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1 Introduction

In Morales, Pardo and Vajda (1996), we systematically studied generalized measures of

uncertainty of stochastic systems with finite or countable state spaces Θ and probability
distributions π on Θ, and generalized measures of informativity of random observations
X with sample probability spaces (X ,S, P ) and posterior distributions πx on Θ when
X = x ∈ X . We investigated the general entropies H(π) as appropriate concave or Schur
concave functions of stochastic vectors π. As general characteristics of informativity of
the whole stochastic observation experiment

E = 〈(Θ, π), (X ,S, P )〉 (1.1)
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we proposed the corresponding conditional entropies

H(E) =

∫

X

H(πx)dP (x) (1.2)

closely related to the general information measures

I(E) = H(π) − H(E). (1.3)

Particular attention was paid to the entropies of the form

Hφ(π) =
∑

θ∈Θ

φ(π(θ)) (1.4)

for concave functions φ(t), 0 ≤ t ≤ 1.

For φ(t) = −t log t we obtain from (1.4) the classical Shannon entropy

H1(π) = −
∑

θ∈Θ

π(θ) lnπ(θ) (1.5)

and from (1.2) and (1.3) the classical Shannon conditional entropy and Shannon informa-
tion. For φ(t) = t(1 − t) we obtain from (1.4) the alternative to the Shannon entropy

H2(π) = 1 −
∑

θ∈Θ

π2(θ) (1.6)

called the quadratic entropy by Vajda (1968), and from (1.2) and (1.3) the corresponding
quadratic conditional entropy H2(E) and quadratic information I2(E). In fact, Cover and
Hart (1967) and Vajda (1968) introduced independently H2(E) as a measure of quality
of decisions concerning the states θ ∈ Θ achievable on the basis of observations X in
the statistical experiments E . For example, the probability of error Pe(E) of the Bayes
decisions δB : X 7−→ Θ was estimated in Vajda (1968) as follows

H2(E)
(

1 +
√

1 − H2(E)
)

≤ Pe(E) ≤ H2(E) (1.7)

so that the smooth information criterion H2(E) can replace the less easily evaluated Pe(E)
in the feature selection processes with low levels of error probability.

The quadratic entropy (1.6) requires the operation of multiplication and summation,
and is thus computationaly simpler than the Shannon entropy (1.5) and also than the
more general entropies of Rényi (1961)

H̆α(π) =
1

α − 1
ln
∑

θ∈Θ

πα(θ), α > 0, α 6= 1 (1.8)

containing the Shannon entropy as the special limit case H1(π) = H̆1(π) =
△

limα→1 H̆α(π).
Rényi introduced the entropies axiomatically by extending and parametrizing by α the
additivity rule in the axioms used earlier by Faddeev (1957) to characterize the Shannon’s
H1(π). However, he emphasized also the alternative ”pragmatic approach” to motivate
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H1(π) and its extensions as characteristics of various statistical decision problems. In
this sense for example Kovalevsky (1965) used H1(E) to obtain similar bounds as (1.7) to
characterize the error probability Pe(E) in pattern recognition problems which inspired
among other the work of Vajda (1968). The bounds of Kovalevsky were later reinvented
and applied in different areas of statistical decisions and information processing by several
authors, e.g. Tebbe and Dwyer (1968) or Feder and Merhav (1994).

By appropriately modifying the extended additivity rule of Rényi (1961), Havrda and
Charvát (1967) axiomatically introduced the one-one modification of the power entropies
of Rényi,

Hα(π) =
1

α − 1

(

1 −
∑

θ∈Θ

πα(θ)

)

, α > 0, α 6= 1 (1.9)

with the limit H1(π) = limα→1 Hα(π). Vajda (1969) used the generalized informativity
Hα(E) obtained by employing Hα(π) in (1.2) to evaluate bounds of the type (1.7) and
proposed Hα(E) as a generalized feature extraction criterion. His criterion was used
later by many authors, e.g. Kanal (1974), Devijver and Kittler (1982) or Devroye et al.
(1996), and his bounds of the type (1.7) were later completed, modified or tightened by
Salichov (1994), Toussaint (1977), Ben Bassat (1978 ), Ben Bassat and Raviv (1978) and
Harremoes and Topsoe (2001).

Vajda and Vašek (1985) found a method for obtaining attainable bounds of the type
(1.7) for arbitrary Schur concave entropy (1.2) applied later in Morales, Pardo and Va-
jda (1996). Here we use the results of these two papers to obtain some new attainable
bounds for the probability of error Pe(E) and apply these bounds to approximate Bayes
risks RB(E) achieved in given experiments E for the most common types of loss func-
tions. We address also the problem which information criteria provide the most accurate
approximations of probabilities of errors and Bayes risks.

2 General loss modelL

Consider the classical model of Bayesian decision theory (cf. e.g. Berger (1986)) with
state of nature θ from a finite set Θ, prior probability distributions of states π = (π(θ) >
0 : θ ∈ Θ) and observations (random samples) X conditionally distributed by probability
measures Pθ on a measurable observation space (X ,S) depending on the states θ ∈ Θ. We
restrict ourselves to the important situation where the purpose of decision is identification
of the unknown state θ. Thus our decisions (actions in the sense of Berger) are states θ
from the action space Θ, and the loss functions are of the form

L : Θ × Θ 7→ [0,∞), L(θ, θ) = 0. (2.10)

Thus we deal with the Bayesian model given by a statistical experiment

E = 〈π,P = {Pθ : θ ∈ Θ}〉 (2.11)

and a loss function (2.10).

This is the standard decision-theoretic model of many real situations, in particular of
the
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(1) pattern recognition where the states of nature θ represent various possible patterns
(images) and L(θ, θ̂) > 0 is the loss incurred by the wrong identifications θ̂ of these pat-
terns,
(2) classification where the states θ represent various classes of objects and L(θ, θ̂) > 0 is
the loss of misclassification
(3) information transmission where the states θ represent various possible messages trans-
mitted via communication channel (Θ, {Pθ : θ ∈ Θ},X ) with input alphabet Θ, output
alphabet X and transition probability distributions Pθ describing distortion of messages
by the channel noise.

These concrete interpretations and their various combinations appear also in the detection

theory and stochastic control theory.

Let us briefly review basic concepts of Bayesian decision theory applicable in the
present model. Expected loss of an individual identification action θ̂ ∈ Θ is

L(π, θ̂) =
∑

θ∈Θ

L(θ, θ̂) π(θ). (2.12)

Each individual action θπ ∈ Θ with the property

θπ = argminθ̂ L(π, θ̂) (2.13)

is said to be Bayes action (Bayes decision without data) and the minimal a priori expected
loss

LB(π) = L(π, θπ) (2.14)

is a prior Bayes loss. Observation data x ∈ X are assumed to be used for identification
by means of identification rules

δ = X 7→ Θ. (2.15)

Technically, they are assumed to be S-measurable and Pθ-integrable for all θ ∈ Θ. Risk

function of the identification rule (2.15) is

R(θ, δ) =

∫

X

L(θ, δ(x)) dPθ(x), θ ∈ Θ

and its expected value

R(π, δ) =
∑

θ∈Θ

R(θ, δ)π(θ) =
∑

θ∈Θ

∫

X

L(θ, δ(x))π(θ) dPθ(x) (2.16)

is simply a risk. The minimizer

δB = argminδ R(π, δ) (2.17)

is the Bayes identification rule and

RB = R(π, δB) (2.18)

the Bayes risk of identification in the model under consideration.
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It is known that in this model the Bayes identification rule exists and is given by a
relatively simple explicit formula. To demonstrate this and to find the Bayes identification
rule formula, take first into account the marginal probability distribution

P =
∑

θ∈Θ

π(θ)Pθ (2.19)

on the observation space (X ,S) which dominates each conditional distribution Pθ in the
sense P (S) = 0 implies Pθ(S) = 0 for S ∈ S. Hence there exists the Radon-Nikodym
density

pθ(x) =
dPθ(x)

dP (x)

defined for all data x ∈ X , with values uniquely given except possibly a set Sθ ∈ S with
P (Sθ) = 0 (i.e. for P -almost all in symbols P -a.e. on X ). Then

πx = (πx(θ) =
△

π(θ)pθ(x) : θ ∈ Θ) (2.20)

is the conditional (posterior) probability distribution on Θ given data x. Indeed, by the
definition of Radon-Nikodym densities, pθ(x)

min
θ

πx(θ) ≥ 0 and
∑

θ

πx(θ) =
dP (x)

dP (x)
= 1 P -a.e. on X .

Obviously, the statistical experiment (2.11) is equivalently described by the conditional
distributions (2.20) for x ∈ X and the marginal distribution (2.19),

E = 〈π,P = {Pθ : θ ∈ Θ}〉 ≡ 〈P, Π = {πx : x ∈ X}〉. (2.21)

Using the posterior distribution (2.20) and the concept of expected loss (2.12), we can
rewrite the risk formula (2.16) into the simple form

R(πx, δ) =

∫

X

L(πx, δ(x)) dP (x). (2.22)

From here and from (2.17) we see that an identification rule δ is Bayes (in symbols δ = δB)
if and only if for P -almost all data x ∈ X the data based action δB(x) is Bayes for the
posterior distribution, πx, i.e. coincides with some θπx

defined in accordance with (2.13).
Thus the Bayes identification rule can equivalently be defined by the formula

δB(x) = θπx
P -a.e. on X (2.23)

From here we deduce also that the Bayes risk RB is the expected posterior Bayes loss

given data x, denoted LB(πx) and defined by (2.14) with the prior distribution π replaced
by the posterior distribution πx. In other words, we deduce that

RB = R(π, δB) =

∫

X

L(πx, θπx
) dP (x) (cf. (2.22), (2.23))

=

∫

X

LB(πx) dP (x). (2.24)
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3 Zero-one loss model

A prominent role in the applications of the model of previous section plays the error loss
function

Le : Θ × Θ 7→ {0, 1}, Le(θ, θ̂) =

{

1 if θ̂ 6= θ,

0 if θ̂ = θ.
(3.25)

Here the general expected loss L(π, θ̂) reduces to the prior probability of error of the
identification action θ̂ ∈ Θ,

Le(π, θ̂) =
∑

θ∈Θ

Le(θ, θ̂)π(θ) = 1 − π(θ̂) (3.26)

The Bayes identification action θπ thus minimizes this probability of error over θ̂ ∈ Θ.
This means that the prior Bayes expected loss LB(π) given by (2.14) is the minimal prior
probability of error given by the formula

eB(π) = 1 − π(θπ), (3.27)

and called simply prior Bayes error. Similarly the posterior. Bayes expected loss LB(πx)
for data x ∈ X is in this case the minimal posterior probability of error

eB(πx) = 1 − πx(θπx
) (3.28)

called simply posterior Bayes error, as the Bayes identification action θπx
∈ Θ minimizes

over θ̂ ∈ Θ the posterior error probability 1 − π(θ̂). Finally by (2.24) and the equality
LB(πx) = eB(πx), the Bayes risk RB coincides with the Bayes error (average minimal
posterior probability of error)

eB =

∫

X

eB(πx) dP (x). (3.29)

As mentioned in the introduction, our intention is to evaluate or estimate performances
of Bayes identification rules in the general loss function models by means of known perfor-
mances of such rules in the simpler error loss function models. The rest of this section is
devoted to the research of this eventuality. The achieved results serve in the next section
to establish new bounds for the Bayes risk RB based partly on the bounds for the Bayes
error probability eB established in previous literature and partly on new such bounds
established in the next section.

Put in the general loss model (2.10)

L+ = max{L(θ, θ̂) : θ, θ̂ ∈ Θ},

L− = min{L(θ, θ̂) : θ, θ̂ ∈ Θ, L(θ, θ̂) > 0},

and impose the nontrivial condition L+ > 0. Further, denote by

L0 =
L+ + L−

2
> 0
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the median positive loss and by

∆ = (L+ − L0)100 = (L0 − L−)100

the positive loss dispersion in %. Obviously, ∆ = 0 if and only if L(θ, θ̂) is proportional
to the zero-one loss function Le(θ, θ̂).

Example 1. The error loss function Le of (3.25) leads to L+ = L− = 1 so that the
median loss is L0 = 1 and the loss dispersion is ∆ = 0%.

Example 2. Consider the state space Θ = {1, . . . , n}, the loss function (2.10) given in
the matrix form

(L(θ, θ̂))n

θ,θ̂=1 =



















0 4/5 4/5 . . . 4/5 6/5
4/5 0 4/5 . . . 4/5 6/5
4/5 4/5 0 . . . 4/5 6/5
...

...
...

. . .
...

...
4/5 4/5 4/5 . . . 0 6/5
6/5 6/5 6/5 . . . 6/5 0



















where the unknown state 1 ≤ i ≤ n− 1 (say a battlefield decision of an enemy) means an
artillery attacks of a type i and the state n means an aircraft attack. Here

L+ = 6/5 > L0 = 1 > L− = 4/5 and ∆ = 20%.

Theorem 1. Let the general loss model of Section 3 satisfy the condition L(θ, θ̂) > 0
for θ 6= θ̂. If the median loss is L0 and the loss dispersion is ∆ ≥ 0, then

(i) the prior Bayes loss LB and the prior Bayes error eB satisfy the relation

|LB(π) − L0 eB(π)| ≤
∆

100
eB(π),

(ii) for P -almost all x ∈ X , the posterior Bayes loss LB(πx) and the posterior Bayes
error eB(πx) satisfy the relation

|LB(πx) − L0 eB(πx)| ≤
∆

100
eB(πx), (3.30)

(iii) the Bayes risk RB and the Bayes error satisfy the relation

|RB − L0 eB| ≤
∆

100
eB.

Proof. (I) If θ 6= θ̂ then by assumption L(θ, θ̂) > 0 so that L(θ, θ̂) ∈ [L−, L+]. If
L(θ, θ̂) ∈ [L0, L+] then, by definition of L+ and dispersion ∆,

L(θ, θ̂) − L0 ≤ L+ − L0 = ∆/100.
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If L(θ, θ̂) ∈ [L−, L0] then, similarly,

L0 − L(θ, θ̂) ≤ L0 − L− = ∆/100.

Hence
|L(θ, θ̂) − L0| ≤ ∆/100 for all θ 6= θ̂. (3.31)

Now by (2.18) and by the assumptions, for every π and θ̂ ∈ Θ

L(π, θ̂) =
∑

θ 6=θ̂

L(θ, θ̂)π(θ). (3.32)

Hence (2.20) implies for every π

LB(π) =
∑

θ 6=θπ

L(θ, θπ)

Further, (3.27) implies for every π

∑

θ 6=θπ

π(θ) = eB(π),

which is positive by the assumed positivity of all π(θ). Therefore multiplying the left side
of (3.31) by π(θ)/eB(π), summing over all θ 6= θπ and using the Jensen inequality, we get

∣

∣

∣

∣

∣

1

eB(π)

∑

θ 6=θπ

L(θ, θ̂) − L0

∣

∣

∣

∣

∣

≤
∆

100
.

Thus it remains to apply (3.32) to complete the proof of (i).

(II) Since πx, given in Section 2, are shown to be probability distribution on Θ for P -
almost all x ∈ X , (ii) follows from(i).

(III) Integrating both sides of (3.30) over X with respect to the measure P and using the
Jensen inequality, we get

∣

∣

∣

∣

∫

X

LB(πx)dP (x) − L0

∫

X

eB(πx)dP (x)

∣

∣

∣

∣

≤
∆

100

∫

X

eB(πx)dP (x).

The desired result of (iii) follows from here and from the formulas (2.24) and (3.29).

Denote for a while by δe the Bayes identifier in the simpler error loss model, to dis-
tinguish it from the Bayes identifier δB in the general loss model of the previous section.
By definition, δe(x) maximizes the posterior probability πx(θ) on Θ under observation
x ∈ X . Therefore L(δe(x), θ̂) is the lowest loss among all losses L(θ, θ̂) resulting from
the decision θ̂. If we replace in the definition of the Bayes identification θ̂ = δB(x) the
posteriori expected loss

L(πx, θ̂) =
∑

θ∈Θ

L(θ, θ̂)πx(θ) (c.f. (2.23) and (2.13))
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by the posteriori most probable loss L(δe(x), θ̂) then the corresponding identifier

δSB(x) = argminθ̂L(δe(x), θ̂) (3.33)

is an interesting alternative to the Bayes δB(x). We call it a sub-Bayes identifier. It
is simpler than the Bayes identifier since (3.33) minimizes one particular loss function
while (2.13) is minimizes the mixture (2.12) of such functions. It may be useful when
fast Bayes actions δB are required in a model with fixed δe and frequently varying loss
functions L(θ, θ̂).

The following Theorem 2 deals with the sub-Bayes risk

RSB = R(π, δSB). (3.34)

It assumes less than Theorem 1 and at the same time provides tighter bounds when
eB(πx) < 1/2 or eB > 1/2.

Theorem 2. Consider the general loss model of Section 3 with median loss L0 > 0 and
loss dispersion ∆ ≥ 0.

(i) For P -almost all x ∈ X the posterior Bayes loss LB(πx) = L(πx, δB(x)) and the
posterior sub-Bayes loss L(πx, δSB(x)) satisfy the relation

0 ≤ L(πx, δSB) −L(πx, δB) ≤ 2eB(πx)∆/100,

where eB(πx) is the posterior Bayes error (3.28).

(ii) The Bayes risk RB and the sub-Bayes risk RSB satisfy the relation

0 ≤ RSB − RB ≤ 2eB∆/100,

where eB is the Bayes error (3.29).

Proof. (I) Since for P -almost all x ∈ X

δB(x) = argminθ̂L(πx, δ),

the left inequality in (i) is clear. By (2.12)

L(πx, δSB) = L(δe(x), δSB(x))πx(δe(x)) + ξ(x)

for
ξ(x) =

∑

θ 6=δe(x)

L(θ, δSB(x)) ≤ (L0 + ∆/100)[1 − πx(δe(x))].

Similarly,

L(πx, δB) = L(δe(x), δB(x))πx(δe(x)) + η(x) ≤ L(δe(x), δSB(x))πx(δe(x)) + η(x)

for
η(x) =

∑

θ 6=δe(x)

L(θ, δB(x)) ≥ (L0 + ∆/100)[1 − πx(δe(x))].
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Therefore
L(πx, δSB) − L(πx, δB) ≤ [1 − πx(δe(x))]2∆/100

and (i) follows from (3.28) and from the fact that δe(x) is the Bayes identifier action
θπx

∈ Θ considered in (3.28).

(II) By (3.27)

RB =

∫

X

L(πx, δB(x)) dP (x)

and by (3.34) and (2.16)

RSB =

∫

X

L(πx, δSB(x)) dP (x).

Thus (ii) obviously follows from the already proved inequality in (i) and from the formula
(3.29) for the Bayes error eB.

4 Generalized information criteria

In this section 4 we denote by n = |Θ| the number of parameters in Θ. We study estimates
of Bayes errors eB(π), eB(πx) and eB (or more generally, the Bayes risks RB(π), RB(πx),
RB) by means of information criteria represented by measures of uncertainties (entropies)
H(π), H(πx) and

H =

∫

X

H(πx) dP (x)

of realizations of states of nature θ from individual stochastic sources (Θ, π), (Θ, πx), or
from systems of such sources {(Θ, πx) : x ∈ X} depending on data (samples) x which are
realizations of random observations X with the sample space (X ,S, P ). For details about
these concepts and notations see sections 2 and 3.

Classical Shannon information criteria are based on the Shannon entropy (here mea-
sured in nats instead of bits)

H(π) =
∑

θ∈Θ

φ(π(θ)), φ(t) = −t ln t.

In Section 1 we mentioned their generalizations based on the power entropies

Hα(π) =
∑

θ∈Θ

φα(π(θ)), α > 0. (4.35)

where for α 6= 1

φα(t) =
t(1 − tα−1)

α − 1
and φ1(t) = lim

α→1
φα(t) = −t ln t. (4.36)

Hence

Hα(π) =
1

α − 1

[

1 −
∑

θ∈Θ

π(θ)α

]

if α 6= 1



Generalized information criteria for optimal Bayes decisions 11

and
H1(π) = lim

α→1
Hα(π) = −

∑

θ∈Θ

π(θ) ln π(θ).

As argued in Morales, Pardo and Vajda (1996), the desired information-theoretic
properties of the power entropies follow from the concavity of functions φα(t) on [0, 1] and
from their extremal values φα(0) = φα(1) = 0. As an example we can take the information

processing property

0 = Hα(πD) ≤ Hα(πT−1) ≤ Hα(π) ≤ Hα(πU) = (n − n1−α)/(α − 1),

where T : Θ 7→ T is a mapping which leads to the new distribution

πT−1(τ) =
∑

θ:T (θ)=τ

π(θ)

on the new states τ ∈ T and as such represents an information processing on the state
space. The remaining symbols πD, πU are Dirac and uniform probability distributions
on Θ. The concavity argument applies also to the alternative power functions φ̃α(t) =
φα(1−t) so that the same information-theoretic properties are shared by the corresponding
alternative power entropies

H̃α(π) =
∑

θ∈Θ

φ̃α(π(θ)), α > 0, (4.37)

i.e.

H̃α(π) =
1

α − 1

[

n∗ − 1 −
∑

θ∈Θ

(1 − π(θ))α

]

if α 6= 1,

where n∗ = #{θ ∈ Θ : π(θ) > 0}, and

H̃1(π) = lim
α→1

H̃α(π) = −
∑

θ∈Θ

(1 − π(θ)) ln(1 − π(θ)).

Note that the alternative Shannon entropy was introduced as a measure of diversity by
Zvárová (2008).

Similarly as the classical Shannon entropy, the generalized entropies Hα(π) and H̃α(π)
are measures of the information obtained by observing the state from Θ a priori distributed
by π. One can thus expect that the minimal error probability eB(π) of identification of
this state on the basis of π is intimately related to these entropies. Since the Bayes
error eB = eB(E) in the general experiment E (c.f. (2.21)) is the average minimal error
probability

eB(E) =

∫

X

eB(πx)dP (x) (c.f. (3.29)), (4.38)

it must be similarly related to the average generalized entropies Hα(E) and H̃α(E) defined
as analogous stochastic mixtures

Hα(E) =

∫

X

Hα(πx)dP (x) and H̃α(E) =

∫

X

H̃α(πx)dP (x). (4.39)
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In what follows we investigate this relation.

In the next theorem we evaluate the upper and lower bounds

H+
α (eB) = max

eB(E)=eB

Hα(E) and H−
α (eB) = min

eB(E)=eB

Hα(E), (4.40)

using for α > 0 and n =| Θ | the auxiliary constants

aα,k =

{

1−k1−α

α−1
if α 6= 1

limα→1 aα,k = ln k if α = 1
, ck =

k − 1

k
, 1 ≤ k ≤ n, (4.41)

bα,k =
aα,k+1 − aα,k

ck+1 − ck

, 1 ≤ k ≤ n − 1 (4.42)

and the auxiliary function

h(t) = −t ln t − (1 − t) ln(1 − t), 0 ≤ t ≤ 1 where 0 ln 0 = 0. (4.43)

Theorem 3. For every α > 0 and 0 ≤ eB ≤ cn ≡ (|Θ| − 1)/|Θ| the power entropy upper

bounds (4.40) are given by the formulas

H+
α (eB) =

1 − (n − 1)1−αeα
B − (1 − eB)α

α − 1
(4.44)

if α 6= 1 and
H+

1 (eB) = lim
α→1

H+
α (eB) = h(eB) + eB ln(n − 1) (4.45)

if α = 1 while the power entropy lower bounds (4.40) are given by the formulas

H−
α (eB) = aα,k + bα,k(eB − ck) when ck ≤ eB ≤ ck+1, 1 ≤ k ≤ n − 1 (4.46)

if 0 < α < 2 and
H−

α (eB) =
aα,n

cn

eB (4.47)

if α ≥ 2. The bounds H+
α (eB) and H−

α (eB) coincide only at the endpoints c1 = 0 and cn

of the domain of eB where

H+
α (0) = H−

α (0) = 0 and H+
α (cn) = H−

α (cn) = aα,n > 0. (4.48)

Proof. (I) The Bayesian errors e(π) and eB take on values in the interval

0 ≤ e(π), eB ≤ cn. (4.49)

By Theorem 2 in Morales et al. (1996), for every 0 ≤ e ≤ cn

e(π) = e implies H−
α (e) ≤ Hα(π) ≤ H+

α (e) (4.50)

where the lower and upper bounds H±
α (e) are attained by the entropies Hα(π±) for special

distributions π± = (π±(θ) : θ ∈ Θ). If α 6= 1 then, by using the method proposed by Vajda
and Vašek (1985), these bounds were evaluated in the mentioned Theorem 2 as follows:

H+
α (e) =

1 − (n − 1)1−αeα − (1 − e)α

α − 1
(4.51)
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and

H−
α (e) =

1 − [1 − k(1 − e)]α − k(1 − e)α

α − 1
(4.52)

when ck ≤ e ≤ ck+1 and 1 ≤ k ≤ n − 1. If α = 1 then the upper bound was evaluated as
the corresponding limit

H+
1 (e) = lim

α→1
H+

α (e) = h(e) + e ln(n − 1) (4.53)

and the lower bound was evaluated as the limit

H−
1 (e) = lim

α→1
H−

α (e) = −[1 − k(1 − e)] ln[1 − k(1 − e)] − k(1 − e) ln(1 − e) (4.54)

on the intervals ck ≤ e ≤ ck+1 for 1 ≤ k ≤ n − 1.

(II) Consider now arbitrary parameter α > 0, arbitrary constants 0 ≤ c̃ < c ≤ cn and
arbitrary distributions π, π̃ such that e(π) = c and ẽ(π̃) = c̃. Then the linear function

tHα(π) + (1 − t)Hα(π̃) of variable 0 ≤ t ≤ 1

must be bounded above by the function H+
α (tc + (1 − t)c̃) and bounded below by the

function H−
α (tc + (1− t)c̃). This implies that H+

α must be concave and H−
α convex on the

interval [c̃, c] ⊆ [0, 1]. At the same time H+
α must be minimal but above H+

α and H−
α must

be maximal but below H−
α . Since H+

α is concave itself, this implies H+
α =H+

α so that (4.44)
and (4.45) follow from (4.51) and (4.53). On the other hand, H−

α given by (4.52) and (4.54)
is piecewise concave in the intervals between the cutpoints ck, 1 ≤ k ≤ n−1. The piecewise
linear function Φα(t) of variable t ∈ [0, cn] connecting the points [ck, H

−
α (ck)] ≡ [ck, ak] for

1 ≤ k ≤ n is

Φα(t) = aα,k + bα,k(t − ck) for ck ≤ t ≤ ck+1, 1 ≤ k ≤ n − 1. (4.55)

This function is convex (concave) if the sequence

Φα(ck)

ck

=
aα,k

ck

=

{

k(1−k1−α)
(α−1)(k−1)

if α 6= 1

limα→1 aα,k = k
k−1

ln k if α = 1

is increasing (decreasing) for k = 2, 3, ...Obviously, it is constant equal 1 if α = 2, increas-
ing if 0 < α < 2 and decreasing if α > 2. Therefore H−

α (eB) = Φα(eB) if 0 < α ≤ 2 and
H−

α (eB) is linear in eB, equal [Φα(cn) − Φα(0)] eB/cn ≡ aneB/cn, if α > 2. This proves
(4.46) and (4.47). The last assertion including relations (4.48) is a consequence of what
has already been proved. In Figures 1 and 2 are drawn the curves H±

α (eB) as functions

of variable eB for α = 1/2, 1 and α = 2, 3. The lower bounds H−
α (eB) for α ≥ 2 are linear

in eB.

Remark. Relation (4.53) is the well known Fano bound of information theory and (4.51)
is its extension obtained previously in Vajda (1968) for α = 2 and in Morales, Pardo and
Vajda (1996) and other references mentioned there for remaining α > 0.
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Figure 1: H±
α (eB) as functions of variable eB for α = 1/2, 1.

The next theorem evaluates the upper and lower bounds

H̃+
α (eB) = max

eB(E)=eB

H̃α(E) and H̃−
α (eB) = min

eB(E)=eB

H̃α(E). (4.56)

It uses the same ck as Theorem 3 and for every α > 0 the constants

ãα,k =

{

k−1
α−1

[

1 −
(

k−1
k

)α−1
]

if α 6= 1

limα→1 ãα,k = (k − 1) ln k
k−1

if α = 1
(4.57)

for 0 ln 0 = 0, 1 ≤ k ≤ n, and

b̃α,k =
ãα,k+1 − ãα,k

ck+1 − ck

for 1 ≤ k ≤ n − 1.

Theorem 4. Let α > 0 be arbitrary fixed. The alternative power entropy upper bounds

(4.56) is for every 0 ≤ eB ≤ cn explicitly given by the formula

H̃+
α (eB) =

1

α − 1

[

n − 1 − eα
B − (n − 1)

(

1 −
eB

n − 1

)α]

(4.58)

if α 6= 1 and

H̃+
1 (eB) = lim

α→1
H̃+

α (eB) = −e ln e − (n − 1 − e) ln

(

n − 1 − e

n − 1

)

(4.59)
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Figure 2: H±
α (eB) as functions of variable eB for α = 2, 3.

if α = 1 while the alternative power entropy lower bounds (4.56) are given by the formulas

H̃−
α (eB) = ãα,k + b̃α,k(eB − ck) when ck < eB < ck+1, 1 ≤ k ≤ n − 1 (4.60)

if α > 2 and

H̃−
α (eB) =

ãα,n

cn

eB (4.61)

if 0 < α ≤ 2. The bounds H̃+
α (eB) and H̃−

α (eB) coincide only at the endpoints c1 = 0 and
cn of the domain of eB where

H+
α (0) = H−

α (0) = 0 and H+
α (cn) = H−

α (cn) = ãα,n > 0. (4.62)

Proof. (I) As before, the Bayes errors e(π) and eB take on values in the interval

0 ≤ e(π), eB ≤ cn.

By Theorem 1 in Vajda and Vašek (1985), for every 0 ≤ e ≤ cn

e(π) = e implies H̃−
α (e) ≤ H̃α(π) ≤ H̃+

α (e) (4.63)

where the lower and upper bounds H±
α (e) are attained by the entropies Hα(π±) for the

special distributions

π+ =

(

1 − e,
e

n − 1
,

e

n − 1
...,

e

n − 1

)

and
π− = (1 − e, 1 − e, , ..., 1 − e, 1 − k(1 − e), 0, 0, ..., 0)
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provided ck ≤ e ≤ ck+1 for 1 ≤ k ≤ n − 1. Hence for α 6= 1

H̃+
α (e) = H̃α(π+) =

1

α − 1

[

n − 1 − eα − (n − 1)

(

1 −
e

n − 1

)α]

(4.64)

and

H̃−
α (e) = H̃α(π−) =

k − keα − kα(1 − e)α

α − 1
(4.65)

when ck ≤ e ≤ ck+1 and 1 ≤ k ≤ n − 1. For α = 1 we get

H̃+
1 (e) = H̃1(π

+) = lim
α→1

H̃+
α (e) = −e ln e − (n − 1 − e) ln

(

n − 1 − e

n − 1

)

(4.66)

and
H̃−

1 (e) = H̃−
1 (π−) = lim

α→1
H̃−

α (e) = −ke − k(1 − e) ln [k(1 − e)] (4.67)

on the intervals ck ≤ e ≤ ck+1 for 1 ≤ k ≤ n − 1.

(II) Consider now arbitrary parameter α > 0, arbitrary constants 0 ≤ c̃ < c ≤ cn and
arbitrary distributions π, π̃ such that e(π) = c and ẽ(π̃) = c̃. Then the linear function

tH̃α(π) + (1 − t)H̃α(π̃) of variable 0 ≤ t ≤ 1

must be bounded above by the function H̃+
α (tc + (1 − t)c̃) and bounded below by the

function H̃−
α ((tc+(1− t)c̃). Similarly as in the previous proof, this implies that H̃+

α must
be concave and H̃−

α convex on the interval [c̃, c] ⊆ [0, 1]. At the same time H̃+
α must be

minimal but above H̃+
α and H̃−

α must be maximal but below H̃−
α . Since H̃+

α is concave
itself, this implies H̃+

α =H̃+
α so that (4.58) and (4.59) follow from (4.64) and (4.66). On the

other hand, H̃−
α given by (4.65) and (4.67) is piecewise concave in the intervals between

the cutpoints ck, 1 ≤ k ≤ n− 1. The piecewise linear function Φ̃α(t) of variable t ∈ [0, cn]
connecting the points [ck, H̃

−
α (ck)] ≡ [ck, ãk] for 1 ≤ k ≤ n is

Φ̃α(t) = ãα,k + b̃α,k(t − ck) for ck ≤ t ≤ ck+1, 1 ≤ k ≤ n − 1

This function is convex for (concave) if the sequence

Φ̃α(ck)

ck

=
ãα,k

ck

=











k
α−1

[

1 −
(

k−1
k

)α−1
]

if α 6= 1

limα→1 ãα,k = −k ln k−1
k

if α = 1

is increasing (decreasing) for k = 2, 3, ...Obviously, it is constant equal 1 if α = 2, de-
creasing if 0 < α < 2 and increasing if α > 2. Therefore H−

α (eB) = Φα(eB) if α > 2 and
H−

α (eB) is linear in eB equal [Φα(cn) − Φα(0)] eB/cn ≡ aneB/cn if 0 < α ≤ 2. This proves
(4.60)and (4.61). The last assertion including relations (4.62) is a consequence of what
was already proved above.

In Figures 3 and 4 are drawn the curves H̃±
α (eB) as functions of variable eB for α =

1/2, 1 and α = 2, 3.



Generalized information criteria for optimal Bayes decisions 17

1,0

H+(0,5) H-(0,5) H+(1) H-(1)

0,8

0,6

0,4

0,2

0,0

0,00 0,07 0,13 0,20 0,27 0,33 0,40 0,47 0,53 0,60 0,67 0,73 0,80

Figure 3: H̃±
α (eB) as functions of variable eB for α = 1/2, 1.

The last step of our research was evaluation of the integrals

∫ cn

0

H+
α (eB) deB =











1
α−1

[

n−1
n

− nα+n−2
(α+1)nα

]

if α 6= 1

1
2n

[n − 1 + (n − 2) lnn] if α = 1

(4.68)

and

∫ cn

0

H−
α (eB) deB =



























1
2(α−1)

∑n−1
k=1

2−k1−α−(k+1)1−α

k(k+1)
if 0 < α < 2, α 6= 1

1
2

∑n−1
k=1

ln[k(k+1)]
k(k+1)

if α = 1

(n−1)(1−n1−α)
2(α−1)n

if α ≥ 2.

(4.69)

for the Bayes error bounds H±
α (eB). Average differences

τα,n =
1

cn

∫ cn

0

(

H+
α (eB) −H−

α (eB)
)

deB. (4.70)

between these bounds represent average inaccuracies of the power (in particular Shannon)
conditional entropies as information criteria of Bayes errors. Concrete numerical values
of these inaccuracy measures as functions of α > 0 are given in Table 1 at the end of the
paper.
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Figure 4: H̃±
α (eB) as functions of variable eB for α = 2, 3.

Similar steps and ideas were applied also to the alternative bounds H̃±
α (eB), namely

we obtained the integrals

∫ cn

0

H̃+
α (eB) deB =











1
α−1

[

(n−1)2

n
− (n−1)2

α+1
+ n(n−2)

α+1

(

n−1
n

)α+1
]

if α 6= 1

(n−1)2

2n

[

1 + (n − 2) ln n−1
n

]

if α = 1

(4.71)

and

∫ cn

0

H̃−
α (eB) deB =



































(n−1)2

2n(α−1)

[

1 −
(

n−1
n

)α−1
] if 0 < α ≤ 2,

α 6= 1

(n−1)2

2n
ln n

n−1
if α = 1

1
2(α−1)

∑n−1
k=1

2k−1−(k−1)( k−1

k
)

α−1
−k( k

k+1)
α−1

k(k+1)
if α > 2.

(4.72)
leading to the inaccuracy measures

τ̃α,n =
1

cn

∫ cn

0

(

H̃+
α (eB) − H̃−

α (eB)
)

deB. (4.73)

for conditional alternative power entropies (in particular, alternative Shannon entropies).
Concrete numerical values of τ̃α,n as functions of α > 0 are given in Table 2 at the end of
the paper.
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Criteria for Bayes and sub-Bayes risk are now easily obtained by plugging into the
bounds and inaccuracy measures of the present section the results of sections 2 and
3. This and application of the accuaracy measures for selection of the most accurate
information criteria will be the last step of this research.
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Annex of Tables

n 0.125 0.25 0.5 1 1.5 2 3 4
2 0.4123 0.3455 0.2525 0.1534 0.1071 0.3333 0.2500 0.2000
3 1.0019 0.8146 0.5575 0.2908 0.1705 0.2569 0.1649 0.1227
4 1.6083 1.2764 0.8322 0.3939 0.2099 0.2037 0.1306 0.1011
5 2.2213 1.7288 1.0849 0.4773 0.2376 0.1818 0.1203 0.0958
6 2.8364 2.1717 1.3202 0.5474 0.2587 0.1716 0.1168 0.0944
7 3.4514 2.6055 1.5415 0.6082 0.2754 0.1663 0.1157 0.0941
8 4.0649 3.0309 1.7511 0.6619 0.2891 0.1635 0.1156 0.0942
9 4.6763 3.4484 1.9507 0.7100 0.3006 0.1619 0.1158 0.0945
10 5.2853 3.8588 2.1416 0.7535 0.3105 0.1610 0.1161 0.0948
20 11.2287 7.6589 3.7372 1.0523 0.3664 0.1610 0.1195 0.0970
30 16.9402 11.0848 5.0025 1.2353 0.3926 0.1623 0.1211 0.0979
40 22.4755 14.2697 6.0850 1.3680 0.4088 0.1631 0.1220 0.0984
50 27.8726 17.2803 7.0469 1.4723 0.4200 0.1637 0.1226 0.0987
100 53.4660 30.7249 10.8646 1.8025 0.4487 0.1651 0.1238 0.0993
200 100.7473 53.5218 16.3214 2.1392 0.4699 0.1659 0.1244 0.0997
300 145.1650 73.5789 20.5287 2.3382 0.4794 0.1661 0.1246 0.0998
400 187.7885 92.0259 24.0828 2.4800 0.4852 0.1663 0.1247 0.0998
500 229.1154 109.3564 27.2176 2.5903 0.4892 0.1663 0.1248 0.0999
600 269.4330 125.8440 30.0537 2.6806 0.4922 0.1664 0.1248 0.0999
700 308.9277 141.6610 32.6630 2.7571 0.4945 0.1664 0.1248 0.0999
800 347.7298 156.9250 35.0927 2.8233 0.4963 0.1665 0.1248 0.0999
900 385.9354 171.7210 37.3753 2.8818 0.4979 0.1665 0.1249 0.0999
1000 423.6182 186.1130 39.5347 2.9342 0.4992 0.1665 0.1249 0.0999
1500 605.8886 253.4550 48.9962 3.1359 0.5037 0.1666 0.1249 0.1000
2000 780.6168 315.3187 56.9761 3.2792 0.5064 0.1666 0.1249 0.1000
2500 949.9337 373.4003 64.0082 3.3904 0.5082 0.1666 0.1250 0.1000
3000 1115.0557 428.6341 70.3668 3.4814 0.5095 0.1666 0.1250 0.1000
3500 1276.7668 481.6060 76.2147 3.5583 0.5106 0.1666 0.1250 0.1000
4000 1435.6130 532.7152 81.6582 3.6249 0.5115 0.1666 0.1250 0.1000
4500 1591.9953 582.2495 86.7712 3.6837 0.5122 0.1666 0.1250 0.1000
5000 1746.2203 630.4252 91.6074 3.7363 0.5128 0.1666 0.1250 0.1000
5500 1898.5295 677.4104 96.2074 3.7839 0.5133 0.1666 0.1250 0.1000
6000 2049.1181 723.3393 100.6028 3.8273 0.5137 0.1666 0.1250 0.1000
6500 2198.1467 768.3208 104.8187 3.8673 0.5141 0.1666 0.1250 0.1000
7000 2345.7497 812.4453 108.8755 3.9043 0.5145 0.1666 0.1250 0.1000
7500 2492.0411 855.7887 112.7898 3.9388 0.5148 0.1666 0.1250 0.1000
8000 2637.1191 898.4155 116.5757 3.9710 0.5151 0.1666 0.1250 0.1000
8500 2781.0685 940.3815 120.2452 4.0013 0.5154 0.1666 0.1250 0.1000
9000 2923.9639 981.7349 123.8082 4.0299 0.5156 0.1666 0.1250 0.1000
9500 3065.8708 1022.5178 127.2736 4.0569 0.5158 0.1666 0.1250 0.1000
10000 3206.8477 1062.7677 130.6490 4.0825 0.5160 0.1667 0.1250 0.1000

Table 1. Average inaccuracies τα,n for selected α and n.
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n 0.125 0.25 0.5 1 1.5 2 3 4
2 0.8889 0.8000 0.6667 0.5000 0.4000 0.3333 0.0625 0.0542
3 0.5551 0.5009 0.4234 0.3346 0.2867 0.2569 0.1042 0.1017
4 0.4893 0.4376 0.3628 0.2765 0.2307 0.2037 0.1262 0.1288
5 0.4671 0.4166 0.3430 0.2566 0.2097 0.1818 0.1398 0.1463
6 0.4572 0.4076 0.3349 0.2483 0.2005 0.1716 0.1490 0.1584
7 0.4521 0.4032 0.3311 0.2446 0.1961 0.1663 0.1557 0.1673
8 0.4491 0.4007 0.3292 0.2428 0.1939 0.1635 0.1608 0.1742
9 0.4473 0.3994 0.3283 0.2420 0.1928 0.1619 0.1647 0.1796
10 0.4462 0.3985 0.3278 0.2417 0.1923 0.1610 0.1679 0.1840
20 0.4436 0.3975 0.3287 0.2436 0.1935 0.1610 0.1825 0.2044
30 0.4435 0.3980 0.3298 0.2453 0.1952 0.1623 0.1875 0.2114
40 0.4436 0.3984 0.3306 0.2463 0.1962 0.1631 0.1899 0.2150
50 0.4438 0.3986 0.3311 0.2470 0.1969 0.1637 0.1914 0.2172
100 0.4440 0.3993 0.3321 0.2484 0.1983 0.1651 0.1944 0.2215
200 0.4442 0.3996 0.3327 0.2492 0.1991 0.1659 0.1960 0.2237
300 0.4443 0.3997 0.3329 0.2495 0.1994 0.1661 0.1965 0.2244
400 0.4443 0.3998 0.3330 0.2496 0.1996 0.1663 0.1967 0.2248
500 0.4444 0.3998 0.3331 0.2497 0.1997 0.1663 0.1969 0.2250
600 0.4444 0.3999 0.3331 0.2497 0.1997 0.1664 0.1970 0.2252
700 0.4444 0.3999 0.3332 0.2498 0.1998 0.1664 0.1970 0.2253
800 0.4444 0.3999 0.3332 0.2498 0.1998 0.1665 0.1971 0.2253
900 0.4444 0.3999 0.3332 0.2498 0.1998 0.1665 0.1971 0.2254
1000 0.4444 0.3999 0.3332 0.2498 0.1998 0.1665 0.1972 0.2255
1500 0.4444 0.3999 0.3333 0.2499 0.1999 0.1666 0.1973 0.2256
2000 0.4444 0.4000 0.3333 0.2499 0.1999 0.1666 0.1973 0.2257
2500 0.4444 0.4000 0.3333 0.2499 0.1999 0.1666 0.1973 0.2257
3000 0.4444 0.4000 0.3333 0.2499 0.1999 0.1666 0.1974 0.2257
3500 0.4444 0.4000 0.3333 0.2500 0.2000 0.1666 0.1974 0.2258
4000 0.4444 0.4000 0.3333 0.2500 0.2000 0.1666 0.1974 0.2258
4500 0.4444 0.4000 0.3333 0.2500 0.2000 0.1666 0.1974 0.2258
5000 0.4444 0.4000 0.3333 0.2500 0.2000 0.1666 0.1974 0.2258
5500 0.4444 0.4000 0.3333 0.2500 0.2000 0.1666 0.1974 0.2258
6000 0.4444 0.4000 0.3333 0.2500 0.2000 0.1666 0.1974 0.2258
6500 0.4444 0.4000 0.3333 0.2500 0.2000 0.1666 0.1974 0.2258
7000 0.4444 0.4000 0.3333 0.2500 0.2000 0.1666 0.1974 0.2258
7500 0.4444 0.4000 0.3333 0.2500 0.2000 0.1666 0.1974 0.2258
8000 0.4444 0.4000 0.3333 0.2500 0.2000 0.1666 0.1974 0.2258
8500 0.4444 0.4000 0.3333 0.2500 0.2000 0.1666 0.1974 0.2258
9000 0.4444 0.4000 0.3333 0.2500 0.2000 0.1666 0.1974 0.2258
9500 0.4444 0.4000 0.3333 0.2500 0.2000 0.1666 0.1974 0.2258
10000 0.4444 0.4000 0.3333 0.2500 0.2000 0.1667 0.1974 0.2258

Table 2. Average inaccuracies τ̃α,n for selected α and n.


