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ABSTRACT

Imaging plays a key role in many diverse areas of application, such as astronomy, remote sensing, microscopy, and
tomography. Owing to imperfections of measuring devices (e.g., optical degradations, limited size of sensors) and
instability of the observed scene (e.g., object motion, media turbulence), acquired images can be indistinct, noisy,
and may exhibit insufficient spatial and temporal resolution. In particular, several external effects blur images.
Techniques for recovering the original image include blind deconvolution (to remove blur) and superresolution
(SR). The stability of these methods depends on having more than one image of the same frame. Differences
between images are necessary to provide new information, but they can be almost unperceivable. State-of-the-art
SR techniques achieve remarkable results in resolution enhancement by estimating the subpixel shifts between
images, but they lack any apparatus for calculating the blurs. In this paper, after introducing a review of
current SR techniques we describe two recently developed SR methods by the authors. First, we introduce a
variational method that minimizes a regularized energy function with respect to the high resolution image and
blurs. In this way we establish a unifying way to simultaneously estimate the blurs and the high resolution
image. By estimating blurs we automatically estimate shifts with subpixel accuracy, which is inherent for good
SR performance. Second, an innovative learning-based algorithm using a neural architecture for SR is described.
Comparative experiments on real data illustrate the robustness and utilization of both methods.

Keywords: superresolution, deconvolution, energy minimization, probabilistic neural network, sequence pro-
cessing.

1. INTRODUCTION

Imaging devices have limited achievable resolution due to many theoretical and practical restrictions. An original
scene with a continuous intensity function o(z,y) warps at the camera lens because of the scene motion and/or
change of the camera position. In addition, several external effects blur images: atmospheric turbulence, camera
lens, relative camera-scene motion, etc. We will call these effects volatile blurs to emphasize their unpredictable
and transitory behavior, yet we will assume that we can model them as convolution with an unknown point
spread function (PSF) h(z,y). This is a reasonable assumption if the original scene is flat and perpendicular
to the optical axis. Finally, the CCD discretizes the images and produces digitized noisy image g(4,j), which
we refer to as a low-resolution (LR) image, since the spatial resolution is too low to capture all the details of
the original scene. For one single observation g(,j) the problem is heavily underdetermined and lacks stable
solution. To partially overcome the equivocation of the problem, we can take K (K > 1) images of the original
scene and face the so-called multichannel (multiframe) problem. The acquisition model then becomes

gk(imj):D([hk*Wk(o)]($7y))+nk(i7j)7 (1)

where k = 1,, K is the acquisition index, n(4, ) is additive noise and W}, denotes the geometric deformation
(warping), in general different for each acquisition. D(-) is the decimation operator that models the function of
CCD sensors. It consists of convolution with a sensor PSF followed by a sampling operator, which we define as
multiplication by a sum of delta functions placed on a grid. The above model is the state of the art as it takes
all possible degradations into account.
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Figure 1: Image acquisition model

Superresolution (SR) is the process of combining a sequence of LR images in order to produce an image or
sequence of higher resolution. From the earliest algorithm proposed by Tsai and Huang,'? super-resolution has
attracted a growing interest as a purely computational means to increase imaging sensors performance. It is
unrealistic to assume that the superresolved image can recover the original scene o(z,y) exactly. A reasonable
goal of SR is a discrete version of o(x, y), which has higher spatial resolution than the resolution of the LR images
and which is free of the volatile blurs (deconvolved). In the paper, we will refer to this superresolved image as a
high resolution (HR) image f(i,7) and the ratio between the size of the sought HR image and input LR image
will be called a SR factor. The standard SR approach consists of subpixel registration, overlaying the LR images
on an HR grid, and interpolating the missing values. The subpixel shift between images thus constitutes an
essential feature. We will demonstrate that considering volatile blurs in the model explicitly brings about a more
general and robust technique, with the subpixel shift being a special case thereof.

The acquisition model in Eq. 1 embraces three distinct cases frequently encountered in literature. First,
removal of the geometric degradation Wy, is a registration problem. Second, if the decimation operator D and
the geometric transform Wj are not considered, we face a multichannel (or multiframe) blind deconvolution
(MBD) problem. Third, if the volatile blur vy is not considered or assumed known, and Wj, is suppressed except
to subpixel translations, we obtain a classical SR formulation. In practice, it is crucial to consider all three cases
at once. This is described in the fist part of this paper under the term blind superresolution (BSR).

Research on intrinsically MBD methods has begun fairly recently; refer to? © for a survey and other references.
The MBD methods can directly recover the blurring functions from the degraded images alone. We further
developed the MBD theory in” by proposing a blind deconvolution method for images, which might be mutually
shifted by unknown vectors. To make this brief survey complete, we should not forget to mention a very
challenging problem of shift-variant blind deconvolution, that was considered in.3?

A countless number of papers address the standard SR problem. A good survey can be found for example
in.135% Most super-resolution methods'®®* fall into one of the following four categories: frequency domain,
projection onto convex set (POCS), Maximum a Posteriori (MAP) and two-step, scattered interpolation followed
by deblurring, methods. Frequency domain methods!!>'2 were historically the first developed. They are based
on the shifting property of the Fourier transform and the assumption that the original high-resolution image is
band-limited. Their application is largely restricted to cases where only translational motion is present, limiting
considerably their use in many practical scenarios. From the plethora of SR algorithms proposed we focused this
survey study in two alternative approaches that have been analyzed in depth by the authors: 1) BSR method
and 2) Neural-network based method.

First, let review some background about the BSR method. Current MBD techniques require no or very little
prior information about the blurs, they are sufficiently robust to noise and provide satisfying results in most
real applications. However, they can hardly cope with the decimation operator, which violates the standard
convolution model. On the contrary, state-of-the-art SR techniques achieve remarkable results of resolution
enhancement in the case of no blur. They accurately estimate the subpixel shift between images but lack any
apparatus for calculating the blurs. Recently in,° we proposed a unifying method that simultaneously estimates
the volatile blurs and HR image. The only prior knowledge required are estimates of the blur size and level of
noise in the LR images, which renders it a truly BSR method. The key idea was to determine subpixel shifts
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by calculating volatile blurs. As the volatile blurs are estimated in the HR scale, positions of their centroids
correspond to sub-pixel shifts. Therefore by estimating blurs we automatically estimate shifts with sub-pixel
accuracy, which is essential for good performance of SR. We showed that the blurs in the HR scale can be
recovered from the LR images up to small ambiguity, which is a generalization of results obtained for blur
estimation in the MBD case and which we have proposed earlier in.?>:3° This complex SR problem was solved
by minimizing a regularized energy function, where the regularization was carried out in both the image and
blur domains. The image regularization is based on variational integrals, and a consequent anisotropic diffusion
with good edge-preserving capabilities. The blur regularization term is based on our generalized result of blur
estimation in the SR case. To tackle the minimization task, we used an alternating minimization approach
consisting of two simple linear equations.

The second surveyed method in this work is a two-step learning-based super-resolution technique.?® The
algorithm is based on the application of scattered-point interpolation on projected sequence data, followed by
a filtering operation to restore degradations associated to sequence pixel size and residual errors introduced by
interpolation. The scattered-point interpolation module has been implemented using a novel hybrid neural net-
work architecture, enabling the processing of synthetic sequences to learn optimum distance-based interpolation
functions for different noise levels in the input sequence. The restoration process is carried out by application
of an optimum linear filter operation to the scattered-point interpolated image. The filter coefficients, which
are assumed to be rotationally symmetric, have been determined by minimizing on synthetic data the squared
differences between high-resolution images and restoration of first-step interpolated images. This introduced an
effective coupling between both steps of the super-resolution method, the lack of which is a common criticism of
two-step methods. Experimental results showed significant improvements, both in visual and RMS error terms,
over Wiener filter restorations adapted only to correct lens and detector degradations. As in two-step methods
in general, this super-resolution scheme implicitly assumes that all sequence frames are affected by the same
space-invariant degradation, which is caused exclusively by low-resolution optics and detector blurs, and have a
similar noise level. Being targeted to achieve near real-time superresolution execution on input imagery of good
quality, in particular no provisions are made to try to identify and restore the effect of common degradations
such as those caused by defocus or movement blur. To perform this operation will require in general the design
of a super-resolution algorithm that integrates a blind deconvolution operation. In this work, the performance
of this two-step superresolution method, with performance equal or better than classical MAP superresolution
methods, is evaluated on real image sequences with respect to a state of the art BSR method that integrates a
blind deconvolution step, to better understand the role played by deconvolution on the global quality provided
by super-resolution methods

In Section 2 we present the BSR method based on a regularized energy functional and derive the regularization
terms. The alternating minimization scheme and parameter estimation is subsequently described. In section
3 we describe the image SR neural network based method. Finally, Section 4 illustrates applicability of the
described methods to real situations.

2. BLIND SUPERRESOLUTION METHOD

Blind superresolution (BSR) can find its roots in the related field of multiframe blind deconvolution (MBD).
Research on intrinsically MBD methods has begun fairly recently; refer to? ¢ for a survey and other references.

Proper registration techniques can suppress large and complex geometric distortions but usually a small
between-image shift is still observable. There have been hundreds of methods proposed; see e.g.! for a survey.
Here we will assume that registration parameters can be calculated by one of the methods, and if applied, the
LR images are registered except to small translations.

Earlier SR approaches assumed that subpixel shifts are estimated by other means. More advanced techniques,
such as in,'>'7 include the shift estimation in the SR process. Other approaches focus on fast implementation,'®
space-time SR,'® SR with complex image priors for joint image and segmentation estimation,?® or SR of com-
pressed video.!® Most of the SR techniques assume a priori known blurs. However, in many cases, such as
camera motion, blurs can have wild shapes that are difficult to predict; see examples of real motion blurs in.2!
Authors in?? 24 proposed BSR that can handle parametric PSFs, i.e., PSFs modeled with one parameter. This
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restriction is unfortunately very limiting for most real applications. In?> we extended our MBD method to BSR
in an intuitive way but one can prove that this approach does not estimate PSFs accurately. The same intu-
itive approach was also proposed in.26 To our knowledge, first attempts for theoretically correct BSR with an
arbitrary PSF appeared in.?"-2?® The interesting idea proposed therein is to use so-called polyphase components.
We adopted the same idea in our formulation. Other preliminary results of the BSR problem with focus on fast
calculation are given in,? where the authors propose a modification of the Richardson-Lucy algorithm.

In order to solve the BSR problem, i.e, determine the HR image f and volatile PSF's hy, we adopt an approach
of minimizing a regularized energy function. This way the method will be less vulnerable to noise and better
posed. The energy, using vector-matrix notation, consists of three terms and takes the form

K
E(f.h) =Y |Dutf = Gill® + Q(F) + R(h). (2)

k=1
where h = [ﬁf, .. .,ﬁ%]T, Dy, represents the discrete case of D that includes Wy, and Hj denotes a matrix

that represents convolution with h k- The first term measures the fidelity to the data and emanates from our
acquisition model Eq. 1. The remaining two are regularization terms that attract the minimum of E to an
admissible set of solutions. The form of E very much resembles the energy proposed in” for MBD. Indeed, this

should not come as a surprise since MBD and SR are related problems in our formulation. Regularization Q(f)
is a smoothing term of the form

Q(f)=af"Lf, (3)

where L is a high-pass filter and « is a positive regularization parameter. A common strategy is to use convolution
with the Laplacian for L, which in the continuous case, corresponds to Q(f) = [ |V f[2. Recently, variational
integrals Q(f) = [ ¢(|V f|) were proposed, where ¢ is a strictly convex, nondecreasing function that grows at most
linearly. Examples of ¢(s) are s (total variation), v/1 + s? — 1 (hypersurface minimal function), log(cosh(s)), or
nonconvex functions, such as log(1+ s?), s2/(1+ s?) and arctan(s?) (Mumford-Shah functional). The advantage
of the variational approach is that while in smooth areas it has the same isotropic behavior as the Laplacian, it
also preserves edges in images. The disadvantage is that it is highly nonlinear and to overcome this difficulty,
one must use, e.g., a half-quadratic algorithm.?® For the purpose of our discussion it suffices to state that after
discretization we arrive again at Eq. 3, where this time Lisa positive semidefinite block tridiagonal matrix
constructed of values depending on the gradient of f. The rationale behind the choice of Q(f) is to constrain
the local spatial behavior of images; it resembles a Markov Random Field. Some global constraints may be
more desirable but are difficult (often impossible) to define, since we develop a general method that should work
with any class of images. Our PSF regularization term R(E) consists of two terms. The first one is the same
smoothing term as for images but applied to blurs, which is a typical prior that penalizes jagged blurs that are
rare in real situations. The second term is a consistency term that binds the different volatile PSFs to prevent
them from moving freely and unlike the fidelity term (the first term in Eq. 4 it is based solely on the observed

LR images. It takes the form of || NA|2 (see®). The complete PSF regularization is then given by
R(R) = BR" LI + | N2, (4)
where 3 and ~ are positive regularization parameters that give different weights to the terms.

2.1 Alternating minimization

The complete energy function reads
K
E(f,h) =Y _IDxHif = Gell* + o f "L + BT (BL+yNT N)h. (5)
k=1

To find a minimizer, we perform alternating minimizations (AM) of E over f and h. The advantage of this scheme
lies in its simplicity. Each term of Eq. 5 is quadratic and therefore convex (but not necessarily strictly convex)
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and the derivatives w.r.t. f and h are easy to calculate. This AM approach is a variation on the steepest-descent
algorithm. The search space is a concatenation of the blur subspace and the image subspace. The algorithm
first descends in the image subspace and after reaching the minimum, i.e., VzE = 0, it advances in the blur
subspace in the direction V;E orthogonal to the previous one, and this scheme repeats. In conclusion, starting

with some initial 19 the two iterative steps are:

step 1.

K K
™ = arg min E( F,h™) < solve for f (Z HI'D}'DyHy + oL)f = Z AT DE g (6)
S k=1 k=1

step 2.

R = arg min E(f™, h) < solve for h ([Ix @ FT' DI DyF]+~yNTN + BL)h = [Ix ® FTD}g, (7)

h
where F' represents the convolution with f, g := [§7,,g%]7, ® is the Kronecker product, I% the identity matrix
of size k and m is the iteration step. Note that both steps consist of simple linear equations.

Energy FE as a function of both variables f and k is not convex due to coupling of variables via convolution
in the first term of Eq. 5. Therefore, it is not guaranteed that the BSR algorithm reaches the global minimum,
instead, one may get trapped in local minima. In our experience, convergence properties improve significantly
if we add feasible regions for the HR image and PSFs specified as lower and upper bounds constraints. To solve
step 1, we use the method of conjugate gradients (function cgs in Matlab) and then adjust the solution fm to
contain values in the admissible range, typically, the range of values of §. It is common to assume that PSF is
positive (hy > 0) and that it preserves image brightness. We can therefore write the lower and upper bounds
constraints for PSFs as 0 < hy < 1. In order to enforce the bounds in step 2, we solve step 2 as a constrained
minimization problem (function fmincon in Matlab) rather than using the projection as in step 1. Constrained
minimization problems are more computationally demanding but we can afford it in this case since the size of h
is much smaller than the size of f

Parameters «, 8 and v depend on the level of noise. If noise increases, a and (§ should increase, and -~y
should decrease. One can prove that « and (3 are proportional to 2, which is the noise variance. Estimation
techniques, such as cross-validation?? or expectation maximization,3” can be used to determine the correct
weights. However, we did not want to increase complexity of the problem any further and thus we set the values
in experiments manually according to our visual assessment. If the iterative algorithm begins to amplify noise,
we have underestimated the noise level. On contrary, if the algorithm begins to segment the image, we have

overestimated the noise level.

3. NEURAL-NETWORK BASED SUPERRESOLUTION

In this section the two steps of a neural network based superresolution method are described. In the first step,
scattered-point interpolation is performed on projected sequence data using a neural network architecture that
learns from examples optimum distance-to-weight interpolation functions for several input sequence noise levels.
The second step restores on the interpolated image the combined degradations due to low-resolution optics
and detector blurs, as well as residual degradations due to the interpolation procedure. The restoration filter
coefficients are obtained by application of a learning process on a set of synthetically generated sequences, for
which the superresolution result is readily available. Despite the simplicity of the method, which allows a near
real-time implementation, the use of optimum coefficients for both steps of the process enables to obtain results
of quality equal or better than classical MAP superresolution methods, with a reduction in computation time
by a factor of almost 300. The reader is referred to3® for implementation and evaluation details concerning this
method.
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3.1 Step 1: scattered-point interpolation

In the scattered-point interpolation phase, sequence pixels are projected on the high-resolution image frame, and
image values at the grid nodes are estimated using a scattered-point interpolation technique. This projection
operation requires the knowledge with accuracy higher than the input pixel size of the geometrical transforms
that link sequence frames. In our method, we have used to this end a sub-pixel registration procedure®® based on
an iterative gradient descent technique which, in turn, is a development based on the Lucas-Kanade registration
procedure.0

Using this registration procedure, sub-pixel accurate mappings are computed between the sequence frame
selected as reference and the rest of frames in the sequence. The coordinate system of the high-resolution image
is taken aligned to that of the reference frame, so that pixels in both images are related by a simple scaling
operation. Composing this scaling with the affine transformations determined as a result of registration, a
mapping between the high-resolution (HR) image and each of the input sequence frames could be established.

o o ;\

Frame 1 ame L2 freference

Figure 2: Diagram of the interpolation procedure: a) Sequence frames, with the central frame selected here as
reference; b) projection of a HR grid node (zoom x2 in this example, aligned to the reference frame) onto the
sequence frames, and retro-projection of first-order neighborhoods around the projected node location; c¢) image
values at HR grid nodes are estimated by scattered-point interpolation of the retro-projected image values.

Using these mappings, we are able to project a node of the HR grid onto any sequence frame, and the
four first-order neighbours of the projected position in the frame low-resolution (LR) rectangular grid can be
subsequently identified. Retro-projecting these neighbours onto a common coordinate frame, such as the one
defined by the reference frame, and performing this process over the entire sequence, we obtain an irregular cloud
of LR image samples that encircle each node of the HR grid. Using these samples, the image value at the HR
node is estimated using a scattered-point interpolation technique. A diagram of the interpolation procedure is
depicted in figure 1. The scattered-point interpolation is carried out using a modification of the probabilistic
neural network (PNN), a neural architecture introduced by Specht.*! The PNN is a multivariate kernel density
estimator with fixed kernel width. This technique is closely related to a non-parametric regression technique,
the Nadaraya-Watson estimator,** and to probability density estimation methods, such as the Parzen windows*3
method.

A diagram of the proposed neural architecture is presented in figure 2. The network estimates the image
value at a HR grid node as a weighted average of the pixels that constitute the first-order neighborhoods of the
projected node location at the different sequence frames. The first network layer is composed of a set of identical
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Figure 3: Hybrid MLP-PNN neural architecture for scattered-point image sequence interpolation. The network
estimates the image value at a HR grid node as a weighted average of the pixels (ol,, oN) that constitute the
first-order neighborhoods of the projected node location at each sequence frame. First layer MLP networks
compute pixel interpolation weights as a non-linear function of the distance to the HR grid node. Second layer
units compute the average of weighted pixel values to estimate the image value at the HR node location.

units, four per sequence frame. Each unit receives as input the distance of a retro-projected sequence pixel to the
HR grid node, computing its interpolation weight as a non-linear function of this distance. The second network
layer contains two summation units to integrate, respectively, weighted pixel contributions and pixel weights.
Normalization of sum of weighted pixel contributions by sum of weights provides the final interpolation value.
Each HR node is handled independently in this process, making it highly amenable to parallel implementation.
In the above procedure, the selection of a kernel shape and width has a significant impact on the quality of the
results. Specht*!proposed several function kernels, including the exponential, to be considered for application.
The kernel width of a PNN is commonly obtained by a trial-and-error procedure. A too narrow kernel will
typically lead to spiky, noisy estimates of the function to be approximated. On the other hand, a too large kernel
width will provide an excessive degree of smoothing, sweeping out the function details.

In our system, the kernel function is optimally determined for the image sequence scattered-point interpolation
task by a multi-layer perceptron (MLP),** constituting the core of PNN first-layer units. The MLP weights,
identical for all units, have been determined by training the full neural architecture on a set of synthetically
generated image sequence data, where target interpolation values are readily available. Assuming continuity, the
interpolation kernel can be approximated by a two-layer perceptron with a sufficient number of hidden units.*®
For this purpose, we have used a two-layer perceptron with 10 hidden units and hyperbolic tangent activation
functions in the first layer, and a single unit with a linear activation function in the output layer. The adequacy
of the hidden layer size to represent the problem complexity was experimentally confirmed by training a network
with a substantially larger hidden layer (25 units) and verifying the excellent stability of the obtained kernel
solutions. The MLP-PNN network has been trained on a data set composed of a number of independent training
patterns, each of them representing an input-output scattered-point interpolation example for the network. In our
framework, training patterns are generated synthetically from reference still images that are taken to represent
a very high-resolution approximation of a continuous, degradation-free image. Using these images, the output
of an imaging sensor of a given (lower) resolution could be simulated by adequate blurring and downsampling
operations. This procedure can be carried out to generate synthetic LR image sequence data, together with the
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sought output for the two steps of our super-resolution process. Gaussian noise could be added*® to account for
several sources of noise in the system. Varying the amount of Gaussian noise added to the input LR sequences,
the network could be trained to operate with imagery of different noise levels. In our implementation, we have
used as reference images a set of 25 visible-range, high-resolution satellite images of urban landscape acquired
with the Quickbird system.*” Figure 4 presents some samples extracted from this image set.

3 : ek ot | *

Figure 4: Composition of image samples of the reference image set, containing Quickbird satellite high-resolution
images of urban scenes.

In our architecture, MLP units compute the interpolation weight of a given image sample as a non-linear
function of its distance to the target location. Once the learning phase has concluded, the MLP could be used
to generate a look-up table relating distance to interpolation weight. In the deployment phase, we have replaced
MLP units in our architecture with corresponding distance-to-weight look-up tables, with distance sampled
at 10-3 pixel intervals. This has provided a very significant speed-up of the process with a negligible loss in
performance. Presented PNN interpolation results have been obtained in all cases with MLP generated look-up
tables. In figure 5 are presented graphs of the distance-to-weight PNN kernel functions obtained by training our
neural architecture on data sets generated using the reference image set, with input data degraded by Gaussian
noise of several standard deviations (o =1, 5, 10 and 20 gray-levels). In all cases, the network was trained on
25-frame sequences, corresponding to a 1s video stream in the European video standard. Obtained results show
a steady increase in kernel width with input data noise. Intuitively, at low noise levels preservation of image
detail is a primary factor, and kernel widths are adjusted to impose object continuity on the estimated image,
avoiding jagged edges typical of nearest-neighbour interpolation. At higher levels, noise becomes a leading factor
in the reconstruction error, and kernels widen correspondingly to smooth the results, at the cost of some loss
in detail preservation. The training algorithm performs these function shape modifications in an autonomous,
data-driven manner.

The performance of the proposed learning-based procedure has been compared to other scattered-point inter-
polation methods proposed in the super-resolution literature*®2% with excellent results. The reader is referred
t03® for detailed results of this comparison.

3.2 Step 2: pixel size blurring restoration

As a result of the previous processing steps, an intermediate image sampled at the high-resolution rate is obtained.
This image is still degraded at least by low-resolution optics and detector blurs, as well as by any residual errors
of the interpolation procedure. As interpolation only partially filters sequence noise, this intermediate image is
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Figure 5: Optimal distance-to-weight PNN kernel functions for different noise variances (¢ =1, 5, 10, 20 gray-
levels), as learned by neural networks trained on samples extracted from the reference image set. In all cases,
networks were trained on 25-frame sequences. Distance is measured in units of LR sequence pixel size.

also affected by some level of possibly coloured noise. Wiener filtering®! is one of the preferred choices to perform
the restoration step in two-step super-resolution methods.*-2 These linear restoration filters are optimum on
RMS sense, but require knowledge of the degradation transfer function, H, and the power spectra of the deblurred
image S, and noise ;. In the Fourier domain, the Wiener filter is given by the following expression:*!

B H(fo0 ) et
WFes 1) = TE G B B4 8y £S5 By) ~ THm FyP + K ®)

where * denotes here complex conjugates. In practice [11, 13], the power spectra quotient in the denominator
could be replaced by a suitably defined constant, K, with only moderate drops in performance. In our image
formation model, degradation is due to the combined action of three processes that act incoherently: lens
blur, detector blur and residual degradations caused by interpolation. According to linear system theory,?® the
degradation OTF could be obtained by point-wise multiplication of the OTF’s corresponding to these three
processes:

H = OTFdeg(f:m fy) = OTFOpt(fI) fy)~OTFdet(fa:a fy)~OTFinterp(fzv fu) ’ (9)

The first two transfer function could be approximated, respectively, by the standard diffraction and detector
aperture OTF’s.%3 On the other hand, as analytical modelling of scattered-point interpolation transfer functions
is a difficult task, these effects are usually left out of the degradation model. Consequently, restoration does
not attempt to correct any degradations caused by the previous interpolation step. This decoupling between
the interpolation and restoration steps of the super-resolution procedure is a common criticism of two-step
methods.%*

In our approach, restoration is performed using linear filters in the spatial domain. Filter coefficients are
determined by means of a learning process based on examples, to obtain minimum squared error estimates of HR
images when applied to intermediate images obtained by the scattered-point interpolation step. As interpolated
images are used as input, learning implicitly considers residual degradations caused by interpolation, effectively
coupling both steps of the super-resolution method. Spatial linear filtering is performed by convolving the
interpolated image with a 2-D mask optimized for this problem. The number of filter coefficients to be determined
has been drastically reduced by imposing isotropy on the filter shape, with values of filter coefficients depending
solely on their distance to the filter center. The optimal filters have been obtained by minimizing a sum-of-squares
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error function, using the pseudoinverse method.*® To avoid over-fitting of filter coefficients, only rather low-
dimensional filters have been considered. These filters have been trained with large datasets containing around
1.1x107 input-output examples of the required filter operation, to obtain a largely over-determined estimation
problem. As a result of the training procedure, to obtain a superresolution zoom factor of 3, symmetric filters of
size 9x9 have been selected for use for all noise levels but the highest, where a filter of size 7x7 is used instead.
These filters have 15 and 10 different coefficients, respectively. For these relatively low-dimensional problems,
minimized on large training datasets, the sum-of-squares error function has shown to provide acceptable results
as has been check experimentally by comparison with filter solutions obtained with error functions incorporating
regularization terms. In figure 5 are presented the determined restoration filter coefficients for the four noise levels
and a filter size of 9x9 pixels, corresponding to 15 different symmetric coefficients. For small input noise levels,
the obtained filters show a marked oscillatory behaviour typical of high-frequency enhancement operations. As
noise grows, the oscillations decrease in number and amplitude, as smoothing becomes an increasingly dominant
operation. All these modifications have been carried out autonomously by our training procedure, driven by
minimization of an error function. The training datasets have also been used to optimally fit a Wiener filter
adapted to correct the lens and detector combined degradation. Considering the simplified expression in Eq.
(8), this involves fitting the value of the K parameter to minimize the sum-of-squares error between the filtered
input and the output of the examples in the corresponding dataset. This minimization has been carried out
using a standard uni-dimensional golden section search.*® This fitting introduces some coupling between the
interpolation and restoration steps of the process, as the K parameter is fixed to minimize Wiener restoration
errors on images generated by a precise interpolation procedure. A complete coupling will require, nevertheless,
a proper modeling of the interpolation effects both in terms of transfer function and noise filtering. These models
are implicitly learned from the input-output training set by our spatial filtering scheme with free parameters.

SYMMETRIC RESTORATION FILTER (sigma=01) SYMMETRIC RESTORATION FILTER (sigma=05)

s L L L L L L

1 3 5 7 9 11 13 15 1 3 N 7 9 11 13 15
SYMMETRIC FILTER COEFFICIENT NUMBER a) SYMMETRIC FILTER COEFFICIENT NUMBER b)

SYMMETRIC RESTORATION FILTER (sigma=10) SYMMETRIC RESTORATION FILTER (sigma=20)
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Figure 6: Symmetric coefficients of optimal 9x9 restoration filters for a superresolution zoom factor of 3, and the
four noise levels considered: a)o= 1; b) 0=>5; ¢)o=10 and d)o= 20 gray-levels.

In figure 7 are presented restorations obtained with filters of both types when processing a MLP-PNN
interpolated image of an USAF 1951 test target viewgraph, which was part of a laboratory setup with a mixture
of objects of different type. Figure 7-a shows the image obtained after application of the first step of our
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method. In this image is clearly visible the structure of the horizontal and vertical tri-bar patterns located
at the upper-leftmost side of the picture. This fine structure was completely washed out by application of
a Wiener filter adapted only to lens and detector degradations, as can be seen in figure 7-b. Contrariwise,
application of the obtained spatial linear filter, with coefficients optimized to take also into account residual
interpolation degradations, maintained and enhanced the structure in those patterns. Other differences between
both restorations are visible on the numbers at the rightmost side, which are clearly more blurred in Wiener
filter restoration results.

DB W

L

Figure 7: Improvement obtained by taking into account interpolation degradations on the restoration filter
design: a) result of the first-step of super-resolution; b) restoration of the image in a) with a Wiener filter for
combined optical and detector degradations and ¢) restoration obtained with a spatial linear filter with learned
coefficients. Restoration with this last filter enhanced the structure of tri-bar patterns at the upper-leftmost side
of the picture, while this fine structure was washed out by application of a Wiener filter adapted only to lens
and detector degradations.

a

4. EXPERIMENTS

The following experiments with the described methods aim to first compare performance with other techniques
and second demonstrate its applicability to real scenarios with misregistered input images.

4.1 Real data

The first experiment shows the main characteristics of the BSR method. Fig 8 shows a frame sequence taken
from the Vanderwalle dataset® *. It is worth to mention that in the LR frames (Fig. 8a) a significant amount
of spectral aliasing is present. We will take advantage of such aliasing to recover high frequencies in the HR
frames. Fig 8c shows the edge information taken as the prior by the BSR method to regularize the solution. Fig.
8d shows that this method is able to provide the PSF of each frame as a byproduct.

The next example corresponds to a frame sequence from the Farsiu&Milanfar database'® T. Fig. 9a shows
one of the original ”eia” frames and Fig. 9b shows the BSR result. For the next example, we took a Olympus
C5050Z digital camera and captured four photos, registered them with cross correlation and cropped each to
70x40 pixels (Fig. 9c). Fig. 9d shows the BSR result. A potential pitfall that we have to take into consideration
is a feasible range of SR factors. As the SR factor increases we need to take more LR images and the stability
of BSR decreases. Hence we limit ourselves the SR factor between 1 and 2.5 in most practical applications.

The second group of experiments illustrates the influence of the number of iterations in the reconstruction
provided by the BSR technique. We have taken the ”alpaca” dataset from the Farsiu&Milanfar database and
reconstructing the HR frames for different iterations (Fig. 10). It turns out that the best reconstruction results
appear for a reduced number of iterations (2 in this particular example). This result can be corroborated both
visually and also using a non-reference metric proposed by the authors in.’6 A similar response was observed
in the "castle” example illustrated in Fig. 8. Fig. 11 shows another example corresponding to a license
plate identification scenario. Here the BSR result provides the best reconstruction against other interpolation
techniques. The previously cited non-reference metric corroborates this result (Fig. 11d). Fig. 12 illustrates

*http://lcavwww.epfl.ch /software/superresolution/index.html
Thttp://www.soe.ucsc.edu/~milanfar/DataSets/
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the BSR performance in a face recognition experiment in comparison with the result provided by a classical
interpolation technique. It is worth noting how the BSR method is able to recover the high frequency contents
extracted from the LR input sequence (see Fig. 12c&12f) as opposed to the result provided by the interpolation
technique which is unable to recover such information (see Fig. 12b&12e).

A third experiment shows the performance of the MLP-PNN method. Fig. 13 presents the reconstruction
results after applying the first and second step of the described method and includes a comparison with a bicubic
interpolation method.

A final group of experiments provides a comparative study of the performance of different SR methods. Here
is left to the reader to decide which method provide the best reconstruction quality (Fig. 14).

(a) (b)
Figure 8: (a) Shown is one of four LR frames. Frame sequence was taken from Vanderwalle dataset®® . Note the
presence of aliasing in the brick structure of the tower (b) The BSR result (c¢) Image of the prior edge information
used by the BSR method; (d) PSF of each frame estimated by the BSR method

(b) (d)
Figure 9: (a) Shown is one of four LR frames. Note the presence of aliasing in such frames as in the previous
example. Frame sequence was taken from Farsiu&Milanfar "eia” dataset; (b) The BSR result. (¢) Shown is one
of four LR frames taken by F.S. from a real traffic sequence (d) BSR result

4.2 Limiting factors

The main problem that limits the robustness of most of the SR methods are due to the presence of high
compression rates which still are omnipresent in most of the video surveillance scenarios. Very recently Pham®®
has noted that deconvolution is found ineffective by irreversible DCT quantization what produces annoying
blocking artifacts after compression. In the next experiment we are interested to analyze the impact of the
introduction of different levels of compression in the test sequences. We have taken the Farsiu&Milanfar ”car”
sequence and saved as JPEG format through the Matlab command imwrite for different quality levels. Fig. 8
shows that for a compression quality of 80% or lesser the reconstruction artifacts using the BSR method become
unacceptable.
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Figure 10: (a) Shown one of four LR frames from the Farsiu & Milanfar ”alpaca” dataset. (b-g) Different BSR
results for two, three, four, five, six and seven iterations respectively; (h) Quality of the reconstruction results
using an anisotropic measure.’® Note that the best reconstruction corresponds to (b) that matches the visual
assessment. Horizontal axis represents reconstruction results and vertical axis represents normalized quality
measure.

(a) (b) (c) (d) ()

Figure 11: (a) Shown one of four LR frames taken by F.S. from a traffic sequence; (b) Bilinear interpolation
result; (c) Nearest neighbor interpolation result; (d) BSR result; (e) Quality of the reconstruction results using an
anisotropic measure.?® Horizontal axis represents reconstruction results and vertical axis represents normalized
quality measure.

4.3 Superresolution of a full video

Superresolution can be extended to a full video sequence by simply shifting along the temporal line (see Fig. 16).
Fig. 17 shows an example of a LR video sequence which resolution has been enhanced by the BSR technique
described here.

5. CONCLUSIONS

This paper has surveyed two state-of-the-art SR methods. First, the BSR method has been proved to be
meaningful for cases when insufficient number of input LR images is available to perform SR with only integer
factors, such as two or three. To achieve truly robust methodology applicable in real situations, we adopted the
regularized energy minimization approach, which we solve by alternating-minimization scheme. The fundamental
improvement on previously proposed SR methods is the notion of estimating PSFs in the HR scale, which
indirectly aligns LR images with subpixel accuracy. Using registration parameters inside the algorithm instead
of registering input images gives better results and paves the way for including methods of making registration
parameters more accurate during reconstruction of the HR image.?*5” The second method was based on the
application of scattered-point interpolation on projected sequence data, followed by a filtering operation to restore
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(d) (e) ()
Figure 12: Superresolution a color video sequence. (a) Shown is one LR frame taken with a webcamera; (b)
Interpolated result;(c) BSR result; (d) Magnitude of the FFT of (a); (e) Magnitude of the FFT of (b). Note the
loss of high frequencies, (f) Magnitude of the FFT of (¢). Note how the BSR technique is able to recover the
high frequency part of the spectrum
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(a) (b)
Figure 13: SR results on the 'calendar’ sequence using the MLP-PNN method(a) Shown is one of the LR frames.
(b) Bicubic interpolation result (¢) Result after applying the first step of the MLP-PNN method; (d) Result after
the two-step MLP-PNN method

degradations associated to sequence pixel size and residual errors introduced by interpolation. The advantage of
the second technique is that it can be used in quasi-real time applications.
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