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Abstract. We consider an extended version of the Ramsey growth model under stochastic uncer-
tainties modelled by Markov processes. In contrast to the standard model we assume that splitting
of production between consumption and capital accumulation is influenced by some random factor,
e.g. governed by transition probabilities depending on the current value of the accumulated capital,
along with possible additional interventions of the decision maker. Basic properties of the standard
formulation are summarized and compared with their counterparts in the extended version. Finding
optimal policy of the extended model can be either performed by additional compensation of the
(random) disturbances or can be also formulated as finding optimal control of a Markov decision
process.
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1 Classical Ramsey Growth Model

The heart of the seminal paper of F. Ramsey [6] on mathematical theory of saving is an economy producing
output from labour and capital and the task is to decide how to divide production between consumption
and capital accumulation to maximize the global utility of the consumption. Ramsey’s original results from
1928 were revisited and significantly extended only after almost thirty years and at present the Ramsey
model can be considered as one of the three most significant tools for the dynamic general equilibrium
model in modern macroeconomics. In [6] the problem was considered in continuous-time setting, Ramsey
suggested some variational methods for finding an optimal policy how to divide the production between
consumption and capital accumulation. However, in the recent literature on economic growth models
(see e.g. Le Van and Dana [2] or Majumdar, Mitra, and Nishimura [4]) the discrete-time formulation is
preferred.

The Ramsey growth model in the discrete-time setting can be formulated as follows:

We consider at discrete time points t = 0, 1, . . ., an economy in which at each time t there are Lt
(merely identical) consumers with consumption ct per individual. The number of consumers grow very
slowly in time, i.e. Lt = L0(1 + n)t for t with α := (1 + n) ≈ 1. The economy produces at time t gross
output Yt using only two inputs: capital Kt and labour Lt = L0(1+n)t. A production function F (Kt, Lt)
relates input to output, i.e.

Yt = F (Kt, Lt) with K0 > 0, L0 > 0 given. (1)

We assume that that F (·, ·) is a homogeneous function of degree one, i.e. F (θK, θL) = θF (K,L) for any
θ ∈ R.

The output must be split between consumption Ct = ctLt and gross investment It, i.e.

Ct + It ≤ Yt = F (Kt, Lt). (2)
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Investment It is used in whole (along with the depreciated capital Kt) for the capital at the next time
point t+ 1. In addition, capital is assumed to depreciate at a constant rate δ ∈ (0, 1), so capital related
to gross investment at time t+ 1 is equal to

Kt+1 = (1− δ)Kt + It. (3)

Preferences over consumption of a single consumer (resp. the considered Lt consumers) for the discount
factor β ∈ (0, 1) and the considered time horizon T are expressed by means of utility function u(·) as

Uβ(k0, T ) =
T∑
t=0

βtu(ct) (resp. Ūβ(k0, T ) = L0

T∑
t=0

(αβ)tu(ct)). (4)

The problem is to find the rule how to split production between consumption and capital accumulation
that maximizes global utility Uβ(k0, T ) of the consumers for a finite or infinite time horizon T .

In what follows let kt := Kt/Lt be the capital per consumer at time t, and similarly let yt := Yt/Lt
be the per capita output at time t. Recalling that the production function F (·, ·) is assumed to be
homogeneous of degree one, then f(kt) := F (kt, 1) denotes the per capita production per unit time. In
virtue of (2), (3) we get

ct + (1 + n)kt+1 − (1− δ)kt ≤ yt = f(kt), (5)

and if we set for simplicity α ≡ (1 + n) = 1 then (5) can be written as

ct + kt+1 + (1− δ)kt ≤ yt = f(kt). (6)

In the above formulation we assume that the per capita production function f(k) and the consumption
function u(c) fulfil some standard assumptions on production and consumption functions, in particular,
that:

AS 1. The function u(c) : R+ → R+ is twice continuously differentiable and satisfies u(0) = 0. Moreover,
u(c) is strictly increasing and concave (i.e., its derivatives satisfy u′(·) > 0 and u′′(·) < 0) with u′(0) = +∞
(so-called Inada Condition).

AS 2. The function f(k) : R+ → R+ is twice continuously differentiable and satisfies f(0) = 0. Moreover,
f(k) is strictly increasing and concave (i.e., its derivatives satisfy f ′(·) > 0 and f ′′(·) < 0) with f ′(0) =
M < +∞, limk→∞ f ′(k) < 1.

Since u(·) is increasing (cf. assumption AS 1) in order to maximize global utility of the consumers is
possible to replace (6) by the (nonlinear) difference equation

kt+1 + (1− δ)kt − f(kt) = −ct with k0 > 0 given (7)

or equivalently for f̃(k) := f(k)− (1− δ)k by

kt+1 − f̃(kt) = −ct with k0 given, (8)

where ct (t = 0, 1, . . .) with ct ∈ [0, f(kt−1)] is selected by the decision maker. Since the considered system
is purely deterministic the initial capital k0 along with the control policy ct fully determines development
of (kt, ct) over time. In particular, (cf. (4), (7)) for a given initial capital k0 policy ct is optimal for a
finite or infinite time horizon T if the global utility

Uβ(k0, T ) =
T∑
t=0

βtu(ct) =
T∑
t=0

βtu(f̃(kt)− kt+1) (9)

attains maximum for policy ĉt = u(f̃(k̂t)− k̂t+1), i.e. the value function

Ûβ(k0, T ) = max
(k,c)

T∑
t=0

βtu(f̃(kt)− kt+1) where (k, c) = {k0, c0, k1, c1, . . . , kT , cT }. (10)

Moreover, since the performance function is separable (in particular, additive) by the well-known
“principle of optimality” of dynamic programming we immediately conclude that for any time point
τ = 0, 1, . . . it holds

Ûβ(k0, T ) =
τ−1∑
t=0

βtu(ĉt) + βτ Ûβ(kτ , T − τ) (11)

Ûβ(kτ , T − τ) = max
kτ+1

[u(f̃(k̂τ )− kτ+1) + βÛβ(kτ+1, T − τ − 1)]. (12)
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The following simple facts may be useful for better understanding the development of the considered
economy over time.

Fact 1. i) If f ′(0) ≤ 1 (and hence f ′(k) < 1 for all k > 0), then by AS 2 every sequence {k0, k1, . . . , kt, . . .}
must be decreasing and limt→∞ kt = 0.

ii) If f ′(0) > 1 (and hence, since limk→∞ f ′(k) < 1, there exists some k′ such that f ′(k) < 1 for
all k > k′), then there exists some k∗ > 0 such that f(k∗) = k∗ and some km ∈ (0, k∗) such that
f(km)− km = maxk[f(k)− k].

iii) Supposing that k0 > k∗ then elements of any sequence {k0, k1, . . . , kt, . . .} must be decreasing for all
kt > k∗. Furthermore, if for some t = t` it holds kt` < k∗ then kt < k∗ for all t ≥ t`, but {kt, t ≥ t`} need
not be monotonous. However, in any case kt ≤ kmax = max(k0, k

∗) and f(kt) ≤ f(kmax) =: ymax for all
t = 0, 1, . . . .

In what follows we summarize some basic properties of value functions and sketch the corresponding
proofs (for details see e.g. [2]).

Result 1. Properties of the value function Ûβ(k0, T ).

i) (Monotonicity of value function at initial condition.)

In case that k′0 > k0 > 0 then it holds Ûβ(k′0, T ) ≥ Ûβ(k0, T ).

ii) (Continuity and differentiability of value function Ûβ(k0, T ).)

Ûβ(k0, T ) is differentiable function at initial condition k0.

iii) (Concavity and continuity of value function Ûβ(k0, T ).)

Ûβ(k0, T ) is concave and continuous with respect to initial condition k0.

iv) (Continuity and differentiability of value function Ûβ(k0, T ) at discount factor β.)

Ûβ(k0, T ), as well as any feasible Uβ(k0, T ), is a continuous and differentiable function of discount factor
β.

v) (Truncation and infinite horizon.)

There exists limits Ûβ(k0) := limT→∞ Ûβ(k0, T ), and Ûβ(k0) converges monotonously to Ûβ(k0) as T →
∞. Note that since the discount factor β < 1 maximal global utility Ûβ(k0) is finite also if f ′(0) < β−1

(cf. Fact 1i).

To verify parts i), ii), observe that if we start with initial condition k′0 > k0 and follow optimal policy
with respect to initial condition k0, except of enlarging initial c0 by ∆c0 = f(k′0)− f(k0) > 0 (recall that
by AS 1 and AS 2 f(k′0) > f(k0) and u(·) is increasing). For such policy we have Ũβ(k′0, T ) > Ûβ(k0, T ),
Ûβ(k′0, T ) ≥ Ũβ(k0, T ) and obviously Ûβ(k′0, T ) > Ûβ(k0, T ).
Moreover, Ûβ(k0, T ) must be continuous and differentiable function of the initial condition k0. To this end
observe that that Ûβ(k′0, T )− Ûβ(k0, T ) = u(f(k′0)k1)− u(f(k0)− k1) and u(·), f(·) are continuous and
differentiable functions by assumptions AS 1 and AS 2. Using the same way of reasoning we can conclude
continuity of any feasible function Uβ(k0, T ) with respect of k1, k2, . . . , kt and Ûβ(k0, T ) are continuous
functions of k0.

Part iii) is a consequence of concavity of instantaneous utility function u(·) (cf. AS 1) and per capita
production function f(·) (cf. AS 2). Since concave function defined on an open interval must be on this
interval continuous, it suffices to verify concavity. For details see [2].

Part iv) follows immediately for any feasible policy and by taking into account part i) and ii) for
optimal policies.

To verify part v) observe that if k ∈ [k0, k
∗] (cf. Fact 1ii)) and ct ∈ [0, f(kt)], hence u(ct) > 0 must be

bounded by some C <∞ implying that Ûβ(kτ , T − τ) = maxct∈[τ,T )

∑T
t=τ β

tu(ct) ≤ βτC/(1− β), and
Ûβ(kτ , T − τ) is decreasing in τ. Moreover, condition

∑∞
t=0 β

tu(ct) < ∞ is fulfilled even for unbounded
u(ct) if for some β̄ > β u(ct) < β̄tC (this holds if f ′(0) < β−1).
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2 The Growth Model Under Uncertainty

To include random shocks or imprecisions into the model, we shall assume that for a given value of kt we
obtain the output yt only with certain probability, in particular we assume that yt ∈ [fmin(kt), fmax(kt)]
(i.e. fmin(·) ≤ f(·) ≤ fmax(·), AS 2 also hold for f•(k)). Obviously, better results can be obtained if
we replace the rough estimates of yt generated by means of fmax(kt) and fmin(kt) by a more detailed
information on the (random) output yt generated by the capital kt.

To this end we shall assume that that in (6) yt = f(kt) is replaced by yt = Z(kt), where Z(·) is a
Markov process with state space I1 ⊂ R and transition probabilities p(y|k) from state k ∈ I1 in state
y ∈ I2 ⊂ R such that p(yt|kt) � p(y|kt) for each y 6= yt = f(kt) (obviously,

∑
y∈I2 p(y|k) = 1 for each

k ∈ I1). Moreover, we assume that the current value of the total output yt is known to the decision
maker and then the recourse decision (intervention) may be taken to reach immediately the optimal value
of kt+1 for the original model (cf. (10)–(12). Such an extension well corresponds to the models introduced
and studied in [8] and also in [3, 4]. Up to now we have assumed that the transition probabilities cannot
be influenced by the decision maker. In what follows we extend the model in such a way that p(y|k) will
be replaced by p(y|k, d) for d ∈ D = {1, 2, . . . , D} and some cost, denoted c(k, d), will be accrued to this
decision. Similarly, additional cost, denoted c̄(y, k̄), will be accrued to the recourse decision transferring
state y ∈ I2 to the desired state k̄ ∈ I1 (of course, c̄(k̄, k̄) = 0).

So the development of the considered system over time is given by the following diagram

k = kt

c(k,d)
p(y|k,d)

−−−−−−−−→ y = yt
c̄(y;k̄)

−−−−−−−−−→ k̄ = kt+1

The above model can be also treated as a structured controlled Markov reward process X with compact
state space I = I1 ∪ I2 (with I1 ∩ I2 = ∅), finite set D = {0, 1, . . . , D} of possible decisions (actions) in
each state k ∈ I1 and the following transition and cost structure:

p(y|k, d) : transition probability from k ∈ I1 → y ∈ I2 if decision d ∈ D is selected,
c(k, d) : cost of decision d ∈ D in state k ∈ I1,
c̄(y, k̄) : cost for intervention, i.e. immediate transition from state y ∈ I2 in k̄ ∈ I1,

r(y|k, d) : expected value of the one-stage reward obtained in state k if decision d ∈ D
is selected in state k; in particular

r(y|k, d) =
∫
y∈I2

p(y|k, d)[u(f(y))− (1− δ)k − y] dy,

r̄(y|k, d) : total expected reward earned by transition (including possible intervention)
from state k to state k̄, i.e.,

r̄(y|k, d) = r(y|k, d)− c(k, d)−
∫
y∈I2

p(y|k, d)c̄(y, k̄) dy.

Now we have two options:

1. Follow optimal policy found for the corresponding deterministic model (cf. (12)) in such a way that
we maximize by means of intervations transition rewards between consecutive states, i.e. at time
points t = 0, 1, . . . we maximize r̄(kt, kt+1, d) with respect to d ∈ D and follow the same policy as if
p(y|kt, d) = 1 for y = f(kt).

2. Consider the problem as finding optimal control policy of a β-discounted Markov decision chain with
compact state space and finite action space.

In the latter case for the considered time horizon T let the value function Ûβ(k, T−τ) denote expectation
of the maximal (random) global utility received in the remaining τ next transitions if the considered
Markov reward chain X is in state k ∈ I1 and optimal policy is followed. Then obviously

Ûβ(k, T − τ) = max
d∈D

∫
y∈I2

p(y|k, d)[r̄(y|k, d) + βÛβ(y, T − τ − 1)] dy, k ∈ I1, y ∈ I1 (13)

and for τ tending to infinity, i.e. when lim
T→∞

Ûβ(k, T ) = Ûβ(k), then

Ûβ(k) = max
d∈D

∫
y∈I2

p(y|k, d)[r̄(y|k, d) + βÛβ(y)] dy k ∈ I1, y ∈ I1. (14)
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Equation (14) demonstrates that part v) of Result 1 also holds in the considered extended version.
Similarly, also part i) of Result 1 (Monotonicity of value function in initial condition), as a common
property of Markov control processes holds for the considered extended version along with continuity and
differentiability of value function both at initial condition k and discount factor β (cf. Result 1, parts
ii) – iv)).

Unfortunately, assuming that Z is a Markov process with compact state space R then the model given
by (13), (14) is not suitable for numerical computation. To make the model computationally tractable
we it is necessary to approximate our system governed by (13), (14) by a discretized model with finite
state space and estimate the resulting errors caused by such approximation.

To this end, it is necessary to assume that the values of ct, kt, and yt take on only a finite number of
discrete values. In particular, we assume that for sufficiently small ∆ > 0 there exist nonnegative integers
c̄t, k̄t, and ȳt such that for every t = 0, 1, . . . it holds:
c̄t∆ = ct, k̄t∆ = kt, and ȳt∆ = yt with k̄t ≤ K := kmax/∆ and similarly ȳt ≤ Y := ymax/∆. Such
approach was discussed in [7], [9].

Conclusion. In this article we indicated possible applications of controlled Markov processes for the
analysis of extended versions of the growth models. As it was shown, many properties of the classical
model can be extended to the considered more general cases.
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