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Abstract. This paper deals with f -divergences of probability measures considered
in the same general form as e.g. in [12] or [45], where f is an arbitrary (not necessarily
differentiable) convex function. Important particular cases or subclasses are mentioned,
including those introduced by Bhattacharyya [3], Kakutani [32], Shannon [61] and Kull-
back with Leibler [38], Chernoff [7], Kraft [37], Matusita [47], Rényi [57] and De Groot
[15]. Some important relations between these subclasses are reproduced or reestab-
lished in a new manner. The main result is a new proof of the representation of general
f -divergence If(P0, P1) by means of the information gains Gπ(P0, P1), 0 ≤ π ≤ 1 of
De Groot. This proof uses the generalized Taylor formula applied to arbitrary convex
functions derived in this paper. The basic known properties of general f -divergences
are deduced in a new manner from this representation, among them the convergence
for increasing sequences of σ -algebras of observation events. Further, statistical suffi-
ciency and ε -deficiency (approximate sufficiency) are considered in the model of testing
the hypothesis H0 : P0 against the alternative H1 : P1. New characterizations of these
properties by means of f -divergences are given. Finally, the above mentioned results
about convergence for increasing sequences of σ -algebras are assessed by evaluating
the rate of this convergence in some important cases.

1 Introduction

Shannon [61] introduced the information between two random variables by comparing
the joint distribution P(X,Y ) with the product distribution PX ⊗ PY of the marginal
distributions PX and PY with the help of the divergence

K1(P(X,Y ), PX ⊗ PY ) =
∫

ln
(

dP(X,Y )

d(PX ⊗ PY )

)
dP(X,Y ).

The divergence

K1(P0, P1) =

{ ∫
ln

(
dP0
dP1

)
dP0 if P0 ¿ P1

∞ otherwise
,
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of arbitrary distributions P0, P1 was systematically studied by Kullback and Leibler
[38], Gelfand et al. [22] and others who recognized its importance in information
theory, statistics and probability theory. Rényi [57] introduced a class of measures of
divergences of distributions P0, P1 with properties similar to K1(P0, P1) and containing
K1(P0, P1) as a special case. Csiszár [11] (and independently also Ali and Silvey [1])
introduced the f-divergence

If(P0, P1) =
∫

dP1

dµ
f

(
dP0/dµ

dP1/dµ

)
dµ,

for convex f : (0,∞) → R where µ is a σ-finite measure which dominates P0 and P1

and the integrand is appropriately specified at the points where the densities dP0/dµ
and dP1/dµ are zero.

For f(t) = t ln t the f-divergence reduces to the classical K1(P0, P1) which is some-
times denoted by I(P0, P1) and called information divergence or Kullback-Leibler di-
vergence. For the convex or concave function f(t) = ts, s > 0, we obtain the so-
called Hellinger integrals Hs(P0, P1) which are related to the divergences Rs(P0, P1)
of Rényi [57] by Rs(P0, P1) = (s − 1)−1 ln Hs(P0, P1). Note that the divergence mea-
sures lnHs(P0, P1) were considered for 0 < s < 1 already by Chernoff [7] and Kraft
[37], and the special case for s = 1/2 also by Bhattattacharyya [3], Kakutani [32] and
Matusita [47]. As pointed out in LeCam [42, p. 29], the expression Hs(P0, P1) does
not seem to have been considered by Hellinger. He considered integrals of the type∫

dP1dP2
dµ for P0 and P1 dominated by µ. Similar developments were given by Riesz

[60] and by Dieudonné [18] for general “homogenous functions of measures”.
Among the f-divergences one can find also the basic divergence measures of prob-

ability theory and statistics, such as the total variation ‖P0 − P1‖ for f(t) = |t − 1|
and the Pearson divergence χ2(P0, P1) for f(t) = (t− 1)2.

Statistical applications of f-divergences were considered e.g. by Ali and Silvey [1],
Csiszár [11, 12], Nemetz [49], Arimoto [2], Vajda [68, 70] and many others. Decision-
theoretic applications can be found e.g. in [35], [50], [56], [41], [9], [66], [65] and
Fedotov et al. [17]. Information-theoretic applications of f-divergences were studied
e.g. in [31], [64], [6], [13], [4], [29], [25], [10] and [14].

Due to the growing importance of divergences in information theory, statistics
and probability theory, each possibility to simplify or extend the general theory of
f-divergences deserves attention. The first half of this paper is devoted to a consid-
erably simplified derivation of the most important basic properties of f-divergences.
The classical approach to these properties is based on the stability of the Jensen
inequalities for the expectation and the conditional expectation. These inequalities
are quite convoluted if they are rigorously established for all desirable functions f, cf.
[12] and [45]. The approach of this paper is based on an extension of the classical
Taylor formula to all convex or concave (not necessarily differentiable) functions f.
The second derivative of f is replaced by a σ-finite measure one-one related to f− f(1).
The support of this measure is given by the areas where f is strictly convex.

In the first section of this paper we collect more or or less known properties of
convex functions and establish the new generalized Taylor expansion that will be
systematically used in the sequel.
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f-divergences are introduced in Section 2 and discussed for special convex func-
tions f in order to demonstrate that this type of functional covers many important
divergences from different areas of probability theory, mathematical statistics and
information sciences. The main result of this section is an integral representation
of f-divergences. In this representation the Bayes’ errors corresponding to different
priors are weighted according to the curvature measure of the convex function f. This
representation allows us to prove the information processing theorem for f-divergences
and the continuity of f-divergences (approximability by f-divergences on finite sub-σ-
algebras) in a much simpler way than was achieved in the previous literature.

The integral representation of f-divergences allows a simple discussion of the sta-
bility in the information processing theorem. The curvature measure of the convex
function f plays a crucial role in this respect. Our approach allows a unification of
different characterizations of the sufficiency of a statistic. These characterizations
are the classical factorization theorem of Neyman, the information-theoretic charac-
terization of Csiszár [12], the characterization by the testing problem which is due
to Pfanzagl [55] and the characterization with the help of the variational distance
which was established by Mussmann [48] and Torgersen [66]. When dealing with the
sufficiency of a statistic one compares the original model with the model reduced by
the statistic. More generally, in decision theory the statistical models are related
by means of a less known tool called ε−deficiency and the related so-called concave
function criterion. Using the integral representation we show that this criterion is
equivalent to a comparison of certain f-divergences. This equivalence characterizes
the meaning of f-divergences in statistical decision theory by connecting the dissim-
ilarity of statistical models specified by f-divergences with basic decision-theoretic
concepts.

In the last section we apply Hellinger integrals to establish the exponential rate
of convergence to zero for testing a simple null hypothesis versus a simple alternative
if the sample size tends to infinity. This leads to the results known in the literature
as theorems of Chernoff and Stein. It also allows us to find the exponential rates for
a classification problem and obtain in this manner the results of Krafft and Puri [36]
in this area.

2 Convex Functions

We introduce and study classes of distances in the space of probability distributions
which originated from different roots. Some of them were introduced in informa-
tion theory to describe the amount of information or the amount of uncertainty in
a random sample. Others are information functionals obtained by investigating the
rate of convergence of error probabilities when the sample size tends to infinity. Still
others resulted from the Cramér-Rao inequality and its generalizations. Hellinger in-
tegrals are the Laplace transforms of loglikelihood ratios and thus completely describe
the structure of binary statistical models. Information functionals were also used to
characterize the sufficiency and the approximate sufficiency of a statistic.

First we summarize well-known properties of convex functions which will be used
in the sequel. A function f : (0,∞) → R is called convex if for every x, z ∈ (0,∞) and

Advances in Inequalities from Probability Theory & Statistics



134 Liese and Vajda

0 ≤ α ≤ 1 we have,

(2.1) f(αx + (1− α)z) ≤ αf(x) + (1− α)f(z).

If f : (0,∞) → R is convex and 0 < x < y < z then, for α = (z − y)/(z − x),

(2.2)
f(y)− f(x)

y − x
≤ f(z)− f(x)

z − x
≤ f(z)− f(y)

z − y
.

The properties of convex functions stated in the next lemma are known. For the sake
of completeness we give their short direct proofs.

Lemma 2.1. Every convex function f : (0,∞) → R is continuous in (0,∞) and has
at each x ∈ (0,∞) a derivative from the left D−f(x) which is left continuous and a
derivative from the right D+f(x) that is right continuous. These derivatives satisfy
for all 0 < a < b < ∞, the relations,

f(b)− f(a) ≥ (b− a)D+f(a),(2.3)

D−f(a) ≤ D+f(a) ≤ D−f(b) ≤ D+f(b)(2.4)

f(b)− f(a) =
∫ b

a

D+f(s)ds =
∫ b

a

D−f(s)ds.(2.5)

Proof. The continuity is implied by the existence of the one sided derivatives which we
deduce from (2.2). Namely, the second inequality in (2.2) implies that the difference
quotient is nondecreasing in the increment so that the derivative from the right exists
and satisfies (2.3). The proof of the existence of the left hand derivative and of (2.4)
is similar. The monotonicity follows from (2.2). To prove the right continuity, add
εn ↓ 0 to a and b in (2.3) and get, for a < b, the relation (b−a)−1[f(b+εn)− f(a+εn)]
≥ D+f(b + εn). If first n →∞ and then b ↓ a we get D+f(b) ≥ limn→∞D+f(b + εn).
Since D+f is nondecreasing, this gives the right continuity. The left continuity of D−f
is proved similarly. Finally, the inequality (2.2) yields

(2.6) D+f(u) ≤ f(v)− f(u)
v − u

≤ D+f(v), 0 < u < v.

For hn = (b− a)/n we get from (2.6)

∫ b

a

D+f(s)ds =
n∑

i=1

∫ a+ihn

a+(i−1)hn

D+f(s)ds ≤
n∑

i=1

hnD+f(a + ihn)

n∑

i=1

[f(a + (i + 1)hn)− f(a + ihn)] ≤ f(b + hn)− f(a + hn),

and analogously
∫ b

a
D+f(s)ds ≥ f(b− hn)− f(a− hn). The continuity of f completes

the proof.
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The statement (2.5) implies that the limits limx↓0 f(x) and limx↑∞ f(x) exist. We
extend f by setting f(0) = limx↓0 f(x) and f(∞) = limx↑∞ f(x), where f(0) may attain
the value ∞ and f(∞) may attain the values −∞ or ∞.

As D+f is continuous from the right there is a uniquely determined σ-finite mea-
sure γf on the Borel sets of (0,∞) that satisfies, for every 0 < a < b,

(2.7) γf((a, b]) = D+f(b)−D+f(a).

If f is twice continuously differentiable then D+f = f′ and this function is continuously
differentiable so that,

D+f(b)−D+f(a) =
∫ b

a

f′′(t)dt, and γf(B) =
∫

B

f′′(t)dt.

Therefore γf can be viewed as a measure of the curvature of f. We use this curvature
measure to establish a generalized second order Taylor expansion.

Lemma 2.2. If f : (0,∞) → R is convex then, for a, b > 0,

(2.8) f(b)− f(a)−D+f(a)(b− a) =





∫
(b− t)I(a,b](t)γf(dt) if a < b

∫
(t− b)I(b,a](t)γf(dt) if b < a.

Moreover, the function,

(2.9) f0(x) = f(x)− f(1)− (x− 1)D+f(1)

has the representation,

(2.10) f0(x) =





∫
(x− t ∧ x)I(1,∞)(t)γf(dt) if x > 1

∫
(t− t ∧ x)I(0,1](t)γf(dt) if 0 < x ≤ 1.

Proof. For a < b we have, from (2.5) and the theorem of Fubini,

f(b)− f(a)−D+f(a)(b− a) =
∫ b

a

(D+f(s)−D+f(a))ds

=
∫ (∫

I(a,b](s)I(a,s](t)γf(dt)
)

ds

=
∫

(b− t)I(a,b](t)γf(dt).

By interchanging the role of a and b we get, for a > b,

f(b)− f(a)−D+f(a)(b− a)

= −(f(a)− f(b)−D+f(b)(a− b)) + (D+f(a)−D+f(b))(a− b)

= −
∫

(a− t)I(b,a](t)γf(dt) +
∫

(a− b)I(b,a](t)γf(dt)

=
∫

(t− b)I(b,a](t)γf(dt).
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The statement (2.10) follows from (2.8) as f0(1) = D+f0(1) = 0.

A convex function f is said to be strictly convex at x0 ∈ (0,∞) if for no ε > 0 the
function f is linear in (x0−ε, x0+ε). It is called strictly convex on (0,∞) if it is strictly
convex at every x0 ∈ (0,∞). The representation (2.8) shows that f : (0,∞) → R is
strictly convex at x0 ∈ (0,∞) if and only if γf ((x0 − ε, x0 + ε)) > 0 for every ε > 0.
If f is twice continuously differentiable and f′′(x) > 0, 0 < x < ∞ then the function f
is strictly convex on (0,∞).

We inspect the function f0 in (2.9) in more detail. The representation (2.8) shows
that f0(x) ≥ 0 and

f is strictly convex at 1 ⇐⇒ (A) ∨ (B), where(2.11)

(A) f0(x) > 0 for 0 < x < 1
(B) f0(x) > 0 for 1 < x < ∞.

For later purposes we define the *-conjugate function by,

(2.12) f∗(x) = xf

(
1
x

)
, x > 0.

If f : (0,∞) → R is convex, then f∗ : (0,∞) → R is convex as well. Indeed, for
0 < α < 1 and 0 < x1 < x2, x0 = αx1 + (1− α)x2,

f∗(x0) = x0f

(
1
x0

)
(2.13)

= x0f

(
αx1

x0

1
x1

+
(1− α)x2

x0

1
x2

)

≤ x0
αx1

x0
f

(
1
x1

)
+ x0

(1− α)x2

x0
f

(
1
x2

)

= αf∗(x1) + (1− α)f∗(x2).

Furthermore, it follows from the definition of f∗ that,

(f∗)∗ = f, f∗(0) = lim
x→∞

1
x

f(x),

where f∗(0) ∈ (−∞,∞]. For later purposes we need also the boundary values f(0) and
f∗(0) expressed in terms of the curvature measure γf as follows.

Lemma 2.3. The following result holds:

lim
x↓0

f∗(x) = γf((1,∞)) + D+f(1),(2.14)

lim
x↓0

f(x) =
∫

tI(0,1](t)γf(dt) + f(1)−D+f(1).(2.15)
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Proof. It is enough to consider the function f0 defined in (2.9). The representation
(2.10), the monotone convergence theorem and γf = γf0 give

lim
x→∞

1
x

f0(x) = lim
x→∞

∫
1
x

I(1,x](t)(x− t)γf0(dt) = γf((1,∞)),

lim
x↓0

f0(x) = lim
x↓0

∫
I(x,1](t)(t− x)γf0(dt) =

∫
I(0,1](t)tγf(dt).

3 f-Divergences and Related Distances

Now we introduce a general class of information functionals. Let P0, P1 be probability
measures defined on (X , A) which are dominated by the σ-finite measure µ and denote
by p0 and p1 the respective µ-densities, i.e. let

p0 =
dP0

dµ
and p1 =

dP1

dµ
.

Definition 2. For every convex function f : (0,∞) → R the functional,

(3.1) If(P0, P1) :=
∫

f(p0/p1)p1I{p0>0,p1>0}dµ

+ f(0)P1(p0 = 0) + f∗(0)P0(p1 = 0)

is called the f-divergence of P0 with respect to P1.

The right hand term is well defined because f(0), f∗(0) > −∞ and the inequality
(2.3) implies,

f(p0/p1)I{p0>0}p1 ≥ f(1)p1 + (D+f(1))(p0 − p1).

As the right hand function is integrable we see that the integral in (3.1) is well defined
but may take on the value +∞. Note that P1(p0 = 0) and P0(p1 = 0) are the weights
of the singular parts of P1 and P0 with respect to P0 and P1, respectively. They are
independent of the special choice of the dominating measure µ. This follows also for
the integral in (3.1) by the chain rule of measure theory. Therefore the definition of
If(P0, P1) is independent of the special choice of µ.

The functional If(P0, P1) − f(1) depends only on the nonlinear part of f in the
following sense.

Proposition 3.1. If g(x) = f(x) + ax + b then,

(3.2) If(P0, P1)− f(1) = Ig(P0, P1)− g(1),

and, for g =f0 from (2.9), we have If(P0, P1)− f(1) = If0(P0, P1).
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Proof. By the definition of If(P0, P1) in (3.1),

Ig(P0, P1) :=
∫

g(p0/p1)p1I{p0>0,p1>0}dµ

+ g(0)P1 (p0 = 0) + g∗(0)P0 (p1 = 0)

=
∫

f(p0/p1)p1I{p0>0,p1>0}dµ +
∫

a(p0/p1)p1I{p0>0,p1>0}dµ

+
∫

bp1I{p0>0,p1>0}dµ

+ (f(0) + b)P1 (p0 = 0) + (f∗(0) + a)P0 (p1 = 0)
= If(P0, P1) + a + b,

so that If(P0, P1)− f(1) = Ig(P0, P1)− g(1).

Although the functional If(P0, P1) does not satisfy the axioms of a metric for
general f, it has several properties that allow us to interpret this functional as a
“distance measure”.

Proposition 3.2. For every convex function f we have If(P0, P1) − f(1) ≥ 0, with
equality for P0 = P1. If f is strictly convex at x0 = 1 then If(P0, P1)− f(1) = 0 implies
P0 = P1. Moreover, the functional If∗ is conjugate to If in the sense that,

(3.3) If(P0, P1) = If∗(P1, P0),

so that If+f∗(P0, P1) = If(P0, P1) + If∗(P0, P1) is symmetric in P0, P1.

Proof. The function f0 is nonnegative so that the expression, If0(P0, P1) = If(P0, P1)−
f(1), is nonnegative as well. If P0 = P1 then p0 = p1 µ-a.e. and P1(p0 = 0) = P0(p1 =
0) = 0 so that the integral on the right hand side of (3.1) has the value f(1). Assume
now that f is strictly convex at x0 = 1. In view of Proposition 3.1 it is sufficient to
consider f0. By (2.11) f0(x) > 0 for every x > 1 or f0(x) > 0 for every 0 < x < 1.
Assume the first condition holds, then f0(x) ≥ 0 and If(P0, P1) − f(1) = 0 together
with (3.1) for f = f0 show that µ(p0 > p1) = 0. This implies,

0 =
∫

(p1 − p0)dµ =
∫

{p1>p0}
(p1 − p0)dµ,

and, therefore, µ(p1 > p0) = 0. Hence µ(p1 6= p0) = 0 and P1 = P0. The case when
f0(x) > 0 for every x > 1 is similar. The statement (3.3) is an immediate consequence
of (2.12) and (3.1).

If(P0, P1) − f(1) does not satisfy the triangular inequality and is not symmetric
in (P0, P1), in general. From Definition 2 it follows that the symmetry in (P0, P1)
holds if f(x) = f∗(x) := xf(1/x). To keep the notation simple we will use the symbol
If(P0, P1) also if f is concave. The next display presents special parametrized classes
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of functions which are either convex or concave and provide well-known information
functionals.

(3.4)

f If(P0, P1)

χs = |xs − 1| 1s if 0 < s < 1 χs(P0, P )

χs = |x− 1|s if 1 ≤ s < ∞ χs(P0, P1)

hs =

{
xs if s 6= 0, 6= 1

1 if s = 0 or s = 1
Hs(P0, P1)

ks =





xs−sx−(1−s)
s(s−1) if s 6= 0, 6= 1

x ln x− x + 1 if s = 1

− ln x + x− 1 if s = 0

Ks(P0, P1)

gπ = π ∧ (1− π)− (πx) ∧ (1− π), 0 < π < 1 Gπ(P0, P1)

The functionals χs(P0, P1) were called χs-divergences in [68]. The particular

(3.5) χ2(P0, P1) =
∫

(p1 − p0)2

p1
I{p1>0}dµ +∞P0(p1 = 0)

is the well known χ2-divergence. Furthermore, χ
1
2 (P0, P1) =

∫
(
√

p0 −√p1)2dµ is the
squared Hellinger distance,

(3.6) D(P0, P1) =
[∫

(
√

p0 −√p1)
2
dµ

] 1
2

.

It is clear that D(P0, P1) is a metric on the space of all distributions since it is the
L2(µ)-distance of the roots of the densities. For s = 1 we get the variational distance,

(3.7) χ1(P0, P1) =
∫
|p1 − p0|dµ =: ‖P0 − P1‖ ,

which is a metric on the space of all distributions as well.
Since one has often to approximate one statistical model by another in the strong

sense of variational distance, then inequalities relating the variational distance ‖P0 − P1‖
to the better tractable Hellinger or Kullback-Leibler distance are useful. Such in-
equalities were applied in different areas of probability theory, information theory,
and statistics, and thus were independently established by various authors, see [49],
[31], [67], [40], [63], [58], [30] and [17].
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Proposition 3.3. The following results hold.

D2(P0, P1) ≤ ‖P0 − P1‖ ≤
[
4− D2(P0, P1)

] 1
2 D(P0, P1) ≤ 2D(P0, P1),

D2(P0, P1) ≤ 2
(

1− exp
{
−1

2
I(P0, P1)

})
,(3.8)

‖P0 − P1‖ ≤ 2
√

I(P0, P1).(3.9)

Proof. The first inequality follows from (
√

a1 − √
a2)2 ≤ |a1 − a2|. To prove the

remaining two, let us start by applying the Schwarz inequality to

|p0 − p1| = |√p0 −√p1| |√p0 +
√

p1|

and obtain, ∫
|√p0 +

√
p1|2 dµ = 4− D2(P0, P1) ≤ 4.

To get (3.8) we may assume P0 ¿ P1 as otherwise K1(P0, P1) = ∞ and the inequality
becomes trivial. But if P0 ¿ P1 then (3.1) implies I(P0, P1) = EP0 ln(dP0/dP1). By
the convexity of the exponential function and Jensen’s inequality,

D2(P0, P1) = 2
(

1−
∫ √

P0P1dµ

)

= 2(1− EP0(dP0/dP1)−1/2)

= 2
(

1− EP0 exp
{
−1

2
ln(dP0/dP1)

})

≤ 2
(

1− exp
{
−1

2
EP0 ln(dP0/dP1)

})
.

The last statement follows from 1− exp{−x} ≤ x, x ≥ 0.

The inequality ‖P0 − P1‖ ≤ c
√

K1(P0, P1) with some constant c was indepen-
dently established by many authors and has a long history, see [17] where one can
also find improved bounds. An important application of inequality (3.9) can be found
in [58], where the following result has been established.

Proposition 3.4. The Hellinger distance and the variational distance of the binomial
distribution and the Poisson distribution satisfy,

D(B(n, λ/n),Po(λ)) ≤
√

3λ/n and
‖B(n, λ/n)− Po(λ)‖ ≤ 2λ/n.

These inequalities imply, as a special case, the well known convergence of B(n, λ/n)
to Po(λ) for fixed λ. But they also allow an approximation of the binomial distribu-
tion B(n, pn) by Poisson distributions if pn tends to 0 at a lower rate than 1/n. For
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applications and extensions of Proposition 3.4 to binomial processes and curve esti-
mation we refer to [59]. Other applications of the inequalities in Proposition 3.3 can
be found in [27] and in [44], where Hellinger integrals of distributions of stochastic
processes have been evaluated and used to examine the variational distance between
such distributions.

The functionals Ms(P0, P1) are termed Matusita distances and have been intro-
duced in [47] and reintroduced by many authors, cf. [26]. A closer look at the families
χs(P0, P1), Ms(P0, P1), Hs(P0, P1) and Ks(P0, P1) reveals that they intersect at several
important special cases and contain many well known functionals. First of all, notice
that the functionals χs(P0, P1), Ms(P0, P1), Hs(P0, P1) and Ks(P0, P1) are symmetric
in (P0, P1) for s = 1/2 in each family. The functionals,

(3.10) Hs(P0, P1) =





∫
ps
0p

1−s
1 I{p0>0}dµ +∞P1(p0 = 0) if s < 0,

∫
ps
0p

1−s
1 dµ if 0 < s < 1,

∫
ps
0p

1−s
1 I{p1>0}dµ +∞P0(p1 = 0) if 1 < s,

1 if s = 0 or 1,

are called Hellinger integrals and are mainly used in the literature for 0 < s < 1. For
some purposes their extension to s ≤ 0 and s ≥ 1 is useful. These extensions are
f-divergences but for 0 < s < 1 they are f-divergences only up to the sign because the
functions hs are concave when 0 < s < 1.

In general, f-divergences or simple transformations of them do not satisfy the
axioms of a metric. The reflexivity If(P0, P1) = 0 if and only if P0 = P1 is easily
obtained for f strictly convex at t = 1, see Proposition 3.2. The symmetry If(P0, P1) =
If(P1, P0) holds for f = f∗. If this equality is not fulfilled we could turn to f̃ = f + f∗.
The main problem is the triangular inequality which can be verified only for special f.
Examples are the Hellinger distance and the variational distance. The next example
contains another class of divergences that satisfy the triangular inequality.

Example 6. The functional

Aα(P0, P1) =
1
2

∫ [
p
1/α
0 + p

1/α
1

]α

dµ− 1, 0 < α ≤ 1

was introduced by Österreicher and Vajda [53] who proved that it is an f−divergence
satisfying the triangular inequality. Since this divergence was motivated by a previous
work of Arimoto [2], it was called the Arimoto divergence by these authors.

From (3.4) and (3.10) we see that,

Ks(P0, P1) =
1

s(1− s)
(1− Hs(P0, P1)), s 6= 0, s 6= 1,(3.11)

K1(P0, P1) =
∫ [

ln
p0

p1

]
I{p1>0}dP0 +∞P0(p1 = 0),(3.12)

2K2(P0, P1) = H2(P0, P1)− 1 = χ2(P0, P1).(3.13)
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Since ks(x) ≥ 0, by construction we get 0 ≤ Ks(P0, P1) ≤ ∞. As mentioned above,
K1(P0, P1) is sometimes called the Kullback-Leibler divergence.

We illustrate by examples that Hellinger integrals, and consequently the diver-
gences Ks(P0, P1), can be explicitly evaluated for a large variety of distributions that
are important in statistics. We consider the class of exponential families which plays
a central role in mathematical statistics. Let (X , A) be a given measurable space and
T : X → Rd be a statistic. For any σ-finite measure µ we put

∆ =
{

θ :
∫

exp{〈θ, T 〉}dµ < ∞
}
⊆ Rd,

K(θ) = ln
(∫

exp{〈θ, T 〉}dµ

)
, θ ∈ ∆.

If 0 < α < 1 and θ1, θ2 ∈ ∆ then Hölder’s inequality yields

exp{K(αθ1 + (1− α)θ2)} =
∫

exp{〈αθ1, T 〉} exp{〈(1− α)θ2, T 〉}dµ

≤
(∫

exp{〈θ1, T 〉}dµ

)α (∫
exp{〈θ2, T 〉}dµ

)1−α

= exp{αK(θ1) + (1− α)K(θ2)}.
This means that the set ∆ is convex and that the function K is convex. Further, for
every θ ∈ ∆,

(3.14) Pθ(A) =
∫

A

exp{〈θ, T 〉 −K(θ)}dµ, A ∈ A

is a probability measure on (X , A), and the family of distributions (Pθ)θ∈∆ is called
an exponential family with generating statistic T and natural parameter space ∆.

Example 7. Assume that Pθ, θ ∈ ∆ ⊆ Rd is an exponential family with natural
parameter θ ∈ ∆ and generating statistic T : X → Rd. The µ-density of Pθ is then
given by pθ = exp{〈T, θ〉−K(θ)}. Consequently, (3.10) implies, for all s and θ1, θ2 ∈
∆ satisfying sθ1 + (1− s)θ2 ∈ ∆ and s 6= 0, s 6= 1, that,

Hs(Pθ1 , Pθ2) =
∫

ps
θ1

p1−s
θ2

dµ(3.15)

= exp{−(sK(θ1) + (1− s)K(θ2)−K(sθ1 + (1− s)θ2))}.
Due to the convexity of ∆, the condition sθ1 + (1− s)θ2 ∈ ∆ is fulfilled by 0 ≤ s ≤ 1.
To calculate the Kullback-Leibler divergence K1(Pθ1 , Pθ2) we note that, by (3.1) and
the fact that Pθ1 and Pθ2 are measure theoretically equivalent and Eθ1T exists for
θ1 ∈ ∆0,

K1(Pθ1 , Pθ2) = Eθ1 ln
pθ1

pθ2

= −K(θ1) + K(θ2) + Eθ1 〈T, θ1 − θ2〉

= 〈Eθ1T, θ1 − θ2〉 −K(θ1) + K(θ2), θ1 ∈ ∆0, θ2 ∈ ∆.
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It is well known, see e.g. [5], that the moments of T can be calculated by taking the
derivative on both sides of the identity,

(3.16)
∫

exp{〈θ, T 〉 −K(θ)}dµ = 1,

where on the left hand side the derivative can be carried out under the integral sign.
This yields EθT = ∇K(θ). Together with (3.15) we get,

K1(Pθ1 , Pθ2) = 〈∇K(θ1), θ1 − θ2〉 −K(θ1) + K(θ2)

= lim
s→1

sK(θ1) + (1− s)K(θ2)−K(sθ1 + (1− s)θ2))
s(1− s)

= lim
s→1

(1− Hs(Pθ1 , Pθ2))
s(1− s)

.

A similar statement holds for s = 0.

The family
{
N(µ, σ2) : µ ∈ R, σ2 > 0

}
of normal distributions is an exponential

family on the real line so that we could obtain the corresponding Hellinger integrals
by applying (3.15). In this case, however, a direct calculation is simpler. Let ϕµ,σ2

be the density of the normal distribution then,

Hs(N(µ1,σ
2
1), N(µ2, σ

2
2))(3.17)

=
∫

ϕs
µ1,σ2

1
(x)ϕ1−s

µ2,σ2
2
(x)dx

=

[
σ

2(1−s)
1 σ2s

2

sσ2
2 + (1− s)σ2

1

] 1
2

exp
{
−1

2
s(1− s)

(µ1 − µ2)2

sσ2
2 + (1− s)σ2

1

}
.

Further, by (3.12),

K1(N(µ1, σ
2
1), N(µ2, σ

2
2)) =

∫
ϕµ1,σ2

1
(x) ln

(
ϕµ1,σ2

1
(x)/ϕµ2,σ2

2
(x)

)
dx

=
1
2

(
σ2

1/σ2
2 − 1− ln(σ2

1/σ2
2

)
+ (µ1 − µ2)

2/σ2
2).(3.18)

Similarly, for −∞ < s < ∞,

(3.19) Hs(Po(λ1),Po(λ2)) = exp{λs
1λ

1−s
2 − sλ1 − (1− s)λ2},

for the family of Poisson distributions {Po(λ) : λ > 0} .
To give a statistical interpretation of the f−divergences Gπ(P0, P1), introduced for

0 ≤ π ≤ 1 in (3.4), we consider the problem of testing the simple null hypothesis H0 :
P0 versus the alternative H1 : P1. A statistical test ϕ is then a measurable mapping
ϕ : X → [0, 1] where the value ϕ(x) represents the conditional probability of rejecting
H0 when the observation is x. Consequently,

∫
ϕdP0 is the probability of rejecting H0

when H0 is true, called the error probability of the first kind. Similarly
∫

(1 − ϕ)dP1
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is the probability of rejecting H1 when H1 is true, called the error probability of the
second kind. The mix,

π

∫
ϕdP0 + (1− π)

∫
(1− ϕ)dP1

of the error, probabilities taken for the prior probability of the hypothesis 0 ≤ π ≤ 1,
is the Bayes’ error probability or the Bayes’ risk. Each test which minimizes the
Bayes’ error probability is a Bayes’ test. Next we present a well known result on the
Bayes’ test and the minimal Bayes’ error probability.

Lemma 3.5. In the binary model (X ,A, {P0, P1}) the test ϕB : X → [0, 1] defined by

(3.20) ϕB =





1 if cp0 < p1

arbitrary if cp0 = p1

0 if cp0 ≥ p1

,

for c = π
1−π , is a Bayes’ test and the minimal Bayes’ error probability,

bπ(P0, P1) = inf
ϕ

(
π

∫
ϕdP0 + (1− π)

∫
(1− ϕ)dP1

)

is given by,

(3.21) bπ(P0, P1) =
∫

(πp0) ∧ ((1− π)p1)dµ,

where µ is a σ-finite dominating measure and pi = dPi/dµ.

Proof. We have,

π

∫
ϕdP0 + (1− π)

∫
(1− ϕ)dP1 =

∫
(πϕp0 + (1− π)(1− ϕ)p1)dµ

= (1− π) +
∫

ϕ(πp0 − (1− π)p1)dµ.

The right hand side becomes minimal if we set ϕB = 1 if πp0 < (1− π)p1, ϕB = 0 if
πp0 > (1− π)p1 and let ϕB be arbitrary if πp0 = (1− π)p1. The Bayes’ error of this
test is given by,

∫
(πϕBp0 + (1− π)(1− ϕB)p1)dµ =

∫
(πp0) ∧ ((1− π)p1)dµ.

We see from (3.21) that the minimal Bayes’ error probability is related to the
divergence Gπ(P0, P1) defined by means of gπ in (3.4) as follows:

(3.22) Gπ(P0, P1) = Igπ
(P0, P1) = π ∧ (1− π)− bπ(P0, P1).
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The functional Gπ(P0, P1) admits the following interpretation proposed by De
Groot [15, 16]: the first term π ∧ (1 − π) is the minimal Bayes’ error probability
that can be achieved before the observation in the model {P0, P1} is made and the
second term bπ(P0, P1) is the minimal Bayes’ error probability achievable after this
observation is made. The non-negative difference Gπ(P0, P1) between these two errors
thus represents an information gain achieved by taking the observation.

We will show in the next theorem that If(P0, P1) − f(1) is a superposition of the
information gains Gπ(P0, P1) with respect to a curvature measure ρf on (0, 1) defined
by,

(3.23) ρf(B) =
∫

(1 + t)IB

(
1

1 + t

)
γf(dt).

The measures ρf and γf satisfy, for every measurable h : (0, 1) −→ [0,∞), the relation,

(3.24)
∫

h(π)ρf(dπ) =
∫

(1 + t)h
(

1
1 + t

)
γf(dt).

We denote by,

(3.25) Sρf
= {x ∈ (0, 1) : ρf(x− ε, x + ε) > 0 for all ε > 0}

the support of the measure ρf .

Theorem 3.6. For every convex function f : (0,∞) → R and arbitrary distributions
P0, P1 we have,

(3.26) If(P0, P1)− f(1) =
∫

(0,1)

Gπ(P0, P1)ρf(dπ).

Corollary 3.7. The following holds.

Ks(P0, P1) =
∫

(0,1)

Gπ(P0, P1)
(1− π)1+sπ2−s

dπ, −∞ < s < ∞,

Hs(P0, P1) = s(1− s)
∫

(0,1)

bπ(P0, P1)
(1− π)1+sπ2−s

dπ, 0 < s < 1.

Proof. Due to the invariance property (3.2), the left hand term in (3.26) remains
unchanged if f is replaced by f0 in (2.9). As γf = γf0 , the right hand term also remains
unchanged. Hence we may assume f(1) = D+f(1) = 0 without loss of generality. We
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see from (2.10) that,
∫

I(0,∞)(p0 ∧ p1)f
(

p0

p1

)
dP1

=
∫ (∫

[I(1,∞)(t)(p0 − (tp1) ∧ p0) + I(0,1](t)(tp1 − (tp1) ∧ p0)]γf(dt)
)

× I{p0∧p1>0}dµ

=
∫

(P0(p1 > 0)− (1 + t)b1/(1+t)(P0, P1))I(1,∞)(t)γf(dt)

+
∫

(tP1 (p0 > 0)− (1 + t)b1/(1+t)(P0, P1))I(0,1](t)γf(dt).

Now we use (2.14) and (2.15) to obtain,

If(P0, P1) =
∫

I(1,∞)(t)(1− (1 + t)b1/(1+t)(P0, P1))γf(dt)

+
∫

I(0,1](t)(t− (1 + t)b1/(1+t)(P0, P1))γf(dt)

=
∫

I(0,∞)(t)(1 + t)
(

1
1 + t

∧ t

1 + t
− b1/(1+t)(P0, P1)

)
γf(dt).

To complete the proof of the theorem we need only employ (3.22) and (3.24). In order
to prove the corollary we use ks(x) from (3.4), then γhs

(dx) = xs−2dx and hence, for
every Borel set B ⊆ (0, 1),

ρks
(B) =

∫
IB

(
1

1 + t

)
(1 + t)ts−2dt =

∫
IB(π)(1− π)s−2π−1−sdπ,

which proves the first statement of the corollary. For the second statement, we use,

s(1− s)
∫

(0,1)

(π ∧ (1− π))(1− π)s−2π−1−sdπ = 1, 0 < s < 1,

and (3.11).

The representation of the f-divergence in Theorem 3.6 was established by Österreicher
and Feldman [51] for twice differentiable functions f, and by Torgersen [66] for the
special case of Hellinger integrals. Extensions of these representations were stud-
ied later by Guttenbrunner [23] and Österreicher and Vajda [53]. We see that this
representation connects the concept of the distance of distributions measured by the
f-divergence with decision theoretic concepts represented by the minimal Bayes’ prob-
ability of error.

We now establish the monotonicity property of f-divergences. The basic idea is as
follows. Suppose we are faced with two distributions P0 and P1 and employ a statistic
T for data compression. By doing so we are aware of the fact that the distance
between P0 and P1 may be reduced, in the sense that it is harder to distinguish
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between P0 ◦ T−1 and P1 ◦ T−1 than between P0 and P1. The question then arises as
to how much information has been lost, and how to quantify it. An answer is given by
the monotonicity theorem (also called the data processing theorem, see [12] or [10])
which is the next object of our interest.

Consider the binary statistical model M = (X ,A, {P0, P1}), suppose that (Y, B)
is another measurable space and that K : B × X → [0, 1] is a stochastic kernel from
(X , A) to (Y, B). We obtain the reduced model N = (Y,B, {Q0, Q1}) for Qi = KPi

defined by,

(KPi)(B) =
∫

K(B|x)Pi(dx), B ∈ B.

It is intuitively clear that the model N is less informative than M as it is harder to
distinguish between KP0 and KP1 than between P0 and P1 and we can anticipate the
inequality If(KP0,KP1) ≤ If(P0, P1). This inequality is the content of the following
theorem that goes back to Csiszár [11]. Preparatory to this theorem we study the
information gain Gπ(P0, P1) in (3.22). For any test ϕ : Y → [0, 1] in the reduced
model N we get,

∫
ϕd(KP0) =

∫
ϕ(y)

(∫
K(dy|x)P0(dx)

)
=

∫ (∫
ϕ(y)K(dy|x)

)
P0(dx),

where x 7−→ ∫
ϕ(y)K(dy|x) is a test in the original model M. As bπ(KP0,KP1) is the

minimal Bayes’ error in the testing problem H0 : KP0 versus H1 : KP1 we obtain,

Gπ(KP0, KP1)

= sup
ϕ

(
π ∧ (1− π)− π

∫
ϕd(KP0)− (1− π)

∫
(1− ϕ)d(KP1)

)

≤ sup
ψ

(
π ∧ (1− π)− π

∫
ψdP0 − (1− π)

∫
(1− ψ)dP1

)
,

where the supremum is extended over all tests for M on the right hand side. Hence,

(3.27) Gπ(KP0,KP1) ≤ Gπ(P0, P1).

This inequality says that the information gain decreases when observation is taken in
the reduced model. Now we are ready to formulate the main result of this section,
the so called information processing theorem.

Theorem 3.8. If (X , A) and (Y, B) are measurable spaces and K : B×X → [0, 1] is
a stochastic kernel, then for P0, P1 ∈ P(A) and every convex function f : (0,∞) → R
we have,

(3.28) If(KP0,KP1) ≤ If(P0, P1).

If

(3.29) bπ(KP0,KP1) = bπ(P0, P1), 0 < π < 1

Advances in Inequalities from Probability Theory & Statistics



148 Liese and Vajda

then If(KP0, KP1) = If(P0, P1). Conversely, if If(KP0, KP1) = If(P0, P1) < ∞ then,

(3.30) bπ(KP0, KP1) = bπ(P0, P1), π ∈ Sρf
,

where Sρf
is the support of ρf in (3.25).

Corollary 3.9. If T : X → Y is a statistic then,

If(P0 ◦ T−1, P1 ◦ T−1) ≤ If(P0, P1).

For strictly convex f and If (P0, P1) < ∞ the equality holds if and only if

bπ(P0 ◦ T−1, P1 ◦ T−1) = bπ(P0, P1), 0 < π < 1.

Proof. The inequality (3.28) follows directly from (3.27) and Theorem 3.6 where
equality holds if (3.29) is satisfied. Suppose now, If(KP0,KP1) = If(P0, P1) < ∞, then
by Theorem 3.6,

0 = If(P0, P1)− If(KP0, KP1) =
∫

[bπ(KP0, KP1)− bπ(P0, P1)] ρf(dπ).

The integrand is nonnegative in view of (3.27). Consequently,

(3.31) ρf({π : bπ(KP0, KP1) 6= bπ(P0, P1)}) = 0.

It follows from the Lebesgue theorem and (3.21) that the function π 7→ bπ(P0, P1) is
continuous. As Pi are arbitrary, we may replace them by KPi obtaining that π 7→
bπ(KP0, KP1) is continuous too. This implies the continuity of π 7→ bπ(KP0, KP1) −
bπ(P0, P1). This continuity, in conjunction with the definition of the support Sγf

,
implies bπ(KP0, KP1) = bπ(P0, P1) for all π ∈ Sρf

, which completes the proof. The
corollary follows from the fact that measurable mappings are special kernels.

There are many approaches to reduction of a large sample X1, . . . , Xn. One of
them is to use a partition p = {A1, . . . , An} of the sample space X and to replace the
observations by the relative frequencies of these observations in the partition cells.
Here, and in the sequel, a partition p means a collection {A1, . . . , An}, of subsets of
X such that,

(3.32) Ai ∈ A, Ai ∩Aj = ∅ for i 6= j, and A1 ∪ · · · ∪ An = X .

Instead of the original sample space (X , A) we now use the sample space (X , σ(p)),
where σ(p) is the algebra generated by the partition p. Assume now that we have
an increasing sequence of partitions pn so that the sequence of σ-algebras An gener-
ates A, then we can approximate A-measurable tests by An-measurable tests. We,
therefore, achieve the minimal Bayes’ risk approximately, registering the cells visited
by observations instead of the observations themselves, provided n is large enough.
Denote by PAn

i the restriction of Pi to the sub σ-algebra An.

Lemma 3.10. If A1 ⊆ A2 ⊆ · · · is a nondecreasing sequence of sub-σ-algebras of A
which generates A then Gπ(PAn

0 , PAn
1 ) ↑ Gπ(P0, P1).
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Proof. The monotonicity follows from (3.27). Set P = 1
2 (P0 + P1) and consider the

densities pi = dPi/dP , i = 0, 1, as random variables on (X , A, P ). The conditional
expectation pi,n = EP (pi|An) with respect to P satisfies, for every A ∈ An,

∫

A

EP (pi|An)dP =
∫

A

pidP = PAn
i (A),

which implies pi,n = dPAn
i /dP

An
. Hence, by the Martingale convergence theorem

of Levy, see [33], EP |pi − pi,n| → 0, as n → ∞. Using the elementary inequality
|a ∧ b− c ∧ d| ≤ |a− b|+ |c− d| we arrive at the relation,

∫
|(πp0) ∧ ((1− π)p1)dP − (πp0,n) ∧ ((1− π)p1,n|dP → 0, as n →∞.

Combining this statement with (3.21) we get bπ(PAn
0 , PAn

1 ) ↑ bπ(P0, P1). The desired
result is clear from here and (3.22).

Theorem 3.11. If A1 ⊆ A2 ⊆ · · · is a nondecreasing sequence of sub-σ-algebras of
A which generates A, then,

(3.33) lim
n→∞

If
(
PAn

0 , PAn
1

)
= If(P0, P1), as n →∞.

Corollary 3.12. We have,

(3.34) If(P0, P1) = sup
p

∑

A∈p

f

(
P0(A)
P1(A)

)
P1(A),

where the supremum is taken over all partitions p with p ⊆ A and the conventions
f( 0

0 )0 = 0 and f(a
0 )0 = af∗(0) for a > 0 are used.

Proof. The statement (3.33) follows from Lemma 3.10, the representation (3.26) and
the monotone convergence theorem. To prove the corollary we first notice that,

If
(
P

σ(p)
0 , P

σ(p)
1

)
=

∑
A∈p

f

(
P0(A)
P1(A)

)
P1(A) ≤ If(P0, P1),

where the last inequality follows from (3.28). To show that here the equality can be
achieved by taking the supremum we set B = σ(p0, p1). If PB

i and P
B

denote the
restrictions of Pi and P on B then, by the definition of B, pi = dPB

i /dP
B

. Hence
Bπ(P0, P1) = Bπ(PB

0 , PB
1 ) by (3.21) and (3.22) so that If(PB

0 , PB
1 ) = If(P0, P1) by

(3.26). As the open intervals (a, b) with rational endpoints generate the σ-algebra of
Borel sets of the real line and the complete images of (a, b) under p0 and p1 generate
B, we see that B is countably generated. This means that we find a nondecreasing
sequence of algebras An that generate B. If pn is the system of atoms of An then pn

form a nondecreasing sequence of partitions with An = σ(pn). The rest of the proof
follows from (3.33).
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4 f-Divergences, Sufficiency and ε−Deficiency

If a modelM = (X , A, (Pθ)θ∈∆) is given and (Y, B) is a measurable space then a mea-
surable mapping T : X → Y is called a statistic and the model N = (Y, B, (Qθ)θ∈∆)
with Qθ = Pθ ◦ T−1 is said to be reduced by the statistic T. Recall that the statistic
T : X → Y is said to be sufficient if for every A ∈ A there is a function kA : Y → R
with the property,

(4.1) Eθ(IA|T ) = kA(T ), Pθ-a.s., θ ∈ ∆.

The statistic T is called pairwise sufficient if it is sufficient for each binary model
(X , A, {Pθ1 , Pθ2}), θ1, θ2 ∈ ∆. It is well known, see e.g. [63], that for dominated
models a statistic T is sufficient if and only if T is pairwise sufficient.

The independence of the conditional probability on the parameter θ extends easily
to the independence of the conditional expectation of any random variable. Suppose
that S : X → R is a random variable with Eθ|S| < ∞, θ ∈ ∆. If T is sufficient, then
there is some measurable function kS : T → R such that,

(4.2) Eθ(S|T ) = kS(T ), Pθ − a.s., θ ∈ ∆.

The independence of the conditional probabilities of the parameter was historically
the starting point of the concept of sufficiency. This concept can be traced back to
Fisher [11] who considered a statistic T to be sufficient if the conditional distribution
of any other statistic S given T is independent of the parameter so that T contains
the complete information. This means that if the value T = t is observed then
the knowledge of the value x leading to the observation t contains no additional
information about the parameter.

As pairwise sufficiency and sufficiency are equivalent for dominated models, in the
sequel we deal only with binary models. Let M = (X , A, {P0, P1}) be a binary model
(Y, B) a measurable space and T : X → Y a statistic, then N = (Y, B, {Q0, Q1}),
Qi = Pi ◦ T−1 is the reduced model. We set,

P =
1
2
(P0 + P1), and Q =

1
2
(Q0 + Q1),

Li :=
dPi

dP
, and Mi :=

dQi

dQ
, i = 0, 1.(4.3)

The first consequence of the sufficiency of a statistic T is that the hypotheses
testing problems

(4.4) H0 : P0 versus H1 : P1 and H0 : Q0 versus H1 : Q1

are equivalent in the sense that for each test in one of these problems achieving certain
error probabilities of the first and second kind there is a test in the other problem
achieving the same error probabilities of the first and second kinds. Indeed, if ψ is a
test for H0 : Q0 versus HA : Q1 then ψ(T ) is a test for H0 : P0 versus HA : P1 and we
obtain,

∫
ψ(T )dP0 =

∫
ψdQ0 and

∫
(1− ψ(T ))dP1 =

∫
(1− ψ)dQ1.
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Therefore, in the model {P0, P1}, we find at least as good a test as in the model
{Q0, Q1}. If T is sufficient we establish the converse statement. If ϕ is a test for the
model M then we set ψ(t) = EPi

(ϕ|T = t), which is independent of i according to
(4.2) and put kϕ(T ) = ψ(T ). We then have,

(4.5) EQiψ = EPi(EPi(ϕ|T )) = EPiϕ,

which completes the proof of the equivalence of the two testing problems in (4.4).
The densities Li and Mi are related by the conditional expectation. Indeed, by

the definition of the conditional expectation and Q = P ◦ T−1, for every B ∈ B,
∫

B

EP (Li|T = y)dQ =
∫

IB(T )EP (Li|T )dP =
∫

IB(T )dPi = Qi(B).

This implies,

(4.6) Mi(y) = EP (Li|T = y), Q-a.s.

The next lemma studies the stability of the Schwarz inequality for the conditional
expectation.

Lemma 4.1. Let X0, X1 be nonnegative random variables on (Ω, F, P ) with EXi < ∞,
i = 0, 1. If F0 ⊆ F is a sub-σ-algebra of F then,

(4.7) E((X0X1)1/2|F0) ≤ (E(X0|F0)E(X1|F0))1/2, P -a.s.

where the P -a.s. equality holds if and only if

(4.8) X0E(X1|F0) = X1E(X0|F0), P -a.s.

Proof. Put Yi = E(Xi|F0), Ai = {Yi = 0}, then EIAiXi = E(IAiXi|F0) = 0 and

EIAiE((X0X1)1/2|F0) = EIAi(X0X1)1/2 = 0,

so that both sides of (4.7) are P -a.s. zero on A0 ∪ A1. Hence we may assume Yi > 0
P -a.s. for i = 0, 1, giving E((Xi/Yi)|F0) = 1, P -a.s. so that the inequality (4.7) is
equivalent to,

E(((X0/Y0)(X1/Y1))1/2|F0) ≤ 1
2
(E((X0/Y0)|F0) + E((X1/Y1)|F0)),

or, equivalently,

E

((
(X0/Y0)1/2 − (X1/Y1)1/2

)2

|F0

)
≥ 0,

which completes the proof.

Now we are ready to give an information-theoretic characterization of the suffi-
ciency.
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Theorem 4.2. Given M = (X ,A, {P0, P1}) a statistic T : X → Y and N =
(Y, B, {Q0, Q1}) with Qi = Pi ◦ T−1, i = 0, 1, the following statements are equiv-
alent

A) T is sufficient for {P0, P1},
B) Li = Mi(T ) P -a.s. for i = 0, 1,

C) If(P0 ◦ T−1, P1 ◦ T−1) = If(P0, P1) for every convex function f,

D) If(P0 ◦ T−1, P1 ◦ T−1) = If(P0, P1) < ∞ for a strictly convex function f,

E) bπ(Q0, Q1) = bπ(P0, P1) for every 0 < π < 1.

Proof. The proof is carried out according to the following scheme

C) → D) → E) → C)
A) → E) and C) → B) → A) .

In a first step we proof the equivalence of the conditions C), D), and E). C) → D)
is clear. D) → E) : If f is strictly convex then the support Sρf

in (3.25) is the interval
(0, 1). Hence E) follows from (3.30). E) → C) follows from (3.26).

Now we relate the conditions C), D) and E) to the conditions A) and B). To
prove A) → E) let ϕB be a Bayes test for H0 : P0 versus HA : P1. Then by (4.2) there
is some ψ such that ψ(T ) = EPi(ϕB |T ) Pi-a.s. Hence EQiψ = EPiϕB by (4.5) and
therefore

bπ(Q0, Q1) = inf
ϕ

(π
∫

ϕdQ0 + (1− π)
∫

(1− ϕ)dQ1)

≤ π

∫
ψdQ0 + (1− π)

∫
(1− ψ)dQ1

= π

∫
ϕBdP0 + (1− π)

∫
(1− ϕB)dP1 = bπ(P0, P1).

The converse inequality is trivial as the set of tests ϕ : X → [0, 1] which are functions
of T is a subset of all tests.

For C) → B) we use the strictly convex function f(t) = −t1/2. Then the condition
C) reads

H1/2(P0 ◦ T−1, P1 ◦ T−1) = H1/2(P0, P1).

Using (4.6) and (3.10) for s = 1/2 we see the last equality is equivalent to

H1/2(P0, P1) = EP (L0L1)1/2 = EP (EP ((L0L1)1/2|T ))

= EP ((L1/2
0 |T )EP ((L1/2

1 |T )),

or
EP

(
EP ((L1/2

0 |T )EP ((L1/2
1 |T ))− EP ((L0L1)1/2|T )

)
= 0
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for L0, L1 defined by (4.3). Using Lemma 4.1 and the fact L1 = 2−L0 which follows
from the definition of L0 and L1, we get

L0EP ((2− L0)|T ) = (2− L0)EP (L0|T ), P -a.s.

This together with (4.6) implies L0 = EP (L0|T ) = M0(T ). To complete the proof
of B) it suffices to notice that 2 − M0(T ) = M1(T ). B) → A) : We show that
kA(T ) = EP (IA|T ) is a version of the conditional expectation EPi

(IA|T ) for i = 0, 1.
It holds for every B ∈ B

∫
IB(T )EP (IA|T )dPi =

∫
IB(T )EP (IA|T )Mi(T )dP

=
∫

IB(T )EP (IAMi(T )|T )dP

=
∫

IB(T )IAMi(T )dP =
∫

IB(T )IAdPi.

Remark 4.1. Condition B) is the factorization criterion of Neyman. The equivalence
of A) and D) is an information-theoretic characterization of sufficiency which for
general divergence goes back to [11] and for the special Kullback-Leibler divergence
back to Kullback and Leibler [38]. For the Hellinger distance this relation can also be
found in [41]. The equivalence of condition A) and E) in Theorem 4.2 is a testing-
theoretic characterization of sufficiency which is due to Pfanzagl [55], who, however,
used the α−level tests instead of the Bayes tests.

In the previous theorem we used strictly convex functions to establish the suf-
ficiency of a statistic T. The question remains open whether this function has to
be strictly convex at each point. It is clear from the continuity of the function
π → bπ(P0, P1) and the condition D) that we need only strict convexity at suffi-
ciently many points, say on a dense subset. An equivalent formulation is obtained if
we turn from one convex function to a family of convex functions. More precisely, let
gt(x), x ∈ R+, t ∈ R be any family of functions convex in the variable x. Further, let
γ be any measure on the Borel sets of the real line. We assume that the following
conditions are satisfied:

(t, x) 7→ gt(x) is measurable,∫
|gt(x)|γ(dt) < ∞ for every x > 0.

Obviously f(x) :=
∫

gt(x)γ(dt) is a convex function and, moreover, it follows from the
Fubini theorem that,

If(P0, P1) =
∫

Igt(P0, P1)γ(dt).
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The idea of constructing convex functions by a mixture of a given family has been
implicitly contained in the representation of f0 in (2.10). Indeed, if we put

gt(x) =

{
x− t ∧ x if x > 1

t− t ∧ x if 0 < x ≤ 1
,

and γ = γf then f0(x) =
∫

gt(x)γ(dt) by (2.10). Using the monotone convergence
theorem it is not hard to see that,

D+f(x) =
∫

D+gt(x)γ(dt),

which implies γf(B) =
∫

γgt
(B)γ(dt). From here we see that f is strictly convex at

each x > 0 if and only if for every ε > 0 with x− ε > 0,
∫

(D+gt(x + ε)−D+gt(x− ε))γ(dt) > 0.

The following characterization of sufficiency is due to Mussmann [48] and can also be
found in Torgersen [66].

Corollary 4.3. Given M = (X , A, {P0, P1}) a statistic T : X → Y is sufficient if
and only if

(4.9) ‖tP0 − P1‖ = ‖tQ0 −Q1‖

for every t ∈ D, where D ⊆ R+ is dense in R+.

Proof. Introduce, for every t > 0, the convex function gt(x) = |tx− 1|, then,

Igt(P0, P1) = ‖tP0 − P1‖ , and Igt(Q0, Q1) = ‖tQ0 −Q1‖ ,

so that the necessity of (4.9) follows from C) in Theorem 4.2. To prove the converse
we introduce the measure γ by setting γ =

∑∞
k=1 2−kδak

, where D0 = {a1, a2, . . . } is
a subset of D that is dense in R+. Set f(x) =

∫
gt(x)γ(dt), then the support of γf is

(0,∞) so that f is strictly convex. As ‖tP0 − P1‖ ≤ 1 + t we get,

If(P0, P1) =
∫

Igt(P0, P1)γ(dt) ≤
∫

(1 + t)γ(dt) < ∞.

If (4.9) holds for every t ∈ D then If(P0, P1) = If(Q0, Q1) so that condition D) in
Theorem 4.2 is satisfied and the proof is complete.

So far we have compared the reduced model N = (Y,B, {Q0, Q1}), Qi = Pi ◦T−1

with the original model M = (X , A, {P0, P1}) and we characterized the sufficiency of
a statistic by the fact that the two hypothesis testing problems in (4.4) are equivalent.
Now we deal with statistics that are only approximately sufficient. This leads to the
problem of characterizing the situations where one model is only by ε less informative
than the other model. This problem leads to the general theory of ε-deficiency in
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statistical decision models. Here we restrict the presentation of this theory to the
testing problems in binary statistical models. Model M = (X , A, {P0, P1}) is said to
be ε-deficient with respect to N = (Y, B, {Q0, Q1}), in symbols Mºε N , if for every
test ψ : Y → [0, 1] of H0 : Q0 versus H1 : Q1 there exists a test ϕ : X → [0, 1] such
that,

∫
ϕdP0 ≤

∫
ψdQ0 + ε and

∫
(1− ϕ)dP1 ≤

∫
(1− ψ)dQ1 + ε.

The next theorem clarifies the decision theoretic meaning of the f-divergences. It
connects the concept of the distance being defined by the divergence with the purely
decision theoretic problem of testing statistical hypotheses.

Choose arbitrary α ∈ (0, 1), set F0(t) := P0(p1 ≤ tp0) and denote by c1−α the
(1− α)−quantile

c1−α = inf{t > 0 : F0(t) ≥ 1− α}.
The test,

(4.10) ϕα =





1 if p1 > c1−αp0

γα if p1 = c1−αp0

0 if p1 < c1−αp0

with the constant γα = [F0(c1−α)− (1− α)] /P0(p1 = c1−αp0) and 0/0 := 0, is the
best α−level test in the sense that it minimizes the error probability of the second
kind

∫
(1−ϕ)dP1 in the class Φα of all α−level tests, i.e. the tests satisfy

∫
ϕdP0 ≤ α.

For the proof of this famous Neyman-Pearson Lemma we refer to [43].

Theorem 4.4. For the two binary modelsM = (X ,A, {P0, P1}), N = (Y, B, {Q0, Q1})
and any ε ≥ 0 the following conditions are equivalent

A) Mºε N ,

B) bπ(P0, P1) ≤ bπ(Q0, Q1) + ε, for every 0 < π < 1,

C) If(Q0, Q1) − f(1) ≤ If(P0, P1) − f(1) + ερf((0, 1)) for every convex function
f : (0,∞) → R for the measure ρf given by (3.24).

Proof. The conclusion B) → C) follows directly from (3.6). Conversely, if we put
f(t) = gπ(t) := π ∧ (1− π)− (πt) ∧ (1− π) then gπ is convex and by (3.22)

Gπ(P0, P1) = π ∧ (1− π)− bπ(P0, P1).

It follows that D+gπ(t) = −π if 0 < t < (1− π)/π and D+gπ(t) = 0 if t ≥ (1− π)/π.
The measure γgπ

in (2.7) is therefore γgπ
= πδ(1−π)/π, where δa is the delta measure

concentrated at a. Hence ρgπ
in (3.23) with f = gπ satisfies the equalities,

ρgπ
((0, 1)) =

∫

(0,1)

(1 + t)πδ(1−π)/π(dt) = 1.
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This shows that C) implies B). It remains to prove the equivalence of A) and B).
This is the statement of Theorem 15.6 in [63] and we follow the proof given there.
Denote by ψ = ϕB the Bayes’ test for the model {Q0, Q1}. If A) is satisfied then,

bπ(P0, P1) ≤ π

∫
ϕdP0 + (1− π)

∫
(1− ϕ)dP1

≤ π

∫
ϕBdQ0 + (1− π)

∫
(1− ϕB)dQ1 + ε

= bπ(Q0, Q1) + ε,

so that B) is satisfied. To prove the converse we consider the Lebesgue decomposition
P0 = γP ′0 +(1−γ)P ′′0 with distributions P ′0 andP ′′0 that satisfy P ′0 ¿ P1 and P ′′0 ⊥ P1

and 0 ≤ γ ≤ 1. The case γ = 0 is trivial. For γ > 0 we firstly suppose that
α :=

∫
ψdQ0 + ε ≤ γ. Let ϕα be the test in (4.10) and set π = cα/(1+ cα). We obtain

from Lemma 3.5 that,

π

∫
ϕαdP0 + (1− π)

∫
(1− ϕα)dP1 = bπ(P0, P1)

≤ bπ(Q0, Q1) + ε

≤ π

∫
ψdQ0 + (1− π)

∫
(1− ψ)dQ1 + ε,

which yields
∫

(1−ϕα)dP1 ≤
∫

(1−ψ)dQ1 so that the first case is completed. Suppose
now

∫
ψdQ0 + ε > γ. As P ′′0 ⊥ P1, we find a test ϕ with P ′′0 (ϕ = 0) = 1 and

P1(ϕ = 1) = 1, then
∫

ϕdP0 = γ <
∫

ψdQ0 + ε and
∫

(1− ϕ)dP1 =
∫

(1− ϕ)dP ′0 = 0 ≤
∫

(1− ψ)dQ1 + ε

which completes the proof.
For special classes of convex functions the total mass ρf((0, 1)) of the curvature

measure ρf appearing in Theorem 3.6 can be directly expressed in terms of the function
f and its derivative.

Lemma 4.5. If f : (0,∞) → R is a convex function such that limt↓0 f(t) = 0,
limt→∞ f(t) > −∞, limt↓0 D+f(t) > −∞ and f is nonincreasing then f∗(t) = tf(1/t)
has these properties too and

lim
t→∞

f(t) = lim
t↓0

D+f∗(t), lim
t↓0

D+f(t) = lim
t→∞

f∗(t),

ρf((0, 1)) = − lim
t→∞

f(t)− lim
t↓0

D+f(t) = ρf∗((0, 1)).

Proof. We see from (2.13) that f∗ is convex. Further,

D+f∗(s) = f

(
1
s

)
− 1

s
D+f

(
1
s

)

= −
∫ 1/s

0

(
D+f

(
1
s

)
−D+f(t)

)
dt ≤ 0(4.11)
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because D+f(t) is nondecreasing. Application of (2.5) to f∗ yields that f∗ is nonin-
creasing. Convexity of f∗ shows that D+f∗(s) is nondecreasing so that lims↓0 D+f∗(s)
exists. By assumption, limt→∞ f(t) exists and is finite. Hence,

A := lim
s→0

1
s
D+f

(
1
s

)
= lim

t→∞
tD+f(t)

exists and −∞ ≤ A ≤ 0. If A < 0 then there exists a < 0 and t0 such that D+f(t) ≤
a/t for t ≥ t0. In this case,

lim
t→∞

f(t) = lim
t→∞

∫ t

t0

D+f(s)ds + f(t0) ≤ lim
t→∞

a(ln t− ln t0) + f(t0) = −∞

which contradicts the assumption. Hence limt→∞ tD+f(t) = 0 which implies
limt→∞D+f(t) = 0 and limt↓0 f∗(t) = limt↓0 tf(1/t) = limt↓0 t

∫ 1/t

0
D+f(s)ds = 0.

The relation (4.11) yields lims↓0 D+f∗(s) = lims↓0
∫ 1/s

0
D+f(t)dt = limt→∞ f(t) and

in view of (f∗)∗ = f this implies limt↓0 D+f(t) = limt→∞ f∗(t). Furthermore,
∫

(a,b]

(1 + t)γf(dt) = (1 + a)(D+f(b)−D+f(a)) +
∫

(a,b]

(
∫

(a,t)

ds)γf(dt)

= (1 + a)(D+f(b)−D+f(a)) + (b− a)D+f(b)− f(b) + f(a)

= D+f(b)−D+f(a) + bD+f(b)− aD+f(a)− f(b) + f(a)

ρf((0, 1)) =
∫

(0,∞)

(1 + t)γf(dt) = − lim
b→∞

f(b)− lim
a↓0

D+f(a)

because lima↓0 f(a) = 0 by assumption and limb→∞ bD+f(b) = limb→∞D+f(b) = 0 as
established above.

If the convex function f satisfies the assumptions of the last theorem then we may
transform the condition C) in Theorem 4.4 to the form known in decision theory as
the concave function criterion, see Theorem 17.1 in [63]. Using L0 and L1 from (4.3)
we introduce the likelihood ratio of P1 with respect to P0 by L0,1 = L1

L0
I(0,∞)(L0) +

∞I{0}(L0). M0,1 is similarly defined by means of Q0, Q1.

Corollary 4.6. The conditions A), B) and C) in Theorem 4.4 are equivalent to

(4.12) EP0h(L0,1) ≤ EQ0h(M0,1) + ε(D+h(0) + lim
t→∞

h(t)),

for every nondecreasing concave function h : [0,∞) −→ R with h(0) = 0 and the sum
D+h(0) + limt→∞ h(t) is finite.

Proof. The necessity follows from C) in Theorem 4.4 and (3.3) if we set f∗ = −h
and use Lemma 4.5 to see that f(0) = f∗(0) = 0. To prove the sufficiency we use the
concave function hπ(t) := ((1− π)t)∧ π which is nondecreasing, concave and satisfies

D+hπ(0) + lim
t→∞

hπ(t) = 1

EP0hπ(L0,1) = bπ(P0, P1), and EQ0hπ(M0,1) = bπ(Q0, Q1),

Hence (4.12) implies B) in Theorem 4.4 and the proof is completed.
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5 Rate of Error Probabilities for Increasing Sample Sizes

In this section we apply information functionals to characterize the quality of sta-
tistical tests for increasing sample size. It is intuitively clear that decisions are the
easier the larger is the distinction between the distributions in the statistical model.
In this section we study the rate of convergence at which the error probabilities in
testing a simple hypothesis versus a simple alternative tends to zero when the sample
size tends to infinity. Our aim is to quantify this rate. This will lead to the famous
statistical results known as the Theorems of Chernoff and Stein.

To describe the convergence of the error probabilities to zero we will use the
concept of exponential rate. This means that for any sequence of nonnegative numbers
an tending to zero we characterize the rate of convergence to zero by the value R :=
− limn→∞ 1

n ln an provided the limit exists. We call the nonnegative value R the
exponential rate of the sequence {an}. If 0 < R < ∞ then we obtain an = exp{−n(R−
εn)} for εn := R + 1

n ln an tending to zero. Although the value R is useful to reflect
the convergence rate, it is only a rough measure describing nothing more than the
exponential rate. Constants are suppressed, e.g. for any c > 0, limn→∞ 1

n ln(can) =
limn→∞ 1

n ln an holds. Moreover, the exponential rate characterizes only the worst
case in the following sense. Let an and bn be two sequences of nonnegative numbers.
As max(an, bn) ≤ an + bn ≤ 2max(an, bn), we see that the exponential rate for
max(an, bn) exists if and only if the exponential rate of an + bn exists and in this case
the two rates are identical.

For the problem of testing the hypothesis H0 : P0 versus H1 : P1 we denote by Φα

the set of all α−level tests, i.e. the set of all tests ϕ such that
∫

ϕdP0 ≤ α. By

dα(P0, P1) = inf
ϕ∈Φα

{∫
(1− ϕ)dP1, ϕ ∈ Φα

}

we denote the second kind error probability of the best α−level test. We know from
the Neyman-Pearson lemma that the test in (4.10) attains the infimum

dα(P0, P1) =
∫

(1− ϕα)dP1.

Now we relate the minimal error probability of the second kind to the minimal Bayes’
error. This relation is well known and can be found e.g. in [66, p. 590-591].

Lemma 5.1. We have,

bπ(P0, P1) = min
0<α<1

[πα + (1− π)dα(P0, P1)], π ∈ (0, 1),(5.1)

dα(P0, P1) = max
0<π<1

1
1− π

(bπ(P0, P1)− πα), α ∈ (0, 1).(5.2)

Proof. For fixed π ∈ (0, 1) the inequality,

bπ(P0, P1) ≤ πα + (1− π)dα(P0, P1), α ∈ (0, 1),
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follows from the definition of dα(P0, P1). It implies,

bπ(P0, P1) ≤ inf
0<α<1

[πα + (1− π)dα(P0, P1)], π ∈ (0, 1),(5.3)

dα(P0, P1) ≥ sup
0<π<1

1
1− π

(bπ(P0, P1)− πα), α ∈ (0, 1).(5.4)

If α0 ∈ (0, 1) is fixed, then ϕα0
in (4.10) is, according to Lemma 3.5, a Bayes’ test for

π = c1−α0/(1 + c1−α0). This yields,

πα0 + (1− π)E1(1− ϕα0
) = bπ(P0, P1),

and the proof is complete.
To establish bounds for dα(P0, P1) we use the Hellinger integrals in (3.10). The

following result has been independently established by Kraft and Plachky [35] and by
Österreicher [50]. For the proof we need the elementary inequalities,

z ∨ 1 ≤ azs + 1, s > 1, z ≥ 0, a = (s− 1)s−1s−s,(5.5)
z ∧ 1 ≤ zs, 0 < s < 1, z ≥ 0.(5.6)

Lemma 5.2. For every 0 < α < 1 the second kind error probability of the best α−level
test for testing P0 versus P1 satisfies the inequalities,

dα(P0, P1) ≤ (1− s)
( s

α

)s/(1−s)

(Hs(P0, P1))1/(1−s), 0 < s < 1,(5.7)

dα(P0, P1) ≥ (1− α)t/(t−1)(Ht(P0, P1))−1/(t−1), 1 < t < ∞.(5.8)

Proof. We have,

(5.9)
∫

((p1 − cp0) ∨ 0)dµ = 1−
∫

((cp0) ∧ p1)dµ =
∫

((cp0) ∨ p1)dµ− c.

Taking c = π/(1− π) we get, from (5.2),

dα(P0, P1) = sup
c>0

[∫
(cp0) ∧ p1dµ− cα

]

= sup
c>0

[
1−

∫
(cp0) ∨ p1dµ + c(1− α)

]
.

The application of (5.5) yields,
∫

((cp0) ∨ p1)dµ ≤ cs(s− 1)s−1s−s

∫
ps
0p

1−s
1 I(0,∞)(p1)dµ + 1

≤ cs(s− 1)s−1s−sHs(P0, P1) + 1,

and

dα(P0, P1) ≥ sup
c>0

[
c(1− α)− cs(s− 1)s−1s−sHs(P0, P1)

]

= (1− α) sup
c>0

[c− csd] = (1− α)(s− 1)s−s/(s−1)d−1/(s−1).
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Inserting the value d = (1 − α)−1(s − 1)s−1s−sHs(P0, P1) on the right hand side we
get (5.8). The proof of (5.7) is similar if we use (5.6) to estimate

∫
(cp0) ∧ p1)dµ.

Now we characterize the exponential rate of the probability of an error of the
second kind if the error probabilities of the first kind are supposed to be bounded by
a fixed α.

Consider the case of an increasing sample size. Let X1, . . . , Xn be a sample of
size n consisting of independent and identically distributed random variables where
the joint distribution is P⊗n

0 or P⊗n
1 . Here and in the sequel ⊗ is the symbol for

product measure. We want to study the hypotheses testing problem H0 : P⊗n
0 versus

HA : P⊗n
1 . Our aim is to investigate the rate of convergence to zero of the error

probabilities of the second kind of level α tests.

Theorem 5.3. If the Kullback-Leibler divergence K1(P0, P1) is finite then for any
0 < α < 1 the error probability of the second kind dα(P⊗n

0 , P⊗n
1 ) of the best level

α-test ϕn for testing {P⊗n
0 } versus {P⊗n

1 } satisfies

(5.10) − lim
n→∞

1
n

ln dα(P⊗n
0 , P⊗n

1 ) = K1(P0, P1).

Proof. We give a proof only under the restricted condition that for some s0 > 1,
Hs0(P0, P1) < ∞ holds. For the general case we refer to [35]. A simple consequence
of the fact that the density of a product measure with respect to another product
measure is just the product of the densities, is that the Hellinger integral Hs in (3.10)
satisfies

(5.11) Hs(P⊗n
0 , P⊗n

1 ) = (Hs(P0, P1))n.

Hence, by the application of (5.7) and (5.8) for 0 < s < 1 < t < s0,

− 1
t− 1

ln Ht(P0, P1) ≤ lim inf
n→∞

1
n

ln[dα(P⊗n
0 , P⊗n

1 )](5.12)

≤ lim sup
n→∞

1
n

ln[dα(P⊗n
0 , P⊗n

1 )]

≤ 1
1− s

ln Hs(P0, P1).

The function ks in (3.4) satisfies ks(1) = k′s(1) = 0 and k′′s (x) = xs−2. Hence,

0 ≤ k′′s (x) ≤ k′′1/2(x) + k′′s0
(x),

1
2
≤ s ≤ s0, x ≥ 0, therefore

0 ≤ ks(x) ≤ k1/2(x) + ks0(x),
1
2
≤ s ≤ s0, x ≥ 0.

Thus, from the Lebesgue theorem,

lim
s↑1

Ks(P0, P1) = lim
s↓1

Ks(P0, P1) = K1(P0, P1).
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Using (3.11) we arrive at

lim
s↑1

1
1− s

ln Hs(P0, P1) = lim
s↓1

1
1− s

ln Hs(P0, P1) = −K1(P0, P1).

Combining this statement with inequality (5.12) we get the desired result.

Chernoff [8] and Kullback [39] refer for the statement (5.10) to an unpublished
paper by C. Stein. This statement is, therefore, known as Stein’s theorem.

In the previous theorem we assumed the Kullback-Leibler distance K1(P0, P1) to
be finite. The infinite case K1(P0, P1) = ∞ was studied by Janssen [28].

Example 8. We illustrate the above theorem for distributions from the same expo-
nential family, say P0 = Pθ0 , P1 = Pθ1 . Example 7 gives,

Hs(Pθ0 , Pθ1) = exp{−(sK(θ0) + (1− s)K(θ1)−K(sθ0 + (1− s)θ1))},

for sθ0 + (1− s)θ1 ∈ ∆. Due to the convexity of ∆ the condition sθ0 + (1− s)θ1 ∈ ∆
is certainly fulfilled for 0 < s < 1. Hence, by Theorem 5.2,

− lim
n→∞

1
n

ln dα(P⊗n
θ0

, P⊗n
θ1

) = K1(Pθ0 , Pθ1)

= 〈∇K(θ0), θ0 − θ1〉+ K(θ1)−K(θ0).

Note that in the example under consideration, even the restrictive condition Hs0(Pθ0 , Pθ1) <
∞ for some s0 > 1 is fulfilled if θ0 ∈ ∆0. Then there is some s0 > 1 such that
s0θ0 + (1− s0)θ1 ∈ ∆ which yields Hs0(Pθ0 , Pθ1) < ∞. If Pθ = N(θ, σ2

0) then,

K1

(
Nθ0,σ2

0
, Nθ1,σ2

0

)
=

(θ0 − θ1)2

2σ2
0

by (3.18). This means that

(5.13) − lim
n→∞

1
n

ln dα

(
N⊗n

θ0,σ2
0
,N⊗n

θ1,σ2
0

)
=

(θ0 − θ1)2

2σ2
0

.

We compare this rate with the exact value of dα

(
N⊗n

θ0,σ2
0
N⊗n

θ1,σ2
0

)
which is nothing but

the probability of an error of the second kind of the Gauss test being given by the
formula

dα

(
N⊗n

θ0,σ2
0
, N⊗n

θ1,σ2
0

)
= Φ0,1(u1−α − σ0n

−1/2(θ1 − θ0)),

where Φ0,1 is the distribution function of the standard normal distribution. In order
to evaluate the right hand term for large n we use Mill’s ratio, i.e. the inequality,

|x|
1 + x2

≤ Φ0,1(x)
ϕ0,1(x)

≤ 1
|x| for x < 0.
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We get for an = u1−α −
√

n
σ0

(θ1 − θ0) and all sufficiently large n,

|an|
(1 + a2

n)
√

2πσ0

exp
{
− a2

n

2σ2
0

}
≤ dα

(
N⊗n

θ0,σ2
0
, N⊗n

θ1,σ2
0

)

≤ 1
|an|

√
2πσ0

exp
{
− a2

n

2σ2
0

}
.

As limn→∞ 1
n ln |an| = 0 we again obtain, via another method, the result (5.13). From

this example we also see that the exponential rate provides an asymptotic expression
ignoring the factor (|an|

√
2πσ0)−1 ∼ n−1/2. This means that in our example the

real error probability of the second kind tends by the factor n−1/2 faster to zero than
indicated by the exponential rate.

Now we turn to the exponential rate for the Bayesian as well as for the minimax
risk. Our aim is to calculate the exponential rates of the sequence of Bayes’ risks
bπ

(
P⊗n

0 , P⊗n
1

)
, see (3.21), and of the minimax risks given by

mρ

(
P⊗n

0 , P⊗n
1

)
= inf

ϕ

(
max

(
ρ

∫
ϕdP⊗n

0 , (1− ρ)
∫

(1− ϕ)dP⊗n
0

))
.

Using the inequalities,

(5.14) mρ

(
P⊗n

0 , P⊗n
1

) ≤ bρ

(
P⊗n

0 , P⊗n
1

) ≤ 2mρ

(
P⊗n

0 , P⊗n
1

)

we immediately see that the exponential rates of the two sequences of risks are iden-
tical provided they exist. As a preparation of the next result we bound the error
probabilities by terms of Hellinger integrals. If ϕ is any likelihood ratio test for P0

versus P1 rejecting the null hypothesis at the critical value 1/c then,

(5.15)
∫

ϕdP0 ≤ c1−s

∫
ps
0p

1−s
1 dµ = c1−sHs(P0, P1).

Similarly, bπ(P0, P1) in (3.21) satisfies

(5.16) bπ(P0, P1) ≤ πs(1− π)1−sHs(P0, P1).

A lower bound for bπ(P0, P1) is given by the inequality,

(5.17) πs(1− π)1−sHs(P0, P1) ≤ (bπ(P0, P1))
π∧(1−π)(1− bπ(P0, P1))

π∨(1−π)

established by Vajda [67].

Lemma 5.4. If P0 and P1 are neither identical nor mutually singular then the func-
tions s 7→ Hs(P0, P1) and s 7→ ln Hs(P0, P1) are strictly convex and infinitely often
differentiable in (0, 1).
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Proof. If T : X → R is any statistic then by the same arguments as in Example 7
one can see that {s :

∫
exp{sT}dµ < ∞} is an interval and one can show (see e.g.

[5]) that the function s 7→ ∫
exp{sT}dµ is analytic in the interior of this interval

and the derivatives can be carried out under the integral. Applying this fact to
dν = I{p0>0,p1>0}dP1 and T = ln(p0/p1) we find that the function s 7→ Hs(P0, P1) is
infinitely often differentiable in (0, 1) and if P0, P1 are neither identical nor mutually
singular then we have,

d2

ds2
Hs(P0, P1) =

∫
I{p0∧p1>0} exp{s ln(p0/p1)}(ln(p0/p1))2dP1 > 0.

The convexity of ln Hs(P0, P1) follows from the Hölder inequality applied to Hs(P0, P1) =∫
(p0/p1)sdP1.

We introduce a family of distributions (Pθ)θ∈(0,1) by

(5.18) dPθ = (Hθ(P0, P1))−1pθ
0p

1−θ
1 dµ, 0 < θ < 1,

for which

(5.19) Hs(Pθ, P1) =
Hsθ(P0, P1)
Hs

θ(P0, P1)
.

If we have a sample of size n then by (5.11) and (5.16),

(5.20) lim sup
n→∞

1
n

ln(bπ(P⊗n
0 , P⊗n

1 )) ≤ inf
0<s<1

(ln Hs(P0, P1)).

Our aim is to show that in (5.20) holds in fact the equality which means that
− ln Hs∗(P0, P1) is the exponential rate of bπ(P⊗n

0 , P⊗n
1 ). Next follows the correspond-

ing result which is due to Chernoff [7].

Theorem 5.5. The Bayes’ risk bπ(P⊗n
0 , P⊗n

1 ) for testing {P⊗n
0 } versus {P⊗n

1 } with
prior (π,1− π) satisfies, for every 0 < π < 1, the relation,

lim
n→∞

1
n

ln(bπ(P⊗n
0 , P⊗n

1 )) = inf
0<s<1

(ln Hs(P0, P1)).

Corollary 5.6. The minimax risk mρ(P⊗n
0 , P⊗n

1 ) satisfies, for every 0 < ρ < 1, the
relation,

lim
n→∞

1
n

ln(mρ(P⊗n
0 , P⊗n

1 )) = inf
0<s<1

(lnHs(P0, P1)).

Proof. The case in which P0 and P1 are mutually singular is trivial as in this case
ln Hs(P0, P1) = −∞ and bπ(P⊗n

0 , P⊗n
1 ) = 0. Similarly, if P0 = P1 then ln Hs(P0, P1) =

0. Therefore we can assume that P0 and P1 are neither mutually singular nor identical.
First of all notice that in view of (3.21) we have,

((π ∧ (1− π))b1/2(P⊗n
0 , P⊗n

1 ) ≤ bπ(P⊗n
0 , P⊗n

1 ) ≤ 2b1/2(P⊗n
0 , P⊗n

1 ),
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so that we may assume without loss of generality π = 1/2. As lims↓0 Hs(P0, P1) =
P1(p0 > 0) and lims↑1 Hs(P0, P1) = P0(p1 > 0) are finite the function s 7→ Hs(P0, P1)
can be extended to a continuous function on [0, 1] that attains the infimum in, say
s∗ ∈ [0, 1]. The strict convexity of Hs(P0, P1) in (0, 1) yields

Hs(P0, P1) > Hs∗(P0, P1) for s 6= s∗, 0 < s < 1.

If s∗ ∈ {0, 1} then we may assume s∗ = 0 as for s∗ = 1 we may interchange the
role of P0 and P1. Denote by ϕn a likelihood ratio test for P⊗n

0 versus P⊗n
1 at c = 1,

see (3.20), then by the construction of Pθ in (5.18) the test ϕn is also a likelihood
ratio test for P⊗n

θ versus P⊗n
1 at cn = [Hθ(P⊗n

0 , P⊗n
1 )]−1. Fix θ with s∗ < θ < 1 and

0 < s < 1 with s∗ < sθ < θ. Then Hsθ(P0, P1) < Hθ(P0, P1). Hence, by (5.15) and
(5.19),

(5.21) αn :=
∫

ϕndP⊗n
θ ≤ c1−s

n Hs(P⊗n
θ , P⊗n

1 ) =
[
Hsθ(P0, P1)
Hθ(P0, P1)

]n

→ 0, as n →∞.

The inequality (5.8) yields, for 1 < t < 1
θ ,

1
n

ln
(

1−
∫

ϕndP⊗n
1

)
≥ t

t− 1
1
n

ln(1− αn)− 1
t− 1

ln Ht(Pθ, P1).

By (5.21)

lim inf
n→∞

1
n

ln
(

1−
∫

ϕndP⊗n
1

)

≥ 1
1− t

ln Ht(Pθ, P1)

=
1

1− t
[ln Htθ(P0, P1)− t ln Hθ(P0, P1)], 1 < t <

1
θ
.

If s∗ = 0 then we take θ ↓ 0 and obtain

lim inf
n→∞

1
n

ln
(

1−
∫

ϕndP⊗n
1

)
≥ ln Hs∗(Pθ, P1) = inf

0<s<1
ln Hs(P0, P1).

Suppose now 0 < s∗ < 1. The function s 7→ Hs(P0, P1) is continuous in (0, 1). Taking
θ ↓ s∗ we get, for 1 < t < 1

s∗ ,

lim inf
n→∞

1
n

ln
(

1−
∫

ϕndP⊗n
1

)
≥ 1

1− t
[ln Hts∗(P0, P1)− t ln Hs∗(P0, P1)].

Since s∗ is a local minimum point of the differentiable function s 7→ Hs(P0, P1), the
derivative d

dsHs(P0, P1) vanishes at s∗, therefore,

lim
t↓1

1
1− t

[lnHts∗(P0, P1)− t ln Hs∗(P0, P1)] = ln Hs∗(P0, P1)
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and

lim inf
n→∞

1
n

ln
(

1−
∫

ϕndP⊗n
1

)
≥ ln Hs∗(P0, P1).

The likelihood ratio test ϕn for P⊗n
0 versus P⊗n

1 at 1 is a likelihood ratio test for P⊗n
1

versus P⊗n
0 at 1. Hence, by the last inequality and the trivial fact,

ln Hs∗(P0, P1) = inf
0<s<1

ln Hs(P0, P1) = inf
0<s<1

ln H1−s(P0, P1)

we get

lim inf
n→∞

1
n

ln
(∫

ϕndP⊗n
0

)
= lim inf

n→∞
1
n

ln
(

1−
∫

(1− ϕn)dP⊗n
0

)

≥ ln Hs∗(P0, P1).

As the likelihood ratio test ϕn for P⊗n
0 versus P⊗n

1 at c = 1 is a Bayes’ test with prior
π = 1

2 we obtain, from the concavity of ln x,

lim inf
n→∞

1
n

ln(b1/2(P⊗n
0 , P⊗n

1 )) = lim inf
n→∞

1
n

ln
(

1
2

∫
ϕndP⊗n

0 +
1
2

∫
(1− ϕn)dP⊗n

1

)

≥ inf
0<s<1

ln Hs(P0, P1).

The opposite inequality has been already established in (5.20). The proof is complete.
The proof of the corollary follows from inequality (5.14).

Remark 5.1. There is a large number of papers dealing with the exponential rate of
convergence for error probabilities for increasing sample sizes. Without giving a com-
plete list we just remark that some of these papers study stochastic processes instead
of i.i.d. samples, see [34], [69] or [46]. Linkov used the concept of Hellinger processes
to study the error probabilities. In general large deviation theory, arbitrary sequences
of distributions are studied and the exponential rate of error probabilities is expressed
with the help of the asymptotic behavior of the moment generating functions of the log
likelihood, which is nothing but the Hellinger integral, see [62], [19], and other books
on large deviations.

The quantity

(5.22) C(P0, P1) = − inf
0<s<1

ln Hs(P0, P1)

is called the Chernoff index of P0 and P1. It gives the exponential rate at which the
Bayesian risk bπ(P⊗n

0 , P⊗n
1 ) tends to zero. Using the Chernoff index the statement

of Theorem 5.5 and Corollary 5.6 may be written as,

lim
n→∞

1
n

ln bπ(P⊗n
0 , P⊗n

1 ) = lim
n→∞

1
n

ln mρ(P⊗n
0 , P⊗n

1 )(5.23)

= −C(P0, P1).
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Example 9. To illustrate the above statement we suppose that Pθ, θ ∈ ∆ ⊆ Rd is an
exponential family with natural parameter θ and generating statistic T : X → Rd. It
follows then, by (3.15), that,

C(Pθ1 , Pθ2) = inf
0<s<1

{sK(θ1) + (1− s)K(θ2)−K(sθ1 + (1− s)θ2))}.

If Pθ = N(θ, σ2) then by (3.17),

ln Hs(N(θ0, σ
2),N(θ1, σ

2)) = −1
2
s(1− s)(θ0 − θ1)2)/σ2, and

C(N(θ0, σ
2),N(θ1, σ

2)) = (θ0 − θ1)2/(8σ2).(5.24)

The next example is a simple decision model with a special symmetry.

Example 10. Assume we are given two distributions Q0, Q1 on the sample space
(X , A) and two samples X1, . . . , Xn, Y1, . . . , Yn where the (Xi, Yi ), i = 1, . . . , n, are
i.i.d. with common distribution which is either Q0 ⊗Q1 or Q1 ⊗Q0 and we have to
decide between the two cases. Set P0 = Q0 ⊗ Q1, P1 = Q1 ⊗ Q0, then by Corollary
5.6,

lim
n→∞

1
n

ln(mρ(P⊗n
0 , P⊗n

1 )) = −C(Q0 ⊗Q1, Q1 ⊗Q0).

To evaluate the Chernoff index we use (5.11) and Hs(Q1, Q0) = H1−s(Q0, Q1) giving,

C(Q0 ⊗Q1, Q1 ⊗Q0) = − inf
0<s<1

[ln Hs(Q0 ⊗Q1, Q1 ⊗Q0)]

= − inf
0<s<1

[ln Hs(Q0, Q1) + ln H1−s(Q0, Q1)]

= −2 ln H 1
2
(Q0, Q1)

as ln Hs(Q0, Q1) + ln H1−s(Q0, Q1) is convex in view of Lemma 5.4 and symmetric
around s = 1

2 . Consequently we have proved that,

(5.25) lim
n→∞

1
n

ln mρ((Q0 ⊗Q1)⊗n, (Q1 ⊗Q0)⊗n) = 2 lnH 1
2
(Q0, Q1).

We now apply Theorem 5.5 to the classification problem. Assume that
(X , A, (Pθ)θ∈∆) is a statistical model with finite parameter set ∆ = {1, . . . ,m} and
we want to estimate the parameter θ, i.e. we want to find the true distribution. We
call this decision problem a classification problem. A classification rule is a vector
q(x) = (q1(x), . . . , qm(x)) consisting of measurable functions qi : X → [0, 1] with∑m

i=1 qi(x) = 1 for every x ∈ X . Let qi(x) be the probability of selecting the distri-
bution Pi if x was observed. The probability of a false classification is called the risk
and is given by

R(θ, q) =
∫

(1− qθ(x))Pθ(dx).
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If θ1 6= θ2 then
∑m

i=1 qi(x) = 1 implies 1− qθ2(x) ≥ qθ1(x) and

max(R(θ1, q), R(θ2, q)) = max
(∫

(1− qθ1)dPθ1 ,

∫
(1− qθ2)dPθ2

)
(5.26)

≥ max
(∫

(1− qθ1)dPθ1 ,

∫
qθ1dPθ2

)

≥ 2m1/2(Pθ1 , Pθ2).

Now we suppose that a sample of size n is available so that we deal with the sequence
of statistical models (Xn,A⊗n, (P⊗n

θ )θ∈∆). If q(n) is any sequence of classification
rules then,

max(R(θ1, q
(n)), R(θ2, q

(n))) ≥ 2m1/2(P⊗n
θ1

, P⊗n
θ2

).

If we apply Theorem 5.5 to the right hand term we obtain the following statement:

lim inf
n→∞

1
n

ln
(

max
1≤θ≤m

R(θ, q(n))
)
≥ lim inf

n→∞
1
n

ln
(

max
1≤θ1 6=θ2≤m

m1/2(P⊗n
θ1

, P⊗n
θ2

)
)

(5.27)

≥ max
1≤θ1 6=θ2≤m

(−C(Pθ1 , Pθ2))

= − min
1≤θ1 6=θ2≤m

C(Pθ1 , Pθ2),

where C(Pθ1 , Pθ2) denotes the Chernoff index of Pθ1 and Pθ2 from (5.22). The natural
desire is to search for a classification rule that attains asymptotically the lower bound
for the risk in (5.27). Roughly speaking, we show that the maximum likelihood
classification rule has this property. More precisely, fix µ ∈Mσ(A) which dominates
all Pθ and set pn,θ = dP⊗n

θ /dµ⊗n. Put for any x ∈ Xn,

Bn(x) =
{

η ∈ {1, . . . , m} : pn,η(x) = max
1≤θ≤m

pn,θ(x)
}

.

If Bn(x) ⊆ {1, . . . , m} is a singleton then we choose this value, otherwise we select
randomly a point from Bn(x) according to the uniform distribution on Bn(x). This
means that the maximum likelihood classification rule is given by,

(5.28) q
(n)
ML(x) =

1
|Bn(x)| (IBn(x)(1), . . . , IBn(x)(m)),

where |Bn(x)| is the number of elements of Bn(x). To derive an upper bound for the
risk of the maximum likelihood classification rule we note that IBn(x)(i) > 0 implies
pn,i(x) = maxη∈∆ pn,η(x) ≥ pn,θ(x) for every θ ∈ {1, . . . , m}. Hence,

R(θ, q(n)
ML) =

∑
i 6=θ

∫
1

|Bn(x)|IBn(x)(i)P⊗n
θ (dx)(5.29)

≤
∑

i 6=θ
P⊗n

θ (pn,θ ≤ pn,i)

≤
∑

i 6=θ

∫
(pn,θ ∧ pn,i)dµ⊗n

≤ 2
∑

i,j:i 6=j

b1/2(P⊗n
j , P⊗n

i ),
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where the last inequality follows from (3.22). The following statement was first es-
tablished by Krafft and Puri [36].

Theorem 5.7. If q(n) is a sequence of classification rules for the respective models
(Xn, A⊗n, (P⊗n

θ )θ∈{1,...,m}) then,

(5.30) lim inf
n→∞

1
n

ln
(

max
1≤θ≤m

R(θ, q(n))
)
≥ − min

1≤θ1 6=θ2≤m
C(Pθ1 , Pθ2).

The maximum likelihood classification rule q
(n)
ml in (5.28) attains the maximum expo-

nential rate of the probability of incorrect classification, i.e.

lim
n→∞

1
n

ln
(

max
1≤θ≤m

R(θ, q(n)
ML)

)
= − min

1≤θ1 6=θ2≤m
C(Pθ1 , Pθ2).

Proof. The first statement follows from (5.27). To prove the optimality of the max-
imum likelihood classification rule we use the fact that for any sequences an, bn ≥ 0
we have,

(5.31) lim sup
n→∞

1
n

ln(an + bn) = max
(

lim sup
n→∞

1
n

ln an, lim sup
n→∞

1
n

ln bn

)
.

Applying this statement to (5.29) we arrive at,

lim sup
n→∞

1
n

ln(R(θ, q(n)
ML)) ≤ lim sup

n→∞
1
n

ln
(
2

∑
i,j:i6=j

b1/2(P⊗n
j , P⊗n

i )
)

≤ max
i,j:i 6=j

lim sup
n→∞

1
n

ln(b1/2(P⊗n
j , P⊗n

i )).

To complete the proof we have only to apply (5.23) to the right hand side.

Example 11. Suppose (Pθ)θ∈∆ is an exponential family with natural parameter θ
and ∆0 = {θ1, . . . , θm} is a finite subset of ∆. If we replace Pj by Pθj

and use
Example 9 we obtain the exponential rate of the maximum error probabilities of the
asymptotically optimal classification rule.

inf
1≤θi 6=θj≤m

C(Pθi , Pθj )

= inf
1≤θi 6=θj≤m,0<s<1

{sK(θi) + (1− s)K(θj)−K(sθi + (1− s)θj))}.

If Pθj = N(θj , σ
2) then by (5.24)

inf
1≤θi 6=θj≤m

C(N(θi, σ
2), N(θj , σ

2)) =
1

8σ2
min
i6=j

(θi − θj)2.
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