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1. Motivation and Objective

The usual optimization criteria examined in the literature on
stochastic dynamic programming, such as

a total discounted or
mean (average) reward (resp. cost) structures,

may be quite insufficient to characterize the problem from the
point of a decision maker.
To this end it may be preferable if not necessary to select more
sophisticated criteria that

also reflect the variability-risk
features of the problem.



Perhaps the best known approaches stem from the classical work
of Markowitz on mean variance selection rules oriented primarily on
the portfolio selection problem.

On this other hand risky decisions can be also eliminated using
exponential utility functions.

In this talk we focus attention on the so-called

risk-sensitive optimality criteria,

i.e., when expectation of the stream of rewards (or of costs)
generated by Markov chain is evaluated by an

exponential utility function.



The topic of risk-sensitive optimality criteria in Markov decision
processes initiated in 1972 in the seminal paper by Howard and
Matheson (Manag. Sci., vol. 23, pp. 356–369) and followed by
many researchers, e.g.

Jaquette Manag. Sci. (1976)
Hernández-Hernández, Marcus SCL (1996)
Bielecki, Hernández-Hernández, Pliska MMOR (1999)
Borkar, Meyn MOR (2002)
Cavazos-Cadena MMOR (2002), (2003), SCL (2008)
Cavazos-Cadena, Fernández-Gaucherand MMOR (1999),

IEEE AC (2000)
Cavazos-Cadena, Montes de Oca MOR (2003), JAP (2005)
Cavazos-Cadena, Hernández-Hernández AAP (2005),

SCL (2009)
Sladký Kybernetika (2008)



In the most of above papers the analysis was restricted to Markov
processes with a single class of recurrent states and no transient
states. Moreover, the analysis was restricted only to discrete-time
Markov decision chain, only little attention, if any was devoted to
the continuous-time Markov chains.

The aim of this talk is to extend the analysis to the case of general
case of unichain models, i.e. Markov chains with a single class of
recurrent states and non-empty set of transient states and indicate
how the method can be even extended to reducible (multichain)
Markov processes both in discrete- and continuous-time setting.

Our analysis of the risk-sensitive optimality in Markov decision
chains can be based on more complicated models of stochastic
dynamic programming where in discrete-time models transition
probability matrices are replaced by general nonnegative matrices
and in continuous-time case transition rate matrices are replaced
by matrices with nonnegative off-diagonal entries.



Motivational Example 1
Consider Markov decision chain with two states 1,2, possible
actions 1,2 only in state 1 and the following transition and reward
structure:

p11(1) =
1

e
, p12(1) = 1− 1

e
, p11(2) = 0, p12(2) = 1

p22 = 1, r11 = 1, r12 = r22 = 0

depicted in the following diagram:
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Obviously, regardless the selected action in state 1, state 1 is
transient, state 2 is absorbing, i.e. we consider unichain model.



If the process starts in state 1 and action 1 (blue line) is taken,
total reward received after n transitions is equal to∑n

k=1

(
1
e

)k
= e2

e−1 (1− 1
en ); hence is uniformly bounded by e2

e−1 ;

if action 2 (green line) is taken or if the chain starts in state 2 total
reward equals 0. Hence in both cases long run mean reward is
equal to zero.

On the other hand if the stream of received rewards is evaluated by
an exponential utility function eγx with risk sensitive coefficient
γ = 1 then if the chain starts in state 1 and action 1 is followed
then the expected value of utility function assigned to total reward
received in the n following transitions is equal to n and the
corresponding long run mean value equals 1. On the contrary if
action 2 is followed or if the chain starts in state 2 total reward
equals 1 and the corresponding long run mean value equals 0.

Similar example can be easily produced also for continuous-time
case.



Motivational Example 2
Consider the depicted Markov reward chain with 5 states and only
three possible actions in state 1 (in the remaining states no option
is possible); transition rewards are included.
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Observe that if the process starts in state 1 and the blue decision is
selected we obtain a constant sequence of one-stage rewards and
after k transitions the total reward R1(k) = 0.5 k.

Similarly, if in state 1 the green decision is selected we again obtain
a constant sequence of one-stage rewards and the total reward
R1(k) = 0.48 k .

On the contrary if in state 1 the red decision is taken the chain
visits only the states 1, 2, 3 and the sequence of received rewards
obeys a binomial distribution with parameter p. In particular of
p = 0.5 the total reward R1(k) = 0.5 k , however its variance
V1(k) = k 0.5 (1− 0.5) = 0.25 k .

Question: Should we prefer constant increase of the reward to a
time-varying reward with a little higher average value?



We show how the above mentioned generalization of stochastic
dynamic programming can help for better understanding of
risk-sensitive optimality in Markov decision processes and
extensions of above mentioned results, in particular, to unichain
models with transient state and multichain Markov processes.

Recall that in the Howard’s and Matheson’s seminal paper the
underlying Markov chain is assumed to be irreducible and
aperiodic. Then on multiplying transition probabilities by
nonnegative numbers the resulting matrix is again irreducible and
its Perron eigenvector is strictly positive.

We show that existence of strictly positive right Perron eigenvector
of the resulting matrix (not necessarily irreducible if the underlying
Markov chain has also transient states or more recurrent classes)
guarantees similar behavior as for the irreducible and aperiodic
case. Moreover, analogous algorithmic procedures of value and
policy iteration types for finding growth rate of expected utilities
and the corresponding certainty equivalents will be provided.



2. Notation and Preliminaries

We shall consider discrete- and continuous-time
Markov decision chains

X d = {Xn, n = 0, 1, . . .} and X c = {X (t), t ≥ 0}
with finite state spaces

I = {1, 2, . . . ,N} and a finite set

Fi = {1, 2, . . . ,Ki} of actions in state i ∈ I.

Supposing that in state i ∈ I action k ∈ Fi is selected, then
in discrete-time case
state j is reached in the next transition with a given
probability pk

ij and one-stage transition reward rij (or transition
cost cij) is accrued,
in continuous-time case
state j is reached with a given transition rate q(i , j |k), reward rate
r(i) (or cost rate c(i)) has been obtained in state i and transition
reward r(i , j) (or transition cost c(i , j)) is accrued.



We suppose that the stream of generated rewards or costs is
evaluated by an exponential utility function, say uγ(·), i.e. a utility
function with constant risk sensitivity γ ∈ IR. Then the utility
assigned to the (random) reward ξ is given by

uγ(ξ) :=

{
sign (γ) exp(γξ), if γ 6= 0

ξ for γ = 0.
(1)

If ξ is a (bounded) random variable then for the corresponding
certainty equivalent of the (random) variable ξ, say Zγ(ξ), since

uγ(Zγ(ξ)) = E[sign (γ) exp(γξ)]

(E is reserved for expectation), we immediately get

Zγ(ξ) =

{
1
γ ln{E [exp(γξ)]}, if γ 6= 0

E[ξ] for γ = 0.
(2)



A (Markovian) policy, say π, controlling the chain is a rule how to
select actions in each state.
For the discrete-time models policy π = (f 0, f 1, . . .) where for
n = 0, 1, 2, . . . f n ∈ F ≡ F1× . . .×FN and f n

i ∈ Fi is the decision
at the nth transition when the chain X c is in state i .

For the continuous-time case policy π = f (t), is a piecewise
constant, right continuous vector function where f (t) ∈ F and
fi (t) ∈ Fi is the decision (or action) taken at time t if the process
X (t) is in state i . Then for each π we can identify time points
0 < t1 . . . < ti < . . . at which the policy switches; we denote by
f i ∈ F the decision rule taken in the time interval (ti−1, ti ].

Policy π is stationary if it takes at all times the same decision rule,
i.e. selects actions only with respect to the current state.
Stationary policy is fully identified by decision vector f selecting
the transition probability matrix P(f ) of X c or transition rate
matrix Q(f ) with elements q(j |i , fi ) of X d, and hence by the
Kolmogorov equation also the transition probability matrix
P(f )π(0, t) along with pπ(t) probability distribution at time t.



For the more detailed analysis it is required to consider the
discrete- and continuous-time case separately.

Discrete-time Markov Chains

ξn =
n−1∑
k=0

rXk ,Xk+1
.... stream of transition rewards

received in the n next transitions,

ξ(m,n) ... total (random) reward obtained from the mth up to
the nth transition (obviously, ξn = rX0,X1 + ξ(1,n)).

If γ 6= 0 then uγ(ξn) := sign (γ) eγ
∑n−1

k=0 rXk ,Xk+1

is the (random) utility assigned to ξn, and

Zγ(ξn) =
1

γ
ln {E[eγ

∑n−1
k=0 rXk ,Xk+1 ]} its certainty equivalent.

If γ = 0 then uγ(ξn) =
n−1∑
k=0

rXk ,Xk+1
, and Zγ(ξn) = E[

n−1∑
k=0

rXk ,Xk+1
].



Supposing that the chain starts in state X0 = i and policy π = (f n)
is followed, then for the expected utility in the n next transitions
and the corresponding certainty equivalent we have (Eπi denotes
expectation if policy π is followed and X0 = i)

Uπ
i (γ, 0, n) := Eπi [exp(γ

n−1∑
k=0

rXk ,Xk+1
)]

Ūπ
i (γ, 0, n) := (sign γ)Eπi [exp(γ

n−1∑
k=0

rXk ,Xk+1
)]

Zπ
i (γ, 0, n) :=

1

γ
ln {Eπi [exp(γ

n−1∑
k=0

rXk ,Xk+1
)]}

=
1

γ
Uπ

i (γ, 0, n).



In what follows we shall often abbreviate

Uπ
i (γ, 0, n) by Uπ

i (γ, n), and

Zπ
i (γ, 0, n) by Zπ

i (γ, n).

Moreover,

Uπ(γ, n) is the vector of absolute values of expected utilities
whose ith element equals Uπ

i (γ, n).

Similarly,

Zπ(γ, n) is reserved for the vector of certainty equivalents
whose ith element equals Zπ

i (γ, n), and

Jπi (γ) := lim inf
n→∞

1
nZπ

i (γ, n) is the mean value of Zπ
i (γ, n)

over time.



Continuous-time Markov Chains

Let for any piecewise constant policy π = f (t)

ξπX (0)(t) =

∫ t

0
r(X (τ))dτ +

N(t)∑
k=0

r(X (τ−),X (τ+))

be the total (random) reward obtained up to time t,
where X (t) denotes the state at time t, X (τ−), X (τ+) is the state
just prior and after the kth jump, and N(t) is the number of jumps
up to time t.
Similarly

ξπX (t′)(t ′, t) =

∫ t

t′
r(X (τ))dτ +

N(t)∑
k=N(t′)

r(X (τ−),X (τ+))

is the total (random) reward obtained in the time interval [t ′, t).



Then
uγ(ξπX (0)(t)) and uγ(ξπX (0)(t)ξπX (t′)(t ′, t))

is the (random) value of the exponential utility assigned to ξπX (0)(t)

and to ξπX (t′)(t ′, t) respectively.
Moreover,

Uπ
i (γ, t) := E{|uγ(ξπi (t))|}, Uπ

i (γ, t ′, t) := E{|uγ(ξπi (t ′, t))|}

is the absolute value of the expected utility assigned to ξπX (0)(t)

for X0 = i and to ξπX (t′)(t ′, t) for X (t ′) = i respectively, and

Zπ
i (γ, t) :=

1

γ
Uπ

i (γ, t)

is the certainty equivalent corresponding to Uπ
i (γ, t).



For what follows it will be convenient to introduce more compact
notations. To this end

Uπ(γ, t) is the vector of absolute values of expected utilities
whose ith element equals Uπ

i (γ, n).

Similarly,

Zπ(γ, t) is reserved for the vector of certainty equivalents
whose ith element equals Zπ

i (γ, t), and

Jπi (γ) := lim inf
t→∞

1
t Z

π
i (γ, t) is the mean value of Zπ

i (γ, t)

over time.



3. Risk-Sensitive Optimality and Nonnegative Matrices

Discrete-time Markov Chains

Conditioning on X1 we have

uγ(ξn) = E[eγ rX0,X1 · uγ(ξ(1,n))|X1 = j ].

Hence we immediately get for p̄fi
ij := pfi

ij · eγrij

Ūπ
i (γ, 0, n) := sign (γ)Eπi [exp(γ

n−1∑
k=0

rXk ,Xk+1
)]

=
∑
j∈I

p̄
f 0
i

ij Ūπ
j (γ, 1, n)

Uπ
i (γ, 0, n) =

∑
j∈I

p̄
f 0
i

ij Uπ
j (γ, 1, n) (3)

with Uπ
i (γ, n, n) = 1.



In vector notation we can write

Uπ(γ, 0, n) = P̄
(γ)

(f 0) ·Uπ(γ, 1, n) (4)

where the ij-th entry of P̄
(γ)

(f ) equals p̄fi
ij = pfi

ij · eγrij
and Uπ(γ, n, n) = e (unit column vector).

Observe that the set of matrices {P̄(γ)
(f ), f ∈ F}

fulfils the “product property.”

Iterating (4) we immediately get

Result 1. If policy π = (f n) is followed then

Uπ(γ, n)= P̄
(γ)

(f 0)·P̄(γ)
(f 1)·. . .·P̄(γ)

(f n−1) · e. (5)

In particular, for γ = 0 we have

Uπ(0, n)=P(f 0)·P(f 1)·. . .·P(f n−1) · e = e.



Continuous-time Markov Chains

Now we present continuous-time analog of (5) for the
continuous-time Markov chain X c.

Result 2. The expected utility Uπ
i (γ, t) for any (i = 1, . . . ,N) and

t ∈ [0, t∗] where Uπ
i (γ, t∗) = 1 fulfills the following set of

differential equations

dUπ
i (γ, t)

dt
= [qii (fi (t) + γr(i)]Uπ

i (γ, t)

+
N∑

j=1,j 6=i

qij(fi (t))eγr(i) · Uπ
j (γ, t)

that can be also written in matrix form as

dUπ(γ, t)

dt
= Q̄

(γ)
(f (t)) ·Uπ(γ, t), with Uπ(γ, t∗) = e (6)



where Q̄
(γ)

(f ) = [q̄γij (fi )] is an N × N matrix with nonnegative
off-diagonal elements

q̄γij (fi ) =

{
qii (fi ) + γ · r(i) for i = j

qij(fi ) · eγ r(i ,j) for i 6= j

Observe that if γ = 0 then Uπ(0, t) = Pπ(0, t) and (6) takes on
the standard form of the Kolmogorov equation for calculating
probability distribution of the Markov chain X c.

To verify (6), since uγ(·) is separable and multiplicative on taking
expectations and conditioning on X (∆) we immediately conclude
that

Uπ
i (γ, t + ∆) =

=
N∑

j=1

Pπ
ij (∆) · [eγr(i)∆δij + eγr(i ,j)(1− δij)] · Uπ

j (γ,∆, t + ∆).



Since for policy π = f (t)

Pπ
ij (∆) =

{
1 + qii (fi (0))∆ + o(∆2) for i = j

qij(fi (0))∆ + o(∆2) for i 6= j

on letting ∆→ 0+ we conclude that

Uπ
i (γ, t + ∆) = (1 + qii (fi (0))∆)eγr(i)∆ · Uπ

i (γ,∆, t + ∆)

+
N∑

j=1, j 6=i

qij(fi (0))∆eγr(ij) · Uπ
j (γ,∆, t + ∆) + o(∆2),

eγr(i)∆ = 1 + γr(i)∆ + o(∆2).

Observe that if π = f (t) is a piecewise constant policy controlling



the chain with switching time points
t0 = 0 < t1 < t2 < . . . < ti < . . . < tn−1 < t < tn such that
f (t) = f i for t ∈ (ti−1, t], i = 1, 2, . . . then

Uγ(π, t) =
n−1∏
i=1

exp[Q̄
(γ)

(f i )(ti − ti−1)] ·

exp[Q̄
(γ)

(f n)(t − tn−1)] · e

Hence Uπ(γ, t) is a linear combination of exponential functions
with the exponents being the eigenvalues of the matrix

Q̄
(γ)

(f ) = [q̄γij (fi )] and the real part of the eigenvalues determines
the growth of the elements of Uπ(γ, t).

Moreover, for the certainty equivalent we have
Zγ

i (π, t) = γ−1 ln Uγ
i (π, t) and

Jπi (γ) = lim supt→∞ t−1Zγ
i (π, t) is the mean value of Zγ

i (π, t).



4. Products of Nonnegative Matrices

We employ the following useful properties of the matrix family

{P̄(γ)
(f ) : f ∈ F}, ρ(f ) is the spectral radius of P̄

(γ)
(f ):

Result 3. If every P̄
(γ)

(f ) is irreducible, then there exists f ∗ ∈ F ,
and v(f ∗) > 0 (i.e. v(f ∗) strictly positive) such that for any f ∈ F

P̄
(γ)

(f ) · v(f ∗) ≤ P̄
(γ)

(f ∗) · v(f ∗) = ρ(f ∗) v(f ∗), ρ(f ∗) ≥ ρ(f ).
(7)

Moreover, (7) can be fulfilled even for reducible matrices,

on condition that P̄
(γ)

(f ∗) can be decomposed as

P̄
(γ)

(f ∗) =


P̄

(γ)
(00)(f ∗) P̄

(γ)
(01)(f ∗) . . . P̄

(γ)
(0r)(f ∗)

0 P̄
(γ)
(11)(f ∗) . . . 0

...
...

. . .
...

0 0 . . . P̄
(γ)
(rr)(f ∗)

 (8)

such that:



a) For the spectral radius of every irreducible class of

P̄
(γ)
(ii)(f ∗) (with i = 1, . . . , r) it holds

ρi (f
∗) = ρ(f ∗), and

b) the spectral radius of (possibly reducible) P̄
(γ)
(00)(f ∗)

is less than ρ(f ∗), and some P̄
(γ)
(0j)(f ∗) is nonvanishing.

Using the terminology of Markov chain theory, conditions a)
and b) can be formulated as:

Each irreducible class of P̄
(γ)
(00)(f ∗) has access to some diagonal

class P̄
(γ)
(ii)(f ∗) with i = 1, . . . , r ; accessibility is considered in

accordance with accessibility of the underlying Markov chain.

Remark. If every P̄
(γ)

(f ) is irreducible, then there also exists
f̂ ∈ F , such that v(f̂ ) > 0 and, for any f ∈ F , ρ(f̂ ) ≤ ρ(f )

P̄
(γ)

(f ) · v(f̂ ) ≥ P̄
(γ)

(f̂ ) · v(f ∗) = ρ(f̂ ) v(f̂ ).



Remark. Assume that in the matrix P(f ) contains a single class of
recurrent states. Since p̄fi

ij := pfi
ij · eγrij , i.e. elements of the matrix

P̄
(γ)

(f ), are continuous function of the risk aversion coefficient γ

and for γ sufficiently close to null the matrix P̄
(γ)

(f ) has a strictly
positive right Perron eigenvector. Hence it may happen that for
sufficiently large γ > 0 no strictly positive right Perron eigenvector

of P̄
(γ)

(f ) exists.

However, if (after suitable permutations of rows and corresponding
columns) the submatrix corresponding to transient states can be
written as a upper triangular matrix with null elements on the
main diagonal, spectral radius of the submatrix of transient state
equals zero, regardless the its elements and the recurrent state of
P(f ) must be reached in a number if transitions not exceeding the
number of transient states.



Up to now we have assumed existence of strictly positive right

Perron eigenvectors of the matrix P̄
(γ)

(f ). In general it holds the
following:

Fact 1. For a given matrix {P̄(γ)
(f ), f ∈ F} on suitably permuting

rows and corresponding columns the matrix P̄
(γ)

(f ) can be written
in the following block triangular form:

P̄
(γ)

(f ) =


P̄

(γ)
11 (f ) P̄

(γ)
12 (f ) . . . P̄

(γ)
1s (f )

0 P̄
(γ)
22 (f ) . . . P̄

(γ)
2s (f )

...
...

. . .
...

0 0 . . . P̄
(γ)
ss (f )

 (9)

where the diagonal blocks P̄
(γ)
ii (f ) with spectral radii ρi (f ) are

the “biggest” submatrices of P̄
(γ)

(f ) having strictly positive right
eigenvectors corresponding to ρi (f ), i.e.



P̄
(γ)
ii (f ) · vi (f ) = ρi (f ) · vi (f ), where

ρi (f ) ≥ ρi+1(f ) for i = 1, . . . , s.

Observe that each diagonal block P̄
(γ)
ii (f ) in (9) may be reducible

and if P̄
(γ)
ii (f ∗) is reducible, then it can be decomposed according

to (8).

It is not difficult to verify the assertion of Fact 1. Simply identify

the basic class(es) of P̄
(γ)

(f ), i.e. the irreducible classes with
maximal spectral radius, and identify those non-basic classes
having access to the basic class. In such a way we can construct

the diagonal class P̄
(γ)
11 (f ) and repeat the same procedure for the

remaining classes of the matrix P̄
(γ)

(f ).

For what follows the extension of the above results of Fact 1 on
the whole family of matrices {P̄(γ)

(f ), f ∈ F} is very important.



Result 4. For the set of nonnegative matrices there exists suitable
labelling of states such that:

Every P̄
(γ)

(f ) with f ∈ F is block triangular, i.e.

P̄
(γ)

(f ) =


P̄

(γ)
11 (f ) P̄

(γ)
12 (f ) . . . P̄

(γ)
1s (f )

0 P̄
(γ)
22 (f ) . . . P̄

(γ)
2s (f )

...
...

. . .
...

0 0 . . . P̄
(γ)
ss (f )

 (10)

where all P̄
(γ)
ii (f ) have fixed dimensions, and are the “biggest”

submatrices of P̄
(γ)

(f ) having strictly positive right eigenvectors
corresponding to the maximal possible spectral radii of the
corresponding submatrices, i.e.

there exists P̄
(γ)

(f ∗) along with vi (f
∗) > 0 (i. e. strictly positive)

such that for all i = 1, 2, . . . , s



ρi (f
∗) ≥ ρi (f ); ρi (f

∗) ≥ ρi+1(f ∗) (11)

P̄
(γ)
ii (f ) · vi (f

∗) ≤ P̄
(γ)
ii (f ∗) · vi (f

∗)

= ρi (f
∗) vi (f

∗) (12)

Observe that each diagonal block P̄
(γ)
ii (f ) in (10) may

be reducible and if P̄
(γ)
ii (f ) is reducible, then it can be

decomposed according to (8).

Remark. The proof of Result 3 can be performed by policy
iteration. However, to verify Result 4 it is possible to show that for

every f ∈ F P̄
(γ)

(f ) can be decomposed in a block-triangular form
according to (9). Then on combining policy iterations for each
diagonal block along with accessibility to diagonal blocks with
higher spectral radius we can finish the proof of Result 4.



We make the following assumption:

Assumption GA. A strict inequalities hold in the second part of
(16), i.e.:

ρ1(f ∗) > ρ2(f ∗) > . . . > ρs(f ∗) (13)

Remark. Observe the case ρi (f ) = ρi+1(f ) can be easily excluded,
since we may assume that, if necessary, after small perturbations of
some values pfi

ij and rij , we arrive at ρi (f ) > ρi+1(f ) and condition
(13) will be fulfilled.

Moreover, notice that the total reward or total β-discounted
reward of Markov decision chains with the linear utility function
can be also expressed as a product of nonnegative matrices:

P̄
(0)

(f ) =

[
P(f ) r(f )

0 1

]
or P̄

(0)
(f ) =

[
βP(f ) r(f )

0 1

]
and for the undiscounted case no strictly positive right Perron

eigenvector of P̄
(0)

(f ) exists.



Extension to Products of Matrices with
Nonnegative Off-Diagonal Entries

Considering any matrix with nonnegative off-diagonal entries, say

Q̄
(γ)

(f ), then for α > 0 sufficiently large the resulting matrix

P̄
(γ)

(f ) := (Q̄
(γ)

(f ) + αI) is nonnegative (I... identity matrix).

Moreover, if λ(f ) is an eigenvalue of Q̄
(γ)

(f ) then

(λ(f ) + α) is an eigenvalue of P(γ)(f ) and the corresponding

eigenvectors of P̄
(γ)

(f ) and Q̄
(γ)

(f ) are identical. In particular, for

the spectral radius of P̄
(γ)

(f ) and the maximum real eigenvalue

σ(f ) of Q̄
(γ)

(f ) we have

ρ(f ) = (σ(f ) + α) and v(f ) is the corresponding Perron

eigenvector for both P̄
(γ)

(f ) and Q̄
(γ)

(f ).

Moreover, from the previous results for nonnegative matrices we
immediately conclude the following facts:



Result 5. If every Q̄
(γ)

(f ) is has strictly positive right Perron
eigenvector (e.g. if it is irreducible), then there exists f ∗ ∈ F , and
v(f ∗) > 0 such that for any f ∈ F

Q̄
(γ)

(f ) · v(f ∗) ≤ Q̄
(γ)

(f ∗) · v(f ∗) = σ(f ∗)v(f ∗). (14)

Result 6. For the set {Q̄(γ)
(f ), f ∈ F} of matrices with

nonnegative off-diagonal entries there exists suitable labelling of
states such that:

Every Q̄
(γ)

(f ) with f ∈ F is block triangular, i.e.

Q̄
(γ)

(f ) =


Q̄

(γ)
11 (f ) Q̄

(γ)
12 (f ) . . . Q̄

(γ)
1s (f )

0 Q̄
(γ)
22 (f ) . . . Q̄

(γ)
2s (f )

...
...

. . .
...

0 0 . . . Q̄
(γ)
ss (f )

 (15)



where all Q̄
(γ)
ii (f ) have fixed dimensions, and are the “biggest”

submatrices of Q̄
(γ)

(f ) having strictly positive right eigenvectors
corresponding to the maximal possible spectral radii of the

corresponding submatrices, i.e. there exists Q̄
(γ)

(f ∗) along with
vi (f

∗) > 0 (i. e. strictly positive) such that for all i = 1, . . . , s

σi (f
∗) ≥ σi (f ); σi (f

∗) ≥ σi+1(f ∗) (16)

Q̄
(γ)
ii (f ) · vi (f

∗) ≤ Q̄
(γ)
ii (f ∗) · vi (f

∗) = σi (f
∗) vi (f

∗) (17)

Observe that each diagonal block Q̄
(γ)
ii (f ) in (15) may

be reducible and if on suitably permuting rows and corresponding

columns of Q̄
(γ)

(f ) it is possible to decompose Q̄
(γ)

(f ) in the
following block-triangular form:

Q̄
(γ)

(f ) =

 Q̄
(γ)
(NN)(f ) Q̄

(γ)
(NB)(f )

0 Q̄
(γ)
(BB)(f )

 (18)



where Q̄
(γ)
(NN)(f ) and Q̄

(γ)
(BB)(f ) (with maximum real eigenvalues

σ
(γ)
(N)(f ) and σ

(γ)
(B)(f )) are (in general reducible) matrices such that:

I σ(N)(f ) < σ(f ),

I σ(B)(f ) = σ(γ)(f ) and Q̄
(γ)
(BB)(f ) is diagonal with irreducible

diagonal blocks Q̄
(γ)
(ii)(f ) (for i = 1, . . . , r), such that the real

eigenvalue σi (f ) of every Q̄
(γ)
(ii)(f ) is equal to σ(f ),

I maximum real eigenvalue of each irreducible class of Q̄
(γ)
(NN)(f )

is less than σ(γ)(f ), and each class has access to Q̄
(γ)
(BB)(f ).

Observe that the above decomposition well correspond to the
canonical decomposition of a continuous-time multichain transition
rate matrix.



5. Asymptotic Behaviour of Expected Utilities

Discrete-time Case

Recall that in vector notation we can write

Uπ(γ, 0, n) = P̄
(γ)

(f 0) ·Uπ(γ, 1, n) (19)

where the ij-th entry of the N × N matrix P̄
(γ)

(f )
is equal to p̄fi

ij = pfi
ij · eγrij , and Uπ(γ, n, n) = e.

Iterating (19) we get if policy π = (f n) is followed

Uπ(γ, n)= P̄
(γ)

(f 0)·P̄(γ)
(f 1)·. . .·P̄(γ)

(f n−1)·e. (20)



Observe that in general the matrix P̄
(γ)

(f ) can be decomposed
according to (17) and there exists decision vector f ∗ ∈ F such that
for all i = 1, 2, . . . , s

ρi (f
∗) ≥ ρi (f ); ρi (f

∗) ≥ ρi+1(f ∗)

ρi (f
∗)vi (f

∗) = P̄
(γ)
ii (f ∗) · vi (f

∗)

≥ P̄
(γ)
ii (f ) · vi (f

∗)

Now we focus attention on the case with s = 1, i.e. we set

P̄
(γ)

(f ) = P̄
(γ)
11 (f ) and assume that the underlying Markov chain

contains one communicating class of recurrent states and some
transient states, i.e.

P(f ) =

[
PTT (f ) PTR(f )

0 PRR(f )

]



Since for elements of P̄
(γ)

(f ) we have

p̄f
ij := pf

ij · eγrij

at least γ sufficiently close to 0 it holds

ρ(P̄
(γ)
TT (f )) < ρ(P̄

(γ)
RR(f )) for any f ∈ F .

Under the above condition the basic class of P̄
(γ)

(f ∗)
corresponds to the communicating class of P(f ), and
there exists ρ(f ∗) = ρ∗ and v(f ∗) > 0 (strictly positive)
such that (cf. (14), (15))

P̄
(γ)

(f ) · v(f ∗) ≤ ρ(f ∗) · v(f ∗) = P̄
(γ)

(f ∗) · v(f ∗),

ρ(f ) ≤ ρ(f ∗) ≡ ρ∗ for all f ∈ F .



Iterating (4) and using (5) we can immediately conclude
that for any policy π = (f n)

n−1∏
k=0

P̄
(γ)

(f n) · v(f ∗) ≤ (P̄
(γ)

(f ∗))n · v(f ∗)

= (ρ∗)n · v(f ∗) (21)

and hence the asymptotic behaviour of Uπ(γ, n)
(or of Uπ(γ,m, n) if m is fixed) heavily depends on ρ(f ∗).

Moreover, for any stationary policy π ∼ (f ) we have

ρ(f ) v(f ) = P̄
(γ)

(f ) · v(f ) (22)



i.e. for unknowns g(f ), wi (f ) (i = 1, . . . ,N)
defined by

vi (·) = eγwi (·), ρ(f ) = eγg(f )

from (22) we get the following set of equations

eγ(g(f )+wi (f )) =
∑
j∈I

pfi
ij · e

γ(rij +wj (f )) (23)

Keeping this notations (21) can be written

eγ(g(f )+wi (f
∗)) ≤ eγ(g(f ∗)+wi (f

∗))

=
∑
j∈I

p
f ∗i
ij · e

γ(rij +wj (f
∗))

for i = 1, . . . ,N (24)



and the set of equations (with respect to g(f ), wi (f )’s)

eγ(g(f )+wi (f )) = max
f ∈F

{∑
j∈I

pfi
ij · e

γ(rij +wj (f ))
}

(25)

can be called as

γ-average reward optimality equation.

In the multiplicative form (used before) we write

ρ(f ) · vi (f ) = max
f ∈F

{∑
j∈I

pfi
ij · e

γrij · vj(f )
}

for i = 1, . . . ,N (26)

Observe that the solution to (26) is unique up to
a multiplicative constant, say K .



Since vi (·) = eγwi (·) and wi (·)’s must be unique up to an additive
constant, say c̄ , where

K = eγc̄ ⇐⇒ K̄ =
1

γ
· ln K .

Now we shall consider the case with s = 2.

We again assume that the Markov chain contains a single class of
recurrent states and some transient states, i.e.

P(f ) =

[
PTT (f ) PTR(f )

0 PRR(f )

]
but for the selected value of γ the basic class of

P̄
(γ)

(f ) (with elements p̄f
ij := pf

ij · eγrij )



is contained in the set of transient states of P(f ),
and is unique.
Then the resulting matrix can be decomposed as

P̄
(γ)

(f ) =

[
P̄

(γ)
11 (f ) P̄

(γ)
12 (f )

0 P̄
(γ)
22 (f )

]
(27)

with ρ1(f ) > ρ2(f ) and

v1(f ) > 0, v2(f ) > 0

such that

ρ1(f )v1(f ) = P̄
(γ)
11 (f ) · v1(f ), and

ρ2(f )v1(f ) = P̄
(γ)
22 (f ) · v2(f ).

Then ε(f ) := ρ2(f )/ρ1(f ) < 1.



Since

(P̄
(γ)

(f ))n =

 (P̄
(γ)
11 (f ))n

∑
k+`=n−1

(P̄
(γ)
11 (f ))k P̄

(γ)
12 (f )(P̄

(γ)
22 (f ))`

0 (P̄
(γ)
22 (f ))n


(28)

we can conclude that for some P̄
(γ)
12 ≥ P̄

(γ)
12 (f )

such that P̄
(γ)
12 · v2(f ) = α · v1(f )

it holds ∑
k+`=n−1

(P̄
(γ)
11 (f ))k · P̄(γ)

12 (f ) · (P̄
(γ)
22 (f ))` · v2(f )

≤ α · (ρ1(f ))k · (ρ2(f ))`v1(f )

≤ α · (ρ1(f ))n−1 · 1

1− ε(f )
· v1(f )



Hence for suitably selected v1(f ), v2(f )

[
Uπ

1 (γ, n)

Uπ
2 (γ, n)

]
≤

 P̄
(γ)
11 (f ) P̄

(γ)
12 (f )

0 P̄
(γ)
22 (f )

n

·

[
v1(f )

v2(f )

]

≤

 (ρ1(f ))n
{
ρ1(f ) + α 1

1−ε(f ) ·
}
· v1(f )

(ρ2(f ))n · v2(f )



and the maximal growth rate of Uπ
1 (γ, n), Uπ

2 (γ, n)
is bounded by ρ1(f ), ρ2(f ) respectively.



Continuous-time Case

Recall that in the continuous-time setting the vector of expected
utilities Uπ(γ, t) satisfies for t ∈ [0, t∗) the following differential
equation

dUπ(γ, t)

dt
= Q̄

(γ)
(f (t)) ·Uπ(γ, t), with Uπ(γ, t∗) = e (29)

where Q̄
(γ)

(f ) = [q̄γij (fi )] is an N × N matrix with nonnegative
off-diagonal elements

q̄γij (fi ) =

{
qii (fi ) + γ · r(i) for i = j

qij(fi ) · eγ r(i ,j) for i 6= j

Observe that if π = f (t) is a piecewise constant policy controlling
the chain with switching time points
t0 = 0 < t1 < t2 < . . . < ti < . . . < tn−1 < t∗ < tn such that
f (t) = f i for t ∈ (ti−1, ti ], i = 1, 2, . . . then



Uγ(π, t) =
n−1∏
i=1

exp[Q̄
(γ)

(f i )(ti − ti−1)]

· exp[Q̄
(γ)

(f n)(t − tn−1)] · e

Hence Uπ(γ, t) is a linear combination of exponential functions
with the exponents being the eigenvalues of the matrix

Q̄
(γ)

(f ) = [q̄γij (fi )] and the real part of the eigenvalues determines
the growth of the elements of Uπ(γ, t).

Similarly to the discrete-time case, if for every f ∈ F the matrix

Q̄
(γ)

(f ) is irreducible, or at least every Q̄
(γ)

(f ) has a strictly
positive eigenvector corresponding to σ(γ)(f ), there exists
σ̂(γ) ≡ σ(γ)(f̂ ) and ν̂(γ) ≡ v (γ)(f ∗) > 0 (i.e. strictly positive
eigenvector corresponding to σ(γ) such that

σ̂(γ) ν̂(γ) = max
f ∈F
{Q̄(γ)

(f ) · ν̂(γ)} = Q̄
(γ)

(f ∗) · ν̂(γ). (30)



Moreover, if condition (30) is fulfilled then for numbers

α
(γ)
2 > α

(γ)
1 > 0 selected such that α

(γ)
2 ν(f ∗) > e > α

(γ)
1 ν(f ∗)

we conclude that

U(γ)(π, t) =
n−1∏
i=1

exp[Q̄
(γ)

(f i )(ti − ti−1)] ·

exp[Q̄
(γ)

(f n)(t − tn−1)] · e

≤ α
(γ)
2 exp[Q̄

(γ)
(f ∗)t] ν(f ∗).

However,

Uπ∗(γ, t) = exp[Q̄
(γ)

(f ∗)]e ≥ α(γ)
1 exp[Q̄

(γ)
(f ∗)t] ν(f ∗)

So we have arrived at the following fact.



If condition (30) holds then for a given γ there exist numbers

α
(γ)
2 > α

(γ)
1 > 0 such that for stationary policy π∗ ∼ f ∗ and for

arbitrary piecewise constant policy π = f (t) it holds

α
(γ)
1 v (γ)(f ∗) ≤ exp[−σ̂t] Uπ∗(γ, t) (31)

α
(γ)
2 v (γ)(f ∗) ≥ exp[−σ̂t] Uπ(γ, t). (32)

This may be rephrased in words as:

Under condition (30) if policy π = f (t) maximizing Uπ(γ, t) is
followed the growth rate of each element of Uπ(γ, t) is the same
and equals σ̂. Moreover, stationary policy π∗ ∼ f ∗ also maximizes
the growth rate.

Summarizing these facts we arrive at



Result 7. If condition (30) holds then for any policy π = f (t)
the asymptotical mean value (i.e. maximum average reward) Jπi (γ)
is bounded from below by γ−1 σ̂.
Moreover, stationary policy π̂ ∼ f̂ yields the maximal asymptotical
mean value Jπi (γ) that is independent of the starting state i ∈ I
and equal to γ−1 σ̂.

Up to now our analysis of the continuous-time case was based on
maximizing real eigenvalue of a set of matrices with nonnegative
off-diagonal entries (cf. (29)), in particular

σ(γ)(f ) ν(γ)(f ) = Q̄
(γ)

(f ) · ν(γ)(f ) (33)

σ̂(γ) ν̂(γ) = max
f ∈F
{Q̄(γ)

(f ) · ν̂(γ)} (34)

However, in the discrete-time case we have shown that finding
maximal ρ(γ)(f ) is the same as finding solution of the well-known
Poissonian equations.



Similarly, for the continuous-time case let us introduce ḡ(f ),
w̄i (f ) (i = 1, . . . ,N) such that

νi (·) = eγw̄i (·), σ(·) = eγḡ(·)

Then from (33) we get the following set of equations

eγ[ḡ(f )+w̄i (f )] =
∑

j∈I, j 6=i

qij(fi ) · eγ[r(i ,j)w̄j (f )]

+ [qii (fi ) + γr(i)] eγw̄i (f ) (35)

Similarly, from (34) we have for i = 1, . . . ,N

eγ(ḡ(f )+w̄i (f )) ≤ eγ(ḡ(f ∗)+w̄i (f
∗) =

∑
j∈I j 6=i

qij(f
∗
i ) · eγ(r(i ,j)+w̄j (f

∗)

+ [qii (f
∗
i ) + γr(i)] eγw̄i (f

∗) (36)



Hence the set of equations (with respect to ḡ(f ), w̄i (f )’s)

eγ(ḡ(f )+w̄i (f )) = max
f ∈F
{
∑

j∈I j 6=i

qij(fi ) · eγ(r(i ,j)+w̄j (f )

+ [qii (fi ) + γr(i)] eγw̄i (f ) (37)

can be called

continuous-time γ-average reward optimality equation.
Observe that the solution to (36) is unique up to a multiplicative
constant, say K , and the values w̄i (·)’s in (37) must be unique up
to an additive constant, say c̄ , where K = eγc̄ .

Similarly to nonnegative matrices, considering a (reducible) matrix

Q̄
(γ)

(f ) with nonnegative off-diagonal entries, there exists f ∗ ∈ F
and a block-triangular decomposition of Q̄

(γ)
(f ∗) such that every

matrix Q̄
(γ)

(f ) has a block-triangular structure with some specific
properties summarized as



Result 8. There exists f ∗ ∈ F and a suitable labelling of states
inducing the partition of the state space I, say Î ≡

⋃s
i=1 Ii (f ∗),

called the basic partition, such that:

Keeping the partition in accordance of Î then each Q̄
(γ)

(f ) is
block triangular, i.e.

Q̄
(γ)

(f ) =


Q̄

(γ)
11 (f ) Q̄

(γ)
12 (f ) . . . Q̄

(γ)
1s (f )

0 Q̄
(γ)
22 (f ) . . . Q̄

(γ)
2s (f )

...
...

. . .
...

0 0 . . . Q̄
(γ)
ss (f )

 , ∀f ∈ F

(38)

where all Q̄
(γ)
ii (f ) have fixed dimensions equal to card Ii (f ∗), and

for i = 1, . . . , s Q̄
(γ)
ii (f ∗)’s are the “biggest” submatrices of Q̄

(γ)
(f )

having strictly positive right eigenvectors corresponding to the
maximum real eigenvalues of the corresponding submatrices, i.e.



there exists Q̄
(γ)
ii (f ∗) along with v

(γ)
i (f ∗) > 0 such that for any

f ∈ F and all i = 1, 2, . . . , s

σ
(γ)
i (f ∗) ≥ σ(γ)

i (f ); σ
(γ)
i (f ∗) ≥ σ(γ)

i+1(f ∗) (39)

Q̄
(γ)
ii (f ) · v (γ)

i (f ∗) ≤ Q̄
(γ)
ii (f ∗) · v (γ)

i (f ∗) (40)

= σ
(γ)
i (f ∗) v

(γ)
i (f ∗).

Observe that σ
(γ)
1 (f ∗) = σ(γ)(f ∗) and that each diagonal block

Q̄
(γ)
ii (f ) in (38) may be reducible, and if Q̄

(γ)
ii (f ∗) is reducible then

it can be decomposed similarly as in (19).

We make the following assumption:

Assumption GB. For a given value of the risk aversion coefficient
γ a strict inequalities holds in the second part of (39), i.e.:

σ
(γ)
1 (f ∗) > σ

(γ)
2 (f ∗) > . . . > σ

(γ)
s (f ∗). (41)



Remark Observe that the case σ
(γ)
i (f ) = σ

(γ)
i+1(f ) can be easily

excluded, since, if necessary, we may assume that after small
perturbations of some values qij(fi ) and r(i , j) (i.e. the

perturbation of q
(γ)
ij (fi )), we arrive at σ

(γ)
i (f ) > σ

(γ)
i+1(f ) and

condition (41) will be fulfilled.

So we have arrived at the following

Result 9. Let Assumption GB hold. Then for the matrix Q̄
(γ)

(f ∗)
with f ∗ ∈ F decomposed in accordance with the basic partition of
the state space Î = I1(f ∗) ∪ I2(f ∗) ∪ . . . ∪ Is(f ∗) it holds:
Maximum possible growth rate is the same for each j ∈ Ii (f ∗) and

is equal to σ
(γ)
i (f ∗). Moreover, this growth rate can be obtained if

stationary policy π∗ ∼ f ∗ is followed. Moreover, maximal average
rewards Jπ

∗
j (γ) are the same for each j ∈ Ii (f ∗) and are equal to

(γ)−1σ
(γ)
i (f ∗).



6. Value and Policy Iteration Algorithms

Recalling (5) we get if policy π = (f n) is followed

Uπ(γ, n)= P̄
(γ)

(f 0)·P̄(γ)
(f 1)·. . .·P̄(γ)

(f n−1) · e.

In case that there exists decision vector f ∗ ∈ F such that

P̄
(γ)

(f ) · v(f ∗) ≤ ρ(f ∗) v(f ∗) = P̄
(γ)

(f ∗) · v(f ∗), (42)

ρ(f ) ≤ ρ(f ∗) ≡ ρ∗ for all f ∈ F . (43)

we can immediately conclude that for π = (f n)

n−1∏
k=0

P̄
(γ)

(f k) · v(f ∗) ≤ (P̄
(γ)

(f ∗))n · v(f ∗)

= (ρ(f ∗))n · v(f ∗) (44)



Hence, since v(f ∗) > 0, on selecting v(f ∗) ≥ e, say we set
vupb(f ∗) := v(f ∗) ≥ e, (44) yields an lower bound on the growth
of Uπ(γ, n).

From (44) we can easily conclude that if (42), (43) hold maximum
possible growth of every Uπ∗

i (γ, n) is given by ρ∗.

Then for the corresponding values of certainty equivalents we get
for i = 1, 2, . . . ,N since γ 6= 0

Zπ∗
i (γ, n) =

1

γ
· ln[Uπ∗

i (γ, n)] =
1

γ
· [n ln(ρ∗) + wi ] (45)

and for the mean value of certainty equivalents we have

Jπ
∗

i (γ) =
1

γ
· ln[ρ∗] (46)



The above procedures also enables to generate upper and lower
bounds of the minimum growth rate and the corresponding
certainty equivalents.

To this end, let us generate a sequence of maximum possible
expected utilities by the following dynamic programming recursion
for n = 0, 1, . . .:

Û(n + 1) = max
f ∈F

P̄
(γ)

(f ) · Û(n) := P̄
(γ)

(f̄ n) · Û(n),

with Û(0) = e. (47)

Then on employing elements of the sequence Û(n) we can easily
generate upper and lower bounds on the maximal growth rate ρ∗,
denoted ρmax(n) and ρmin(n) respectively, where

ρmax(n) := max
i∈I

Ûi (n + 1)

Ûi (n)
, ρmin(n) := max

i∈I

Ûi (n + 1)

Ûi (n)



Result 10. If there exists f ∗ ∈ F , and v(f ∗) > 0 such that for any
f ∈ F

P̄
(γ)

(f ) · v(f ∗) ≤ P̄
(γ)

(f ∗) · v(f ∗)

the sequence {ρmax(n)} resp. {ρmin(n)} is nonincreasing, resp.
nondecreasing, and if P(γ)(f ∗) is aperiodic then

lim
n→∞

ρmax(n) = lim
n→∞

ρmin(n) = ρ∗

where ρ∗ is the miximal possible growth rate.

The same holds also for mean values of the corresponding certainty
equivalents. In particular,
Jmax(γ, n) := 1

γ ln[ρmax(n)], Jmin(γ, n) := 1
γ ln[ρmin(n)],

and the sequence {Jmax(γ, n)}, resp. {Jmin(γ, n)} is
nonincreasing, resp. nondecreasing, and if P(γ)(f ∗) is aperiodic
then

lim
n→∞

Jmax(γ, n) = lim
n→∞

Jmin(γ, n) = Jπ
∗

i



In case that there exists no v(f ∗) > 0 such that (42), (43) hold we
can proceed as follows:

Suppose (for simplicity) that {P̄(γ)
(f ), f ∈ F} can be

decomposed as:

P̄
(γ)

(f ) =

[
P̄

(γ)
11 (f ) P̄

(γ)
12 (f )

0 P̄
(γ)
22 (f )

]
and there exists f ∗ ∈ F such that

ρ1(f ∗) > ρ2(f ∗), v1(f ∗) > 0, v2(f ∗) > 0

and for any P̄
(γ)

(f ) with f ∈ F :

P̄
(γ)
11 (f ) · v1(f ∗) ≥ ρ1(f ∗)v1(f ∗)

= P̄
(γ)
11 (f ∗) · v1(f ∗)

P̄
(γ)
22 (f ) · v2(f ∗) ≥ ρ2(f ∗)v2(f ∗)

= P̄
(γ)
22 (f ∗) · v2(f ∗)



Let the rows of P̄
(γ)
11 (f ), resp. P̄

(γ)
11 (f ), be labelled by

numerals from I1, resp. I2. (Obviously, I = I1 ∪ I2.)

Then on iterating (47) under the aperiodicity of P̄
(γ)

(f ∗))
we get:

lim
n→∞

Ûi (n + 1)

Ûi (n)
= ρ1(f ∗), for any i ∈ I1

lim
n→∞

Ûi (n + 1)

Ûi (n)
= ρ2(f ∗), for any i ∈ I2

and for

ρ(1)
max(n) := max

i∈I1

Ûi (n + 1)

Ûi (n)
, ρ

(1)
min(n) := max

i∈I1

Ûi (n + 1)

Ûi (n)

the sequence {ρ(1)
max(n)} is nonincreasing, the sequence {ρ(1)

min(n)}
nondecreasing, and under the aperiodicity of P̄

(γ)
11 (f ∗))

lim
n→∞

ρ(1)
max(n) = lim

n→∞
ρ

(1)
min(n) = ρ1(f ∗)



where ρ1(f ∗) is the maximum possible growth rate that can occur
in states from I1.

The same holds also for mean values of the corresponding certainty
equivalents.
Finally, we present a policy iteration algorithm for finding
stationary policy π∗ ∼ f ∗ fulfilling inequality (6), i.e.

P̄
(γ)

(f ) · v(f ∗) ≤ ρ(f ∗) v(f ∗) = P̄
(γ)

(f ∗) · v(f ∗)

with v(f ∗) > 0

ρ(f ) ≤ ρ(f ∗) for all f ∈ F .

The policy iteration algorithms generates a sequence of stationary
policies such that the corresponding sequence of spectral radii
ρ(f (k)) is non-decreasing (i.e. ρ(f (k+1) ≥ ρ(f (k)), resp. increasing

if P̄
(γ)

(f (k+1)) is irreducible, and the sequence P̄
(γ)

(f (k))

converges monotonously to the matrix P̄
(γ)

(f ∗).



Policy Iteration Algorithm

I Step 0. Select matrix P̄
(γ)

(f (0)) with f (0) ∈ F such that the
row sums are maximal, i.e. it

holds P̄
(γ)

(f (0)) · e ≥ P̄
(γ)

(f ) · e for any f ∈ F .
I Step 1. For the matrix P̄

(γ)
(f (k)) with f (k) ∈ F , k = 0, 1, . . .

calculate its spectral radius ρ(f (k)) along with its right Perron
eigenvector v(f (k)).

I Step 2. Construct (if possible) the matrix

P̄
(γ)

(f (k+1)) with f (k+1) ∈ F , such that

P̄
(γ)

(f (k+1)) · v(f (k)) > ρ(f (k)) v(f (k)) = P̄
(γ)

(f (k)) · v(f (k))

(i.e., a strict inequality holds at least for one i ∈ I).

I Step 3. If such a matrix P̄
(γ)

(f (k+1)) exists, then set

P̄
(γ)

(f (k+1)) := P̄
(γ)

(f (k)) and repeat Step 1, else set

P̄
(γ)

(f ∗) := P̄
(γ)

(f (k)), f ∗ := f (k) and stop.



In the remainder of this section we rewrite our results in the
fashion employing the γ-average cost optimality equation in
additive fashion. To this end, observe that for i = 1, 2, . . . ,N

Vi (γ, n) := γ−1 ln Ui (γ, n)

equations for the minimal average cost take on the following form

eγ Vi (γ,n+1) = min
a∈Fi

{∑
j∈I

pij(a) eγ(cij (a)+Vj (γ,n))
}

(48)

Since Ui (γ, n + 1)/Ui (γ, n) = eγ(Vi (γ,n+1)−Vi (γ,n)) and if P̄
(γ)

(f̂ ) is
aperiodic we immediately conclude that for i = 1, 2, . . . ,N

Jmin(γ, n) = min
i∈I
{Vi (γ, n + 1)− Vi (γ, n)} is nondecreasing in n

Jmax(γ, n) = max
i∈I
{Vi (γ, n + 1)− Vi (γ, n)} is nonincreasing in n

g(f̂ ) =
1

γ
ln ρ(f̂ ) = lim

n→∞
{Vi (γ, n + 1)− Vi (γ, n)}

The above facts can be explicitly formulated as



Value Iteration Method.
I Step 0. Select Vi (γ, 0) > 0 for i = 1, 2, . . . ,N.

I Step 1. Employing Vi (γ, n) > 0 with i = 1, 2, . . . ,N, update
them to Vi (γ, n + 1) > 0 using the recursive formula

eγ Vi (γ,n+1) = min
a∈Fi

{∑
j∈I

pij(a) eγ(cij (a)+Vj (γ,n))
}

(49)

and calculate the values

Ĵmin(γ, n) := min
i∈I
{Vi (γ, n + 1)− Vi (γ, n)}

Ĵmax(γ, n) := max
i∈I
{Vi (γ, n + 1)− Vi (γ, n)}

being the upper and the lower bound on Ĵ that converge
monotonically to Ĵ.

I Step 2. If the difference Ĵmax(γ, n)− Ĵmin(γ, n) is less than a
given δ > 0 then stop. The current stationary policies
π(n) ∼ f (n) guarantees that J(f (n)) ∈ [Ĵmin(γ, n); Ĵmax(γ, n)].

This procedure overlaps results obtained in Cavazos-Cadena,
Montes de Oca (MOR (2003), JAP(2005)).



In a quite similar fashion we can also rewrite the policy iteration
algorithm.

Policy Iteration Method.

I Step 0. Select matrix P̄
(γ)

(f (0)) with f (0) ∈ F such that the

row sums are minimal, i.e. it holds P̄
(γ)

(f (0)) · e ≤ P̄
(γ)

(f ) · e.

I Step 1. (Policy evaluation.) For a given stationary π(n) ∼ f (n)

calculate the values

Vi (γ, f
(n)) + g(f (n)) =

1

γ
ln
[∑

j∈I
pij(f

n
i ) eγ(cij (f

n
i )+Vj (f

(n)))
]

I Step 2. (Policy improvement.) Using the values Vi (γ, f
(n)) in

each state i ∈ I select action f
(n+1)
i ∈ Fi minimizing

Hi (γ, n) := min
a∈Fi

∑
j∈I

pij(a) eγ(cij (a)+Vj (γ,f
(n)))



and calculate

Hmin(γ, n) := min
i∈I

{1

γ
ln[Hi (γ, n)− Vi (γ, n)]

}
Hmax(γ, n) := max

i∈I

{1

γ
ln[Hi (γ, n)− Vi (γ, n)]

}
being the lower and upper bound on the optimal γ-average
cost policy, as well as on the current policy π(n) ∼ f (n).

I Step 3. If f (n+1) = f (n) then policy π ∼ f (n) is an optimal
policy and stop, else go to Step 1.

Thank you for your attention!


