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ABSTRACT

This paper deals with four types of point estimators based on minimization of information-
theoretic divergences between hypothetical and empirical distributions. These were in-
troduced

(i) by Liese & Vajda (2006) and independently Broniatowski & Keziou (2006), called here
power superdivergence estimators,

(ii) by Broniatowski & Keziou (2009), called here power subdivergence estimators,

(iii) by Basu et al. (1998), called here power pseudodistance estimators, and

(iv) by Vajda (2008) called here Rényi pseudodistance estimators.

The paper studies and compares general properties of these estimators such as consis-
tency and influence curves, and illustrates these properties by detailed analysis of the
applications to the estimation of normal location and scale.
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1 BASIC CONCEPTS AND RESULTS

Let ¢ : (0,00) — R be twice differentiable strictly convex function with ¢(1) = 0 and
(possibly infinite) continuous extension to t = 0+ denoted by ¢(0), and let ® be the class
of all such functions. For every ¢ € ® we consider the adjoint function

(1) =t6(1/t) where ¢ € ®, (¢) = 0. (1)

For every ¢ € ® we consider ¢-divergence of probability measures P and () on a mea-
surable space (X, .A) with densities p, ¢ w.r.t. a dominating o-finite measure . In this
paper we deal with P, @) which are either measure-theoretically equivalent (i.e. satisfying
pqg > 0 A-a.s., in symbols P = ) or measure-theoretically orthogonal (i.e. satisfying
pqg =0 Aa.s., in symbols P1Q). Thus, by Liese and Vajda (1987 or 2006), for all P, Q

under consideration

Jow/e)dQ it P=Q
Dy(P,Q) = (2)
¢(0)+¢7(0) if PLQ
where the range of values is

0 < Dy(P,Q) < ¢(0) +¢*(0) (3)

and Dy(P,Q) = 0 iff P = Q or Dy(P,Q) = ¢(0) + ¢*(0) if (for ¢(0) + ¢*(0) < oo iff)
P1@. Another important property is the skew symmetry

Dy(Q, P) = D+ (P, Q). (4)
We shall deal mainly with the power divergences
D,(P,Q) := Dy, (P,Q) of real powers o € R (5)

for the power functions ¢, € ® defined by
*—at+a—1

= if -1
Ga(t) o= 1) if ala—1)#0 (6)
and otherwise by the corresponding limits
¢o(t) = —Int+t—1, O1(t) = p5(t) =tint —t + 1. (7)

It is easy to verify for all @ € R the relation
¢t = ¢1_q so that D, (Q, P) = D1_o(P, Q).
For P = @ we get from (2) and (5)—(7)
son LS /0" dQ —1] if  ala—1)#0

Da(P,Q) = (8)
JIn(p/q)dP = Dy(Q, P) if a=1




and for P1() similarly

1/a(l —a) if 0<ax<l

Do (P, Q) = { (9)

00 otherwise.

The special cases Do(P, Q) or Di(P, Q) are sometimes called Pearson or Kullback diver-
gences and D_1(P, Q) = Dy(Q, P) or Dy(P,Q) = D1(Q, P) reversed Pearson or reverse
Kullback divergences, respectively.

The ¢-divergences and power divergences will be applied in the standard statistical
estimation model with ii.d. observations Xi,...,X, governed by Py, from a family
P = {Py : 8 € ©} of probability measures on (X, .A) indexed by a set of parameters
© C R?% The parameter 6, is assumed to be identifiable and the family P measure-
theoreticaly equivalent in the sense

Py# Py, and Py=PF,, forallf 6,c© with 0 +# 6. (10)
Further, the family is assumed to be continuous (nonatomic) in the sense
Py({z})=0 forall z€ X, 0 €O (11)
and dominated by a o-finite measure A with densities
pg = dPy/d\ for all § € ©. (12)

In this model the parameter 0, is assumed to be estimated on the basis of observations
Xq,...,X, by measurable functions 6, : X" +— O called estimates. Collection of estimates
for various sample sizes n is an estimator. Estimators are denoted in this paper by the
same symbols 6, as the corresponding estimates.

The assumed strict convexity of ¢(t) at ¢ = 1 together with the identifiability of
6y assumed in (10) means that Dy(FPy, Pp,) > 0 for all 6, 6, € © with the equality iff

0 = 0. In other words, the unknown parameter 6, is the unique minimizer of the function
Dy(Py, Py,) of variable 6 € ©,

0y = argmingD( Py, Py,) for every 6, € ©. (13)

Further, the observations Xi,..., X, are in a statistically sufficient manner represented
by the empirical probability measure

1 n
P”__E Py 14
_niZI Xi ( )

where P, denotes the Dirac probability measure with all mass concentrated at © € X.
The empirical probability measures P, are known to converge weakly to Py, as n — oo.
Therefore by plugging in (13) the measures P, for Py, one intuitively expects to obtain
the estimator

O, = O, := argmingD,, (Py, P,,) (15)



which estimates 6y consistently in the usual sense of the convergence #,, — 6, for n — oc.
However, the reality is different: the problem is that for the continuous family P under
consideration and the discrete family Py, of empirical distributions (14) for which

Pyl P, = Dy(Py, P,) = ¢(0) + ¢"(0) when Py € P and P, € Pemp. (16)
This means that the estimates 6,, proposed in (15) are trivial, with the argmin = ©.

In the following two sections we list and motivate several modifications of the minimum
divergence rule (15) which allow to bypass the problem (16). Some of them are new
and some known from the previous literature. We illustrate the general forms of these
estimators by applying them to the basic standard statistical families and investigate their
robustness. The model of robust statisticians is richer than the standard statistical model
defined by the triplet

(X, A,Q) with Q=P UPomp

introduced above. Namely in addition to the hypothesis that the observations Xi,... , X,
are i.i.d. by P, € P the model of robust statistics admits the alternative that the
observations are distributed by a probability measure Py ¢ P with density

dF, B
D) = Po-

Throughout this paper we assume that Fj is measure-theoretically equivalent with the
probability measures from P and we consider the probability measures

PeP and Q€ Q=P'UPqyy, where Pt =PU{R}. (17)

Measures P, Q are either measure-theoretically equivalent (if Q € PT) or measure-theoretically
orthogonal (if @ € Pemp). Therefore the ¢-divergences Dy(P, Q) are well defined by (2)

for all pairs P, @ considered in this paper. Further, we denote by L;(Q) the set of all
absolutely -integrable functions f : X —R and put for brevity

Q~f=/fdQ for f € Ly(Q). (18)

In the rest of this section we introduce basic concepts and results of the robust statistics
needed in the sequel. Let us consider the Dirac probability measures 6, € Pemp, € X
and denote by C'(Q) the set of the convex mixtures

Que=(1—¢)Q+¢ed, foral xe X, Qe Q and0<e<1. (19)
Further, consider a mapping M(Q,0) : C(Q) ® © — R differentiable in § € © for each
Q € C(Q) with the derivatives
d

W(Q.0) = - M(Q,0) (20)

and let T'(Q)) € © solve the equation ¥(Q, 0) = 0 in the variable § € © for Q) € C(Q). The
following definition and theorem deal with the general M-estimators

0, = argmingM (P,,0) 1ie. 0, =T(P,) for P, € Pemnp.

Both the definition and theorem are variants of the well known classical results of robust
statistics, see e.g. Hampel et al. (1986).



Definition 1.1. If for some Q € P* the limits

IF(2; T, Q) = lim T(Qex) = T(Q)

el0 15

(21)

exist for all x € X then (21) is called influence function of the estimator 6, on X at Q.

In the following theorem we consider the functions
P(x,0) = V(5,,0) (22)

and assume the existence of the derivatives
t
O(x,0) = (%) P(z,0) on X®O (with * for transpose) (23)

as well as the expectations

o

Q) =Q ¥(xT(Q), QeP". (24)
Theorem 1.1. If the influence function (21) exists then it is given by the formula

F(z;T,Q) = —I(Q)™ ¢(2,T(Q)) (25)

for the inverse matrix (24).

Proof. By definition of 7', for any Q) € Pt and Q. ,considered in (19) it holds
Qe Y(2,T(Qcr)) — Q- Y(2,T(Q))

0 =
£
_ Q ) [¢(x7T(Qe,m)> — ¢($7T(Q))]
- ; + (0, — Q) ¥(2,T(Q:))-
Here
Q- T(Qu) — (. T(Q))]
el0 15
6=T(Q)
= Q (2, T(Q).IF(z;T,Q)
and

= 1;{51 [¢($, T(Qa,x)) - Q : ’l,b(l", T(Qa,x))]

Therefore we have proved the relation

0=I(Q)IF(x;T,Q) + ¢ (x,T(Q))



which implies (25). [
The estimator 6, = T'(P,) is said to be Fisher consistent if
T(Py)) =0 foralleo. (26)
In the following Corollary and in the sequel, we put

F(2;T,0) = IF(2; T, P) and I(0) =I(B) (cf. (24)). (27)

Corollary 1.1. The influence function of a Fisher consistent estimator at Q) = Py is

IF(z;T,0) = —I(0) " 4(z,0). (28)

2 SUBDIVERGENCES AND SUPERDIVERGENCES

Throughout this section we use the likelihood ratios £, 5 = py /ps well defined a.s. on X
in the statistical model under consideration, the nonincreasing functions

o7 (t) = p(t) — td'(t) for every ¢ € @ (29)
where ¢ denotes the derivative of ¢, and we restrict ourselves to the families P such that

{6 (Ly5). & (55), ¢ (£5)} CL1(Q) forallf,0 €O and Q€ Q.  (30)

Obviously, this assumption automatically holds for all @ = P, € Peyp. Finally, for all
pairs 6, 6 € © we consider the functions L, (0, 0) = L4(0, 6, x) of variable x € X defined
by the formula

Lo(0, 0) = Py - ¢/ (£ 5) + 07 (Ly 5).

Due to (30), the functions L, (6, é) are (Q-integrable for all Q € Q. Consider the family
of finite expectations

D5 (P, Q) =Q-Ly(0,0) =Py ¢'(£y5) + Q- 0" (£y5), (P, QQ€P®Q  (31)

parametrized by (¢,0) € ® ® ©. Broniatowski & Keziou (2006) and Liese & Vajda (2006)
independently established a general supremal representation of ¢-divergences Dy (P, Q)
which implies the following result.

Theorem 2.1. For each (P, Py,) € P®@ P and ¢ € ®, the ¢-divergence Dy (Fp, FPy,) is
maximum of the finite expectations D, ;5 (P, Py,) over f € © attained at the unique point

0 = 6. In other words,
D¢ (Pg, Pgo) > Dfi),é (Pg, Pgo) for all (9, 90 €O (32)

where the equality holds iff 8 = 6.



Proof. For the sake of completeness we present the simple proof of Liese and Vajda.
For fixed s > 0, the strictly convex function ¢(t) is strictly above the straight line ¢(s) +
@' (s)(t — s) except t = s, i.e.

O(t) = o(s) + ¢'(s)(t — s)

with the equality only for ¢ = s. Putting in this inequality ¢ = £pg,, s = £, and
integrating both sides over Py, we get (32) including the iff condition for the equality. B

Theorem 2.1 implies the formula

Dy (Py, Q) = r;wch i (P, Q) forall (P,Q)ePRP (33)

which justifies us to interpret D, 5 (P, Q) as subdivergences of Py, () with parameters
(¢,0) € ®® O.

Now we introduce the family of suprema

Dy (P, Q) = supD, 5 (P, Q) forall (F,Q) € P® Q (34)
beco

parametrized by ¢ € ®. This family extends the ¢-divergences Dy, (P, ()) from the domain
P®P toP® Q. Indeed, by Theorem 2.1,

D¢ (Pg, Q) = D¢ (Pg, Q) for all (PQ,Q) cePRP. (35)

This justifies us to interpret Dy, (Pp, Q) as superdivergences of (Py,Q) € P ® Q with
parameters ¢ € P.

Note that (35) need not hold for Q@ ¢ P because if ) = P, € Pewp then the super-
divergence values Dy, (P, P,,) differ from the constant divergence values Dy (P, P,) =

¢(0) +¢*(0) (cf. (16)).

The subdivergences D, 5 (Fp, ) and superdivergences Dy (P, P,) can replace the
divergences Dy (Py, P,) as optimality criteria in definition of M-estimators. Let us consider
the families of functionals T¢, p: Q0O and Ty : Q +— O defined by

Ty0(Q) = argmax; D,s (P, Q) for (¢,0) € 2®6O (36)
and
T,(Q) = argming Dy (Py,Q) for ¢ € ® (37)

respectively. Replacing the general argument @) by P, defined by (14) we obtain the
maximum subdivergence estimators (briefly, the maxD,-estimators)

éd)’g’n = T¢,9(Pn) = argmax; D, 5 i (Py, Py) (38)
= argmax; |Fp-¢/(£ ew-+F’ ¢#( 0.0)] f. (31))

A ) I

8

= argmaxg




with escort parameters § € ©, and the minimum superdivergence estimators
(briefly, the minD 4-estimators)

0sn = Ty(P,) = argming Dy (Py, P,) = argmingsup; D,g (Py, Py) (cf. (34)) (40)
= argmingsup; [Py - ¢’ (Lyg) + P - o7 (£, é)} (cf. (31))

@)l w

Theorem 2.2. The maxDgy-estimators are as well as the minf)¢—estimators are Fisher
consistent.

argmingsupg

Proof. By (33) and (35),

Td)’g(PgO) = argmax; D, ; (Py, Py,) for (¢,0) € PO (42)

and
Ty(Py,) = argming Dy, (Py, Py,) for ¢ € ® (43)
which completes the proof. [ |

The minDy-estimators were proposed independently by Liese & Vajda (2006) under
the name modified ¢-divergence estimators and Broniatowski & Keziou (2006) under
the name minimum dual ¢-divergence estimators . The maxD 4-estimators were pro-
posed by Broniatowski and Keziou (2009) and called dual ¢-divergence estimators by
them. Both types of these estimators were in the cited papers motivated by the mentioned
Fisher consistency and by the property easily verifiable from (39) and (41), namely that
¢(t) = — Int implies

9~¢,97n = argmax; 2, Inp;(X;) and 6, = argmaxy X7, Inpy(X;) (44)

where the left equality holds for all escort parameters 8 € ©. In other words, the log-
arithmic choice ¢(t) = —Int reduces all the variants of the maxDg-estimator as well as
the minDg-estimator to the MLE. It is challenging to investigate the extent to which
the maxD 4-estimators 9~¢,97n and the minD¢—estimator 04, as extensions of the MLE are
efficient and robust under various specifications of ¢, and ¢ respectively.

In this paper we restrict ourselves to special subclasses of the power divergences
D.(P,Q) := Dy, (P,Q) defined by (6)—(8). For the power functions ¢, from (6), (7)
we get the functions

. ’::f for a # 1
Ga(t) =t (1) = hma_,l =tlnt fora=1 (45)
and
v L(1—1t) for v # 0
P (t) = dalt) — ¢a(t> - lim,_ & (1 —t*)=—1Int for a =0. (46)



They lead to the maxD,-estimators (briefly, power subdivergence estimators)
éa,@,n = argmaxg |:P¢§ ’ (ga (@) + Pn : ¢f (Zﬁ)} (47)
Dg Dy

with power parameters a € R and escort parameters § € © and to the minD,-estimators
(briefly, power superdivergence estimators)

0., = argmingsup; [Pg . gga (@) + P, - o7 (@)} (48)
Di Dg

with power parameters a € R. If the argmaxima in (47) exist then

7 Do Po
By Pa| — + P, | ' (49)
pga,e,n pea,e,n

The next two subsections deal correspondingly with the maxD,-estimators and minD,,-
estimators. In both sections are considered the power parameters ov > 0. Since ¢p(t) =
—Int, we see from (44) that

0., = argming

é()ﬁ,n = argmax; 2., Inp;(X;) and 6, = argmaxy 37, In py(X;) (50)
are the MLE’s. If o > 0 then by (45) - (48),
O = argming Mo (P, 0) (51)
and
0. = argmaxginf; M, (P, 0~) = argmaxy M, ¢(P,, émg,n) (52)
where
~ 1 S| @
M, (Q,0) = P;- (@> +-Q- (@> ifa>0a#1
l1—« D o D
(53)
= p-mbyg. ifa=1
Do Y2
for all Q € Q.

Throughout both subsections we restrict ourselves to the densities py twice differen-
tiable with respect to # € © C R?, we put

d . d\'
Sp = @lnpg and Sy = (@> S (54)

and suppose that the functions M, ¢(Q, 0) of (53) are twice differentiable in the vector
variable 6, with the differentiation and integration interchangeable in (53). Moreover, we
suppose that the derivatives

U,0(Q,0) = %Ma,e(@é) =F;- (g—Z) 55— Q- (i—;) Sg- (55)

admit solutions of the equations U, ¢(@Q, 6) = 0 in the variable § € © for Q € Q.

10



2.1 Power subdivergence estimators

In this subsection we study the maxD,-estimators éa,g’n with the divergence power para-
meters « > 0 and the escort parameters 6 € ©. As said above, for a = 0 they coincide
with the MLE’s (50). Therefore we restrict ourselves to a > 0 and to the definition
formula (51), (53).

By assumptions, the argminima

Too(Q) = argming M,4(Q,0), a>0, Q€ Q (cf. (36)) (56)

solve the equations \I/a,g(Q,é) — 0 in the variable § € © and, in particular, Onon =

Too(P,) are for all a > 0 solutions of the equations

Fy- (@)"‘ 55— - Z;: (pe(Xi)Y s5(Xi) =0 (57)

Pi n pa(Xi)

in the variable 8 € ©.

Theorem 2.1.1. The influence functions of the maxD,-estimators éaﬁ,n under consid-
eration are at Fp, given by the formula

IF (25 T, 00) = Iag(f0)™" [(pe(x) )aseo(x) — Py, - <ﬁ>a390] if a>0 (58

poo (2) Doy
IF(x;Tog,00) = T(60) 'sg, () otherwise (59)
where
Ioo(0) = Py - (]%")asgoseo if a>0 (60)
I(6y)) = Py, - S};OSZO if a=0. (61)

If the escort parameter 6 coincides with the true parameter 6, then
IF (2; T g,,60) = I(0g) sg,(z) for all a > 0.
Proof. By (22) and (55),
Vo (,0) = o p(5s,0) = Py - (%Z)a 55— 0 - (@)a 5 (62)
and under the assumptions stated above

. B d t B «
oot ) = (55) uole0) = Py (B2) stsg =By Dupg Augsle) (69
0

for




Further, by (27), (24) and (63),

Too(0) = Py - o, 00) — P, - ( ]%6 > Y
0

and (28) leads to the influence functions
IF(J:7 Ta,@a 90) = _Ia,e(e())ilwaﬁ (I, 00)

The substitution from (62) yields the desired formula (58). In the MLE case a = 0 we
get for all escort parameters 0 the classical MLE influence function (59) with the classical
Fisher information matrix given in (61). This influence function is obtained also if the
escort parameter € coincides with the true parameter 6y as in this case the estimators
with all power parameters a > 0 reduce to the MLE (cf. (50)). [

Next follow special examples of the influence functions (58), (59).

Example 2.1.1: Power subdivergence estimators in normal family. Let the
observation space (X,.A) be the Borel line (R,B) and P = {P,, : p € R, 0 > 0} the
normal family with parameters of location p and scale o (i.e. variances o). We are
interested in the maxD,-estimates (fiq,u,0.n, Ta,pon) With power parameters o > 0 and
escort parameters (u,0) € R® (0,00)}.

If a = 0 then these estimators reduce for all escort parameters u, o to the well known
MLE’s

n

5 N 1< 1 N
(MO,M,O’,’H’ UO,u,U,n) = E Z Xia E Z (XZ - MO,n)2 (64)
i=1

i=1

For 0 < a < 1 the function (53) takes on the form

I 1 Do) 1 Do\
Ma, Res Q,,LL,O' - —P~,5 : < a ) + _Q : <L) 65
o ( )=1—-Fs Paa - Pas (65)
where
I A 0
P () o 26 202
and

6—0401704

e[ a(—a)u-p? T @)
P/L& : (_~> = €Xp {_2[0552 + (1 _ CL’)O’2] —In } . (67)

Using the likelihood ratio function (66) and the score function

Spo(T) = <x;u§ [(x;”)Q—lb (68)

12




one obtains for all & > 0 the derivative

. d d - Duo \* Do\
qja,u,o(@7u7o-) = (d_/]’ 5) Ma,H,U(Q7u7O-> - Pﬁ,& : (L> 3;1,(7 - Q : <L) Sﬂ,&

and the maxD,-estimators as the argminima

~ ~ . 1 Pu,o “ 1 - p ,U(Xi) :
(fapoms Oapon) = argming 5 [mpﬁ,& : <L) + an Z <m (70)
or, equivalently, as solutions of the equations
pu,a)a 1 (pu,o(Xi))a _
Pis- | =) sz5 —— ———=] su5(X;) =0. 71

are

By Theorem 2.1.1, the influence functions of these estimators at P,

' — p ,G('r) “ p ,0 “
IF<x;Ta:M70>u07UO) = IM,U(/L(]?UO) ! |:(ﬂ—)> SMO,UO('%') - PMO,UO' ( £ > 8#0700:|

p#o,Uo (Q? 10,00
(72)
for
I R (g e 73
M0 (ﬂOa UO) 10,00 Suo,ao S,UOaUO‘ ( )
Ppo,o0

Example 2.1.2: Power subdivergence estimators of location. Let in the frame
of previous example P = {P, : u € R} be the standard normal family with the location
parameter p and scale 0 = 1. Then the function (65) takes on the form

Mo (Qu8) = = (g 1)) + =@ (.70 (74)

l1—«a

for « > 0, # 1 where

Nayu(z, ) = exp{a(p — p) (i + p —22)/2}, =z €R.

The maxD,-estimates i, of location py with the divergence parameters 0 < a < 1 and
escort parameters p € R are the MLE’s

5 — 1
Ho,pun = Xn = - Z Xz (75)

n -
i=1
if @ = 0. Otherwise they are the minimizers
flo,un = argming M, (P, fi) (76)
or, equivalently, solutions of the equations

\Ila,u(Pnaﬂ) =0

13



in they variable 1 € R for

\Ija,u(Qa ﬂ) = %Ma,u(Q7 ﬂ)
= Q- (i — ) ay(z, i) — alfi — p)ns, (1, ). (77)

Let T, ,(Q) be the solution of the equation ¥, ,(Q, i) = 0 in the variable ji € R and
let @, denote the shift of the distribution ¢ by j,. Then

Quo * (i = )N, i) = Q - (L — o — T)Na—puo (T, [ — f10))

so that Ty ,(Que) = o + Topo(Q). This means that the estimators (76) are Fisher
consistent in the normal family P, = {P, o = N(uo,0%) : 1o € R} with o > 0 fixed if
and only if the solution T, ,(F ) of the equation

Pog - (i = )0au(, 1) — o(fi = p)ni ) (s 1) = 0 (78)
in the variable /i satisfies the condition
Tou(Poy) =0 forall ycR (79)

By evaluating the function Py, - (it — )0a,.(x, 1) of variables o, y, i and inserting it in
(78), one can verify that (79) holds if and only if o = 1. The “if” part follows from the
Fisher consistency of Ty, , established in Theorem 2.2 which implies

Ta’#(P()J) = Ta’#(P(]) =0 for PO,l = PO € P and all n e R.

However, the “only if” assertion is new and surprising in the sense that it indicates a
relatively easy loss of consistency of the maxD,-estimators.

Problem 2.1.1. It remains to be verified analytically or by simulations whether the
estimators fi, %, , with the adaptive MLE escort parameters X,, are Fisher consistent
under all hypothetical models P,, = N(u,0?), 0 > 0 or, more generally, whether the
adaptive estimators

far,n with the MLE escorts 7, = 6, given by (44) (80)

are Fisher consistent under the hypothetical models F,, and eventually consistent and
robust under contaminated versions of these models.

Let us turn to the influence curves IF(z; 7, ., tt0),0 < @ < 1 at the data source P,.
Here s/, (2)s,,(z) = s (x) = (po — x)* so that, by (27) and (73),

Ho

p o
[a#('uo) = Ia,u(Puo) =Py - (p_ﬂ> Sio
Ho

(R
2

: b o
[t )y 0= D),

2
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If we put

Yo, 110) = Wau(8e, p10) = (tto — )Na(@, o) — (o — p)ns ' (1, o) (cf. (77))

then, by (72),

_ Yau(®; o)
Lo (p10)
(x — uo)ea(ﬂo—ﬂ)(uo+u—2x)/2 +alpo — M)ea(a—l)(ﬂo—u)Q/Q

1+ a2(uo — p)?] eala—=1)(po—p)?/2

IF($7 Ta,;m ”0)

(82)

This formula remains valid also for &« = 0 because then it reduces to the well known
influence function

IF(z; MLE, po) = x — po

of the MLE = T;, which is not depending on the escort parameter ;1. We see that
the influence curve (82) is unbounded for all p,p0 € R and 0 < a < 1. For 0 <
a < 1 and the escort parameters p different from the true po the influence functions
IF (z; T\ s fto) contain the constant terms IF(pg; Th,u, ft0) # 0 and, moreover, increase to
infinity exponentially for + — oo or x — —oo. Therefore T,, , are strongly non-robust.

Example 2.1.3: Power subdivergence estimators of scale. Let in the frame of
Example 2.1.1, P = {P, : ¢ > 0} be the standard normal family with the location
parameter ;1 = 0 and scale o and let us consider the maxD,-estimators ¢, 5, of scale oy
with the divergence parameters 0 < o < 1 and escort parameters ¢ > 0. For a = 0 they
reduce to the standard deviations

Lo 1/2
G0.0m = (5 Z (X — Xn)2>
and otherwise they are of the form
Goon =Tuo(Pn) for T,,(Q)=argminsM,,(Q,5), Q€ Q
where
M o(Q,6) = Mao(Q,5/0)
for (cf. (65))

~ S

Moo(Q,s) = (1_a)m+/§exp{%}d62(x).
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Put in accordance with (22) and (62)

Coo(:5) = LML (5..5) =+ (iMa,a((sx,s))

do 7 o \ds s=6/o
_ _l o1 o <32 _ 1) . (£>2 _q 60@2[872_1]/202 (83)
o (s? 41— a)3/2 s —

- () (g s G )

By differentiating this expression with respect to & and using (24) we obtain the matrix

~\ a—1 4 2(~2 212
5 o 20* + a*(6% — 07)
Iaa = Iaa P& =\~ =T~ .
(5) o(Fs) ( ) glac? + (1 — a)o?]/?

(84)

g

Hence, by Theorem 2.1.1, the influence function of maxD,-estimators at the data gener-
ating distributions P,, are forall 0 < a < 1

T ¢a,a($7 0-0)
IF(2; Ty, 00) _—Ia,g(ffo)
2 2 2 4 (1 — 2
= Aug(x300) + — (0304 j— )04[20{;(2()] - ((72)2 @) (85)
where
Ao (i 00) = 1271+ o1 [(w/o0)® ~ 1] exp {aa? [oy® — 077 2}

o [20* + a2(ad — 02)?] Joy

This formula remains valid also for o = 0 since in this case (85) reduces to the well known
influence function

o [(x/00)2 —1]
2

IF(x; MLE, 0¢) =
obtained from the limit values

Yoo (2, 00) = — [(w/oo)Q — 1} Joo and Iy,(6) = 2/03

which do not depend on the escort parameter . We see from the formula (86) that the
influence curve is unbounded for all 0,00 > 0 and o > 0. For a > 0 and o # oy
we get IF(O’O;TmU,O’O) # 0. If moreover o < oy then IF(J;;Ta,g,ao) increases to infinity
exponentially fast for |x| — oo. Thus TN,M with a > 0 and o # 0¢ are strongly non-robust.

Example 2.1.4: Power subdivergence estimator in Pareto family. [t is hard to
find simpler nontrivial examples of the maxD,-estimators than the estimators of location
(75), (76) from Example 2.1.2. Another relatively simple example is the family of maxD,,-
estimators in the Pareto model with the family of measures P = {FP, : § > 0} defined on
the interval X = (1, 00) by the densities

po(z) = prasy (87)



with the mean values finite equal /(6 — 1) in the domain 6 > 1 and variances finite and
equal 8/[(6 — 2)(f — 1)?] in the domain 6 > 2. As before, the estimates 4.9, depend on
the divergence parameters o > 0 and escort parameters 6 > 0. By (50), for o = 0 we get
the MLE estimates

~1
5079’71 = argmax; L. In p(X ( ZlnX) )

For 0 < @ < 1 we can use the criterion function

~ 1 1 “
Ma,G(Qag) = P~ (p9> + _Q . (@> ) Q S Q (88)
-« Dg o Dg
of (53), or its derivative
s d pe) (pe)a
v, ,0) = —DM, 0 Py - s;— Q- — ] s; 89
oQ8) = @) = 1y (2) 5@ () (89
given by (55), where in the present situation
° 99— 1
P; - <p9(m)> = . and  sy(z) == —Inzx.
ps() af + (1 — )b 0

Substituting these expressions in (88), (89) we get the desired asymptotic characteristics
of the maxD,-estimators Qagn obtained as argminima of the functions Mag(Pn,H) or,
equivalently, as solutions of the equations W, o(F,, 9) = 0 in the variable #. Further, by

(22),
Yao(2,0) = Uy g(5,,0) = P (po) sé—<p9(x)>ase~(x)

Dg pa(z)

and using Theorem 2.1.1 one easily obtains the influence functions of the estimators 6, g,
under consideration.

2.2 Power superdivergence estimators

In this subsection we deal with the minD,-estimators 0., with the power parameters
a > 0. For @ = 0 they coincide with the MLE’s (50). Therefore we consider a > 0
when these estimators are defined by (52) and (53). Restrict ourselves for simplicity to
0 < a < 1 and denote the function ¥, 4(Q, §) from (55) in previous subsection temporarily

y \ifayg(Q,é), i.e. let
= Do Do “
v, ,9 FP; - s; —Q-[— 1] s5.
o@:0) = (pé) s (pé) ?

Further, let T, 4(Q) be solution of the equation ¥, 4(Q,#) = 0 in variable 6, i.e.

U0 0(Q, Tap(Q)) =0 forall §cO. (90)
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Flnally, let M,0(Q, Tag(Q)) be the function of variable # € © obtained by inserting
0 = T,4(Q) in the function M, ¢(Q,0) defined in (53). According to (52) and (53), the

maximizers

T.(Q) = argmaxy M, (Q, Tno(Q)) (91)

generate the minD,-estimators 6,,,, under consideration in the sense that 0., = T,(P,).

In the following theorem we consider the score function sy = py/ps and we put for
brevity 7~_o¢,9 = ng(Q).

Theorem 2.2.1. Forall 0 < o < 1 the maximizers (91) solve the equations ¥, (Q,0) =0
in variable 6 € © for the function

d 3 o «a «
dQ cx,e(QaTa,G) = EP%M : ( ]?9 ) 30+Q' ( 1?0 ) 59- (92)

Ta,6 pTa,G

Va(Q,0) =

Consequently the corresponding minD,-estimators Onn = To(P,) are solutions of the
equations

e (zfe )a Y Z (pm )ase(Xi) - (93)

Ta,0

Proof. By (53)

11—« Di «Q Di
so that
d d ~ d
_Ma 7~a = _Ma 7‘9 — M_; 7Na
a0 ,H(Q T ,9) <d9 ,9(@ ))éz.,-ag + <d6 a,@(Q T 9)) s
_a Tae(pe)SOjLQ.(pe)Sa
1— p7~'a 9 Tee.0
d d7,0
_Ma )
+(Fmo@n) G
o po \" po \" = _ . d7ap
— - QP%Q’G . (pi—aﬁ) Sp + Q . ( %a’e) Sp + \I/a79<Q,Ta’9>.W.
Using (90) we obtain (92) and (93). [

Corollary 2.2.1. The influence functions IF(z;T,, ) of all minD,-estimators 6,,, =
T.(P,) with power parameters 0 < o < 1 at Py € P coincide with the influence function

IF(2; Ty, 0) = I(0) 'sp(x) (cf. (27) and (28)) (94)
of the MLE 00771 = T()(Pn)
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Proof. By Theorem 2.2, the maxD,-estimators émgn = ~a,9(Pn) are Fisher consistent.
Hence for Q) = Py, we get 79 := T 9(Py,) = 6p in (92). Consequently it follows from (22)
and (92) that the -functions

o _ a Doy \ Do,
Va2, 700) = Valls, Tap) = Pr , ( ) gy + 0 - (_) S0
1 a ! p7~—a,9 ’ p’lza’g 0

of these estimators reduce for all 0 < a < 1 to the score function sg,(z) which is the
wp-function of MLE Tj. Similarly, we get from (27) and (24) for all 0 < o < 1 the matrix
I(0y) = Py, - sp,56, corresponding to the MLE. Therefore the influence functions of all
minD,-estimators under considerations reduce to the influence MLE function (94) which
completes the proof. [ |

Formulas for the minD,-estimators of the normal location and/or scale are seen from
the examples of Subsection 2.1.

3 DECOMPOSABLE PSEUDODISTANCES

The ¢-divergences Dy(P, (), ¢ € ® can be characterized by the information processing
property, i.e. by the complete invariance w.r.t. the statistically sufficient transformations
of the observation space (X, .4). This property is useful but probably not unavoidable in
the minimum distance estimation based on similarity between theoretical and empirical
distributions. Hence we admit in the rest of the paper general pseudodistances D (P, Q)
which may not satisfy the information processing property.

Definition 3.1. We say that © : P ® Pt — R is a pseudodistance of probability
measures P € P ={Fp:0 € ©} and Q € PTif

D(Py, P;) >0 forall 9,0 € © with ®(Pp, P;) =0 iff 6§ =4. (95)

An additional restriction imposed in this section on pseudodistances D (P, Q) will be
the decomposability.

Definition 3.2. A pseudodistance © on P ® PTis a decomposable if there exist
functionals ©° : P — R, D! : P* — R and measurable mappings

pg: X =R, He€0O (96)
such that for all # € © and Q € P* the expectations @ - py exist and

D(Fy,Q) =D°(P) +D'(Q) + Q- pe. (97)

Definition 3.3. We say that a functional Tp : Q — O for Q = P U Pey, defines
a minimum pseudodistance estimator (briefly, min®-estimator)if ©(F, Q) is
a decomposable pseudodistance on P ® PT and the parameters Tp(()) € © minimize
DY(Py) +Q - py on O, in symbols

To(Q) = argmin, [D°(Py) + Q- py] forall Q € Q. (98)
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In particular, for Q = P, € Pemp

0o, = To(P,) = argmin,

1 & 1 &
0 .
@ (PG) + _n izgl pg(Xl)] lf Pn = —n ;:1 5Xz (99)

Theorem 3.1. Every min ®-estimator

1 n
Op, = i (P - X; 100
o = argminy | 2°(7) + 3 >] (100)
is Fisher consistent in the sense that
T@(Pgo> = argming@(Pg, P@O) =6, forall € O. (101)

Proof. Consider arbitrary fixed §, € ©. Then, by assumptions, D'(F,,) is a finite
constant. Therefore (98) together the definition of pseudodistance implies

To(Py,) = argming [D°(F) + Q - pe]
= argmin, [@O(Pg) + D' (Py,) +Q - Pe}
= argming®(Fy, Py,) = bp.

The decomposability of pseudodistance D (Fy, @) leads to the additive structure of the
criterion

1 n
D(Py, P) ~ D°(Py) + Py - pg = D°(Py) + - > po(Xy) (102)
i=1

in the definition (100) of the min ®-estimators which opens the possibility to apply the
methods of the asymptotic theory of M-estimators (cf. Hampel et al. (1986), van der
Vaart and Wellner (1996), van der Vaart (1998) or Mieske and Liese (2008)).

The general min ®-estimators and their special classes studied in Subsections 3.1,
3.2 below were introduced in Vajda (2008). They contain as a subclass all the maxD -
estimators of Section 2. To see this suppose that the assumptions of Section 2 related to
the estimators (104) hold and consider for arbitrary fixed (¢, 7) € ® ® O the well defined
expressions

o no(g). momo(3)
6. (Fo) o o P70 ) P

and

D;,,(Q) = — inf [D4(Py) + Q- psro]
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Theorem 3.2. The sum

D(Py, Q) =D (Py) + Dy (Q) + Q- ps.ro (103)

is a pseudodistance on PQP* and the maximum subdivergence estimator

o))

=1

04 +n = argmax,

of Section 2 with the divergence parameter ¢ € ® and escort parameter 7 € © is the
min ®-estimator for the decomposable pseudodistance (103).

Proof. Fix (¢,7) € ®®O and let the assumptions of Section 2 related to the estimators
(104) hold. Then for any 6, € ©

©(P907 Q) = QO,T(PQO) +Q- Po,r00 — H;f [QO,T(PHO) + Q- p¢>77’790] > 0.

If @ € P then, by (31) and (33),

00 @ = sup [P0 (2) e @uer (2)| <o (2 o ()
0 De Do Do Déo

= Dy(Pg,, Q) — Dy (P, Q).

By Theorem 2.1, this difference is zero if and only if ) = Py, which proves that (103) is
pseudodistance on PQPT. On the other hand, obviously, (104) satisfies

04 = argmin, [@g’T(Pg) + P, - p¢m9]
so that it is min ®-estimator for the pseudodistance (103) which completes the proof. B

The minimum superdivergence estimators 6y, of Section 2 (the minDy-estimators)
minimize the suprema

sup@(Pg,Q) for @ = P,

of the decomposable pseudodistance (103). However, the suprema of decomposable pseudodis-
tances are not in general decomposable pseudodistances. Therefore the standard theory

of M-estimators is not applicable to this class of estimators. An exception is the MLE
64,.n Obtained for the logarithmic function ¢, given in (7).

3.1 Power pseudodistance estimators

In this subsection we study a special class of pseudodistances ©,,(Fy, Q) defined on P@P+
by the integral formula

dp,  dQ

Dy(Py,Q) = /@/)(pe,q) d\  forps = —.¢

ANt dl (105)
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where (s, t) are reflexive in the sense that they are nonnegative functions of arguments
s,t > 0 with ¢(s,t) = 0 iff s = ¢. If a function ® is reflexive and also decomposable in
the sense

U(s,t) = v0(s) + (1) +p(s)t, st >0 (106)

for some 9% ! p : (0,00) — R then the corresponding 1-pseudodistance (105) is a
decomposable pseudodistance satisfying

Dy (P, Q) =Dy (Po) +Dy(Q) +Q-pp  (ck. (97)) (107)

for

0Y(Py) = / (pe) A, DL(Q) = / G g)dN and po=p(ps).  (108)

Example 3.1.1. The ¢-divergences Dy(F, ()) are special 1-pseudodistances (105) for
the functions

W(s,t) = d(s/t)t — @' (1)(s —t), s,t>0 (109)

since they are nonnegative and reflexive, and (109) implies (P, Q) = Dy(Fp, Q) for all
P eP,Q € P when ¢ € ® and ¢ are related by (109). However, the functions (109) in
general do not satisfy the decomposability condition (106) so that the ¢-divergences are
not in general decomposable pseudodistances. An exception is the logarithmic function
¢ = ¢o defined in (7) for which the min®,,-estimator is the MLE.

Example 3.1.2: Lj-estimator The quadratic function (s, t) = (s—t)? is reflexive and
also decomposable in the sense of (106). Thus it defines the decomposable pseudodistance

Dy(Py, Q) = /(Pe —q)?dX = [|py — q|?

on P ® PT for PT C Ly(N). It is easy to verify that the decomposability in the sense of
(107) holds for

LR = [N DUQ) = [ g, and = -2ps

The corresponding min ®,-estimator defined by (100) is in this case the Lo-estimator

2 n
0, = i 2\ - = X, 110
argmin, [ [T >] (10)

which is known to be robust but not efficient (see e.g. Hampel et al. (1986)).

To build a smooth bridge between the robustness and efficiency, one needs to replace
the reflexive and decomposable functions ¢ by families {1, : @ > 0} of reflexive functions
decomposable in the sense

Vals,t) = 2(s) +YL(t) + pa(s)t foralla >0 (cf. (106)) (111)
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with the limits at satisfying for some constant s all s > 0 the conditions

Yo(s) = 11?011@(5) = s and li?&pa(s) = po(s) = —1Ins.

(112)
Then for all @ > 0 and (P, Q) € P® P the family of ¢,-pseudodistances
Da(Fs, Q) =Dy (P, @), a=0 (113)
satisfies the decomposability condition
Dal(Fy, Q) = D(Q) + Do (Ps) + Q- pas  (cf. (97)) (114)
for

o3P = [ A\ DHQ) = [Vh@dh ad pus=palpn). (115)
In other words, the pseudodistances @,(Fy, Q) defined by (113) are decomposable and

define in accordance with (100) the family of min ®,-estimators

Oan arg miny [@%Q(Pg) +P,- pmg}

argmin, [ [otnars _Zpa@e(Xi))] Caz0. (1)

Here (112) guarantees that this family contains as a special case for v = 0 the efficient
but non-robust MLE

(116)

1 n
Bo.n = argmi t— = > Inp(X;
o,n, = argming [cons pa n py( )]

(118)
while for a > 0 the 0,,’s are expected to be less efficient but more robust than 6.

The rest of this subsection studies special family of decomposable pseudodistances
Do (P, Q). It is defined on P ® Q in accordance with (113) and (105) by the functions

¢@(&t)::tl*“[a¢1+a(§)-+(1——ao¢a<§)], a>0 (119)

of variables s, t > 0 where ¢, and ¢, are the power functions defined by (6), (7). These

functions satisfy (111), (112) as it is clarified by the next theorem. In this theorem and
in the sequel we use for the function (119) the relations

glte 1 1 ts®
als,t) = R -
Vals:1) I+« (a 1+a)

120
. (120)
1+o¢_t1+a ¢ —1 a_ 1
= 2 +¢( 2 ) (121)
1+« Qo «
when o > 0 and
Po(s,t) = s—t+tlnt—tlns (122)
1+a_t1+a ¢ —1 a_ 1
~ lim > —H( 8 ) (123)
al0 1+« Q Q
when o = 0.
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Theorem 3.1.1. The power functions (119) are reflexive and decomposable in the sense
of (111) with

4o t [ta_l — 2 } —2=L f >0
0 S 1 a 1+a a
5)=——, Y, (1) = and p,(s) =

(124)
—Ins ifa=0.

Moreover, this family is continuous in the parameter « | 0 and satisfies (112) for » = 1.

Proof. Decomposition (111) for function v, (s,t) of (119) into the components (124) is
clear from (121) when o > 0 and (122) when o = 0. The continuity in the parameter
a | 0 and (112) for » = 1 follow from (123). We shall prove the nonnegativity and
reflexivity. For arbitrary arguments s, ¢ > 0 and fixed parameters a, b > 0 with the
property 1/a + 1/b =1 it holds
s b

t< —+ — 125

st —++ (125)
where = takes place iff s* = t*. Indeed, from the strict concavity of the logarithmic
function we deduce the inequality

1 1 a b
In(st) = Elns“—k Elntb <In (% + %)

and the stated condition for equality. Substituting s — s*, a — (14+a)/aand b — 1+«
for a > 0 we get

14+« tl—l—a

s
at<
o= (1+oz)/a+1+oz

with the equality condition s** = t°, i.e. s'*® = ¢!+ This implies that the function
1a(s,t) is nonnegative and reflexive. W

By (113), (105) and Theorem 3.1.1, the power functions (119) generate

U (pe) = Py and  pa(ps) = { “ari e (126)
1+a —Inpy if a=0.
and define the family of decomposable pseudodistances
Da(Po, Q) = [ Yalpe,q)dA
_{ trabo 1§+ s @ 4* — 2Qpf ifa>0 (127)
Q- (Ing — Inpy) ifa=0

in (117). Relation of this family to the family of power divergences D, (Fy, @) defined
by (5) is rigorously established in the next theorem. It refers to the auxiliary family of
functions

s s

Pals,t) =1 [aqma <¥) +(1— a)a (2)] (128)

of arguments s, > 0 parametrized by o > 0.
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Theorem 3.1.2. Decomposable pseudodistances (127) are for all (P, Q) € P ® P+
modifed power divergences D, (P, Q) and Dy.,(P, Q) in the sense that the pseudodistance
densities ¥, (p, q) are weighted densities ¢, (p, ¢) of the mixed power divergences

/soa(p, q) dAg = a D14a(P,Q) + (1 — @) Do(P, Q) (129)
with the power weights w,(q) = g%, i.e. Ya(p, ) = wa(q)pa(p, ) on (X, A).

Proof. By (128),
/ ap,)dA = a / brra(pq) A+ (1 — o) / bal(prq) X

= aDia(P,Q)+ (1 —a)Da(P,Q). (130)

By (119), ¥4 (s,t) = t%pa(s,t) so that, by the first equality in (127),

Da(Fs, Q) I/%(pe,Q) dA:/wa(Q)%(p, q)) dA.

This together with (130) implies the desired result. |

Due to Theorem 3.1.2, we call the pseudodistances (P, Q) simply power pseudo—
distances of orders a > 0. The next theorem guarantees finiteness and continuity of
these divergences. It is restricted to the families P satisfying for some 3 > 0 the condition

P’ qﬁ,lanILq(Q) forall PeP, Qe Pt. (131)
Theorem 3.1.3. If (131) holds for some § > 0 then for all 0 < a < 3, the modified

power divergences are well defined by (127) and finite, satisfying for all P € P, Q € P*
the continuity relation

lim Da(P. Q) = Do( P, Q). (132)

Proof. By (121),

Du(P, Q)

(P'pa—Q'qa)—l-Q-(qaoé_l—pa_l)

T lta a

By means of the indicator function 1 we can decompose
P-p*=P-(p"Lp < 1))+ P-(p"L(p > 1))

where

im P (p*1(p < 1)) =P (1(p < 1))

al0
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by the Lebesgue bounded convergence theorem for integrals and

lggP -(p*Lp>1))=P-(1(p>1))

by the monotone convergence theorem for integrals. Therefore

impP-p*=P-1p<1))+P-1p>1)=1

Similarly, limg o @ - ¢® = 1. The convergences

@—1
follow from the monotone convergence as well, because for every fixed ¢ > 0
dt*—1 1-t*(1—Int) S 1 -ttt

—1 . p
lim =@ -lng and lalg)lQ-

=0

do « o? o2

so that the expressions (¢® — 1)/« and (p® — 1)/« tend monotonically to Ing and Inp. B
By (124) the expressions DY, (Pj) considered in(116), (117) are now given by

D0 (Py) _—/ I+ q) for all @ > 0.

Therefore the formulas (116), (117) and (126) lead to the power pseudodistance
estimators (briefly, min ®,-estimators)

{ argmin, [1= [pp"*dA — L30T pg(X5)] ifa>0

: (133)
argmaxg+ > Inpy(X;) if a = 0.

ea,n =

Here the upper objective function can be replaced by

11—« 1 - 1 O
“dA—— ) pi(X
o +1+a/p0 na;pe(

1 - I <=p(X;) —1
= — Cdr— =) Y -9
1+« Po nZ o

which tends for a | 0 to the lower criterion function. Therefore, if for a fixed n the minima
of all functions in (133) are in a compact subset of © and the MLE 6, is unique then

lim6,, o = 0,.0. (134)
al0

Example 3.1.3: Ly-estimator revisited. By (133), the min ®,-estimator of order
« = 1 is defined by

2 n
01, = i JAN— =D pe(X;
1, argming [/pe n < Pa( )]
so that it is nothing but the Lo-estimator 6,, from Example 3.1.2. The family of estimators

On.o from (133) smoothly connects this robust estimator with the efficient MLE 6,, o when
the parameter « decreases from 1 to 0.
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Remark 3.1.1. The special class of the min®,-estimators 6,, given by (133) was
proposed by Basu et al. (1998) who confirmed their efficiency for @ ~ 0 and their
intuitively expected robustness for o > 0. These authors called 0,, minimum density
power divergence estimators without actual clarification of the relation of the “density
power divergences” D, (P, Q) to the standard power divergences D, (P, @) studied in Liese
and Vajda (1987) and Read and Cressie (1988). Theorem 3.1.2 which explains ©, (P, Q)
as a convex mixture of modified power divergences D, (P, Q) and Di,(P, Q) where the
modification means weighting of the power divergence densities by the power ¢“ of the
second probability density, is in this respect an interesting new result.

Remark 3.1.2. The formula (133) can be given the equivalent form

L5~ l(p“(X~)—1)—prl““d/\ if >0
n £ui=1 o \I'0 ? 1+a 0
Oon = argmax, { 15 Tnpe(X;) — 1 ' if o = 0 (135)
n 2ai=1 po(Xi) oa=Uu.
If the integral does not depend on 6 then (135) is equivalent to
0., = argmax n i (15X = 1) Ho=0 (136)
o ? L3 Inpe(X5) if a =0.

This subclass of general min ®,-estimators (135) was included in a wider family of gen-
eralized MLE’s introduced and studied previously in Vajda (1984,1986). However, the
whole class (135) was not introduced there.

If the statistical model ((X,A); P = (P : 0 € ©)) is reparametrized by ¥ = () then
the new min D,-estimates J,, are related to the original 6, , by Va, = 9(0a,). If the
observations 2 € X are replaced by y = T'(z) where T : (X, A) — (¥, B) is a measurable
statistic with the inverse 7! then the densities

_ dP,

Do E5
in the transformed model ((V, B); P=(Py=PT":6¢c0)) wrt. o-finite dominating
measure A = AT ! is related to the original densities py by

Po(y) = po(T~1y) Tr(y) (137)

where Jr(y) = dAT'/d\ is a generalized Jacobian of the statistic 7. If X, ) are
Euclidean spaces, A is the Lebesque measure and the inverse mapping H = T~ ! is
differentiable then Jr(y) is the determinant

The min D,-estimators are in general not equivariant w.r.t. invertible transformations
of observations 7T, unless @« = 0. The following theorem generalizes similar result of
Section 3.4 in Basu et al. (1998).
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Theorem 3.1.4. The min® -estimates éoam in the above considered transformed model
coincide with the original min®,-estimates 6, ,, if the Jacobian Jr of transformation is
a nonzero constant on the transformed observation space ). Thus if X', ) are Euclidean
spaces then the min @ ,-estimators are equivariant under linear statistics Tr = ax + b.

Proof. For a = 0 the min®,-estimator is the MLE whose equivariance is well known.
For a > 0, by definition (133) and (137),

éa,n = argmin, 1 n / e dN — — Z
o

it JIr d)\——Zpg ) Ir(TX3) | -

= argmin, 1 o

We see by comparison with (133) that éa,n = Onn if Jr is a nonzero constant on ). If
a = 0 then the estimator is MLE and its equivariance is well known. [ |

Next we derive the influence function of the min ®,-estimators 6, , of (133). Similarly

It holds 6, ,, = To(P,) where T,(Q) for Q € Q solves the equation ¥, (Q,0) = Q-1(z,0) =

0 for
— d p@ 1 / 1+«
= py(x) 39(917) — By - pgse.- (138)
Since
. d\*
Vo(z,0) = <@) o (2,0) =ap(x) — Py (L + pysesy) (139)
for
.0 =pj (asesg + §9) , (140)
the matrix (24) is given for all @ € P* by the formula
I,(Q)=0@Q 1, (x)—P,, - (Ha,m —i—pfasmstm) for 7, = T,(Q) € © (141)
In particular,
I,(0)=1,(P)=—Py-p§sesp. (142)

By combining (138), (141) and (142) with Theorem 1.1 and Corollary 1.1, and taking
into account the Fisher consistency in Theorem 3.1, we obtain the following extension
of the influence function obtained in §3.3 of Basu et al. (1998) to arbitrary observation
spaces (X, .A).
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Theorem 3.1.5. If the influence function (21) at @ € P or Py € P exists for some
min ®,-estimator 6,, = T,(P,) then it is given by the formula

IF (2 T, Q) = —Ta(Q) " [P7, (%) 57, (2) — Pry - P2 57, ] for 70 = T0(Q) (143)
IF(2; Ty, 0) = —I,(0)"" [p§ () se(x) — Py - pfsg] (144)

respectively.

3.2 Applications in the normal family

Consider the general normal family of Example 2.1.1. By (135), min®,-estimator 0, , =
(Hans Oan) is the MLE given by (64) when a = 0. Since

[oear= [ (eXp{_@ ~ “)2/2”2}> g U (145)

(2m02)1/2 (2m02)e/2

we see from (135) that the min ®,-estimates are for a > 0 given by

_ 1 & exp{—a(Xi — p)?/20%  (1+a)"%?
(Han Gan) = argmax,, [@; (2702)7 T (@ro)e”?

R (X; — p)? o
= argmaxmaﬁ Z <6Xp {—@T — m . (146)
=1

Example 3.2.1: Power pseudodistance estimators of location. Consider the nor-
mal family P = {P,:pu € R} of Example 2.1.2 where P, are given by the densities
pu(z) = p(x — p) for the standard normal density p(x). This family satisfies the condi-
tion of the formula (136) so that from (133) or (136) we obtain the min ®,-estimators
fan = To(Py) of location pp € R in this family given by

S exp{—a(X; — u)?/2} if >0

. (147)
— > i (X — )? if a =0.

Hon = argmax, {

Equivalently, they can be obtained by inserting ¢ = 1 in (146). If o = 0 then f,, is the
standard sample mean.

The estimators of location (147) were introduced and studied as part of larger class
of estimators by Vajda (1986, 1989a,b). He proved that if the observations are generated
by Q,, € Pt with density g(z — o) for unimodal ¢(z) symmetric about = = 0 then these
estimators consistently estimate p. For ¢ differentiable with derivative ¢’ he found the
influence functions

rexp{—az?/2}

IF(z: T, q) = for o > 0. 148
(%o 0) [ xexp{—az?/2} ¢ (z)dx ora (148)
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This formula follows also from (142) and (143) where in this case
su(x) =o —pll, , = M [oz (x — ,u)2 - 1} and P, -pys, =0. (149)

Indeed, (149) implies P, -p$s, = 0 and p§(z)so(z) = x exp{—ax®/2}. (2m) /% so that the
numerator in (148) follows from (143). Using the identities

By (T, +p2s2) = /p}ja (1 +a) (@ —p)?—1] de=0
and

/QnmwduMm+/maw+x%un«@dx:o

we get from (149) and (141)

Lo = 20" [wewp(-as’/2}¢ (@) ds

so that the denominator in (148) follows from (143).

The particular influence curve obtained in (148) for o = 1/5 very closely and smoothly
approximates the trapezoidal IF(x;25A4,q) of the estimator referred as the best under
the name Hampel’s choice 25A in the Princeton Robustness Study of Andrews et al.
(1972). This study as well as the estimator of location 25A were influential and frequently
cited in the first decades of robust statistics. The asymptotic normality

Vn(lan — pio) — N(0,02) for o2 = /IFQ(m;Ta,q)q(x)dx

in the data generating model (), was established in Vajda (1986, 1989a,b) too, and the
simulations presented there demonstrated that the estimator T',5 overperformed the set
of 6 robust estimators of location including those considered as the most prominent at
that time.

Example 3.2.2: Power pseudodistance estimators of scale. Consider the normal
family P = {P, : 0 > 0} of Example 2.1.3 where P, are given by the densities p,(z) =
p(z/o)/o for the standard normal density p(x). If @ = 0 then, by (135), the min®,-
estimator o,, = To(P,) is the standard MLE of scale given in (64). Otherwise we get
from (146) by inserting p = 0

1 — aX;? Q
Tam = argmaxom E {eXp {— 552 } — T oz)3/21 , a>0. (150)
i=1

Taking into account here
1 & aX;? ax?
E;exp{— 552 }:/eXp{—T‘_Q}dPn(iﬂ)
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we find more general formula
T,(Q) = argmin, M, (Q, o) for Q € P*

where

M, (Q,0) = % /eXp {—%} dQ(z) — m‘
By (20) and (22),

d ax

d 1 2 o
Val,0) = G Mal0r,0) = 320 [eXp{_%Q } o +04)3/2}

1 x? ) ax? N a
— =1 )expl —
glto o2 p 252 (1 + a)3/2

The last formula will be used to evaluate the influence function. Before doing so we shall
verify it by checking the Fisher consistency condition

(151)

P, - o(z,0) =0 if and only if o = oy (152)

guaranteed by Theorem 3.1. We shall use the substitutions

o 0400

O = —F—=, Sq=—F—-— 153
Va Vo2+o? (153)
and the formula
ax? S
L L 154
exp{ 202}190 p 28 (154)

2 az? Sa
Z 1 . B
/ <0_2 > eXp { 20_2 }pao (x)dx 0_0 /

_ %o (S_ _ 1) (L —a) —(9/o0)

% (0/00)(1 + (0] 7)) 2

where

(1 —a)—(0/00) N a
(0/00)(1+ (00/0))*> (14 )*?
if and only if o9 = o, which positively verifies (151).
From (151) we get

=0

ax

o 2
Volz,0) = %d’a(ﬂ?ag):; L exp{——}x

(271')0‘/2 gta 202

Ha (i—i) — (3+2a) (j—i) +1 —l—a} - 10; Oj . (155)
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Denoting for brevity as before
Toa = To(Q) for Q € PT

we obtain from (151), (155) and Theorem 1.1 the influence functions of the min®,-
estimators o,, = T,(P,) at @ for all & > 0 in the form

 alem)
f ¢a($7 Ta)dQ

where T, (Q) denotes the integral

/[wp{—ﬁg}{a(%>{—®+mw(%)2+1+a}—vféa

For ) = P, the Fisher consistency implies 7, := T,(P,) = o so that (156) and (157)
imply

x? . ax? N a |

o2 P 202 (1+ a)3/2
where the integral Y, (F,) reduces to

[lew {2t o (&) - er (&) 4140} - —2ptoias

B 1 [ 3a 342 a}— a
T Vital(l+a)? l+a Vit a

IF(z;T,,Q) =

dQ.  (157)

o

IF(x; T,,0) = —7 )

B 1 3a—(3+2a)(14+a)+ (1+a)’
1+a (1+a)?
1 a’+2 a? 42

T Vita(l+a? (14

Hence for all ¢ > 0
(1+a)c T\ 2 ax? a
IF(z: Ty, o) = 27 (-) 1 — . 1
(x; Ty, 0) e - expq =g 5+ TEPSLE (158)

Conclusion 3.2.1 The min®,-estimators o,, = T,(F,) of normal scale are for all
a > 0 robust in the sense that their absolute sensitivity to the observations x € R
represented by

2
sup |IF (z; Ty, 0)| = max{— IF(0; Ty, 0), IF (04; Ty, 0)} for o, =0 ta
z€eR (%

is bounded (cf. Hampel et al. (1986)). However, they are not insensitive against extreme
outliers because

. a(l+a)o
lim IF(z: Ty, 0) = [F(0: Ty, 0) = =T DT
Jm T8 (@ T, 0) = (03 To, 0) = = 57—

(159)
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3.3 Rényi pseudodistance estimators

In this subsection we propose for probability measures P € P and Q € Pt considered
in the previous sections a family of pseudodistances R, (P, Q) of a Rényi type of orders
a > 0 which are not of the integral type as ©,(P, Q) of (105) or (P, Q) of (127). Our
proposal is based on the following theorem where

L (P p) and RUQ) = ———— n(Q- ). (160)

mg‘(P):1+a a(l+a)

Theorem 3.3.1. Let the condition (131) hold for some § > 0. Then for all 0 < a <

1
1 P. a
n(P-p*)

ot 1 &
mln(Qq ) =~ In(Q-p%) (161)

1
ol P, Q) =
Ra(P,Q) 1+«
is a family of pseudodistances decomposable in the sense
1
Ra(P,Q) = R(P) + RL(Q) — = (@ p°) (162)
for R (P),RL(Q) given by (160), and satisfying the limit relation

Ra(P,Q) — Ro(P,Q) :=QIng—Qlnp for a | 0. (163)

Proof. Under (131), the expressions In(Q - ¢%), In(@ - p®) and @ - In p appearing in (161)
are finite so that the expressions R, (P, Q) are well defined by (161). Taking a > 0 and
substituting

* 1
s:p— t:+ and a = +oz7 b=1+«

(freea))™  (fqran)"” @

in the inequality (125), and integrating both sides by A, we obtain the Holder inequality

a/(14+a) 1/(1+a)
/paqd)\ < (/lerad/\) </q1+ad)\)

with the equality iff p®® = ¢ M-a.s., i.e. iff p = ¢ M-a.s. Since the expression (161)

satisfies for o > 0 the relation
—ln/paqd)\}, (164)

1 . a/(14+a) . 1/(14a)
%Q(P,Q):a In (/p+ad)\> (/q+ad/\)

we see that R, (P, Q) is pseudodistance on the space P @ PT. The decomposability in the
sense of (162) on this space is obvious and the limit relation

iRO(P’ Q) = lai{%ma(Pa Q)

can be proved in a similar manner as in the proof of Theorem 3.1.3. [ |
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There is some similarity between the decomposable pseudodistances R, (P, Q), a > 0
of (161) and the Rényi divergences

R.(P,Q) = In(Q-(p/q)"),a>0 (cf. Rényi (1961).

a—1

Namely, rewriting the formula (164) into the form

1 Q- (»'**/q) 1 Q- q"
9L{Q(P’Q)_cw—lln Q - p~ +Oz(oH—l)an-pa

and replacing the ratios of expectations by the expectations of ratios, we get for a > 0
the relation

R (P.Q) = —— (@ (p/q) + ——

o ala+1) (@ - (¢/p)*) =

—Ren(QP)  (165)

which can be extended to a = 0 by taking on both sides the limits for o | 0. Therefore
the decomposable pseudodistances (161) are modified Rényi divergences and as such, they
are called Rényt pseudodistances.

Similarly as earlier in this section, we are interested in the estimators obtained by
replacing the hypothetical distribution Py, in the JR,-pseudodistances R, (Fy, Py,) by the
empirical distribution P,. In other words, we are interested in the family of Rényz
pseudodistance estimators of orders 0 < a < f (in symbols, minfR,-estimators)
defined as 0,, o = To(P,) for T,,(Q) € O with Q € Q = PT U Pey, satisfying the condition

. 1 1 .
arg ming ——In (P - p§) — - In(Q - p§) fo<a<p
T.(Q) = o 9 R (166)
arg ming — In @) - py if a =0.
The upper formula is for
J(14a) a/(14a)
ot = (1)) = ([ ean) (167
equivalent to
T.(Q) = argmax M, (Q,0) for M,(Q,0) = ) (168)
0 Cy()
Alternatively, we can write
/ arg maxy Co(a) 'L 3™ pe(X;) fo<a<p (169)
e arg maxg % o Inpy(X;) if a = 0.

For a =~ 0 | 0 the approximations Cy(a) ~ 1 and

L1y LX) -1 1
—| = X)) -1 == Y 2N Inpy(X;
a(ﬂ;m( ) ) nz o nz npg (X;)



indicate that the upper criterion function in (169) tends to the lower MLE criterion for
a | 0. If Cy(a) does not depend on 6 then the minfR,-estimates reduce to the min
D ,-estimates considered in (136) of Remark 3.1.2; i.e.,

1 n .
% 2uie1 Pg(Xi if0<a<p
0o, = argmax, ) Zn 175 (X0) (170)
n Zi:l lnp9<Xi) if «=0.
If the extremal points of all functions in (169) are in a compact set of © then
i B, = Ono- (171)

al0

In the next theorem and its proof we use the auxiliary expressions

d . dy\'
Sp = @lnpg, Sp = (@) Sp (cf. (54))
and
14+« dx t
co(a) = %, co(a) = (%) co(@) and 7, =T,(Q).

Theorem 3.3.3. If the influence function (21) at @ € P or Py € P exists for some
min R,-estimator 6,, = T,(P,) then it is given by the formula

IF (25 T, Q) = = Ia(Q) ™" [P (2) (57, (2) = ¢r, ()] (172)
IF (23 Ta, 0) = —La(0) ™" [po(2) (s6(2) — co(@))] (173)
for the matrices
L(Q) = [ [s0, = () = apf, (sn, = @) v, —en () ]p0Q (17
I.,00)= / [8°9 — Cola) — apy (sg — co(ar)) (s — ce(a))t] pp T dA (175)
respectively.

Proof. By (168), T,,(Q) for Q € Q minimizes @ - (p§/Cp(cr)), i.e. solves the equation
Vo(Q.0) = Q bl 6) = 0 for
d _pg _ apj(se—cola))

P, (r,0) =V, (0,,0) = @Cg(@) = ) ) (176)
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Further,

Cyla) = (%)t Cy(a) = aCy(a)d(a)

so that

o) = (55) ulet)

Cy(a) [o?pgsh (s — co()) 4+ apg (59 — co(a))] — apf (sg — co(a)) Co(a)

09(04)
_a?pysy (so — o)) + apf (39 — Co(a)) — a®pfsp (s — co(ar)) ch(e)
C@(Oé) ’

Therefore the matrix (24) is given for all Q € P* by the formula (174) and (27) is given
for Py € P by (175). The rest is clear from Theorems 1.1 and 3.1, and from Corollary
1.1. |

3.4 Applications in the normal family

Consider the general normal family of Example 2.1.1 for which the condition (131) is
satisfied for all # > 0 and (145) implies
_ a/(14+a) —a?/(14a)
(14 ) 1/2 o=/
Coola)=0Cha) = | ——F—> = —— 177
o) = ol = (s S (177)

for all p € R and the function
(@) = [(1+ @) (2m)°]20F) o> 0.

By (169), the minR,-estimator 0., = (fan, Tan) is the standard estimator of location
and scale given by (64) if « = 0. For a > 0 we can use the relation

O.oz2/(1+a)

— O_fa/(1+a)
oo

to get from (169) and (177) the highly nonstandard estimator

Ca N (Xi — p)?
(Haun, Oan) = argmax,, , [W Z exp {—QT (178)
i=1

which in general differs from the min ®,-estimator (146) as it will be seen in the submodel
of scale below. The next example of the submodel of location illustrates the situation
where these two estimators coincide. Obviously, the constants ¢, = c(a)/(27)*/? play no
role in the maximization and can be replaced by 1.
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Example 3.4.1: Rényi pseudodistance estimators of location. The normal family
of location introduced in Example 2.1.2 satisfies the condition of the formula (136) so that
from (133) or (136) we obtain the same min R,-estimators (i, of location py € R as in
(147). Thus to these estimators applies all what was seen in Example 3.3.1.

Example 3.4.2: Rényi pseudodistance estimators of scale. Consider the normal
model of scale introduced in Example 2.1.3. If &« = 0 then, by (135), the min R,-estimator
Oan = To(P,) is the standard MLE of scale given in (64). Otherwise by (178),

;(;z }] , a>0  (cf. (178)). (179)

n
g = argmax Ca E eX (0%
a,n g o no_a/(1+a) — p
1=

It is easy to see e.g. by putting n = 1 and aX? = 2 that these estimates differ from the
D ,-estimates of scale given in(150). Here (168) for the Dirac 6, implies

_ @) ca ax?
Ma(02,0) = Cola)  oo/(ta) eXp {_ 202 }

and by (20) and (22),

d d 2
VYolz,0) = @Ma(%a) = cat |:O-a/(1+a) exp {_%H
_ Ca 061’2 % 1 owc?
 go/(+a) | 53 - 1 +a; exp —T‘Q
QACy xT 2 1 O{Qj‘2
T glte/lre) [(E) - 1+a] eXp{_ﬁ}- (180)

This formula can be verified by checking the Fisher consistency known in general from
Theorem 3.1. Using the formulas (153) and (154) we find
od ? 1
0%+ aocj 1+«

Since the right-hand side is zero if and only if 0 = gy, the verification is positive.

<£>2— ! exp _a_x2 Doo (z)dx = ‘
o 1+« 202 [ 170 Vo?+ ack

From (180) we evaluate after some effort the derivative

o

d d Co, az? T\ 2 «
¢a($70) = £¢Q(I7U) = %O-l—&-a/(l—ka) exp {_W} |:Oé <;) - 1 +Oé:|

QaCy az? x
- mexp{‘ﬁ}”a 5) (181)

where

(2= o () =T G )
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Thus, denoting for brevity
Ta = To(Q) for Q € P*

we obtain from (180), (181) and Theorem 1.1 the influence functions of the min®,-
estimators o,, = T,(P,) at @ given for all a > 0 by

B zba(ﬂc,m)
f%(ﬂiﬁa)d@

(@) )= )] o
T (Q) = /na (g) eXp{—ngg}dQ.

In the special case Q = P, the Fisher consistency implies that 7, := T,(P,) = 0. We use
the relation

IF(z;T,,Q) =

where

1 o
for o, =
1+ o 14+«

exp {—%ﬁ}pa(fc) = Do (7)

to obtain

To(P,) = \/11_&/77& (;) Poo(x)dz

1 [ <0a>4 5a+3<0a>2+ 200+ 1 }
= _— (8% B — — _ P
(14 a)? Y l+a Vo (1+a)’
1 2

- m[i’)a—(5a+3)+2a+1]:_m

independently of ¢ > 0. Therefore at the normal location P, we get for all ¢ > 0 the
influence functions

IF(2; Ty, P,) = % {((g)Q - 1—|1-Oé) exp{—‘;%fH . (183)

It is easy to verify that this is the influence function also in the MLE case o = 0.

Conclusion 3.4.1. The minfR,-estimators o,, = T,(F,) of normal scale are for all
a > 0 robust in the sense that their influence functions are bounded. They are more
robust against distant outliers than the corresponding min 2 ,-estimators studied in the
Subsections 3.1 and 3.2 because

lim IF(z; T, P,) =0  (cf. (182)). (184)

|z|—00
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Problem 3.4.1. Compare by simulations the mean squared errors of the min ® ,-estimators
and min R,-estimators of location in contaminated normal scale models

(1 - 6)Pa + 5@0 (185)
for
0<e<1/2 and Q € {Ps, Pio, Logistic, Cauchy} . (186)

Verify in this manner the stronger robustness of the min fR,-estimators theoretically jus-
tified in the Conclusion 3.4.1.
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