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Abstract: In the paper, a model of conservative particle system, which gene-
ralises a well known zero range process, is studied. The generalisation consists
in allowing jumps of more than one particle in one moment. We describe what
this generalisation means in the context of modeling a traffic flow.

Abstrakt: Př́ıspěvek je věnován konzervativńımu částicovému systému, kte-
rý zobecňuje známý částicový systém zvaný Zero-range proces. V tomto zo-
becněńı povoĺıme přeskok v́ıce než jedné částice v jednom kroku. Proces
použijeme pro modelováńı dopravńıho toku, kde má takové zobecněńı velmi
dobrý význam.

1 Introduction

We are interested in particle systems with zero range or exclusion interacti-
ons [1, 8]. A particle system is a large system of indistinguishable particles
which occupy sites of a graph, typically lattice Z

d or for example binary
trees [4]. The evolution of such a system in time is given by movement of par-
ticles between sites and this movement is influenced by interactions among
particles. In case of zero range and exclusion interactions, the whole system
is conservative, i.e. there are no births or deaths. Exclusion models allow at
most one particle per site and interactions between two particles arise if one
particle attempts to jump to the site occupied by the second one. Such jumps
are excluded. Zero range models allow arbitrary number of particles per site
and interactions arise just among particles at the same site, the particles are
queueing. These systems are models for queuing systems, networks or traffic.
From the theoretical point of view they are Markov processes with continuous
time with a state space given by allowable particle configurations.

Particularly, the one dimensional (d = 1) exclusion process can be used
as a simple model for a traffic flow. Each particle (a car) can move forward
only if the site ahead is unoccupied. If zero range models are employed we
gain wider possibilities how to describe different speeds of columns of various
lengths. Both models were used as models for a traffic flow in [7].

In this contribution, we focus on a generalisation of zero range processes
with allowance of multiple jumps. This generalisation would permit to model,
in the traffic context, splitting of columns. Our aim is to study stationary
states of this process and also a closely connected problem of the existence
of a coupling process for the given dynamics.
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Previously, stationary states for zero range dynamics generalised by mul-
tiple jumps were studied by Evans [2, 3] in the framework of finite volume
systems, i.e. particles live only on a finite interval {1, ..., L} ⊂ Z.

In a special case, when jumps of particles have a constant rate - indepen-
dent of the number of particles at sites and also independent of the amount of
jumping particles, a multiple jump model was treated in [9]. The model from
paper [9], called stick process was studied in the context with Ulam’s pro-
blem, i.e. evaluation of a limit theorem for the longest increasing subsequence
of a random permutation of n symbols.

2 Definition of model

Let us consider a particle system living on one dimensional lattice Z, each
site i ∈ Z is occupied by an arbitrary number η(i) of particles and the whole
particle configuration η = (η(i) : i ∈ Z) is a state of our process (ηt)t≥0. We
suppose that the particle system is evolving in time in the sense given by
series of independent Poisson processes, where each of them rules movement
of particles at just one site i, and exactly events of these Poisson processes
are only possible moments for jumps of particles from one site to another.
We will consider here the totally asymmetric case, it means that jumps are
possible only between neighbours on Z and only in one direction (let us say
from the left to the right). In classical zero range processes, the jump of at
most one particle in one moment is possible. In generalised - multiple jumps
- zero range processes (MJ-ZRP), the following jumps may occur in time t of
a Poisson event at i:

k-many particles from total amount ηt−(i) leaves site i and moves
to site i + 1.

The rate of this jump is equal to

g(k, ηt−(i)) (1)

where g is a nonnegative function on N × N, g(k, α) = 0 if k > α.
The classical zero range process (ZRP) is then a special case with

g(k, α) = I[k=1]r(α) (2)

for a nonnegative function r on N, r(0) = 0. So only one particle can jump in
time t of a Poisson event at i and a rate of the jump is r(ηt−(i)). A meaning of
the rate is following: looking at site i in time s we will wait for a jump of one
particle from i an exponential time with mean 1/r(ηs(i)). We can imagine
an exponential clock at each site instead of the Poisson process. Note that
always when a jump happens some of exponential clocks have to change their
means according to new configuration η.

A totally asymmetric multiple jumps - zero range process on Z can be
defined as a Markov process (ηt)t≥0 with a state space X ⊂ N

Z given by
infinitesimal generator
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(�Lf)(η) =
�

i∈Z

�

k∈N+

g (k, η (i))
�

f
�

ηk,i
�

− f (η)
�

(3)

for every η ∈ X and every cylinder function f : X → R.

Notation and remark on definition:
1. We denoted by ηk,i a changed configuration after a multiple jump

ηk,i(j) =







η(i)− k if j = i
η(i + 1) + k if j = i + 1
η(j) otherwise.

2. A function f : N
Z → R is called cylinder function, if there exists a finite

K ⊂ N such that f(η) depends only on η�K = (η(j) : j ∈ K) for each η ∈ N
Z.

3. The reason, why we can not consider the whole product space N
Z as a state

space, is that even if we assume bounded function g there are particle con-
figurations that could induce arrival of infinitely many particles to the same
site in a finite time. This is the case of configurations with too many par-
ticles laying on the left halfline near −∞. Hence we allow only following set
of configuration X = {η ∈ N

Z : limn→−∞
1

n2

�−1
i=n η(i) = 0}, see [9].

Let us state here for completeness a generator of the classical zero range
process (totally asymmetric):

(�Lcf)(η) =
�

i∈Z

r (η (i))
�

f
�

η1,i
�

− f (η)
�

(4)

for every η ∈ N
Z and every cylinder function f : N

Z → R. No restriction on
the state space are needed if we assume r bounded. For a case of unbounded r,
see [1].

3 Traffic interpretation

In the framework of finite volume, zero range process was used as a model
for traffic flow in work [7]. Particle systems in finite volume consider only
finite configurations of particles living on an interval [1, ..., L] instead of Z,
usually with periodic boundary condition (site 1 is assumed as the neighbour
on the right from site L). In this paper, we are interested in models in infinite
volume, defined in (3).

Let us interpret particles as cars and one dimensional lattice Z as a road
on which cars move in one direction (to the right, by our definition). So each
i ∈ Z is either occupied by a car or is empty. The car at site i can move to
site i+1 only if site i+1 is empty. If there is an interval [i, i+1, ..., j] of sites
which are occupied by cars we will say that there is a column (convoy) of
cars. This simple model can be described by a totally asymmetric exclusion
process, which refers to evolution of a configuration (η(i) : i ∈ Z), where
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η(i) = 1 if site i is occupied or η(i) = 0 if it is empty. A jump of a particle
from site i to i + 1 has rate I[η(i)=1,η(i+1)=0], i.e. a constant rate of jumps
from an occupied site to its empty right neighbour.
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Therefore, if cars have empty space ahead of them they move fluently with
constant rate 1 (car 1 in the picture above). If, on the other hand, the traffic
is heavy then next site could be occupied and then the car has to wait (car 2
in the picture above).

But we would like if our traffic model covers the fact that the speed of
a single car, a short column and a long columns differs. From this reason
we use instead of the simple exclusion process the classical zero range pro-
cess (4). Note that the models can be transformed one by one in a simple
way demonstrated on a folllowing picture.

Z

� �� � � � � �� � � � �� � �

Exclusion model

Z

� �

�

�

�

�

�

Zero range model

Now the first car of column i moves with a rate (speed) r (η (i)) where η(i) is
a number of cars of i-th column. In this context, it is natural to assume that r
is nonincreasing. Since ZRP with decreasing rate function r is not attractive
(attractiveness is defined in the next section), a lot of works on ZRP excluded
this case. ZRP with decreasing r was studied in details in [6].

The generalisation of zero range process defined by (3) allows to consi-
der situations that k particles of η(i) move together in one moment, which
means that a column of length k breaks away from i-th columns with a rate
g (k, η (i)).

4 Coupling process

In this section, we investigate the problem of attractiveness of MJ-ZRP (3).
Since the attractiveness is closely related to ordering of particle configurati-
ons, let us start with some notation.
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Let us consider the following partial order on state space X ⊂ N
Z: η ≤ ζ

if and only if η(i) ≤ ζ(i) for every i ∈ Z, η, ζ ∈ X. We say that a function f
on X is monotone if f(η) ≤ f(ζ) whenever η ≤ ζ.

We say that a particle system is attractive if for every bounded, monotone
continuous function f and every time t > 0, function Stf is again bounded,
monotone continuous function, where (Stf) (ξ) for each ξ ∈ X is the expected
value of f(ηt) under assumption that the process (ηt)t≥0 have started from
configuration ξ at time 0. In another words, an attractive system preserves
ordering in the following sense. If we imagine two initial configurations η, ζ
which are ordered, η ≤ ζ, and then we let them evolve by the same dynamics
and control both of them by the same set of Poisson processes (same reali-
sation of exponential clocks), the configurations of these systems in arbitrary
time will be again ordered, ηt ≤ ζt.

The technique, we have just now used to explain what attractiveness
means, is called coupling technique. It is very usual tool and, specially, the
construction of a coupling process (i.e. particle system (η1

t , η2
t ) on X×X where

each its marginal ηi
t is the original process) which preserves ordering of its

marginals (i.e. η1
0 ≤ η2

0 implies η1
t ≤ η2

t for every t > 0) acts as a proof of
attractiveness. However it is not the aim of this paper to present results about
coupling process. We focus only on conditions on rate function g under which
the process is or is not attractive. A thorough characterisation of coupling
rates for a big class of conservative process, MJ-ZRP among them, can be
found in [5].

The attractiveness is an important property and a lot of results on particle
systems were proved only using the fact that a process is attractive. On the
other hand, if a process is not attractive then it could have some special
properties. At the end of the previous section, we said that using ZRP as
a traffic model it is natural to assume nonincreasing speed function r. And
it is well known fact, see e.g. [1], that in this case (except the constant speed
function) ZRP is not attractive. In [6], cases of decreasing speed function r
are studied for which so called condensation occurs. They showed that there
exists a critical density of particles and if we start with a configuration with
a supercritical density, a mass of particles will concentrate at one single site.
If we interpret this condensation phenomena in the traffic context we obtain
a critical density of traffic flow beyond which traffic jam occurs.

In the following proposition we examine single cases of rate function g of
MJ-ZRP and state conditions on g so that the process is attractive.

Proposition 4.1. Let us consider MJ-ZRP given by generator (3). We dis-
tinguish following cases:

g(k, α) = h(k) I[k≤α] (5)

g(k, α) = r(α) I[k≤α] (6)

g(k, α) = r∗(α)r∗(α − 1)...r∗(α − k + 1) I[k≤α]. (7)

for some functions h, r and r∗.
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The process is attractive if and only if following conditions on function h, r
and r∗, respectively, are satisfied:

• h(k) nonincreasing for k ≥ 1, nonnegative,

• r(α) nonincreasing & αr(α) nondecreasing for α ≥ 1, nonnegative, and

• 0 < r∗(α) ≤ 1 &
k
�

i=1

r∗(k) . . . r∗(i) ≤ r∗(α+1)
1−r∗(α+1) for every 1 ≤ k ≤ α,

respectively.

This result is a simple consequence of a general theorem presented in [5]
where necessary and sufficient conditions for a general class of conservative
particle systems are proved. Note that a sufficient condition on r∗ to have the
process attractive is to assume r∗ positive, bounded by 1 and nondecreasing.

An interesting problem now could be to study the condensation pheno-
mena for generalised zero range process (3) with such rate function g for
which we have obtained by Proposition 4.1 the process is not attractive. To
study this problem we need to know how invariant measures in mentioned
cases of the rate function look like.

5 Invariant measures

This part is devoted to the study of invariant measures of MJ-ZRP (3).
Invariant measures are stationary states of a Markov process which means:
if the distribution of the initial particle configuration is just a stationary
distribution then looking at the system in arbitrary fixed time we can observe
again the same distribution as at the start.

A measure µ on X ⊂ N
Z is called invariant measure for the process with

generator �L if
�

�Lf dµ = 0 (8)

for every cylinder function f : X → R.
Note that (8) is other, more useful formulation of a standard formula for

invariant measures
	

(Stf)(ξ) µ(dξ) =
	

f(ξ) µ(dξ), for every continuous, bounded f,

since generator �L is given explicitly for a majority of particle systems. In case
of particle systems there is usually large set of invariant measures indexed
by a real parameter. An exhaustive description of all invariant measures for
given dynamics is then to set exactly how Ie, the set of extremal invariant
measures, looks like. Since the problem of finding Ie is nontrivial, a complete
description of Ie is known only for basic models. Sometimes, a simpler task
is to look for invariant measures which are in addition translation invariant,

i.e. µ({η : η(i) ∈ Ai, i ∈ I}) = µ({η : η(i + j) ∈ Ai, i ∈ I}) for each j ∈ Z.

A result on invariant measures for MJ-ZRP we want to present is following.
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Theorem 5.1. Let us consider MJ-ZRP given by generator (3). If

g(k, α) =
h(k)r(α)

r(α − k)
for every 1 ≤ k ≤ α, α ≥ 1, (9)

for some h nonnegative, r positive function, then product measures νϕ on X,

νϕ({η : η(i) = n}) = Zϕ

ϕn

r(n)
for every i ∈ Z, n ∈ N, (10)

with a normalising constant Zϕ, are invariant for (3) for every ϕ ∈ (0, c).

Let us discuss now the particular cases which we studied in the previous
section. We can see that cases (5) and (7) are covered by Theorem 5.1 and
product invariant measures νϕ have the following form:

νϕ(η(i) = n) = Zϕ ϕn/ (r∗(n)r∗(n − 1)...r∗(1)) , in case (7),

νϕ(η(i) = n) = ϕn(1− ϕ), in case (5).

Hence invariant measures νϕ in case (5) do not depend on the exact form
of function h. Note that the same measures are also invariant for a classical
(totally asymmetric) ZRP (4) with a constant rate function r(α) = I[a>0].

The situation in case (6) is no more analogical to classical ZRP (4)

which has product invariant measures, νϕ(η(i) = n) = Zϕ
ϕn

r(n)r(n−1)...·r(1) ,

see e.g. [1]. In case (6) of MJ-ZRP, invariant and translation invariant mea-
sures are no more product ones.

Theorem 5.2. MJ-ZRP with rate function g(k, α) = r(α), case (6), has no pro-
duct translation invariant measures which are invariant with respect to (4),
except a trivial case when r is constant.

A similar problem was treated in [3] in the framework of finite volume
particle systems. They proved that finite volume MJ-ZRP has product inva-
riant measures if and only if rate function g can be formulated as in (9). So
Theorem 5.1 generalises one implication of this result for infinite volume MJ-
ZRP and Theorem 5.2 generalises the second implication for one particular
case of infinite volume MJ-ZRP.

Sketch of proof of Theorem 5.1. One can show that following condition
on rate function g:

g(k, k + l)
µ(η(i) = k + l)

µ(η(i) = l)
= c(k), for each k ≥ 1,

where c is a function independent of l ≥ 0, i ∈ Z, is sufficient for (8) to be
satisfied for a product measure µ on X. The proof is done, if we verify the
above conditions with g as given in (9) and µ = νϕ defined in (10).
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Sketch of proof of Theorem 5.2. We find necessary conditions on a pro-
duct, translation invariant measure µ on X for (8) to be satisfied. Let us
denote π(n) = µ (η (i) = n). Then for arbitrary n ∈ N, (l1, ..., ln) ∈ N

n

0 =
n

�

i=2

li
�

k=1




r(li−1 + k)
π(li−1 + k)

π(li−1)

π(li − k)

π(li)
− r(li)

�

+

+

l1
�

k=1

�

m≥0




r(m + k)
π(m + k)

π(m)

π(l1 − k)

π(l1)
− r(l1)

�

π(m) +

+
�

k≥1



r(ln + k)
π(ln + k)

π(ln)
−

�

m≥0

r(m + k)π(m + k)





are desired necessary conditions. One can show that these conditions does
not hold if r is not a constant function.
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