all price channels
(open, high, low, close), the volume and open interest channels, cash price of the
contract and one specific expert channel. In this case the results depend mainly
on forgetting factor used. When we use forgetting factor set to 1.0, we get almost
full regressor for most of the commodities tested. If we set up a forgetting rate,
we get for all usable values of forgetting rate (for example for both 0.95 and 0.99)
similar models which differ from the full one by having channels volume and open
interest removed. We hope these channels provide useful information for price
prediction, but it is not wise to start the learning process with forgetting set to
1.0. The algorithm usually learns the distribution, which changes only slightly
with further incoming data thus leading to same decision for every trading day
(and being long or short for the whole trading period). This leads us to the
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Figure 4.1: Results with no penalization

conclusion that in the future we need to improve our algorithms to be able to
handle different forgetting factors for each channel separately.

Another observation made is that the markets with greater price instability
tend to return poorer regression structure. Even with no forgetting the channels
mentioned previously are removed. Unfortunately, we are not able to give any rea-
sonable economic explanation for this behaviour at the moment. We will present
our trading results in the next section.

4.2 Action optimalization

To maximize the gain in the market, we suppose that our algorithm should make
stable decisions. That means that we would not wish our algorithm to switch
to the state +1 at time ¢ and change the decision at time ¢ + 3 to switch to
state —1. After some practical tests made, we think that to receive stable but
accurate price prediction, the ideal forgetting factor is equal approximately to
0.99. As presented on figure 4.1, it can be seen that even with this setup the
actions remain unstable. Presented tests are made with the data from Australian
Dollar (AD) futures market, horizon set to 15 and using the iterations spread in
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Figure 4.2: Results with state penalization

time method described in section 2.5.

To stabilize the algorithm, we use techniques described in section 2.6. When
we set risk constant (F') equal to 500, we receive results in figure 4.2.

These results still do not seem ideal to us. We want to penalize our actions
even more and we set the action constant (D) equal to 7 and get results which
can be seen in figure 4.3.
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Figure 4.3: Results with state and action penalization

After testing on data from different commodities markets, we can note that
the effects of action and state penalization differ for each commodity. Using them
both we ended our trading with gain on approximately half of the commodities
available. Considering the fact we have made many approximations troughout the
optimalization process, we hope that there is still a chance to get better results.
In figure 4.4 we present the histogram of total gains reached at the end of trading
on 34 commodity markets.

In the last figure 4.5, you can find results with the same parameter settings,
but another commodity, this time it is Light Crude Oil (CL).
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Chapter 5

Conclusion

We managed to implement a new version of optimalization algorithm which in-
cludes structure determination and uses multiple channels to predict future price
of a commodity. We use exponential forgetting with constant factor and itera-
tions spread in time method to improve our results. The algorithm ends trading
with gain on approximately half of the data available, which could be interpreted
as approximately staying on its own in general. We are aware that the achieved
results are in no means ideal and we want to improve our algorithm in the fu-
ture. The major improvements could be made by incorporating variable forgetting
factor for different channels and markets or by performing an intergration over
the predictive cpdf instead of using parameter estimates. Another improvement
which could be made is an initial transformation of data, because we expect the
prices to have rather log-normal than normal distribution (it is more likely to see
price rise of 100 dollars on commodity with actual price of 10000 dollars than on
commodity with 100 dollars actual price).
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