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1 Introduction

The complexity of practical problems that are of primary interest in the field of artificial intel-
ligence usually results in the necessity to construct models with the aid of a great number of
variables: more precisely, hundreds or thousands rather than tens. Processing distributions of
such dimensionality would not be possible without some tools allowing us to reduce demands on
computer memory. Independence, which belongs among such tools, allows the expression of these
multidimensional distributions by means of low-dimensional ones, and therefore to substantially
decrease demands on computer memory.

For three centuries, probability theory has been the only mathematical tool at our disposal
for uncertainty quantification and processing. As a result, many important theoretical and
practical advances have been achieved in this field. However, during the last forty years some
new mathematical tools have emerged as alternatives to probability theory. They are used in
situations whose nature of uncertainty does not meet the requirements of probability theory,
or those in which probabilistic approaches employ criteria that are too strict. Nevertheless,
probability theory has always served as a source of inspiration for the development of these non-
probabilistic calculi and these calculi have been continually confronted with probability theory
and mathematical statistics from various points of view. Good examples of this fact include the
numerous papers studying conditional independence in various calculi [1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11].

With this contribution, we will concentrate ourselves to evidence theory, as it was already
done in [12]. After a brief review of basic notation and terminology necessary for understanding
the next part of the paper (Section 2) we will present in Section 3 two notions of independence in
evidence theory: random set independence and strong independence as well as the independence
notions for special cases. In Section 4 we will demonstrate their mutual relationship for both
special models of evidence theory and its general case.

∗Research is supported by GA ČR under grant 201/08/0539, GA AV ČR under grant A100750603 and MŠMT
under grant 2C06019.
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2 Basic Notions

Consider two frames of discernment X and Y and their Cartesian product

Ω = X×Y.

A projection of ω = (x, y) ∈ X×Y into X will be denoted ω↓X , i.e. ω↓X ∈ X.
Analogously, for A ⊂ X×Y, A↓X will denote a projection of A into X:

A↓X = {x ∈ X|∃ω ∈ A : x = ω↓X}.

Consider a basic (probability or belief ) assignment (or just assignment) m on Ω, i.e.

m : P(Ω) −→ [0, 1]

for which ∑
A⊆Ω

m(A) = 1. (1)

Its marginal basic assignment on X is defined (for each B ⊆ X):

m↓X(B) =
∑

A⊆Ω:A↓X=B

m(A).

Given a basic assignment m we can obtain belief and plausibility functions via the following
formulae:

Bel(A) =
∑

B⊆A

m(B);

Pl(A) =
∑

B∩A6=∅
m(B).

It is well-known (and evident from these formulae) that for any A ∈ P(Ω)

Bel(A) ≤ Pl(A)

and
Pl(A) = 1−Bel(AC),

where AC is a set complement of A ∈ P(Ω), i.e. plausibility of any set can be obtained from
belief of its complement and vice versa. Furthermore, basic assignment can be computed from
belief function via Möbius inversion:

m(A) =
∑

B⊆A

(−1)|A\B|Bel(A), (2)

i.e. any of these three functions is sufficient to define values of the remaining two.
Now let us concentrate our attention to two special cases of basic assignments.
A basic assignment is called Bayesian if all its focal elements∗ are singletons. In this case

Bel(A) = Pl(A) = P (A), called a probability measure, and m can be substituted by a point
function

p : XN −→ [0, 1]

called a probability distribution.
∗A set A ∈ P(XN ) is a focal element if m(A) > 0.
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A body of evidence† is called consonant if its focal elements are nested. In this case

Pl(A) = max
B⊆A

Pl(B),

i.e. plausibility function becomes a possibility measure Π and its values for any A ⊆ XN can be
obtained from a possibility distribution

π : XN −→ [0, 1]

via the formula:
Π(A) = max

x∈A
π(x).

Connection between basic assignment m and a possibility distribution π is expressed by the
following formula:

π(x) =
∑

x∈A∈P(XN )

m(A).

3 Independence Concepts

In this section we will overview two conditional independence notions called random set inde-
pendence and strong independence. Then we will present definitions for special cases (Bayesian
basic assignments and consonant bodies of evidence). Before doing that let us stress, that we are
interested in the independence from the viewpoint of decomposition of multidimensional models
and not in its behavioral interpretation.

We say that there is random set independence between X and Y if their joint basic assignment
is of the form

m(A) = m↓X(B) ·m↓Y (C) (3)

for all A = B × C,B ⊆ X, C ⊆ Y and m(A) = 0 otherwise.
A credal set M(X) about a variable X is defined as a set of probability measures about

the values of this variable. In order to simplify the expression of operations with credal sets, it
is often considered [7] that a credal set is the set of probability distributions associated to the
probability measures in it. Under such consideration a credal set can be expressed as a convex
hull of its extreme distributions

M(X) = CH{ext(M(X ))}.

Any belief function (plausibility function, basic assignment) on X can be associated with a
credal set of probability measures

M(Bel) = {P (A), A ⊆ X : Bel(A) ≤ P (A) ≤ Pl(A)}.

Again, there exist numerous definitions of independence for credal sets [4], but we have
chosen strong independence, as it seems to be most proper for multidimensional models.

We say that X and Y are strongly independent with respect to M(XY ) iff (in terms of
probability distributions)

M(XY ) = CH{p1 · p2 : p1 ∈M(X), p2 ∈M(Y )}.

Now, let us remind the notion of both stochastic independence and possibilistic T -indepen-
dence.

†A body of evidence is a pair (F , m), where F is the set of all focal elements.
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Variables X and Y are stochastically independent with respect to the joint distribution p if
for any pair (x, y) ∈ X×Y the equality

p(x, y) = p↓X(x) · p↓Y (x)

holds.
Variables X and Y are T -independent (where T is a continuous t-norm‡) with respect to a

joint possibility distribution π if for any x ∈ X and y ∈ Y

π(x, y) = T (π↓X(x), π↓Y (y)).

4 Relations of Independence Concepts

4.1 Bayesian basic assignments

For Bayesian basic assignments both random set independence and strong independence collapse
to stochastic independence. Therefore we can conclude:

Lemma 1 Let X and Y be variables with basic assignments mX and mY , respectively. If both
mX and mY are Bayesian, then X and Y are strongly independent if and only in they are
independent in the sense of random set independence.

4.2 Consonant bodies of evidence

The problem of the relation of (conditional) independence concepts for consonant bodies of
evidence was thoroughly studied in [12]. I that paper we showed by a simple counterexample,
that random set independence is inadequate in this case, as it leads to bodies of evidence which
are never more consonant. Furthermore we proved (for the proof see [12]) the following theorem.

Theorem 2 Let X and Y are strongly conditionally independent in distribution given Z. Then
X and Y are conditionally product-independent.

In case that the condition is empty, we get the relation for unconditional independence
concepts. This theorem says that strong independence is stronger than possibilistic independence
with respect to product t-norm.

4.3 General basic assignments

Now we will show that strong independence does not imply random set independence and
moreover its application to two general basic assignments leads to the resulting model behind
the limits of evidence theory.

Example 3 Consider two basic assignments mX and mY on X = {x, x̄} Y = {y, ȳ} specified
in Table 1 together with their beliefs and plausibilities. From these values we obtain credal sets
about variables X and Y :

M(X) = CH{(0.3, 0.7), (0.8, 0.2)},
M(Y ) = CH{(0.6, 0.4), (0.9, 0.1)}.

‡A triangular norm (or a t-norm) T is an isotonic, associative and commutative binary operator on [0, 1] (i.e.
T : [0, 1]2 → [0, 1]) satisfying the boundary condition: for any x ∈ [0, 1]

T (1, x) = x.

A t-norm T is called continuous if T is a continuous function.
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Table 1: Basic assignments mX and mY .

A ⊆ X mX(A) BelX(A) PlX(A) A ⊆ Y mY (A) BelY (A) PlY (A)
{x} 0.3 0.3 0.8 {y} 0.6 0.6 0.9
{x̄} 0.2 0.2 0.7 {ȳ} 0.1 0.1 0.4
X 0.5 1 1 Y 0.3 1 1

Table 2: Basic assignment mX ×mY .

C ⊆ X×Y PXY (C) PXY (C) mXY (C)

{xy} 0.18 0.72 0.18
{xȳ} 0.03 0.32 0.03
{x̄y} 0.12 0.63 0.12

{x̄ȳ} 0.02 0.28 0.02

{x} ×Y 0.3 0.8 0.09
{x̄} ×Y 0.2 0.7 0.06
X× {y} 0.6 0.9 0.3
X× {ȳ} 0.1 0.4 0.05
{xy, x̄ȳ} 0.34 0.74 0.14
{xȳ, x̄y} 0.26 0.66 0.11

X×Y \ {x̄ȳ} 0.72 0.98 0.55
X×Y \ {x̄y} 0.37 0.88 0.32
X×Y \ {xȳ} 0.68 0.97 0.87
X×Y \ {xy} 0.28 0.82 0.23

Under the assumption of strong independence we get

M(XY ) = CH{(0.18, 0.12, 0.42, 0.28), (0.27, 0.03, 0.63, 0.07),
(0.48, 0.32, 0.12, 0.08), (0.72, 0.08, 0.18, 0.02)}.

Let us compute lower and upper probabilities of all nonempty subsets of X×Y. Their values
can be found in second and third columns of Table 2.

In the last column one can find hypothetical values of basic assignment corresponding the
these lower and upper probabilities taken as beliefs and plausibilities computed via formula (2).
From this column one can see that X and Y do not satisfy random set independence, as mXY

assigns positive values also to subsets which are not of the form A = B × C. Furthermore, if
we take into account the equality (1), we get that mXY (X × Y) = −2.07, which violates the
nonnegativity of basic assignment, i.e. we are behind the limits of evidence theory. �

5 Conclusions

We have presented two different notions of independence in evidence theory: random set indepen-
dence and strong independence. We have shown, that although both of them are generalizations
of independence concept in probability theory, it does not hold in other cases. While the first one
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cannot be applied to consonant bodies of evidence, the second one can. On the other hand for
bodies of evidence, which are neither Bayesian nor consonant application of strong independence
produces models behind the limits of evidence theory.

These results lead us to the conclusion, that although the mentioned theories can be partially
ordered in the following way:

Possibility theory v Evidence theory v Credal sets

and
Probability theory v Evidence theory v Credal sets

their independence concepts are different and it is necessary to use as specific independence
concept as possible in order not to get out of the framework in question.
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