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In many real applications, traditional super-resolution (SR) methods fail to provide high-resolution

images due to objectionable blur and inaccurate registration of input low-resolution images. Only

integer resolution enhancement factors, such as 2 or 3, are often considered, but non-integer factors

between 1 and 2 are also important in real cases. We introduce a method to SR and deconvolution,

which assumes no prior information about the shape of degradation blurs, incorporates registration

parameters, and is properly defined for any rational (fractional) resolution factor. The method

minimizes a regularized energy function with respect to the high-resolution image and blurs,

where regularization is carried out in both the image and blur domains. The blur regularization

is based on a generalized multi-channel blind deconvolution constraint derived in the paper. An

extension to color images is briefly discussed. Experiments on real data illustrate robustness to

noise and other advantages of the method.
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1. INTRODUCTION

Imaging devices have limited achievable resolution due to

many theoretical and practical restrictions. An original scene

with a continuous intensity function o(x, y) warps at the

camera lens because of the scene motion and/or the change

of the camera position. In addition, several external effects

blur images: atmospheric turbulence, camera lens, relative

camera-scene motion, etc. We will call these effects volatile

blurs to emphasize their unpredictable and transitory behavior,

yet we will assume that we can model them as convolution

with an unknown point spread function (PSF) v(x, y). This is

a reasonable assumption if the original scene is flat and

perpendicular to the optical axis. Finally, charge-coupled

devices (CCDs) discretize the image and produces digitized

noisy image g(i, j), which we refer to as a low-resolution

(LR) image, since the spatial resolution is too low to capture

all the details of the original scene. For one single observation

g(i, j), the problem is heavily underdetermined and lacks

stable solution. To partially overcome the equivocation of

the problem, we can take K (K . 1) images of the original

scene and face the so-called multi-channel (multi-frame)

problem. The acquisition model then becomes

gkði; jÞ ¼ Dð½vk�W kðoÞ�ðx; yÞÞ þ nkði; jÞ ð1Þ

where k ¼ 1,. . ., K is the acquisition index, nk(i, j) the additive

noise and Wk the geometric deformation (warping), in general

different for each acquisition. D(.) is the decimation operator

that models the function of CCD sensors. It consists of convo-

lution with a sensor PSF followed by a sampling operator,

which we define as multiplication by a sum of delta functions

placed on a grid. The above model is the state of the art as it

takes all possible degradations into account.

Super-resolution (SR) is the process of combining a

sequence of LR images in order to produce an image or

sequence of higher resolution. It is unrealistic to assume that

the super-resolved image can recover the original scene o(x,

y) exactly. A reasonable goal of SR is a discrete version of

o(x, y), which has higher spatial resolution than the resolution

of the LR images and which is free of the volatile blurs (decon-

volved). In the paper, we will refer to this super-resolved image

as a high-resolution (HR) image f(i, j) and the ratio between the
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size of the sought HR image and input LR image will be called

an SR factor and denoted by 1. The standard SR approach con-

sists of subpixel registration, overlaying the LR images on an

HR grid, and interpolating the missing values. The subpixel

shift between images thus constitutes an essential feature. We

will demonstrate that considering volatile blurs in the model

explicitly brings about a more general and robust technique,

with the subpixel shift being a special case thereof.

The acquisition model in equation (1) embraces three distinct

cases frequently encountered in the literature. First, removal of

the geometric degradation Wk is a registration problem. Second,

if the decimation operator D and the geometric transform Wk are

not considered, then we face a multi-channel (or multi-frame)

blind deconvolution (MBD) problem. Third, if the volatile

blur vk is not considered or assumed known, and Wk is sup-

pressed except to subpixel translations, we obtain a classical

SR formulation. In practice, it is crucial to consider all three

cases at once. We are then confronted with a problem of

blind SR (BSR), the topic of this paper.

Proper registration techniques can suppress large and

complex geometric distortions but usually a small between-

image shift is still observable. There have been hundreds of

methods proposed; see e.g. [1] for a survey. Here, we will

assume that registration parameters can be calculated by one

of the methods, and if applied, the LR images are registered

except to small translations.

Research on intrinsically MBD methods has begun fairly

recently; refer to [2–6] for a survey and other references.

The MBD methods can directly recover the blurring functions

from the degraded images alone. We further developed the

MBD theory in [7] by proposing a blind deconvolution

method for images, which might be mutually shifted by

unknown vectors. To make this brief survey complete, we

should not forget to mention a very challenging problem of

shift-variant blind deconvolution, that was considered in [8, 9].

A countless number of papers address the standard SR

problem. A good survey can be found in [10, 11]. Maximum

likelihood, maximum a posteriori (MAP), the set theoretic

approach using projection on convex sets and fast Fourier

techniques can all provide a solution to the SR problem.

Earlier approaches assumed that subpixel shifts are estimated

by other means. More advanced techniques, such as in [12–

14], include the shift estimation in the SR process. Other

approaches focus on fast implementation [15], space–time

SR [16], SR with complex image priors for joint image and

segmentation estimation [17] or SR of compressed video

[13]. Most of the SR techniques assume a priori known

blurs. However, in many cases, such as camera motion,

blurs can have wild shapes that are difficult to predict; see

examples of real motion blurs in [18]. Nguyen et al. [19],

Woods et al. [20] and Rajan and Chaudhuri [21] proposed

BSR that can handle parametric PSFs, i.e. PSFs modeled

with one parameter. This restriction is unfortunately very lim-

iting for most real applications. In [22], we extended our MBD

method to BSR in an intuitive way but one can prove that this

approach does not estimate PSFs accurately. The same intui-

tive approach was also proposed in [23]. To our knowledge,

first attempts for theoretically correct BSR with an arbitrary

PSF appeared in [24,25]. The interesting idea proposed

therein is to use the so-called polyphase components. We

will adopt the same idea here as well. Other preliminary

results of the BSR problem with focus on fast calculation

are given in [26], where the authors propose a modification

of the Richardson–Lucy algorithm.

Current MBD techniques require no or very little prior

information about the blurs, they are sufficiently robust to

noise and provide satisfying results in most real applications.

However, they can hardly cope with the decimation operator,

which violates the standard convolution model. On the con-

trary, state-of-the-art SR techniques achieve remarkable

results of resolution enhancement in the case of no blur.

They accurately estimate the subpixel shift between images

but lack any apparatus to calculate the blurs.

Recently, in [27], we proposed a unifying method that sim-

ultaneously estimates the volatile blurs and HR image. The

only prior knowledge required are estimates of the blur size

and the level of noise in the LR images, which renders it a

truly BSR method. The key idea was to determine subpixel

shifts by calculating volatile blurs. As the volatile blurs are

estimated in the HR scale, positions of their centroids corre-

spond to sub pixel shifts. Therefore, by estimating blurs, we

automatically estimate shifts with subpixel accuracy, which

is essential for good performance of SR. This complex SR

problem was solved by minimizing a regularized energy func-

tion, where the regularization was carried out in both the

image and blur domains. The image regularization is based

on variational integrals, and a consequent anisotropic diffu-

sion with good edge-preserving capabilities. The blur regular-

ization term is based on our generalized result of blur

estimation in the SR case. To tackle the minimization task,

we used an alternating minimization (AM) approach consist-

ing of two simple linear equations.

In this work, we extend the BSR method by incorporating

registration parameters and color images. To address correctly

the correlation of color channels, we apply the regularizations

proposed in [28]. Further, we show that by using the polyphase

decomposition, we can formulate the SR problem not only for

integer factors but also for any rational (fractional) factor,

which is important in real applications where often only an

SR factor between 1 and 2 is possible. If the noise removal

and registration steps are not sufficiently reliable, a factor of

1.6 is the practical limit of SR [29]. The need for rational

factors in SR was also reported in [30] with a focus on fast cal-

culation using preconditioners.

Section 2 outlines the degradation model in the discrete

domain for integer and non-integer SR factors. In Section 3,

we present the regularized energy functional, derive the regu-

larization terms and sketch an extension to color images.
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THE COMPUTER JOURNAL, 2007



The AM scheme and parameter estimation is given in

Section 4. Finally, Section 5 illustrates the applicability of

the proposed method to real situations.

2. DISCRETE MODEL

To simplify the notation, we will assume only images and

PSFs with square supports. An extension to rectangular

images is straightforward. Let f(i, j) be an arbitrary discrete

image of size F � F then f denotes an image column vector

of size F2
� 1 and CA ffg denotes a matrix that performs con-

volution of f with an image of size A � A. The convolution

matrix can have a different output size. Adopting the Matlab

naming convention, we distinguish two cases: ‘full’ convolu-

tion CAffg of size (F þ A 2 1)2
� A2 and ‘valid’ convolution

CA
v
ffg of size (F 2 A þ 1)2

� A2. In both cases, the convolu-

tion matrix is of the Toeplitz-block-Toeplitz form. In the

paper, we will not specify dimensions of convolution matrices

if it is obvious from the size of the right argument.

Before we proceed, it is necessary to define precisely the

sampling matrix S. Let S1 denote an 1-D sampling matrix,

where 1 is the integer subsampling factor and i ¼ 1,. . .,1.

Each row of the sampling matrix is a unit vector whose

non-zero element is at such position that, if the matrix multi-

plies an arbitrary vector b, the result of the product is every 1th

element of b starting from bi. If the vector length is M then the

size of the sampling matrix is d(M 2 i þ 1)/1e � M, where d.e

rounds up to the closest integer. A 2-D sampling matrix is

defined by

S1
i;j :¼ S1

i � S1
j ; ð2Þ

where � denotes the matrix direct product (Kronecker product

operator). If the starting index (i, j) will be (1, 1) then we will

omit the subscript and simply write S1. Note that the trans-

posed matrix (S1)T behaves as an upsampling operator that

interlaces the original samples with (1 2 1) zeros.

Polyphase components of an image f(x, y) are

f ij :¼ S1
i;jf ð3Þ

which is equivalent to

f ij :¼ ½ f ½i; j�; f ½iþ 1; j�; f ½iþ 21; j�; . . . ; f ½i; jþ 1�;

f ½iþ 1; jþ 1�; . . .�T:

Therefore, each image breaks into 12 distinct polyphase

components (downsampled versions of the image) (see Fig. 1).

Let us now define a discrete version of the acquisition

model in equation (1). Assume that we have K different LR

frames fgkg (each of size G � G) that represent degraded

(blurred and noisy) versions of the original scene. Our goal

is to estimate the HR representation of the original scene,

which we denoted as the HR image f of size F � F. The LR

frames are linked with the HR image through a series of degra-

dations similar to those between o(x, y) and gk in equation (1).

First f is geometrically warped (Wk), then it is convolved with

a volatile PSF (Vk) and finally it is decimated (D). The deci-

mation operator D depends only on sensor characteristics

and since we assume the same sensor in all acquisitions it

appears without the index k. The formation of the LR

images in vector–matrix notation is then described as

gk ¼ DVkWkf þ nk; ð4Þ

where nk is additive noise present in every channel. In prin-

ciple, Wk can be a very complex geometric transform that

must be estimated by image registration or motion detection

techniques. We have to keep in mind that the subpixel accu-

racy in gk’s is essential for SR to work properly. Standard

image registration techniques can hardly achieve this and

they leave a small misalignment behind. Then the warping

operator splits into Wk ¼ TkWk
0, where Wk

0 is estimated by

some registration methods and Tk is the unknown translation.

In order to change the order of geometrical warping and con-

volution, we consider only linear transformations. Unknown

translation Tk combined with volatile PSF Vk gives us Vk

Tk ¼ Hk, where Hk performs convolution with the shifted

version of the volatile PSF vk. The decimation matrix D ¼
S1U simulates the behavior of digital sensors by first perform-

ing convolution with the U � U sensor PSF (U) and then

downsampling (S1) by factor 1. Assuming linear transform-

ations, Wk
0 may be grouped with the decimation operator

resulting in Dk ¼ S1 UWk
0. From the numerical point of

view, it is preferable to construct directly the whole Dk than

the individual matrices S1, U and Wk
0. Finally, the acquisition

model reads

gk ¼ DkHkf þ nk ¼ S1UW0kHkf þ nk: ð5Þ

The BSR problem we are solving is the following: we know

the LR images fgkg and Dk’s, and we want to estimate the HR

FIGURE 1. Polyphase decomposition for 1 ¼ 2: original image f

decomposes into four downsampled images.
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image f. In addition, the rough estimates of the size of volatile

blur hk and of the noise variance sn is necessary. PSFs hk can

be of different size. However, we postulate that they all fit into

an H � H support. To avoid boundary effects, we assume that

each observation gk captures only a part of f. Hence, Hk and U

are ‘valid’ convolution matrices CF
v
fhkg and CF2Hþ1

v
fug,

respectively.

To be able to deal correctly with non-integer SR factors, we

need to express the above model using a sampling operator

with integer 1. This will be necessary in the derivation of

blur regularization in the next section. It can be done for

factors expressed as a fraction p/q, where p and q are positive

integers and p . q (p and q are reduced so that they do not

have any common factor).

Let 1 ¼ p/q and the sampling frequency of the LR images gk

be q, then the sampling frequency (number of pixels per unit

distance) of the HR image f is p. From each LR image gk,

we generate q2 polyphase components. We consider these

polyphase components as new input (downsampled-LR)

images with the sampling frequency 1. Now, to obtain the

HR image from the downsampled-LR images, we must

solve an SR problem with the integer factor 1 ¼ p and not

with the rational one as before. In other words, in order to

obtained an integer SR factor we downsample the LR

images and thus artificially increase the number of channels.

However, the number of unknown PSFs hk remains the

same. We still have K PSFs since every pack of q2

downsampled-LR images contains the same blur.

An equivalent formulation of the model in equation (5) but

for fractional SR factors p/q is

g11
k

..

.

g
qq
k

2
64

3
75 ¼

SpU1;1

..

.

SpUq;q

2
64

3
75W0kHkf þ nk; ð6Þ

where each Ui,j performs convolution with one of the q2 discre-

tizations of the sensor PSF u and g k
ij ¼ S i,j

g gk are polyphase

components of gk for SR factor q. It is important to understand

the discretization of the sensor PSF u in the case of fractional

SR factors. Since p is not divisible by q, the product S1U is

shift-variant and it depends on a relative shift between the

HR and LR pixels. One can readily see that the relative shift

repeats every qth pixels (in both directions x and y) of the

LR image and therefore we have q2 distinct PSF discretiza-

tions. For further details see [31].

3. BLIND SUPERRESOLUTION

In order to solve the BSR problem, i.e. determine the HR

image f and volatile PSFs hk, we adopt an approach of mini-

mizing a regularized energy function. This way the method

will be less vulnerable to noise and better posed. The energy

consists of three terms and takes the form

Eðf; hÞ ¼
XK

k¼1

kDkHkf � gkk
2 þ QðfÞ þ RðhÞ; ð7Þ

where h ¼ [h1
T, . . . , hK

T]T. The first term measures the fidelity

to the data and emanates from our acquisition model (5).

The remaining two are regularization terms that attract the

minimum of E to an admissible set of solutions. The form of

E very much resembles the energy proposed in [7] for

MBD. Indeed, this should not come as a surprise since MBD

and SR are related problems in our formulation.

3.1. Image regularization

Regularization Q(f) is a smoothing term of the form

QðfÞ ¼ afTLf; ð8Þ

where L is a high-pass filter and a is a positive regularization

parameter. A common strategy is to use convolution with the

Laplacian for L, which in the continuous case, corresponds to

Q(f) ¼
Ð
jrfj2. Recently, variational integrals Q(f) ¼

Ð
f(jrfj)

were proposed, where f is a strictly convex, non-decreasing

function that grows at most linearly. Examples of f(s) are s

(total variation),
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ s2 2 1
p

(hypersurface minimal func-

tion), log(cosh(s)) or non-convex functions, such as log(1 þ

s2), s2/(1 þ s2) and arctan(s2) (Mumford–Shah functional).

The advantage of the variational approach is that while in

smooth areas it has the same isotropic behavior as the Lapla-

cian, it also preserves edges in images. The disadvantage is

that it is highly nonlinear and to overcome this difficulty,

one must use, e.g. half-quadratic algorithm [32]. For the

purpose of our discussion, it suffices to state that after discre-

tization we arrive again at equation (8), where this time L is a

positive semi-definite block tridiagonal matrix constructed of

values depending on the gradient of f. The rationale behind the

choice of Q(f) is to constrain the local spatial behavior of

images; it resembles a Markov Random Field. Some global

constraints may be more desirable but are difficult (often

impossible) to define, since we develop a general method

that should work with any class of images.

3.2. PSF regularization

Our PSF regularization term R(h) consists of two terms. The

first one is the same smoothing term as for images but

applied to blurs, which is a typical prior that penalizes

jagged blurs that are rare in real situations. The second term

is a consistency term that binds the different volatile PSFs to

prevent them from moving freely and unlike the fidelity

term [the first term in equation (7)] it is based solely on the

observed LR images. It takes the form of kN hk2, where the
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matrix N will be derived later. The complete PSF regulariz-

ation is then given by

RðhÞ ¼ bhTLhþ gkN hk2; ð9Þ

where b and g are positive regularization parameters that give

different weights to the terms.

Consider the discrete model in equation (6) but without

noise nk and warping Wk
0 (this can be removed by registering

the LR images). Let E be a positive integer and G : ¼ [G1
11, . . . ,

G1
qq, G2

11, . . . , . . . , GK
qq], where Gk

ij : ¼ CE
v
fgk

ij
g. There are q2 dis-

tinct discretizations of the sensor PSF u that depend on the

relative shift between the HR and LR pixels. Let ui,j (i, j ¼

1,. . .,q) denote such discretizations.

Matrix G expressed in terms of f, u and hk takes the form

G ¼ SpF½U1;1; . . . ;Uq;q�H; ð10Þ

where Ui,j¼ CpE2pþHfui, jg, F ¼ CpE2pþHþU21
v

ffg and

H :¼ ½Iq2 � ðC pE�pþ1fh1gðS
pÞ

T
Þ; . . . ; Iq2 � ðC pE�pþ1fhKg

� ðSpÞ
T
Þ�:

The size of the upsampling matrix (Sp)T inside H is (pE 2

p þ 1)2
� E2.

If SpF is of full column rank, which is almost certainly true

for real and sufficiently large images (see [31] for more

details), then Null(G) ; Null([U1,1, . . . ,Uq,q]H). The differ-

ence between the number of columns and rows of [U1,1, . . . ,

Uq,q]H bounds from below the dimension of G’s null space, i.e.

nullity(G) �

N :¼ KðqEÞ2 � ð pE � pþ H þ U � 1Þ2: ð11Þ

Let N denote N null vectors of G stacked column-wise and hkn

are some E � E filters. We can visualize N as

N ¼

h1;1 � � � h1;N

..

. . .
. ..

.

hq2;1 � � � hq2;N

..

. . .
. ..

.

hKq2;1 � � � hKq2;N

2
66666664

3
77777775
; ð12Þ

where hkn is the vector representation of hkn. Let h̃kn denote

upsampled hkn by factor p. Then

N : ¼

CUþH�1f ~h1;1g . . . CUþH�1f ~hKq2;1g

..

. . .
. ..

.

CUþH�1f ~h1;Ng . . . CUþH�1f ~hKq2;Ng

2
664

3
775

� IK �

CHfu1;1g

..

.

CHfuq;qg

2
664

3
775 ð13Þ

and we conclude (without proofs for the sake if simplicity) that

Nh ¼ 0 : ð14Þ

An interesting observation follows from the nullity con-

dition in equation (11): K . (pE 2 p þ H þ U 2 1)2/(qE)2

and if E 	 (p þ H þ U 2 1) then K . (p/q)2. It implies that

the minimum number of input channels necessary for blur

reconstruction to work is K . 12. For example, for 1 ¼ 3/2,

three LR images are sufficient; for 1 ¼ 2, we need at least

five LR images to perform blur reconstruction. Note that for

no SR (1 ¼ 1), the minimum number of input channels is 2,

which is of course in accordance with the MBD theory.

To better understand the above derivation, the following

example illustrates all the steps for an 1-D case.

EXAMPLE Let the HR signal be an 1-D periodic pulse f with

the period [1, 1, 1, 1,0,0,0]. Such signal satisfies the necessary

condition that SpF is of full-column rank. The HR signal is

blurred by h1 ¼ [0,1] and h2 ¼ [1, 0] (H ¼ 2) and down-

sampled by factor 1 ¼ p/q ¼ 3/2. To simplify the derivation,

the sensor PSF u will be a pulse of length 1.5 HR pixels and its

two (q ¼ 2) distinct discretizations are u1 ¼ [0.5, 0.5, 0] and

u2 ¼ [0, 0, 1] (U ¼ 3) as depicted below:

The two (K ¼ 2) measured LR signals are thus

g1 ¼ ½1; 1; 0:5; 0; 0:5; 1; 1; 0; 0; 1; 1; 1; 0; 0; . . .�;

g2 ¼ ½1; 1; 0; 0; 1; 1; 0:5; 0; 0:5; 1; 1; 0; 0; 1; . . .�
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and their two (q ¼ 2) polyphase components are

g1
1 ¼ ½1 0:5 0:5 1 0 1 0 . . .�;

g2
1 ¼ ½1 0 1 0 1 1 0 . . .�;

g1
2 ¼ ½1 0 1 0:5 0:5 1 0 . . .�;

g2
2 ¼ ½1 0 1 0 1 0 1 . . .�:

In the 1-D case, condition (11) reads nullity(G) � N: ¼

K(qE) 2 (pE 2 p þ H þ U 2 1). Therefore, for the

minimum admissible nullity N ¼ 1, the size of filters h must

be E ¼ 2. From the LR signals, we thus construct

G ¼

0:5 1 0 1 0 1 0 1

0:5 0:5 1 0 1 0 1 0

1 0:5 0 1 0:5 1 0 1

0 1 1 0 0:5 0:5 1 0

1 0 1 1 1 0:5 0 1

0 1 0 1 0 1 1 0

1 0 1 0 1 0 1 1

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

2
666666666664

3
777777777775
:

The null space of G is a single vector

N ¼

�0:6325

0

�0:3162

0

0:6325

0

0

0:3162

2
66666666664

3
77777777775
:

Extracting filters h’s of length E ¼ 2 from N and upsam-

pling by p ¼ 3, gives

~h1;1 ¼ ½ �0:6325 0 0 0 �;
~h2;1 ¼ ½ �0:3162 0 0 0 �;
~h3;1 ¼ ½ 0:6325 0 0 0 �;
~h4;1 ¼ ½ 0 0 0 0:3162 �:

Using equation (13) construct

N ¼

�0:3162 0 0 0

�0:3162 �0:3162 0:3162 0

�0:3162 �0:3162 0:3162 0:3162

0 �0:3162 0:3162 0:3162

0 0 0 0:3162

2
66664

3
77775

and one can readily see that

N ½h1; h2�
T
¼ 0:

The matrix N contains the correct blurs in its null space. In

real cases, when noise is present, we consider the l2 norm as

specified in equation (9).

In the course ofN’s derivation, we have to constructG,which

is huge even for images of moderate size, and then estimate its

null space. However, efficient computation exists. The N smal-

lest eigenvectors of GGT give the null space matrix N. The

product GGT is a square matrix of size proportional to E and

can be calculated directly without first constructing G; see

e.g. [2] for details. E is the size of filters h and it is calculated

from condition (11). It increases with the increasing SR

factor 1 and blur size H, but it decreases with the increasing

number of LR images K. In general cases, the values of E are

smaller or close to H. Therefore, the product GGT is relatively

small and the computation of N is fast.

3.3. Extension to color

There are three possible extensions of the acquisition model

(1) to color images: assuming same blurs in color channels

assuming different blurs in color channels and additionally

assuming also intrachannel blurs between color channels

(‘crosstalks’). For the first two extensions, the PSF regulariz-

ation term (9) can be used without any modifications. The

third extension brings extra burden of crosstalks that prevents

us from using the proposed PSF regularization and therefore

we did not consider it here. Color channels are strongly corre-

lated and it is highly desirable to introduce some coupling in

the image regularization term (8). One can find a very good

overview of different regularizations of color images in [28].

Here, we use the vector version of the variational approach,

which is given by

Qð f Þ ¼

ð
fð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
krfrk

2 þ krfgk
2 þ krfbk

2

q
Þdx dy;

where fr, fg, fb are red, greed, blue channels, respectively. Cor-

relation of colors is appropriately addressed by this term and

we can use the same numerical computation as in the case

of gray-scale images (see Section 3.1).

4. ALTERNATING MINIMIZATION

The complete energy function reads

Eðf; hÞ ¼
XK

k¼1

kDkHkf � gkk
2

þ afTLf þ hTðbLþ gN
T
NÞh: ð15Þ

To find a minimizer, we perform AMs of E over f and h. The

advantage of this scheme lies in its simplicity. Each term of

equation (15) is quadratic and therefore convex (but not
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necessarily strictly convex) and the derivatives w.r.t. f and h
are easy to calculate. This AM approach is a variation on

the steepest-descent algorithm. The search space is a concate-

nation of the blur subspace and the image subspace. The algor-

ithm first descends in the image subspace and after reaching

the minimum, i.e. rfE ¼ 0, it advances in the blur subspace

in the direction rhE orthogonal to the previous one, and this

scheme repeats. In conclusion, starting with some initial h0

the two iterative steps are:

Step 1.

fm ¼ arg min
f

Eðf; hmÞ

, solve for f

XK

k¼1

HT
k DT

k DkHk þ aL

 !
f ¼

XK

k¼1

HT
k DT

k gk :

ð16Þ

Step 2.

hmþ1 ¼ arg min
h

Eðfm; hÞ

, solve for h

ð½IK � FTDT
k DkF� þ gN

T
N þ bLÞh

¼ ½IK � FTDT
k �g;

ð17Þ

where F : ¼ CH
v
f f g, g : ¼ [g1

T, . . . ,gK
T]T and m is the iteration

step. Note that both steps consist of simple linear equations.

Energy E as a function of both variables f and h is not

convex due to coupling of variables via convolution in the

first term of equation (15). Therefore, it is not guaranteed

that the BSR algorithm reaches the global minimum,

instead, one may get trapped in local minima. In our experi-

ence, convergence properties improve significantly if we add

feasible regions for the HR image and PSFs specified as

lower and upper bounds constraints. To solve Step 1, we use

the method of conjugate gradients (function cgs in Matlab)

and then adjust the solution fm to contain values in the admis-

sible range, typically, the range of values of g. It is common to

assume that PSF is positive (hk � 0) and that it preserves

image brightness. We can therefore write the lower and

upper bounds constraints for PSFs as hk [ k0,1lH2

. In order

to enforce the bounds in Step 2, we solve equation (17) as a

constrained minimization problem (function fmincon in

Matlab) rather than using the projection as in Step 1. Con-

strained minimization problems are more computationally

demanding but we can afford it in this case since the size of

h is much smaller than the size of f.
Parameters a, b and g depend on the level of noise. If noise

increases, a and b should increase, and g should decrease. One

can prove that a and b are proportional to sn
2, which is the

noise variance. Estimation techniques, such as cross-validation

[19] or expectation maximization [33], can be used to determine

the correct weights. However, we did not want to increase the

complexity of the problem any further and thus we set the

values in experiments manually according to our visual assess-

ment. If the iterative algorithm begins to amplify noise, we have

underestimated the noise level. On contrary, if the algorithm

begins to segment the image, we have overestimated the

noise level.

5. EXPERIMENTS

The following experiments with the proposed BSR method

aim to first compare performance with other techniques and

second demonstrate its applicability to real scenarios with mis-

registered input images and non-integer SR factors.

5.1. PSNR performance

We evaluated noise robustness of the proposed BSR and com-

pared it with other two methods: interpolation technique and

state-of-the-art SR method. The former technique consists of

the MBD method proposed in [7] followed by the standard

bilinear interpolation resampling. The MBD method first

removes volatile blurs and then the interpolation of the decon-

volved image achieves the desired spatial resolution. The latter

method, which we will call herein a ‘standard SR method’, is a

MAP formulation of the SR problem proposed, in [12, 13]. This

method uses a MAP framework for the joint estimation of

image registration parameters (in our case only translation)

and the HR image, assuming only the sensor blur (U) and no

volatile blurs. For an image prior, we used edge preserving

FIGURE 2. Performance of the BSR algorithm and the other two

methods under different levels of noise: squares proposed BSR

with b ¼ 0; triangles proposed BSR with g ¼ 0; cross symbols rep-

resent MBD with bilinear interpolation; the circles represent the stan-

dard SR method. Note that the proposed BSR outperforms any other

method but as the noise level increases its supremacy becomes less

evident.
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Huber Markov random fields [34]. In order to evaluate the

effect of the PSF regularization term (9), we ran the BSR

method in two different modes. In the first mode, b ¼ 0 and

so the N term was considered. In the second mode, g ¼ 0

and so the standard smoothing term was considered.

The experimental setup was the following. First we gener-

ated six random motion blurs of size 4 � 4. Then we generated

six LR images from the original ‘Lena’ image using the blurs

and the downsampling factor of 2, and added white Gaussian

noise with different signal-to-noise ratio (SNR) from 50 to

10 dB. SNR ¼ 10 log(sf
2/sn

2), where sf and sn are the image

and noise standard deviations, respectively. We repeated the

whole procedure 10 times for different realizations of noise.

For each set of six LR images, the three methods were

applied one by one. Parameters of each method were chosen

to minimize the mean square error of the HR estimate.

Figure 2 summarizes the obtained results in terms of peak

SNR defined as PSNR(f̂) ¼ 10 log
spanðf Þ2

kf̂ � fk2=F2

� �
, where f̂

is the estimate of the original HR image f, and span(f)

denotes the span of gray-level values in the original image,

typically 255.

The standard SR method gives the poorest performance,

since it lacks any apparatus for removing volatile blurs.

MBD with interpolation removes blurs in the LR domain,

which accounts for better performance. However, the best per-

formance is apparent for the proposed BSR method with N in

the PSF regularization term. For low SNR, all the tested

methods tend to give similar results in the PSNR perspective

and advantages of the proposed BSR method are less

evident. Thus, for very noisy images (,20 dB), it is sufficient

to perform MBD with simple interpolation than to apply

advance SR methods, since MBD is definitely faster and the

results look similar due to noise.

5.2. Real data

We worked with a standard webcamera to record short video

sequences of still scenes, extracted several consecutive

frames and used the frames as input LR images. The input par-

ameters of the BSR method were selected manually to give the

best possible results. Common to all the experiments was the

choice of the sensor blur, which was determined experimen-

tally and was set to the Gaussian function of standard devi-

ation s ¼ 0.34 (relative to the scale of LR images). One

should underline that the proposed method is fairly robust to

the underestimated size of the sensor blur, since it can com-

pensate for insufficient variance by automatically including

the missing factor of Gaussian functions in the volatile

blurs. The quality of reconstructed HR images is not evaluated

by any quantitative measure. Instead, we advocate the use of

reader’s subjective assessment.

The first experiment summarized in Figs. 3 and 4 com-

pares results for different SR factors from 1.25 up to 3. In

this case, the hand-held webcamera operated in good light

conditions with the exposure time of 1/60 s and therefore

no volatile blur was visible. Ten frames (see one such

frame in the left side Fig. 3) extracted from the video

served as input LR images for the BSR method with par-

ameters a ¼ 2 � 1023, g ¼ 10, b ¼ 0, blur size 8 � 8 and

six different SR factors 1 ¼ 1.25, 1.5, 1.75, 2.0, 2.5, 3.0.

The HR images show improvement as the SR factor

increases; however, the refinement becomes less visible

after 2.0. The difference between 2.5 and 3.0 seems to be pri-

marily only in size as no more details appear. In all the cases,

estimated PSFs were more or less the same and an example

for SR factor 2 is in Fig. 4. The PSFs are very localized and

FIGURE 3. SR with non-integer factors of short-exposure images. The first left image is one of 10 LR frames acquired by a webcamera

(exposure time 1/60 s) that were used to estimate HR images. The proposed BSR method was initialized with different SR factors from 1.25

to 3. The estimated HR images appear in their original size. An example of estimated PSFs for factor 2 is in Fig. 4.

FIGURE 4. SR of short-exposure images. PSFs of LR images in

Fig. 3 estimated by the proposed BSR method.
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they resemble delta functions (note that the displayed PSFs

include the sensor blur), which was expected since the

input images did not exhibit any volatile blur. Notice that

the PSFs are shifted to compensate for subtle misalignments,

which seamlessly performs subpixel registration and thus

accurate SR.

In the second experiment, we recorded a greeting card with

the hand-held webcamera in poor light conditions. The

exposure time of the camera was 1/10 s and severe motion

blur coming from the hand vibration is visible in images;

see Fig. 5a. Then we move the camera toward the object,

stabilize it, and grabbed one frame (Fig. 5e) to have an

‘ideal’ representation, which we show here only for evaluation

reasons. Using five consecutive frames from the video, the HR

image (SRF ¼ 5/3) was estimated with three methods. The

first result in Fig. 5b) was achieved by the standard SR

method [13]. The result is poor as the method does not have

means of removing blur. The second result in Fig. 5c shows

MBD [7] with interpolation. The reconstructed image is

sharper but many details are still missing, e.g. note the erro-

neous reconstruction of ‘Anniv’ on the flag held by the ‘pig’

right to the ‘horse’. The third result is of the proposed BSR

(Fig. 5d) run with parameters a ¼ 2 � 1023 b ¼ 1, g ¼ 10

and blur size 12 � 12. The obtained result after only three iter-

ations of the AM algorithm is the sharpest with many details

properly reconstructed. The key to successful reconstruction

lies in the accurate estimation of PSFs within the iterative

algorithm. As one could see in Fig. 6, the estimated PSFs

model camera shake and since the whole procedure runs in

the HR scale, the proposed method outperforms the former

ones.

The third experiment demonstrates the advantage of using

the decimation operators Dk’s with registration instead of

running BSR on registered LR images. A similar video

sequence was recorded as in the previous case but this time

we also rotated the camera during shooting to introduce geo-

metric distortions that must be first eliminated by registration.

An example of two such frames out of 10 is in Fig. 7a.

Rotation is clearly visible and BSR cannot be applied

without first registering the images. We estimated registration

parameters and compared two approaches. First, we applied

BSR on registered images; see the result in Fig. 7b. Second,

we used the registration parameters to construct Dk’s and

applied BSR on the original unregistered images; see the

result in Fig. 7c. In both cases, the parameters were set as in

the previous experiment. Some small details are better recon-

structed in the second approach, which indicates that using the

registration parameters directly in BSR is preferable.

FIGURE 5. SR of long-exposure images. Five LR frames were extracted from a short video sequence captured by a webcamera (exposure time 1/

10 s). An example of one frame and its close-up is in (a) top and bottom, respectively. The image is printed in the size of the output HR image for

comparison reasons. Notice severe motion blur due to the long exposure time and motion of the hand-held camera. Estimated HR images for factor

5/3 were calculated by three different methods: standard SR in (b), MBD followed by bilinear interpolation in (c), and proposed BSR method in (d)

(see PSFs estimated by BSR in Fig. 6). Compare obtained results with the image (e) acquired with the same webcamera but installed closer to the

object.

FIGURE 6. SR of long-exposure images. PSFs of images in

Fig. 5(a) estimated by the proposed BSR method.
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6. CONCLUSION

This paper presented an SR method for both integer and non-

integer (rational) factors, which proved to be meaningful for

cases when insufficient number of input LR images is avail-

able to perform SR with only integer factors, such as 2 or

3. To achieve truly robust methodology applicable in real situ-

ations, we adopted the regularized energy minimization

approach, which we solve by alternating-minimization

scheme. The fundamental improvement on previously

proposed SR methods is the notion of estimating PSFs in the

HR scale, which indirectly aligns LR images with subpixel

accuracy. Using registration parameters inside, the algorithm

instead of registering input images gives better results and

paves the way for including methods of making registration

parameters more accurate during reconstruction of the HR

image [35].
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THE COMPUTER JOURNAL, 2007



[3] Giannakis, G. and Heath, R. (2000) Blind identification of

multichannel FIR blurs and perfect image restoration. IEEE

Trans. Image Process., 9, 1877–1896.

[4] Pai, H.-T. and Bovik, A. (2001) On eigenstructurebased direct

multichannel blind image restoration. IEEE Trans. Image

Process., 10, 1434–1446.

[5] Panci, G., Campisi, P., Colonnese, S. and Scarano, G. (2003)

Multichannel blind image deconvolution using the bussgang

algorithm: spatial and multiresolution approaches. IEEE

Trans. Image Process., 12, 1324–1337.
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