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The problem of testing whether two samples of possibly right-censored survival data come
from the same distribution is considered. The aim is to develop a test which is capable of de-
tection of a wide spectrum of alternatives. A new class of tests based on Neyman's embedding
idea is proposed. The null hypothesis is tested against a model where the hazard ratio of the
two survival distributions is expressed by several smooth functions. A data-driven approach to
the selection of these functions is studied. Asymptotic properties of the proposed procedures
are investigated under fixed and local alternatives. Small-sample performance is explored via
simulations which show that the power of the proposed tests appears to be more robust than
the power of some versatile tests previously proposed in the literature (such as combinations
of weighted logrank tests, or Kolmogorov–Smirnov tests).

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

This paper presents a new approach to testing homogeneity of two samples of right-censored survival data. The goal is to
provide an `omnibus' test procedure sensitive against a range of alternatives. Such a test is useful, for instance, in situations
when the Kaplan–Meier curves for the two samples do not suggest an alternative against which one should test (e.g., when the
curves cross, as in the example in Section 7), or in situations when the visual inspection of the Kaplan–Meier plots is impossible
(e.g., when data must be analysed automatically).

Omnibus tests cannot have power superior to all tests in all situations. Therefore, the objective is different: it is desirable to
have a test which should not fail against a rather broad spectrum of alternatives. The method proposed in this paper achieves
this goal.

Consider two samples of survival data. The jth sample consists of observations (Tj,i,�j,i), i=1, . . . ,nj, j=1, 2, where Tj,i =Rj,i
1∧Cj,i

is the possibly censored survival time, �j,i = 1[Rj,i �Cj,i] is the failure indicator, Rj,i is the unobserved survival time and Cj,i is the
unobserved censoring time. The survival time and censoring time are assumed to be independent. All n = n1 + n2 observations
(Tj,i,�j,i) are mutually independent. The times Rj,i come from a distribution with hazard function �j(t). The aim is to test the
hypothesis H0 : �1 = �2 without any specific alternative in mind.
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The traditional approach is to use a weighted logrank test statistic
∫ �
0 L(t)dU0(t), where the logrank process equals

U0(t) =
∫ t

0

Ȳ1(s)Ȳ2(s)

Ȳ(s)

[
dN̄2(s)

Ȳ2(s)
− dN̄1(s)

Ȳ1(s)

]
.

HarringtonandFleming (1982)proposed touseweight functions fromtheG�,� class of the form L(t)=K(Ŝ(t−))withK(u)=u�(1−u)�,
�, ��0 and Ŝ being an estimator of the survival function computed from the pooled sample (e.g., the Kaplan–Meier estimator
or the exponential of minus the Nelson–Aalen estimator). Various members of this class are suitable for discovering various
departures from the null hypothesis. Obviously, tests with �>0 and � = 0 are sensitive against early differences in hazard
functions, tests with � = 0 and �>0 are powerful against late differences, a choice with �>0 and �>0 yields a test good at
detectingmiddle differences and the logrank test G0,0 doeswell under proportional hazards. More precise results on performance
of G�,� tests are can be found in Fleming and Harrington (1991, Chapter 7) or Andersen et al. (1993, Section V.2). For instance, the
logrank test G0,0 is optimal (locally efficient) against the proportional hazards alternative (as it is the partial likelihood score test
in a Cox model with a group indicator covariate) and the Prentice–Wilcoxon statistic G1,0 is optimal against shift alternatives in
the logistic distribution.

The G�,� tests are directed against specific alternatives. While such a test is highly sensitive (often optimal) against the
particular direction in the space of alternatives it may fail to detect different kinds of alternatives. One often does not have a
clear advance idea of the nature of heterogeneity of the samples. Therefore, more omnibus tests were developed. Fleming and
Harrington (1991, Section 7.5) describe two classes of such tests: tests using the whole path of the logrank process U0 and tests
combining several statistics of the G�,� type. The former include supremum (Kolmogorov–Smirnov, KS) tests and integral tests
(of the Cramér–von Mises (CM) and Anderson–Darling (AD) type). See also Gill (1980, Section 5.4) and Schumacher (1984). The
latter class uses the maximum or sum of a finite cluster of weighted logrank statistics. Yet another procedure has been proposed
by Pecková and Fleming (2003) who select a statistic from this cluster on the basis of estimated asymptotic relative efficiencies
(within the cluster) against location shift alternatives.

Here I make a further step towards versatile tests with robust power, that is towards tests which on one hand do not collapse
against a wide range of alternatives and on the other hand do not lose much compared to optimal directional tests.

My approach is based on Neyman's embedding idea combined with Schwarz's selection rule. The null nonparametric model
of homogeneous samples is viewed as a submodel of a larger semiparametric model in which the hazard ratio of the two samples
is expressed in terms of several smooth functions. A score test is applied to testing the null model versus the smooth model.
Furthermore, selection criteria are used for choosing the smooth model. This data-driven strategy is inspired by the approach of
Ledwina (1994) and Inglot et al. (1997). Smooth tests in the context of event history analysis were previously considered by Peña
(1998a, b) and adaptive smooth tests by Kraus (2007).

In Section 2 the smooth test is constructed. Section 3 provides its data-driven version. Consistency of the proposed procedures
is investigated in Section 4 while in Section 5, I study their behaviour under sequences of local alternatives. The Monte Carlo
study of Section 6 explores level properties and power. The method is illustrated on a real data set in Section 7.

2. Construction of Neyman's test

Neyman's goodness-of-fit idea is used here as follows. The null model with �1 = �2 is embedded in a d-dimensional model

�2(t) = �1(t) exp{�T�(t)}, (1)

where � = (�1, . . . ,�d)
T is a parameter and �(t) = (�1(t), . . . ,�d(t))

T are some bounded functions modelling possible difference
of �2 from �1. The functions �k(t) are taken in the form �k(t) = 	k(g(t)) where {	1, . . . ,	d} forms a set of linearly independent
continuous functions on [0, 1] and g is an increasing transformation that maps the time period [0, �] to [0, 1].

The task of testing �1 = �2 versus (1) is equivalent to testing H0 : � = 0 versus Hd : ��0. It is advantageous to introduce the
group indicator variable Zj,i = 1[j=2]. With this notation the intensities admit the form


j,i(t) = Yj,i(t)�(t) exp{�T�(t)Zj,i}. (2)

Hence we arrive at a Cox proportional hazards model with d artificial time-dependent covariates �1(t)Zj,i, . . . ,�d(t)Zj,i whose
significance is to be tested. To this end we may use well-known partial likelihood tools, of which the score test is particularly
appealing as it does not involve estimation of �.

Before proceeding to asymptotic considerations let usmake someassumptions. Throughout thepaperweassume the following
standard regularity conditions.

Assumptions. (a) aj = limn→∞ nj/n exists and aj ∈ (0, 1), j = 1, 2.
(b) The survival functions Sj of failure times satisfy Sj(�)>0, j = 1, 2.
(c) The distribution functions Gj of censoring times satisfy 1 − Gj(�)>0, j = 1, 2.
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Denote by ȳ1, ȳ2 the uniform limits in probability of n−1Ȳ1,n−1Ȳ2, respectively; let ȳ stand for ȳ1 + ȳ2. By the Glivenko–Cantelli
theorem these functions are ȳj(t) = ajSj(t)(1 − Gj(t)). The above conditions guarantee that the limit functions are bounded away
from zero on [0, �].

The score process for the Cox model (2) under � = 0 takes the form

U(t) =
∫ t

0
�(s)

Ȳ1(s)Ȳ2(s)

Ȳ(s)

[
dN̄2(s)

Ȳ2(s)
− dN̄1(s)

Ȳ1(s)

]
=

∫ t

0
�(s)dU0(s).

Then it is known (Fleming and Harrington, 1991, Corollary 7.2.1; Andersen et al., 1993, Theorem V.2.1) that under the hypothesis
�1 = �2 the logrank process n−1/2U0 converges weakly in D[0, �] with Skorohod topology to a zero mean Gaussian martingale V0
whose variance function and its uniformly consistent estimator are

�0(t) =
∫ t

0

ȳ1(s)ȳ2(s)
ȳ(s)

dA(s), n−1�̂0(t) = n−1
∫ t

0

Ȳ1(s)Ȳ2(s)

Ȳ(s)

dN̄(s)

Ȳ(s)
,

where A(t)= ∫ t
0 �(s)ds is the cumulative hazard function of the survival distribution. Consequently, under the null (i.e., � = 0) the

process n−1/2U is asymptotically distributed as a d-variate zeromean Gaussianmartingale V with covariancematrix function and
its estimator

�(t) =
∫ t

0
�(s)⊗2 d�0(s), n−1�̂(t) = n−1

∫ t

0
�(s)⊗2 d�̂0(s)

(that is, cov(Vk(s),Vl(t)) = �k,l(s ∧ t)).
The partial likelihood score statistic

Td = U(�)T�̂(�)−U(�)

used for testing �=0 versus ��0 is asymptotically chi-squared distributed with d degrees of freedom. The hypothesis is rejected
for large values of Td.

Asmentioned before, the basis functions	1, . . . ,	d are linearly independent.We can take several functions from awell-known
orthonormal basis of L2[0, 1]. For instance, we can use the cosine basis 	k(u)= √

2 cos(k�u), k= 1, . . . , d, or orthonormal Legendre
polynomials on [0, 1]. It is natural (but not always necessary) to have the unity in the linear span of these functions in order to
capture possible proportional hazards alternatives. We can set 	1 ≡ 1 (note that a model of the form (2) containing an intercept
is identifiable) and the other functions may be cosines or Legendre polynomials.

Modelling the logarithm of the hazard ratio by linear combinations of smooth functions is a flexible approach. For instance,
considerd=3polynomials (of order 0, 1, 2). Their linear span contains theweight functionsG0,0,G1,0,G0,1 andG1,1. Hence	1,	2,	3
can capture the same alternatives as the four logrankweights (proportional hazards, early,middle and late differences).Moreover,
also nonlocation alternatives (crossing hazards) can be expressed by combinations of 	1,	2,	3.

The time-transformation g : [0, �] → [0, 1] may be simply g(t) = t/�. However, the purpose of the transformation is to
standardise the speed of time. FollowingKraus (2007)we can use g(t)=F(t)/F(�) (with F(t)=1−S(t) being the commondistribution
function of survival times) or g(t) = A(t)/A(�). Alternatively, one may consider g(t) = �0(t)/�0(�). If the functions 	1, . . . ,	d are
orthonormal, this transformation yields a diagonal asymptotic covariance matrix (that is, the components of the score vector are
asymptotically independent). For survival data Kraus (2007) advocates the transformation based on the distribution function.

In practice, a transformation depending on unknown quantities is replaced by a uniformly consistent estimator ĝ computed
from the pooled sample, for instance ĝ(t) = F̂(t)/F̂(�). Denote g∗ the limit of ĝ (ĝ converges to g under the null hypothesis or local
alternatives, and to amixture counterpart of g under the fixed alternative considered later). The difference between the scorewith
ĝ and g∗ converges in probability to zero (by the Cauchy–Schwarz inequality and the fact that supt∈[0,�] |	k(ĝ(t))− 	k(g

∗(t))| → 0
in probability). Therefore, it is enough to obtain asymptotic results for theoretic deterministic weights. They are predictable
and thus standard martingale tools apply. Then the results carry over to the practical case of nonpredictable estimated weights
involving ĝ. In the following sections we do not explicitly repeat this argument in each proof.

3. Selection rules and adaptive tests

The difference between �1 and �2 is often well described by less than all d smooth functions. However, one does not know
which functions should be included in the model and which not. Omitting a function that highly contributes to the description
of the data or including an improper function may result in bad performance of the test. Therefore, it is reasonable to let the test
adapt to the data, make the test data-driven.

This is accomplished by means of Schwarz's selection rule (or Bayesian information criterion, BIC). The adaptive test consists
of two steps. First, a subset of {	1, . . . ,	d} is selected on the basis of Schwarz's rule. Once a subset is selected, the score test against
this likely alternative is performed.

We must specify a class S of nonempty index subsets out of which the selection rule will pick the most suitable one.
I consider two classes previously proposed in the literature. Ledwina (1994) used d nested subsets of the form Snested = {{1},
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{1, 2}, . . . , {1, . . . , d}}. This choice is reasonablewhen the basis functions are naturally ordered, e.g., according to increasing complex-
ity (which is the case, for instance, for the cosine basis with increasing frequencies but hardly for the indicator basis). Claeskens
and Hjort (2004) proposed to use all nonempty subsets of {1, . . . , d}, that isSall =2{1,. . .,d}\{∅}. I also consider the strategy proposed
by Janssen (2003). He suggested to prescribe a set of basis functions of primary interest which are always included. Without loss
of generality, let these functions be several first basis functions, i.e., let their indices be C0 = {1, . . . ,d0} for some d0 (with d0 = 0
meaning C0 = ∅). Then the class of subsets is {C ∪ C0 : C ∈ S′} (whereS′ may beSnested,Sall, or some other class of nonempty
sets).

Schwarz's criterion (a modification proposed by Ledwina, 1994) selects the set Smaximising the penalised score statistic, i.e.,

S = arg max
C∈S

{TC − |C| logn},

where |C| denotes the number of elements of C and TC stands for the score statistic computed in the model with basis functions
	k, k ∈ C. The adaptive test is based on TS.

The asymptotic behaviour of the statistic TS is given by the following theorem.

Theorem 1. Denote d∗ =min{|C| : C ∈ S} (that is d∗ =max(d0, 1)). Then, under the null hypothesis, the selection criterion asymptot-
ically concentrates in sets of dimension d∗, i.e., Pr[|S| = d∗] → 1 as n → ∞. Consequently, TS is asymptotically distributed as

max{VC(�)
T�CC(�)

−1VC(�) : C ∈ S, |C| = d∗},

where VC(�) and �CC(�) are, respectively, the subvector and submatrix of V(�) and �(�) corresponding to the subset C.

Proof. Any d∗-dimensional setC asymptoticallywins against any set C̃ of dimension k>d∗ because Pr[TC̃−k logn<TC−d∗ logn]=
Pr[TC̃/logn − TC/logn<k − d∗] → 1. Among d∗-dimensional sets the one whose score statistic is maximal is selected. Hence TS
has the same asymptotic distribution as max{TC : C ∈ S, |C| =d∗} which converges to the variable in the assertion of the theorem
by weak convergence of the score vector and the continuous mapping theorem. �

When no high priority directions are specified (d0 = 0) the nested subsets test statistic is approximately 
2
1-distributed.

Although asymptotically valid the 
2
1 approximation is known to be inaccurate for small samples. A two-term approximation

taking into account the possibility of selection not only of the set {1} but also {1, 2} was applied in Kraus (2007, Eq. (12)), see
further references therein.

For the all subsets rulewith d0=0, TS converges tomax{V1(�)
2/�11(�), . . . ,Vd(�)

2/�dd(�)}, themaximumof generally dependent

2
1 variables. It may be easily approximated by simulation from the distribution of V(�) (zero-mean normal with variance matrix

estimated by n−1�̂(�)).
With d0>0 both nested and all subsets criteria give a statistic with asymptotic 
2 distribution with d0 degrees of freedom.
Small-sample accuracy of asymptotic approximations is investigated via simulations in Section 6.
Finally note that although the proposed tests aim at detecting a wide range of alternatives without a specific direction in

mind, they can provide an idea of the type of departure from the null when the null is rejected. For instance, when the test using
nested subsets and Legendre polynomials rejects and the selected dimension is 1, it suggests proportional hazards. Similarly, the
hazard ratio is likely to be monotonic for S = 2 and convex/concave for S = 3. In this regard, the proposed tests differ from the
Kolmogorov–Smirnov and related tests which give no such idea in case of rejection.

4. Consistency

Let us investigate when the smooth tests and their data-driven versions are consistent. Consider a fixed general alternative of
different hazards in the two samples, i.e., �1(t)��2(t) on a nonnull set. Recall that g∗(t) denotes the function to which ĝ converges
in probability. Under the fixed alternative the pooled sample Nelson–Aalen estimator Â consistently estimates

A∗(t) =
∫ t

0

[
ȳ1(s)
ȳ(s)

�1(s)ds + ȳ2(s)
ȳ(s)

�2(s)ds
]
.

Therefore, for instance, for ĝ(t) = Â(t)/Â(�) we have g∗(t) = A∗(t)/A∗(�) and for ĝ(t) = F̂(t)/F̂(�) we have g∗(t) = F∗(t)/F∗(�) where
F∗(t) = 1 − exp{−A∗(t)}. Denote �∗(t) = 	(g∗(t)).

Theorem 2. Smooth tests (both fixed-dimensional and data-driven) are consistent against any alternative satisfying

∫ �

0
�∗(t)

ȳ1(t)ȳ2(t)
ȳ(t)

(�2(t) − �1(t))dt �0 (3)

(i.e., at least one component is nonzero).
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Proof. The left-hand side in (3) is the limit in probability of n−1U(�) under the alternative by consistency of the Nelson–Aalen
estimators. The variance estimator n−1�̂(�) converges under the alternative to a finite matrix, namely∫ �

0
�∗(t)⊗2 ȳ1(t)ȳ2(t)

ȳ(t)

[
ȳ1(t)
ȳ(t)

�1(t)dt + ȳ2(t)
ȳ(t)

�2(t)dt
]
.

Therefore, the limit of n−1Td is nonzero, thus Td → ∞ in probability and consistency of the fixed-dimensional test follows. To see
consistency of data-driven tests it remains to realise that for any subset C ∈ S containing at least one index corresponding to a
nonzero component of (3) it holds that TC − |C| logn → ∞ in probability (because n−1TC converges to a positive number). Thus
some of the subsets with the score statistic converging to infinity will be selected with probability converging to 1. Hence the
data-driven test statistic TS converges in probability to infinity which proves the assertion. �

Condition (3)may be interpreted as follows. Ourworkingmodel is (2). The true form of the hazard functions is, however, more
general: it may be rewritten as 
j,i(t) = Yj,i(t)�(t) exp{�(t)Zj,i}, where the function � is nonzero on a nonnull set. Thus we work
with a (possibly) misspecified Cox model. Struthers and Kalbfleisch (1986, Theorem 2.1) (see also Lin and Wei, 1989) show that
the maximum partial likelihood estimator in a misspecified proportional hazards model converges to the solution to a limiting
estimating equation. In our situation this limiting equation for � is∫ �

0
�∗(t)

ȳ1(t)ȳ2(t)

ȳ1(t) + ȳ2(t) exp{�T�∗(t)}
(�2(t) − �1(t) exp{�T�∗(t)})dt = 0.

Condition (3) just means that � = 0 is not the solution to the limiting estimating equation, i.e., the estimate in the smooth model
does not asymptotically fall to the nullmodel. In otherwords, (3) says that the basis functions	1, . . . ,	d are not chosen completely
wrong in the sense that at least some of them contributes to the approximation of �.

5. Behaviour under local alternatives

The aim of this section is to investigate the limit distribution of the test statistics under a sequence of local alternatives.
Consider local alternatives of the form �2(t) = �1(t) exp{n−1/2�(t)}, where � is a bounded function.

Theorem 3. Under the sequence of local alternatives


j,i(t) = Yj,i(t)�(t) exp{n−1/2�(t)Zj,i}

the logrank process n−1/2U0(t) converges weakly in D[0, �] to the Gaussian process �0(t) + V0(t), where the martingale V0 is given in
Section 2 and the mean function is

�0(t) =
∫ t

0
�(s)

ȳ1(s)ȳ2(s)
ȳ(s)

�(s)ds =
∫ t

0
�(s)d�0(s).

The process n−1/2U(t) converges to �(t)+V(t)with �(t)=∫ t
0 �(s)d�0(s), and, consequently, the statistic Td is asymptotically distributed

as a chi-squared variable with d degrees of freedom and noncentrality parameter �(�)T�(�)−1�(�). The statistic TS of the adaptive test
converges weakly to

max{(�C(�) + VC(�))
T�CC(�)

−1(�C(�) + VC(�)) : C ∈ S, |C| = d∗}.

Proof. The convergence of the logrank process is shown in Andersen et al. (1993, Section V.2.3). The convergence of n−1/2U
and Td is an immediate consequence. The results for data-driven tests follow from the fact that also along the sequence of local
alternatives all variants of Schwarz's rule asymptotically concentrate in sets of the minimal dimension d∗. �

For nested subsets with d0 = 0 the test behaves asymptotically under local alternatives like the directional test based on the
first basis functions. (Note, however, that the test is consistent against the same alternatives as tests with all d functions.) This
local behaviour was the motivation of Janssen (2003) for including high priority basis functions. Such tests (both with nested
subsets and all subsets) behave asymptotically like the smooth test with d0.

6. Numerical study

6.1. General information

Weconducted simulations inorder to examine thebehaviour of theproposed tests and compare themwith someof the existing
two-sample procedures. We considered one situation satisfying the null hypothesis and several alternative configurations with
hazard differences of various kind.
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Table 1
Estimated sizes of fixed-dimensional and adaptive tests on the nominal level 5% with asymptotic critical values.

(n1,n2) d = 4, d0 = 0 d = 7, d0 = 4

Td Tnested
S Tnested

S Tall
S Tnested

S Tall
S

(
2
4) (
2

1) (two-term) (max
2
1) (
2

4) (
2
4)

Censoring U(0, 10) (10%)
(25, 25) 0.0664 0.1265 0.0695 0.0701 0.0945 0.1167
(50, 50) 0.0608 0.0960 0.0560 0.0600 0.0860 0.1084
(100, 100) 0.0600 0.0766 0.0554 0.0528 0.0772 0.0987
(200, 200) 0.0537 0.0656 0.0528 0.0516 0.0662 0.0848
(15, 35) 0.0769 0.1359 0.0770 0.0740 0.1158 0.1368
(30, 70) 0.0698 0.0960 0.0586 0.0586 0.0986 0.1215
(60, 140) 0.0636 0.0814 0.0604 0.0548 0.0832 0.1026
(120, 280) 0.0609 0.0695 0.0550 0.0519 0.0760 0.0944

Censoring U(0, 2) (43%)
(25, 25) 0.0512 0.1132 0.0554 0.0620 0.0717 0.0898
(50, 50) 0.0548 0.0911 0.0536 0.0602 0.0710 0.0915
(100, 100) 0.0516 0.0701 0.0512 0.0542 0.0664 0.0854
(200, 200) 0.0522 0.0642 0.0490 0.0508 0.0632 0.0792
(15, 35) 0.0654 0.1238 0.0664 0.0734 0.0948 0.1129
(30, 70) 0.0572 0.0916 0.0542 0.0616 0.0785 0.0978
(60, 140) 0.0560 0.0762 0.0569 0.0566 0.0726 0.0899
(120, 280) 0.0534 0.0668 0.0535 0.0518 0.0654 0.0815

The distribution of survival times is unit exponential. Estimates based on 20000 replications (standard deviation 0.0015).

Table 2
Estimated selection probabilities for subsets with dimension d∗ , d∗ + 1,d∗ + 2 (three smallest dimensions) under the null hypothesis (unit exponential).

n d = 4, d0 = 0 d = 7, d0 = 4

|S| = 1 |S| = 2 |S| = 3 |S| = 4 |S| = 5 |S| = 6

Nested subsets
50 0.9366 0.0518 0.0094 0.9482 0.0444 0.0063
100 0.9607 0.0325 0.0060 0.9662 0.0294 0.0038
200 0.9770 0.0198 0.0026 0.9758 0.0219 0.0021
400 0.9848 0.0134 0.0016 0.9844 0.0145 0.0008

All subsets
50 0.9804 0.0176 0.0014 0.8857 0.1101 0.0038
100 0.9891 0.0099 0.0009 0.9184 0.0796 0.0020
200 0.9938 0.0056 0.0003 0.9428 0.0559 0.0012
400 0.9967 0.0030 0.0003 0.9594 0.0400 0.0006

Censoring U(0, 2), various sample sizes n = n1 + n2 (with n1 = n2). Estimates based on 20000 replications (standard deviation at most 0.0035).

Random numbers were generated using the Mersenne–Twister generator implemented in R (version 2.1.0). Twenty thousand
Monte Carlo runs were performed under the null hypothesis, and 5000 for alternative situations. Smooth tests were used with
the Legendre polynomial basis; the time transformation g was based on the distribution function.

6.2. Results on level

The behaviour of the test procedures under the null hypothesis is examined. We repeatedly generated two samples of
unit exponential variables, censored them by independently generated uniform variables and performed the fixed-dimensional
smooth test and both nested subsets and all subsets adaptive tests with and without specifying high priority basis functions.
Various sample sizes n1,n2 and two censoring distributions (U(0, 10) and U(0, 2)) were considered. The tests were performed on
the nominal level 5% using asymptotic critical values.

Table 1 provides empirical sizes. It is seen that the tests often exceed the nominal level. There are two sources of inaccuracy:
bad performance of the asymptotic normal approximation for the score vector and slow convergence of selection criteria to the
smallest dimension.

First, we may observe that when the censoring is light the fixed-dimensional test Td is anticonservative even for rather large
samples. A similar phenomenon could be observed for G0,� tests (especially with �>0). Like these tests, our tests give some
weight to late differences too.

A second, apparently more serious problem concerns data-driven tests. It is mainly seen for the nested subsets test with
d0 = 0 and for both variants with d0>0 (here d0 = 4) that the 
2

d∗ approximation is unacceptable even for the sample size 400.
The reason of inaccuracy is the slow convergence of the selection criterion to the smallest dimension. Table 2 reports estimated
selection probabilities for sets of three smallest dimensions. It shows that the concentration of |S| in d∗ is insufficient for small
samples. There is an exception: the criterion with all subsets with d0 =0 is more concentrated in smallest (one-dimensional) sets
and the asymptotic distribution (i.e., the maximum of 
2

1 variables) performs much better (the size is comparable to the size of
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the test with fixed dimension). This is not so surprising because in this case the selection rule is asymptotically concentrated in
d one-dimensional sets, whereas with the other classes of subsets the rule asymptotically selects one set (of dimension d∗). For
the nested subsets criterion with d0 = 0 we have the two-term approximation mentioned in Section 3. It successfully removes
the problem of the slow convergence of S, the size is then similar to the size of the fixed-dimensional test (see Table 1).

To make the inference valid we use the permutation principle (Neuhaus, 1993). It assumes that the pairs (Nj,i,Yj,i) (or (Tj,i,�j,i)
for survival data) are independent identically distributed under the null hypothesis and the distribution of the test statistic is
exchangeable (permutation invariant). Hence, in the survival context, the censoring distributions in the two samples should be
equal. The test is then exact. If the censoring distributions differ, the permutation procedure is valid asymptotically. Neuhaus
(1993) and Heller and Venkatraman (1996) show that the permutation method remains reliable when the assumption of equal
censoringdistributions isnot satisfied.Note that althoughNeuhaus (1993) focusedonweighted logrankandKolmogorov–Smirnov
tests, the theoretical results of his Theorem 3.2 (asymptotic equivalence of distributions of the observed and permutation logrank
process) justify the use of the permutation method also for the tests proposed in the present paper.

The permutation test was used with 2000 random permutations which seemed enough as the rejection probability was
between 0.0470 and 0.0530 for all of the situations of Table 1. Note that alternatively instead of permutations (sampling
without replacement) one may use the bootstrap (sampling with replacement); bootstrap results both under the null and
under alternatives were very similar to permutation results.

Detailed results on the null behaviour of other two-sample tests are not reported. Just note that they often do not have size
close to the nominal level when the asymptotic distribution is used. The weighted logrank G0,� tests with normal approximation
seriously exceed the level especially with light or without censoring. On the contrary, the Kolmogorov–Smirnov and other tests
based on the logrank process are conservative. For these tests one may alternatively use the simulation approximation of Lin
et al. (1993)which removes the conservatism to some extent (but not sowell as permutations). Therefore, hereafter in simulations
of power, all of the tests are performed using the permutation principle (with 2000 permutations).

6.3. Alternative configurations

Several configurations found in the literature were analysed. We report mainly situations previously studied by other authors
not to be suspect of designing the study to favour the tests we propose. We investigated many other situations with similar
conclusions. Configurations I–IV correspond to I–IV of Fleming et al. (1987), Configuration V corresponds to IV of Lee (1996). We
admit that some of these alternatives may look somewhat peculiar when written in terms of hazard functions, they, however, do
not look so when survival functions are plotted (see Fig. 1).
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Fig. 1. Survival functions S1 (thick lines) and S2 (thin) under the simulation scenarios I–VI.
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Table 3
Comparison of power for fixed-dimensional and various data-driven tests with various values of d and d0.

d Td d0 = 0 d0 = 4

Tnested
S Tall

S Tnested
S Tall

S

Configuration I
4 0.603 0.677 0.639 – –
6 0.553 0.680 0.585 0.565 0.555
8 0.526 0.677 0.544 0.562 0.515
10 0.502 0.677 0.508 0.564 0.478
12 0.488 0.675 0.480 0.562 0.458
14 0.465 0.678 0.459 0.563 0.433

Configuration III
4 0.713 0.507 0.678 – –
6 0.817 0.539 0.763 0.771 0.789
8 0.804 0.542 0.751 0.767 0.764
10 0.784 0.542 0.734 0.770 0.750
12 0.753 0.541 0.721 0.770 0.729
14 0.736 0.541 0.707 0.767 0.708

Censoring U(0, 2), sample sizes n1 = n2 = 50, nominal level 5% (permutation test). Estimates based on 5000 replications (standard deviation at most 0.007).

Configuration I (proportional hazards):

�1(t) = 1, �2(t) = 2.

Configuration II (late difference):

�1(t) = 2 × 1[0,0.5)(t) + 4 × 1[0.5,∞)(t), �2(t) = 2 × 1[0,0.5)(t) + 0.4 × 1[0.5,∞)(t).

Configuration III (middle/early difference):

�1(t) = 2 × 1[0,0.1)(t) + 3 × 1[0.1,0.4)(t) + 0.75 × 1[0.4,0.7)(t) + 1[0.7,∞)(t),

�2(t) = 2 × 1[0,0.1)(t) + 0.75 × 1[0.1,0.4)(t) + 3 × 1[0.4,0.7)(t) + 1[0.7,∞)(t).

Configuration IV (early difference):

�1(t) = 3 × 1[0,0.2)(t) + 0.75 × 1[0.2,0.4)(t) + 1[0.4,∞)(t),

�2(t) = 0.75 × 1[0,0.2)(t) + 3 × 1[0.2,0.4)(t) + 1[0.4,∞)(t).

Configuration V (middle difference):

�1(t) = 2 × 1[0,0.2)(t) + 3 × 1[0.2,0.6)(t) + 0.75 × 1[0.6,0.9)(t) + 1[0.9,∞)(t),

�2(t) = 2 × 1[0,0.2)(t) + 0.75 × 1[0.2,0.6)(t) + 5 × 1[0.6,0.9)(t) + 1[0.9,∞)(t).

Configuration VI (proportional generalised odds):

�j(t) = e�j /(1 + 2e�j t), j = 1, 2 with �1 = 1.5, �2 = 2.5.

(The survival functions are Sj(t) = H(log t + �j) with H(x) = (1 + 2ex)−1/2, x ∈ R. For this situation the G2,0 test is efficient.)
The sample size was always 100 (each group 50), the censoring distribution was uniform on (0, 2) giving censoring rates from

28% to 38%.

6.4. Comparison of fixed-dimensional and various data-driven tests

In Table 3, several variants of smooth tests are compared in two of the considered situations. For Configuration I (proportional
hazards) the best test is with d = 1, hence it is not surprising that increasing d decreases the power (other basis functions than
	1 ≡ 1 are superfluous). In Configuration III we can see that the power decreases for d>6 (d = 6 gives the best power because
the hazard ratio is rather complicated and its description requires several functions). Now let us see how the data-driven tests
with various classes of subsets behave.

First consider d0 =0 (no basis functions of primary interest). The all subsets version seems to suffer from the same problem as
the test with a fixed dimension: when d is too high, the power decays. This is caused by the dependence of the null distribution of
the test statistic ond. Thenested subsets criterion gives stable power for various values ofd in both configurations. In Configuration
I, this test has higher power than the other tests because the selection rule mostly selects the smallest set containing only the
intercept which describes the data well. On the other hand, in Configuration III, the concentration in the set {1} negatively affects
the power because the constant basis function cannot catch the true shape of the hazard ratio.
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Table 4
Comparison of power of various two-sample tests.

Configuration Robustness of power

I II III IV V VI

G0,0 0.794 0.338 0.234 0.133 0.307 0.466 0.160
G2,0 0.655 0.056 0.357 0.562 0.171 0.581 0.064
G0,2 0.515 0.875 0.069 0.097 0.122 0.115 0.086
G2,2 0.676 0.306 0.239 0.134 0.590 0.233 0.161
Tsum 0.779 0.499 0.217 0.141 0.343 0.389 0.169
Tmax 0.733 0.795 0.316 0.471 0.458 0.476 0.393
KS-W 0.770 0.273 0.556 0.557 0.470 0.519 0.312
KS-B 0.721 0.193 0.617 0.807 0.450 0.547 0.221
CM-W 0.701 0.057 0.482 0.512 0.320 0.571 0.065
CM-B 0.623 0.051 0.425 0.739 0.191 0.575 0.058
AD-W 0.643 0.052 0.434 0.696 0.227 0.578 0.059
AD-B 0.577 0.051 0.356 0.767 0.150 0.558 0.058
Td (d = 4) 0.599 0.854 0.713 0.762 0.546 0.363 0.625
Td (d = 8) 0.525 0.796 0.803 0.832 0.669 0.278 0.478
Tnested
S (d = 8,d0 = 0) 0.677 0.803 0.539 0.734 0.418 0.411 0.624

Tall
S (d = 8,d0 = 0) 0.541 0.684 0.750 0.790 0.608 0.280 0.481

Tnested
S (d = 8,d0 = 4) 0.563 0.825 0.770 0.795 0.634 0.316 0.544

Tall
S (d = 8,d0 = 4) 0.518 0.794 0.766 0.787 0.622 0.277 0.476

Censoring U(0, 2), sample sizes n1 = n2 = 50, nominal level 5% (permutation test). Estimates based on 5000 replications (standard deviation at most 0.007).

Now let d0 = 4. Again, the power of the test with nested subsets is stable. For Configuration I it is now lower than with
d0 = 0 (because now the BIC concentrates in the set {1, 2, 3, 4} instead of {1}), for Configuration III the power is higher (four basis
functions catch the difference better than one). The power of the all subsets test decreases with increasing dwhich is somewhat
surprising since, unlike with d0 = 0, the null distribution now does not depend on d. It perhaps may be explained by the slow
convergence of the criterion to the four-dimensional set as already seen in Table 2 (with the all subsets criterion the limiting set
{1, 2, 3, 4} has much more competitors than with nested sets).

To summarise, mainly the nested subsets approach helps to avoid the use of too many components.

6.5. Comparison with other tests

Let us compare Neyman's smooth tests with other two-samplemethods. Firstly, we consider weighted logrank tests with G0,0,
G2,0, G0,2 and G2,2 weights and tests combining these four statistics (the statistic Tsum equals the sum of absolute values of these
four standardised statistic while Tmax equals their maximum). Secondly, functionals of the whole path of the logrank process
leading to the Kolmogorov–Smirnov, Cramér–von Mises and Anderson–Darling type tests are considered. They are of two kinds:
those using the untransformed process (denoted KS-W, CM-W, AD-W) and those transformed in the Hall–Wellner way (denoted
KS-B, CM-B, AD-B) (the former process is asymptotically a Brownian motion, whereas the latter converges to a Brownian bridge,
both in transformed time); for details see Section V.4.1 of Andersen et al. (1993). All of these tests are performed as two-sided
since Neyman's tests are naturally two-sided. In all situations, the permutation approach is employed.

Table 4 presents estimated powers for the above situations I–VI. Before looking at the results we should realise what we
expect from versatile tests. Certainly, it is impossible to hope that they will outperform all other methods in all situations. Rather,
one may wish to have tests whose behaviour is not bad under a broad range of situations, that is, one seeks tests with robust
power.

To assess robustness of powerwe computed a quantity, presented in the last column of the table, as follows. For each situation
(each column) the ratio of the power of each test and the power of the best test (in the column) is computed. Then for each
test (each row) the minimum of these ratios is presented as a measure of robustness of power. In other words, the last column
contains row minima of standardised powers (where standardisation means division by column maxima).

As expected, directional tests G�,� have very low robustness scores because they perform excellent in situations they are
designed for but often do very bad for other situations. Among versatile tests previously proposed in the literature the test Tmax

as well as the Kolmogorov–Smirnov type tests (mainly KS-W) appear to have more stable power. The behaviour of power of
smooth tests proposed in this paper seems much better (regarding stability over various alternatives) than of the other versatile
tests. Smooth tests of course often lose against some of the other tests but not so much as the other tests sometimes do. These
conclusions should be looked at with caution as they are based on the limited set of Configurations I–VI. However, we studied
various other situations but never found smooth tests completely failing.

A closer look at results for various configurations reveals several findings. Tests employing the untransformed logrank process
detect late differences better than those with the transformed process and vice versa (because the Hall–Wellner transformation
downweights late differences). Surprisingly, the integral type tests completely failed in Configuration II, thus they do not appear
as versatile as expected (this may be probably explained by the Karhunen–Loève decomposition of the test process and principal
components analysis of the integral statistics but I will not pursue this examination here).
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Fig. 2. Kaplan–Meier estimates for chemotherapy (solid) and chemotherapy plus radiotherapy (dashed) for the gastric cancer data. Survival times in days.

The behaviour of Tmax in Configurations III and V is interesting. Situation III was termed a middle difference in Fleming
et al. (1987) but it rather seems to be something between a middle and early difference as is seen from powers of G�,� tests. None
of G0,0, G2,0, G2,2 tests clearly dominates but Tmax must choose one of them. Hence, the Tmax test loses some power compared
to smooth tests which can combine more than one direction (no matter that directions are given by different functions for the
two approaches). In Configuration V studied by Lee (1996) the difference is more clear in the middle (G2,2 is much better than
the other G�,� tests), so Tmax does better. In this regard, the behaviour of the adaptive test of Pecková and Fleming (2003) will be
similar as this test is also forced to select one of the weighted logrank statistics (simulations in their paper show that the power
of this test in most cases lies above the power of Tmax and below the best power in the cluster).

6.6. Summary

All versions of smooth tests provide a procedure with power that seems to be more stable than power of other methods.
The test with a relatively small fixed dimension (e.g., 3 or 4) does well quite often. Among data-driven tests, mainly the nested
subsets approach helps to avoid the use of too many components. The adaptive dimension selection with nested subsets with
d0 = 1 (or perhaps d0 = 2) slightly prefers simpler alternatives, which reflects the natural idea that simple situations occur in
reality more often than complicated ones. The nested subsets selection procedure is not sensitive with respect to the choice of
the maximum dimension d if d is large enough to cover realistic departures from the hypothesis (in practice, d equal to, say, 6
should be enough in most situations). Regarding the basis functions, results not reported here suggest that their choice does not
affect the behaviour of the tests significantly.

7. Illustration

Stablein and Koutrouvelis (1985) studied data from a trial comparing two types of treatment of gastric cancer: chemotherapy
versus chemotherapy combined with radiotherapy. There were 45 patients in each group (2 and 6 were censored, respectively).
Fig. 2 displays crossing survival curves. It is not obvious against which alternative we should test, hence a versatile test is handy.
On the conventional level 5% all of them reject the hypothesis of no difference between the two treatments.

The test statistic of Neyman's smooth test with d = 8 Legendre polynomials (of order 0, . . . , 7) is 17.55 with p-value 0.023
(based on 5000 permutations). The selection rule with d0 = 4 selects the smallest possible set {1, 2, 3, 4} for both nested and all
subsets search. The test statistic equals 13.59 with p = 0.018 for nested subsets and p = 0.03 for all subsets. If no functions of
primary interest are specified (d0 = 0) then the nested subsets criterion selects {1, 2} with the statistic 13.45 and p-value 0.005
while the all subsets rule gives the set {2}, statistic 13.32 and p-value 0.01.

The tests G0,0, G2,0, G0,2, G2,2 have statistics 0.47 (p = 0.637), 2.59 (0.009), 1.99 (0.053), 0.41 (0.684), respectively. The p-value
of the maximal statistic 2.59 is 0.021. The value of the KS-W statistic is 2.20 with p = 0.047, the KS-B statistic equals 1.58 with
p = 0.008.
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