
Akademie věd České republiky
Ústav teorie informace a automatizace

Academy of Sciences of the Czech Republic
Institute of Information Theory and Automation

RESEARCH REPORT

Josef Andrýsek

Initiation Options in Estimation of

Dynamic Mixtures

No. 2030 June 2001

ÚTIA AVČR, P.O.Box 18, 182 08 Prague,
Czech Republic

Fax: (+420)286890378, http://www.utia.cas.cz,
E-mail: utia@utia.cas.cz

3

Acknowledgement: This research has been partially supported by EC, project IST-1999-12058 and
by GAČR, project 102/99/1564

4

Contents

1 Introduction 7

2 Basic notions and notations 9

3 Mixture identification 11
3.1 Parameter estimation . 11
3.2 Estimation of factor structure . 11
3.3 Constructing of prior estimate . 11

3.3.1 Iterative construction, flattening mapping . 11
3.3.2 General description of branch and bound techniques 13
3.3.3 Branching by factor splitting . 13

4 Model description and software representation 15

5 Mixinit 17
5.1 Parameter overview . 17
5.2 Description . 18

5.2.1 General scheme . 19
5.2.2 decide . 19
5.2.3 merging1 . 19
5.2.4 canceling1 . 20
5.2.5 mixsplit . 20
5.2.6 merging . 20
5.2.7 canceling . 21
5.2.8 last merging . 21
5.2.9 final operations . 22

6 Example of running mixinit 23
6.1 Processing of mixinit . 23

7 Selection of processing options 29
7.1 Number of iterations steps - niter . 30

7.1.1 12 static components . 30
7.1.2 8 static components . 31
7.1.3 3 static components . 32
7.1.4 Real data . 33
7.1.5 Conclusion . 33

7.2 Number of iterations in estimation -n . 33
7.2.1 Conclusion . 35

7.3 Dependency of computing time on the dimension of data 35
7.3.1 Sample size ndat . 35
7.3.2 Dependence on the number of channels - dim . 36

7.4 Boolean options . 38

5

6 CONTENTS

7.4.1 a,g,d . 38
7.5 Shrinking of noise covariance estimate -xcove . 40

7.5.1 7 static components . 40
7.5.2 20 static components . 41
7.5.3 4 static components . 41
7.5.4 5 channels, 17 static components . 41
7.5.5 real data 1 . 41
7.5.6 real data 2 . 41
7.5.7 7 static components . 42

8 Software aspects 43
8.1 MEX files . 43
8.2 Library, calling functions . 47
8.3 stand-alone application and memory management . 48

9 Conclusions 51

Chapter 1

Introduction

The contemporary computers are used in almost all branches of human activities. The automation in
production is especially profitable. It improves the quality of products and it also decreases the cost.
But there are a lot of cases, where the automation can not be done. The reason is in complexity
of some problems. If we created the adequate physical model close to the reality, neither the fastest
supercomputers are able to finish the processing in a reasonable time.

In real manufactories, which are not fully automated, mostly a human(operator) exist, who makes
the important decisions and controls the production. It is clear, that the quality of products strongly
depends on the experience of the operator and on his mental and physical state. In [3] the methods for
elimination of this dependency are discussed. The approach is based on the idea, that the experience of
the operator reflects in data measured on the system. Thus it remains ”only” to extract the experience
from the data. This solution is cheap to install because it does not requires any changes of the current
systems. In many cases, the manufactories products large amounts of ”outlet” data, which are just stored
and not economised. Thought of the advisory system is to be fed just with this information.

The process of extracting information from data is very complex. It can be done in a various manner.
Due to the immensity of data, some special presumption about distribution form of the data must be
accepted to cope with them.

Project [3], to wich this work contributes, deals with finite mixture models. Details will be explained
in chapter 4. This paper inspects partial but important problem of choosing feasible variants of algorithm
to initialize mixture estimation.

Changing of the system structure

operator

production

line

actions

observations

operator

production

line

actions

observations

computer program

data

advices

state before installing advisory system state after installing advisory system

7

8 CHAPTER 1. INTRODUCTION

Chapter 2

Basic notions and notations

x∗ denotes the range of the quantity x.

x̊ denotes cardinality of the set x∗, i.e. x∗ is equivalent to {1, 2, · · · , x̊} .

xt is the quantity x at the discrete time labelled by t ∈ t∗ ≡ {1, . . . , t̊}.

t̊ ≤ ∞ is called time horizon.

xi;t is an ith entry of the array x at time t. The semicolon in the subscript indicates that the symbol
following it has the meaning of a time index.

x(k l) denotes the sequence between time moments k ≤ l, i.e. x(k l) ≡ xk, . . . , xl.

x(t) ≡ x(1 t).

d means array of data records measured on the considered system.

Θ the unknown parameter, a finite dimensional vector

f probability density function (pdf). The meaning of the pdf is given through its argument:

• f(Θ)- prior pdf. This pdf includes information about the unknown parameter Θ, which is
known to the statistician, before he starts the measuring.

• other pdfs will be defined directly in the text.

〈x, y〉 - scalar product of vectors x, y.

we - it means we statisticians.

We need the notion of Kullback-Leibler distance that measures well proximity of a pair of pdfs.

Agreement 2.0.1 (Kullback-Leibler distance) Let f, g be a pair of pdfs acting on a common
set x∗. Then,

Kullback-Leibler distance D(f ||g) is defined by the formula

D(f ||g) ≡

∫

x∗

f(x) ln

(

f(x)

g(x)

)

dx. (2.1)

For conciseness, the Kullback-Leibler distance is referred to as KL distance.

9

10 CHAPTER 2. BASIC NOTIONS AND NOTATIONS

Chapter 3

Mixture identification

Identification is the most important subtask in construction of an advisory system. Here, we discuss it
in the extent needed for this work. For details, we refer to [3].

3.1 Parameter estimation

The parameter estimation is an important subtask in mixture identification. Unfortunately the mixture is
a sum of functions. The standard Bayesian approach can be used theoretically only. No existing method
for computing integrals works in dimensions we are considering. Only solution is using aproximate
estimation. Project [3] deals with quasi-Bayes estimation algorithm and EM estimation algorithm. The
results of quasi-Bayes estimation depend on the order in which data are processed. Experiments have
shown that this dependence may be significant. EM algorithm avoids this drawback but its orientation
on point estimation prevents us to combine it with advantageous Bayesian framework. For instance, the
construction of the prior pdf by splitting, (see Section 3.3.3) cannot be exploited. In project [3] a novel
batch quasi-Bayes estimation algorithm was created, that is processing-order independent. All these
algorithm are iterative ones. The number of iterations can be set as a parameter of the algorithm. These
methods gives as by-product value of the pdf f(d(̊t))

The mentioned algorithms are relatively strong. But they estimates only the parameters. Before
we can use them, we need the prior pdf, which catches up the mixture structure i.e. the number of
components, structure of components and structure of factors.

3.2 Estimation of factor structure

The next significant subtask is estimation of factor structure. The well determinated structure is a
headstone for parameter estimation. In [3] the iterative algorithm for structure estimation is designed.
Against, the number of iterations can be set as a parameter.

3.3 Constructing of prior estimate

The most important subtask in mixture identification is constructing of a prior estimate. Its quality
influences the overall result in extreme way. In [3], a systematic way of exploiting physical knowledge is
outlined. Here, the data based constructions are sketched.

3.3.1 Iterative construction, flattening mapping

We start from basic bayes rule:f(Θ|d(̊t)) ∝ f(d(̊t)|Θ)f(Θ) with a very flat prior f(Θ). We can use the
resulting posterior pdf f(Θ|d(̊t)) as a new prior guess and use the bayes rule again. After n th repetition
we get:

fn(Θ|d(̊t)) ∝ f(d(̊t)|Θ)fn−1(Θ|d(̊t))

11

12 CHAPTER 3. MIXTURE IDENTIFICATION

with f0(Θ|d(̊t)) ≡ f(Θ).

But the posterior estimate of parameters cannot be directly used as a new guess of the prior pdf as
it is much more concentrated than a reasonable prior pdf. It is dangerous in the discussed context as
the original prior has been assumed unreliable and thus the posterior pdf may be concentrated at false
subset of Θ∗. We can avoid this danger by applying a special flattening mapping G

G : f(Θ|d(̊t)) → f̂(Θ) (3.1)

By applying this mapping on posterior pdf, we get a new guess f̂(Θ) of the prior pdf f(Θ).

The selection of feasible mapping consists of finding following compromise:

• f̂(Θ) should ressemble f(Θ|d(t)),

• f̂(Θ) should be flat enough.

We can design G as follows. For the fixed d(̊t), we denote f̃(Θ) ≡ f(Θ|d(̊t)) Moreover, we need
any flat distribution. Uniform pdf (even improper one) suits often to this purpose. Let denote the flat

distribution f̄(Θ). The result of flattening will be that f̂ , which minimize the following expression

D(f̂ ||f̃) + qD(f̂ ||f̄). (3.2)

The KL distance (see 2.1) D(f̂ ||f̃) reflects the first requirement and D(f̂ ||f̄) the second one. The positive
weight q > 0 is a design knob that controls the compromise.

Proposition 3.3.1 (Optimal flattening mapping) Let f̃ and f̄ be a pdfs from previous discussion.

Then, the pdf f̂ , defined on Θ∗ minimising the functional (3.2) has the form

f̂ ∝ f̃Λf̄1−Λ with Λ = 1/(1 + q) ∈ (0, 1). (3.3)

Example of using flattening mapping

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

original pdf after flattening

Now we are able to construct iterative estimates.

Generally by construction of prior estimate we search for such a variant of f̂(Θ) for which the joint

pdf f̂(d(̊t),Θ) , evaluated by an approximate algorithm, exhibits the highest posterior-likelihood f̂(d(̊t)).

The dimensionality of the problem orients us towards the maximization by branch-and-bound tech-
niques.

3.3. CONSTRUCTING OF PRIOR ESTIMATE 13

3.3.2 General description of branch and bound techniques

These techniques are used by searching of arguments of maximum of some function or functional. The
main idea is very simple and works as follows.

Branch and bound

NO

YES

NO

Find the initial set

Set the current maximum

to -infinity

evaluate functional on the

set and find maximal value

is the founded value higher

than current maximum?

set current maximum to

found value

Apply the branch mapping and

get a new set of alternatives

evaluate functional on the set

aply a bounding mapping

and get a new set of

alternatives

enough

iterations?

YES

Stop

As result denote the argument , in

which the current maximum was

reached.

The most important thing is to choose the right branching mapping.

3.3.3 Branching by factor splitting

In the case, that we have no information about the structure of the mixture, the factor splitting is used.
The idea is again simple. If a component is covering a large amount of data, there is a chance, that
this component is hiding some other modes. We split one factor from this component and gets two new
components which are the same up to the splitted factors. The original component is deleted. By that
splitting it is very important to watch the shift of splitted factors from the original one. It is covered by
the following general proposition.

Proposition 3.3.2 (Shifted factor) Let pdfs f, f̄ have a common support Θ∗ and let g be a (vector)

function defined on Θ∗. Let the pdf f̂ minimise the KL distance D(f̂ ||f) and have the prescribed norm

14 CHAPTER 3. MIXTURE IDENTIFICATION

of the shift in expectation of g(Θ)

〈
∫

g(Θ)(f̂(Θ) − f(Θ)) dΘ,

∫

g(Θ)(f̂(Θ) − f(Θ)) dΘ

〉

= ω, ω > 0. (3.4)

Then, it has the form
f̂(Θ) ∝ f(Θ) exp[−〈µ, g(Θ)〉] (3.5)

determined by the array µ that is compatible with the scalar product 〈·, ·〉. Thus, the solution of the
considered task can be searched within the set of functions (3.5) “indexed” by the finite-dimensional array
µ.

The function g(Θ) was included there, so that we can influence the result. A proper choice of it
helps us to stay within a desirable class of pdfs. Typically, we try to stay within the computationally
advantageous class of conjugate pdfs.

Now we have done all preparation work. By combining all things from this chapter, we create algorithm
mixinit for getting prior pdf. as well as structure of the mixture.

Chapter 4

Model description and software

representation

This chapter outlines the specific model used. It insists especially upon the software aspects of this
model. Under the terms factor, component etc. we will understand both pdf and the specific software
representation of it. From the context, the right meaning always will be clear. The main input of all
algorithms are measured data. Individual quantities are called data channels. For processing the data
are organized in a global matrix DATA. Each row means time evolution of some channel. In DATA(i,j)

is value of the channel i at time j. Current processing time is stored in a global scalar variable TIME.
The description of the model must logically start from the most elementary objects, i.e. factors. Each

factor is a single regression model, which explains one channel ychn

dt = θ ∗ ψt + e

where

• e is white process noise distributed as N(0, r)

• ψt is regression vector

• θ is regression coefficients vector

Point estimates of θ is denoted Eth and point estimate of r is cove. Clearly dt ∼ N(θ ∗ ψt, r). Each
factor needs to specify its structure (see section ??), so the regression vector should be obtained. Here
the factor structure is represented as a two-rows matrix. In each column the first value means channel
on them it is depending and the second value means time delay of the channel.

For example :

str =

(

1 3
2 1

)

means that the regressor is [DATA(1,TIME-2),DATA(3,TIME-1)]

The factor structure may also contain a column

(

0
1

)

which is called as factor offset and it introduces

an additional constant into the model.
Finally, from the software point of view, the factor is a structure with the following fields:

• str factor structure

• ychn pointer to channel, which is explained by this factor.

• cove point estimate of r

• Eth point estimate of θ

15

16 CHAPTER 4. MODEL DESCRIPTION AND SOFTWARE REPRESENTATION

• Cth covariance matrix of parameter estimate

The factor must contain some additional fields for storing various statistic,(for exact description of factor
see [5])

As a static factor we call the factor which does not depend on historical data. ie. the factor whose
structure contains only zero delays and offset. Other factors are called dynamic factors

The next constructions need to operate with more factors. We will store all used factors in array Facs

A component is a product of factors. We store it as an array of pointers to corresponding factors. As
pointer we mean simply the column index of the factor in array Fac.

A mixture is a weighted sum of components. We represent it as an array of weights of corresponding
components dfcs and as a vector of components. Since the component is an array of pointers to factors,
we get a matrix of pointers coms. Each row represents one component.

Again we include to the mixture some fields for storing useful statistics. The most important statistics
are:

mixll posterior likelihood corresponding to f(d(̊(t))).

commer statistic for testing a hypothesis that two particular components are the same.

comcan statistic for testing a hypothesis that a particular component is spurious.

At all the mixture is a structure with following fields:

Facs array of factors

coms components, matrix of pointers to factors

dfcs array of statistics for estimating components weights

states struct of useful statistics like commer, mixll,comcan

Chapter 5

Mixinit

The procedure mixinit gets the prior pdf Mix0 as the input. The entire information about number of
channels and about dynamism1 is included there. The next inputs are parameters (options), which can
essentially influence the processing. The best options are step by step setting as default. The options
can be divided into three groups.

5.1 Parameter overview

numerical values

These options have numerical values. The value must be specified together with specifying the option.

• niter: The mixinit is an iterative algorithm, niter specifies the maximum number of iterations.
Default value is 10.

• h : The number of runs for structure estimation. Default value is 10.

• xcove : A portion of cove included in the components split. Default value is 0.5.

bool options

There are options, which can have just values true or false. Default for all options is false.

• a : try to split only single component and single factor

• q : the component created has common factors with the original one

• d : use stopping rules

• c : make structure estimation within mixinit

estimation method

These options influences the estimation method used. Single method can be selected. Default value is q.

• q : iterative quasi-Bayes mixture estimation

• b : iterative batch quasi-Bayes mixture estimation

• f : iterative mixture estimation based on forgetting branching

• related numerical values:

– n : The number of iterations. Default value is 1.

– s : The number of branching steps for forgetting branching. Default value is 10.

1i.e. if the mixture is dynamic or no.

17

18 CHAPTER 5. MIXINIT

5.2 Description

Mixinit diagram

cut the first factor

from the list

is the factor still

first?

YES
estimate

decide
 NO

a
?

all

factors

 done?

NO
 NO

YES

d?

YES

stopping

rule is met?

all

components

 done?

NO
YES

YES
 YES

iter==
niter

or nothing changed during

last iteration

NO

YES

the resulting mixture denote as

actual mixture for the next

iteration

NO

NO

make structure

estimation for first

factor
 sort it again

 For one factor the structure estimation is

not made more than once

NO

iter=1

iter=iter+1

make initial mixture estimation

with selected method.

built sorted array of factors in the

actual component sorted by KL

distance to a flat mixture

process the first

component

select components which have

dfcs >mean dfcs, sort them

descending, these components

will be tried for splitting

process next

component

mixsplit(
g,xcove
)

canceling1
merging1

final operations

YES

5.2. DESCRIPTION 19

5.2.1 General scheme

A detail scheme of the algorithm, with the selectable options marked, is on the previous page. It is
necessary to stress, that the pictures are not flow chart in classical sense. The algorithm acts in directions
of the arrows. The bold polygons means a process, which is explained somewhere else. The explanations
of the used block follow.

5.2.2 decide

To be able to speak about an increase of mixll we would need to specify 2 mixtures. We would not
specify it, because it is clear here from the context. For getting the mixll of the second mixture we must
run the estimation, which was not stressed here.

decide scheme

YES

NO
increase of mixll?

YES
 NO

decision block

Test the following hyphotesis:

The mixtures are the same

versus the mixtures differ

Accepted

The hyphotese is accepted

when the difrence in mixll

is small enough

YES
 NO

With this, we can decrease the mixll, but we help on the next processing2. In this case, the original
mixture is saved and we can go back to it, if the next processing do not lead to good result.

5.2.3 merging1

The software mixture contains a statistic commer, (see chapter 4), which allows to test the hypothesis
about equality of two components for each pair of components. All tests accept the hypothesis if value
of some statistic stat is greater than a particular constant, i.e. stat > α. When we say, that one
component accepts the hypothesis better than other component, we mean that value of stat for the
better component is higher than the second. We also use the ordering, which is induced by this relation.
This relation and the ordering will be used in other diagrams too.

merging1 scheme

YES

Result is the mixture

with merged component

NO

Result is the primary mixture,

nothing changed

YES

NO

merging1

from all pairs of component select

the pairs which meet the hypothesis

at least one pair is

selected

from the selected take the pair

which accepts the hyphotesis best

merge one component

from the pair

decide

2the algorithm stops if nothing is changed in one iteration

20 CHAPTER 5. MIXINIT

5.2.4 canceling1

The software mixture contains a statistic comcan (see chapter 4), which allows for each component to
test the hypothesis, that this component is spurious. It means it is too close to a flat component.

canceling1 scheme

YES
 No

YES

NO

from all components select those

which meet the hypothesis.

at least one

component is

selected

from the selected take the

component which accepts the

hypothesis best

delete it

decide

Result is the mixture

with deleted component

Result is the primary mixture,

nothing changed

canceling1

5.2.5 mixsplit

The subroutine mixsplit has two parameters.One is g and the second is xcove. Default value for xcove
is 0.5 .

mixsplit scheme

YES
 NO

split the selected factor according

to the proposition
 4.3.2

create new component containing the last factor, other

factors are the same as in the original component

option
g
?
 build coppies, no factors are common

do not build copies of these factors, set

the pointers only, common factors arise

the original factor replace by one of the

two news factors, the second factor give

to the end of the factors list

cove of the new factors set to

xcove
*cove of the original one.

mixsplit

options
g,xcove

default value of

xcove
=0.5

5.2.6 merging

The subroutine merging is generalization of the algorithm merging1. It tries to delete more than one
component at one shot.

5.2. DESCRIPTION 21

merging scheme

YES
 NO

NO

merging

YES

NO

from all pairs of component select

the pairs which meet the hypothesis

at least one pair is

selected

n
=count of selected pairs

from
n
 best pairs select a list of

componens so that from each pair one

and only one component is selected.

try to merge all

components from

the list
 n
=
n
-1

resu l t i s the

primary mixture,

nothing changed

n>1?
decide

result is the mixture with

merged components

YES

5.2.7 canceling

The subroutine canceling is generalization of canceling1. Again, we are trying to delete more compo-
nents at once.

canceling scheme

YES
 No

NO

YES

NO

from all components select them

which meet the hypothesis

at least one

component is

selected

n
=count of selected

components

choose
n
 best components and try to

delete them

n
=
n
-1

resu l t i s the

primary mixture,

nothing changed

n
>1?
decide

result is the mixture with

deleted components

canceling

YES

5.2.8 last merging

It was found, that is it reasonable to try delete components , for which the hypothesis has been rejected
during the merging. It is done by the following diagram.

22 CHAPTER 5. MIXINIT

last merging scheme

choose the pair with highest value of

statistic
commer
 and try to merge

the first one component from it

last merging

the new mixture become

the actual one

decide

result is the mixture

before last merging

attempt

NO
 YES

5.2.9 final operations

The last, what needs to be specified is the final operations block from the main schema. It is composed
from the previous blocks.

final operations diagram

YES

NO
 NO

YES

c
?

M a k e o v e r a l l

structure estimation

any changes?

last merging

merging

canceling

final operations

merging

canceling

TOTAL end

Chapter 6

Example of running mixinit

A two-dimensional static mixture with 4 component was created. A data sample of the length of 8 000
data items was generated. Thus, the global matrix DATA is 2× 8000. The simulated pdf and simulated
data are are shown at the picture. We will use two different ways to visualize the two-dimensional mixture.
The first is statplot diagram. It plots each component as an ellipsis, which borders the 75% probability
region. The second is contour diagram. It plots the equi-probability level curves of the mixture pdf. In
this example, all options were set to default values.

Simulated mixture

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

1st channel

2
n

d
 c

h
a

n
n

e
l

Simulated mixture components and data sample

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

1st channel

2
n

d
 c

h
a

n
n

e
l

Simulated mixture contours

Simulated data and statplot diagram simulated pdf (contour diagram)
ideal mixll=-4943.475005

When simulated data and known model were used for estimation, the value of the posterior likelihood
mixll was -4943.47005.

6.1 Processing of mixinit

At first, the algorithm makes the initial estimation. It uses one-component mixture as prior information.

23

24 CHAPTER 6. EXAMPLE OF RUNNING MIXINIT

Initial mixture, the axe x represents the 1st, the axe y the 2nd data channels

−1.5 −1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

−2 −1.5 −1 −0.5 0 0.5 1 1.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

statplot diagram contour diagram
mixll=-10925.356289, 1 component

Then, the status of the estimated mixture in several iteration steps is displayed.

Mixture status in iteration 1

The mixture after component splitting is displayed.

After 1st splitting, the axe x represents the 1st, the axe y the 2nd data channels

−1.5 −1 −0.5 0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−1.5 −1 −0.5 0 0.5 1 1.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

statplot diagram contour diagram
mixll=-8241.186500, 2 components

Of course, during this iteration, no components were merged and no component cancelled. These
operations are meaningful only after more iterations.

Mixture status in iteration 4

The contour plot clearly shows that the pdf concentrates on the same half plane as the original mixture.

6.1. PROCESSING OF MIXINIT 25

After 4th splitting, the axe x represents the 1st, the axe y the 2nd data channels

−1.5 −1 −0.5 0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−1.5 −1 −0.5 0 0.5 1 1.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

statplot diagram contour diagram
mixll=-6914.823106, 5 components

In this iteration, no components were merged nor cancelled. There were not even an attempt to make
these operations. The hypothesis were not accepted.

Mixture status in iteration 7

In this iteration, the next mode arise.

After 7th splitting, the axe x represents the 1st, the axe y the 2nd data channels

−1.5 −1 −0.5 0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

statplot diagram contour diagram
mixll=-6143.790360, 8 components

The merging attempt was successful. The mode is more pronounced now.

26 CHAPTER 6. EXAMPLE OF RUNNING MIXINIT

After successful merging, the axe x represents the 1st, the axe y the 2nd data channels

−2 −1.5 −1 −0.5 0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1.5

−1

−0.5

0

0.5

1

1.5

2

statplot diagram contour diagram
mixll=-5686.965734, 7 components

The hypothesis about containing an outlining component was again rejected.

Mixture status in iteration 10

Now, even 3 modes are precise. No merging nor canceling were done.

After 10th splitting, the axe x represents the 1st, the axe y the 2nd data channels

−2 −1.5 −1 −0.5 0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1.5

−1

−0.5

0

0.5

1

1.5

statplot diagram contour diagram
mixll=-5135.641524, 9 components

This was the result after the iterative part of the algorithm.
The gradual increase of mixll is shown on the figure bellow. The right column of the table shows

values of statistic, that would be used in stopping rules (if the option d was selected). Algorithm would
stopped if value of this statistic were smaller than 0.0376

6.1. PROCESSING OF MIXINIT 27

Evolution of mixll during iterations

1 2 3 4 5 6 7 8 9 10
−8500

−8000

−7500

−7000

−6500

−6000

−5500

−5000

mixll during iterations

1 23.8299
2 7.8195
3 2.7549
4 1.7076
5 0.8281
6 1.4763
7 9.5763
8 4.9839
9 0.2115
10 0.1293

(relative growth) the statistic offered to the stopping rule

Final operations

The final operations are shown including attempts of merging surplus components. The hypothesis testing
allowed neither cancel nor merge anything. It is now the time for last merging. In this case, the last
merging is relatively successful. The result follows.

After the last successful merging, the axe x represents the 1st, the axe y the 2nd data channels

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

statplot diagram contour diagram
mixll=-4994.240284, 5 components

The following figure shows progress of mixll during final operations and during entire mixinit pro-
cessing.

28 CHAPTER 6. EXAMPLE OF RUNNING MIXINIT

progression of mixll

1st 2nd 3rd 4th
−5090

−5080

−5070

−5060

−5050

−5040

−5030

−5020

−5010

−5000

−4990

0 2 4 6 8 10 1st 2nd 3rd 4th
−8500

−8000

−7500

−7000

−6500

−6000

−5500

−5000

−4500

mixll during final merging mixll during all process,
terminal merging applied after iteration 10

Now, the resulting mixture is compared by the original mixture.

RESULT, the axe x represents the 1st, the axe y the 2nd data channels

−2 −1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

1st channel

2
n

d
 c

h
a

n
n

e
l

Estimated mixture contours

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

1st channel

2
n

d
 c

h
a

n
n

e
l

Simulated mixture contours

statplot diagram contour diagram
estimated mixture, mixll=-4994.240284 simulated mixture, mixll=-4943.475005

Chapter 7

Selection of processing options

In this chapter, the individual options will be discussed in details and some conclusions will be drawn.
Near all simulated data are from one general model, with 1000 data samples and optional number of
components. The centers of the components are uniformly situated on the unit circle. Their dfcs grows
linearly clockwise starting from point [1,0]. We demonstrate it on the following examples.

12 static components, the axe x represents the 1st data channel, the axe y represents the 2nd data channel

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

5 10 15 20 25 30

5

10

15

20

25

30

statplot diagram contour diagram

3 static components, the axe x represents the 1st data channel, the axe y represents the 2nd data channel

−1.5 −1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

5 10 15 20 25 30

5

10

15

20

25

30

statplot diagram contour diagram

29

30 CHAPTER 7. SELECTION OF PROCESSING OPTIONS

7.1 Number of iterations steps - niter

This option sets the maximum number of iterations. The real count of iterations in mixinit can be lower
if the stopping rules are used, or if nothing has been changed during an iteration. Default value for this
option is 10. Setting of higher value can lead to better results. But the computation time grows.

Conclusion: Setting of niter significantly above the default value does not lead to significantly better
results.

The conclusion will be documented by some experiments.

7.1.1 12 static components

The left figure shows dependency of the resulting mixll on the parameter niter. The right figure shows
dependency of the elapsed time1 on the same parameter. The line sketched means estimate with least
square method. It says how is it with the linearity of time dependency.

dependencies

0 5 10 15 20 25 30
−1040

−1030

−1020

−1010

−1000

−990

−980

−970

0 5 10 15 20 25 30
−5

0

5

10

15

20

25

mixll dependency on niter time dependency on niter

Note that when niter gets over a particular boundary, no improvement is obtained, but the computing
time still grows. This fact has a simple explanation. In each iteration, the mixture is split even at the
expense of getting lower mixll (see diagram DECIDE). After finishing the iterative part of mixinit

algorithm, the mixture that was the best during the processing is selected. In this case, the many
splitting operations does not lead to improvement and the mixture obtained for a fewer iteration is
selected.

• Theoretically, it is possible that a further increase of niter could bring better results, but it would
not pay off.

• The dependency of computing time seems to be linear. The measuring of time under Windows is
not very precise. The same process could have two different times. Nobody knows what Windows
is doing on background. We must deal with this fact and thus we must tolerate a higher variance of
the time. To illustrate this fact, the time requirements for running the same estimation is displayed:

1It is time in seconds on PC athlon 650MHz

7.1. NUMBER OF ITERATIONS STEPS - NITER 31

Figure illustrating the variance of measuring time under Windows.
The elapsed time for running the same procedure is displayed.

0 10 20 30 40 50 60 70 80
20

22

24

26

28

30

32

34

The next table shows data plotted on the figure dependencies.
vysledek, part 1

niter 2 4 6 8 10 12 14 16
mixll -1030.35 -1031.42 -998.61 -990.13 -987.93 -983.58 -973.19 -973.53
time 0.27 0.66 1.26 1.71 4.01 5.21 6.43 8.73

niter 18 20 22 24 26 28 30
mixll -977.76 -977.76 -977.76 -977.76 -977.76 -977.76 -977.76
time 6.60 7.90 9.34 11.81 14.56 16.53 20.98

7.1.2 8 static components

dependencies

0 5 10 15 20 25 30
−1100

−1050

−1000

−950

−900

−850

−800

0 5 10 15 20 25 30
−5

0

5

10

15

20

25

30

35

mixll dependency on niter time dependency on niter

niter 2 4 6 8 10 12 14 16
mixll -1067.11 -1047.75 -1019.56 -951.23 -921.66 -907.69 -880.43 -843.65
time 0.61 0.66 1.26 1.65 2.30 3.03 5.05 6.92
ncom 2 2 2 3 4 4 5 6

32 CHAPTER 7. SELECTION OF PROCESSING OPTIONS

niter 18 20 22 24 26 28 30
mixll -843.13 -859.39 -856.15 -856.15 -856.15 -845.22 -835.15
time 9.45 14.55 11.48 13.46 15.76 15.82 33.34
ncom 6 5 6 6 6 6 6

This is a good example of the fact, that even after a decrease of mixll with niter an improvement may
occur. However, this improvement does not seem substantial.

7.1.3 3 static components

dependencies

0 5 10 15 20 25 30
−388

−386

−384

−382

−380

−378

−376

−374

−372

−370

0 5 10 15 20 25 30
−2

0

2

4

6

8

10

12

14

16

18

mixll dependency on niter time dependency on niter

niter 4 6 8 10 12 14 16
mixll -387.04 -379.63 -372.07 -372.50 -371.77 -374.21 -374.21
time 0.72 1.21 1.97 2.42 4.34 4.72 5.61
ncom 3 4 5 6 5 7 7

niter 18 20 22 24 26 28 30
mixll -374.21 -374.21 -374.21 -374.21 -374.21 -374.21 -374.21
time 6.64 7.86 9.22 10.77 12.58 14.55 16.48
ncom 7 7 7 7 7 7 7

Behaviour of mixinit in this case is similar to that with 10 components.

7.2. NUMBER OF ITERATIONS IN ESTIMATION -N 33

7.1.4 Real data

dependencies

0 5 10 15 20 25 30
1.43

1.44

1.45

1.46

1.47

1.48

1.49

1.5

1.51
x 10

5

0 5 10 15 20 25 30
−1000

−500

0

500

1000

1500

2000

2500

3000

3500

4000

mixll dependency on niter time dependency on niter

niter 2 4 6 8 10 12 14 16
mixll 143950.01 147069.90 149314.33 149481.58 150281.72 149645.64 149546.54 149731.74
time 7.80 21.31 42.62 83.38 105.90 200.04 235.63 319.11

niter 18 20 22 24 26 28 30
mixll 150194.64 150244.99 150268.37 150236.46 150526.23 150509.51 150394.69
time 321.81 473.90 653.67 1006.23 1052.98 1670.39 3729.94

This data set rejects the hypothesis (based on simulated data) about linear time dependency on niter.
It is logical. By the big number of iterations, the stucture of the mixture is richer and thus all operating
with it needs more time. But from this cases is clear, that there is no argument, for setting a high value
of niter. The value about 10 seems to be sufficient.

7.1.5 Conclusion

The default value were approved as a convenient one. If more computing time is at disposal, niter could
be slightly increased. To invest the computing time into other options seems to be better.

7.2 Number of iterations in estimation -n

This option influences approximate parameter estimation. It determines the number of iterations for the
estimation. The estimation takes approximately 96% of entire computing time. Single estimation step
for a given data width needs a fixed computation time. So the time needed for entire procedure should
depend linearly on n.

34 CHAPTER 7. SELECTION OF PROCESSING OPTIONS

3 static components

dependencies

0 5 10 15 20 25 30
−590

−585

−580

−575

−570

−565

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

mixll dependency on n time dependency on n

niter 2 4 6 8 10 12 14 16
mixll -586.64 -568.76 -567.79 -567.44 -567.62 -567.15 -567.10 -567.06
time 7.41 11.04 17.52 17.63 25.27 28.50 30.60 38.12
ncom 4 4 4 4 4 4 4 4

niter 18 20 22 24 26 28 30
mixll -566.99 -566.99 -566.97 -566.87 -566.81 -566.90 -566.88
time 43.00 43.06 51.96 54.38 55.91 57.35 60.25
ncom 4 4 4 4 4 4 4

The hypothesis about linearity of time dependency is confirmed. The quality of result grows up to
some level. The values n close to 10 seems to be the best selection. It is interesting, that all variants
have lead to the same number of components. It indicates that the resulting structure was equal. Thus
it is a good idea to try to use small value of n and after finishing of mixinit make one estimation with
big n. With the same data we have tried run mixinit with n=1 and after that we estimate result with
n=14. The result is as follows.

n=14 n=30 n=1 last n=14
mixll -567.10 -566.8845 -566.5325
time 30.60 60.25 4.4000
ncom 4 4 5

The column n=1 last n=14 means that we run mixinit with n=1 and after that we make the estimation
with n=14 We obtain result with the same value of mixll, but the time needed is here ten times smaller
than before. Now, we try this trick with other data.

8 static components

n=10 n=2 last n=14
mixll -814.5167 -815.6284
time 20.5400 7.5800
ncom 5 8

7.3. DEPENDENCY OF COMPUTING TIME ON THE DIMENSION OF DATA 35

12 static components

n=10 n=2 last n=14
mixll -952.7136 -965.0735
time 17.08 6.15
ncom 6 6

real data

n=10 n=2 last n=14
mixll 151117 149917
time 972.67 308.80
ncom 9 8

7.2.1 Conclusion

These examples show, that if the computing time is bounded, it is better to invest time to the last
estimate than to make all estimates within iterations with a big n.

7.3 Dependency of computing time on the dimension of data

Now, the dependency of the computing time on the dimensions of DATA will be discussed. At first we will
investigate the number of columns. i.e. size of data samples ndat.

7.3.1 Sample size ndat

We generate one realization from each mixture with 20 000 data samples. then we use parts of this
sample with different sizes. Very interesting is to observe the fraction mixll/ndat as it indicate value of
the information brought by new data from a fixed system.

3static components

The left hand figure shows values of statistic mixll/ndat, the line means least square estimate. The
second figure plots dependency of computing time, as in the previous pictures.

RESULT

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

−0.7

−0.69

−0.68

−0.67

−0.66

−0.65

−0.64

−0.63

−0.62

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

10

20

30

40

50

60

evolution of mixll/ndat in dependence on ndat evolution of the consumed time in dependence on ndat

36 CHAPTER 7. SELECTION OF PROCESSING OPTIONS

As the slope of the line fitted to mixll/ndat is 4.1 ∗ 10−7, we can accept, that the ratio mixll/ndat is
close to a constant. The linear dependency of time on ndat is clear from the picture.

The data shown in figures are:

ndat 1000 3000 5000 7000 9000 11000 13000 15000 17000 19000
mixll/ndat -0.72 -0.63 -0.63 -0.65 -0.64 -0.65 -0.65 -0.63 -0.64 -0.63

time 3.79 9.28 15.27 19.23 25.37 30.43 36.03 50.69 49.38 58.00
ncom 4 5 5 5 4 8 8 6 7 6

real data

RESULT

0 1 2 3 4 5 6

x 10
4

2.785

2.79

2.795

2.8

2.805

2.81

0 1 2 3 4 5 6

x 10
4

−20

0

20

40

60

80

100

120

140

160

evolution of mixll/ndat in dependence on ndat evolution of the consumed time in dependence on ndat

The slope of the fitted line is 1.4 ∗ 10−8, thus mixll/ndat is close to a constant.

ndat 1000 5000 9000 13000 21000 25000 29000 37000 41000 45000 49000 53000
mixll
ndat 2.80 2.80 2.80 2.80 2.79 2.81 2.79 2.79 2.80 2.80 2.80 2.81

time 2.80 10.60 15.71 24.22 44.98 48.94 61.74 87.67 90.29 120.17 128.53 141.49
ncom 7 6 6 6 9 6 6 10 7 7 7 7

Conclusion

Previous data comfirmed the thesis about linear dependence of the time on ndat. The constant character
of the fraction mixll/ndat can be seen,too.

7.3.2 Dependence on the number of channels - dim

Now, we will investigate the number of rows of DATA. i.e. number of data channels dim.

By construction , the quadratic dependence of the computing time on the dim is expected. The time
for processing of real data will be very high iac.

7.3. DEPENDENCY OF COMPUTING TIME ON THE DIMENSION OF DATA 37

RESULT

0 5 10 15 20 25 30 35 40
0

100

200

300

400

500

600

700

0 5 10 15 20 25 30 35 40
−1

0

1

2

3

4

5

6

7

8

9

evolution of the consumed time in dependence on dim evolution of mixll/ndat in dependence on dim

dim 2 4 6 8 10 12 14 16 18 20
mixll/ndat -0.9689 -0.3962 0.1571 0.6035 1.0405 1.4426 1.9240 2.4803 2.9677 3.4251

time 5.21 5.11 10.93 15.87 13.79 27.29 34.83 56.63 63.33 100.62

dim 22 24 26 28 30 32 34 36 38 40
mixll/ndat 3.8539 4.4037 4.7857 5.2301 5.8643 6.3085 6.7430 7.0947 7.7769 8.1362

time 74.37 223.43 222.01 170.55 311.37 240.80 332.14 448.24 611.59 352.01

The time dependency seems to be really quadratic. We must deal with greater time requirements. The
time needed for make the case with dimension 40 is more than 100* bigger, than the time for dimension
2. Very interesting is the evolution of the statistic mixll/ndat. The column count ndat is constant here.
Hence, the mixll seems to depend linearly on the dimension of the problem. The next experiment could
reject it.

RESULT

0 5 10 15 20 25 30 35 40
−50

0

50

100

150

200

250

300

350

400

450

0 5 10 15 20 25 30 35 40
−2

−1

0

1

2

3

4

5

evolution of the consumed time in dependence on dim evolution of mixll/ndat in dependence on dim

38 CHAPTER 7. SELECTION OF PROCESSING OPTIONS

dim 2 4 6 8 10 12 14 16 18 20
mixll/ndat -0.85 -1.22 -1.04 0.00 -0.43 0.40 0.00 0.27 1.02 2.13

time 4.51 7.53 11.26 18.40 27.90 35.76 47.84 55.64 64.81 84.64
ncom 4 7 6 7 4 6 5 6 5 6

dim 22 24 26 28 30 32 34 36 38 40
mixll/ndat 2.28 2.45 2.46 2.24 3.09 3.64 4.19 4.01 4.34 4.68

time 118.20 155.39 238.81 323.24 218.71 200.70 402.82 348.23 384.47 447.43
ncom 6 6 5 8 6 9 5 8 5 4

The hypothesis about linear dependency of mixll on dim could not be rejected.

conclusion

The thesis about quadratic time dependency is accepted. We can consider, that the time needed for
dimension 40 is approximately 100 times greater, than the time for dimension 2.

7.4 Boolean options

The option ’c’ is not studied here. The overall structure estimation brings some improvement, but it is
an independent problem weakly related to mixinit. It can be run after finishing the mixinit algorithm.

7.4.1 a,g,d

We will inspect the options ’a’,’g’,’d’ and default, which is denoted as ’0’. Their meaning is described in
section 5.1. We will consider the combination of them, too.

For each mixture tested we made 10 independent realizations. Each option was tried on all these
realizations. Then the results was sorted and displayed in the table. Then the average values are
computed. The meaning of used symbols is as follows.

symbol meaning
mixll average of mixlls on all realizations
std standard deviation
nmixll values of mixll/ndat
ncom average component count
time average value of time needed for running mixinit.

7 static componens

Table of results
Option a 0 ad d ag g dg agd
mixll -913.83 -913.83 -933.96 -933.96 -1085.71 -1085.71 -1120.95 -1120.95
std 37.87 37.87 50.60 50.60 31.89 31.89 29.35 29.35

nmixll -0.91 -0.91 -0.93 -0.93 -1.08 -1.08 -1.12 -1.12
ncom 4.0 4.0 3.6 3.6 8.2 8.2 2.0 2.0
time 3.12 3.16 2.71 2.70 3.32 3.36 0.31 0.31

All options, which contained ’g’ failed. It can be concluded that, in this case, the influence of ’a’ was not
observed. Thus the results are the same in each following selection (in parenthesis) (’a’,’0’)(’ad’,’d’)(’ag’,’g’)
(’adg’,’dg’). It just means that always the first selected factor in the first selected component was split.

7.4. BOOLEAN OPTIONS 39

4 static components

Table of results
Option a 0 ad d ag g agd dg
mixll -780.07 -780.07 -803.10 -803.10 -1074.48 -1074.48 -1094.98 -1094.98
std 71.01 71.01 103.28 103.28 48.98 48.98 64.68 64.68

nmixll -0.78 -0.78 -0.80 -0.80 -1.07 -1.07 -1.09 -1.09
ncom 3.6 3.6 3.6 3.6 5.4 5.4 3.4 3.4
time 5.73 4.94 4.01 3.97 5.14 5.54 1.15 1.22

With these data, the results are practically the same results as the previous ones. The option ’g’ does
not led to good results.

Creating of common factors has its sense only if the real mixture really had the common factors. But
this is not known to the system. It must be given as a prior information or we have to try both variants.

For the next testing, we will throw out all options containing ’g’.

12 static components,5 channels

Table of results
Option 0 a ad d
mixll -192.86 -233.17 -305.11 -306.01
std 51.44 80.98 73.78 74.53

nmixll -0.19 -0.23 -0.30 -0.31
ncom 3.0 2.6 2.8 3.0
time 9.40 7.21 2.66 2.77

This case clearly speaks against the use of options ’a’ and ’d’. These options can save the time, but
the cost we are paying for it is too high.

Danger by using stopping rules

The following picture shows the situation, when the stopping rule would be satisfied, but the mixll grows
then again.

1 2 3 4 5 6 7 8 9 10
−400

−350

−300

−250

mixll during iterations

1 122.9168
2 0.3529
3 0.1269
4 0.3318
5 0.0561
6 0.0356
7 0.7189
8 0.5566
9 0.4554
10 0.3378

(relative growth) the statistic offered to the stopping rule

The iteration would stopped if the value of the statistic would be under 0.09575. So if we used stopping
rules in this case, the algorithm would stopped in fifth iteration.

The conclusions are clear, but real data will be examined.

40 CHAPTER 7. SELECTION OF PROCESSING OPTIONS

real data 1

Table of results
Option ad d a 0
mixll 150281.72 150281.72 150281.72 150281.72
nmixll 2.81 2.81 2.81 2.81
ncom 6 6 6 6
time 116.44 117.65 126.99 118.91

Here, all options produce the same result. The algorithms do the same work, so that the elapsed time
should be same for all uses.2 So the unreliability of time measuring is seen again.

real data 2

Table of results
Option d 0 ad a
mixll 147373.78 147373.78 131482.76 131482.76
nmixll 2.75 2.75 2.46 2.46
ncom 4.0 4.0 3.0 3.0
time 165.87 166.97 11.70 11.70

Here, the saving of time is clear. But we can see that contribution is rather small.

Conclusions

Default values seem to be properly chosen. The options ’a’,’d’ should be used just in the case that there
is a short computing time available. We must accept the fact, that it brings worse results.

7.5 Shrinking of noise covariance estimate -xcove

This options determines how many percent of cove of the original factor will get the new factors during
splitting. Default value is 50% The idea to be tested is to use lower value of it, so that the new components
will not overlap. We generate 10 realizations of each mixture again and evaluate them. The results is
sorted.

7.5.1 7 static components

Dependence of results on xcove
xcove k0.2 k0.4 k0.1 k0.3 k0.7 k0.8 k0.5 k0.6
mixll -902.33 -906.07 -906.79 -907.43 -911.41 -914.41 -918.37 -918.68
std 41.23 35.86 38.40 28.81 35.71 33.40 38.60 27.31

nmixll -0.9023 -0.9061 -0.9068 -0.9074 -0.9114 -0.9144 -0.9184 -0.9187
ncom 4.8 4.8 4.8 5.0 4.0 3.8 4.0 4.0
time 3.22 3.04 2.48 2.49 2.80 2.55 2.56 2.57

In this case, the option (0.2) is the best, than following options are (0.4;0.1;0.3). The values below 0.5
seems to be better than the others.

2By stopping rules, there is an additional time for testing of the rule, but it is too small to consider it.

7.5. SHRINKING OF NOISE COVARIANCE ESTIMATE -XCOVE 41

7.5.2 20 static components

Dependence of results on xcove
xcove k0.2 k0.3 k0.1 k0.4 k0.8 k0.7 k0.6 k0.5
mixll -997.73 -998.76 -1004.66 -1004.89 -1012.86 -1013.78 -1014.45 -1014.82
std 49.62 52.42 45.87 39.63 47.57 48.28 46.29 33.16

nmixll -0.9977 -0.9988 -1.0047 -1.0049 -1.0129 -1.0138 -1.0145 -1.0148
ncom 4.9 4.8 4.4 4.4 3.5 3.5 3.5 3.8
time 4.73 4.11 3.04 3.25 3.29 3.13 3.12 3.19

Here, the best options are (0.2;0.3)(0.1;0.4). Again, generally values below 0.5 are better.

7.5.3 4 static components

Dependence of results on xcove
xcove k0.4 k0.1 k0.2 k0.7 k0.3 k0.5 k0.6 k0.8
mixll -493.18 -493.19 -493.26 -493.30 -493.72 -493.93 -493.97 -494.18
std 26.67 27.40 26.71 26.49 26.33 26.26 26.21 25.31

nmixll -0.4932 -0.4932 -0.4933 -0.4933 -0.4937 -0.4939 -0.4940 -0.4942
ncom 5.0 5.8 5.3 4.5 4.9 4.5 4.3 4.0
time 3.36 3.00 3.12 3.02 2.98 3.11 2.95 2.93

In this case, all options gives approximately the same results.

7.5.4 5 channels, 17 static components

Dependence of results on xcove
xcove k0.2 k0.8 k0.1 k0.4 k0.3 k0.7 k0.6 k0.5
mixll -204.03 -207.27 -207.38 -209.93 -215.88 -217.85 -217.92 -240.74
std 53.01 28.33 47.32 42.15 54.07 51.50 45.51 39.92

nmixll -0.2040 -0.2073 -0.2074 -0.2099 -0.2159 -0.2179 -0.2179 -0.2407
ncom 3.7 3.2 4.4 3.2 3.2 3.0 3.2 3.3
time 8.40 7.00 7.80 7.70 7.63 8.09 6.58 6.77

From the above data samples, the value 0.2 seems to be the best. The other values gives sometimes good
results and sometimes not. Generally , we can say, just that the values below 0.5 are better.

7.5.5 real data 1

Dependence of results on xcove
xcove k0.2 k0.3 k0.5 k0.6 k0.1 k0.4 k0.8 k0.7
mixll 150732.8 150300.3 150281.7 150270.6 150142.6 150110.9 149647.1 149416.3
nmixll 2.8224 2.8143 2.8139 2.8137 2.8113 2.8108 2.8021 2.7977
ncom 8.0 7.0 6.0 6.0 7.0 6.0 9.0 11.0
time 138.47 103.86 126.06 107.43 107.44 107.92 102.50 121.05

Again, we can state just that the value 0.2 seems to be good.

7.5.6 real data 2

Dependence of results on xcove
xcove k0.4 k0.5 k0.3 k0.6 k0.7 k0.8 k0.2 k0.1
mixll 147749.6 147373.7 146598.8 145311.9 145243.8 145081.4 143719.7 143118.8
nmixll 2.7665 2.7595 2.7450 2.7209 2.7196 2.7166 2.6911 2.6798
ncom 4.0 4.0 4.0 10.0 4.0 4.0 6.0 8.0
time 146.32 77.50 112.05 165.99 182.40 191.58 89.15 110.78

42 CHAPTER 7. SELECTION OF PROCESSING OPTIONS

Now, the result for option 0.2 is very bad. It rejects the hypothesis about existing a good general
value of xcove. The following tables just validates this fact.

7.5.7 7 static components

This mixture was studied here before. Now we generate two times 10 independent realizations. The
results validate the fact, that no god general value of xcove can be found.

Dependence of results on xcove
xcove k0.3 k0.5 k0.4 k0.8 k0.6 k0.7 k0.2 k0.1
mixll -899.68 -899.85 -901.27 -903.93 -905.74 -908.88 -912.24 -931.78
std 6.24 14.90 21.93 17.06 9.77 11.07 29.78 42.31

nmixll -0.8997 -0.8999 -0.9013 -0.9039 -0.9057 -0.9089 -0.9122 -0.9318
ncom 5.2 4.4 5.0 4.4 4.6 4.2 4.8 4.0
time 2.66 2.88 2.68 2.66 2.71 2.64 2.58 2.52

Dependence of results on xcove
xcove k0.5 k0.2 k0.4 k0.1 k0.6 k0.3 k0.8 k0.7
mixll -909.66 -910.17 -910.94 -916.69 -919.15 -923.14 -926.35 -926.62
std 55.45 51.69 51.04 46.47 49.12 54.06 42.31 40.96

nmixll -0.9097 -0.9102 -0.9109 -0.9167 -0.9192 -0.9231 -0.9264 -0.9266
ncom 5.6 5.0 5.0 5.2 4.6 5.0 4.6 4.2
time 3.69 3.00 2.68 3.10 2.79 2.75 2.86 2.62

The behaving of the algorithm for 2 sets of 10 realizations of the same mixture shows, that there is no
chance to find a generally optimal value.

Conclusions

The general optimal value of xcove could not be found. Only one general conclusion can be that the
values below 0.5 are better.

Chapter 8

Software aspects

In this chapter, selected software aspects of the project [3] are discussed. The development environment
is MATLAB (product of MathWorks) that offers powerfull language, functions and graphical means.
Design and debugging of the algorithms is relatively easy.

MATLAB is an interpreted language and it predestinates it to be slow. The aims of the project are
to create toolbox for MATLAB and for stand alone applications, too, which will be able to run on all
platforms.

The current state is a compromise between these two variants. MATLAB allows that a part of a
programme can be written in another programming language and pre-compiled to the form of a dynamic
library. By calling this function, MATLAB links the dynamic library into his address space and allows to
use the function as other built-in function. This fact bring us two great advantages. The first one is, that
algorithms written in MATLAB can be step by step re-implemented in another language. The second
one is, that it brings a great speed up. The producers assure double speed-up, but the usual program
accelerates on order of ten times. This fact is used by computing time intensive functions, which are
compiled and included in the resulting toolbox. However, the compatibility with other operation systems
is of course lost and each operating system requires different version of the toolbox.

8.1 MEX files

The compiled files are referred to as MEX-files. They can be written in several programming languages.
One of our aims is to create a stand alone application, which will run everywhere. The programming
language C seems to be best for this purpose. The C++ has not been selected because its compilers do
not exists on some platforms of real time control computer. C compiler si supposed to be present on any
platform.

The basic topic in building MEX-Files are inputs and outputs to the file. The programmer has to
understand how MATLAB represents data types that supports. It is a single object type referred to as
”mxArray”. All variables are stored in objects of this type. The variables are matrices (numerical, sparse,
multi dimensional), structures and cell matrices. Object oriented programming is supported by different
means. In our project, just three types are used, matrix, one-dimensional structure and cell array. The
object oriented processing is not used.

Each MEX-file has one function with the name mexfunction which is automatically exported from
the DLL1. It is clear that this function must have a standard interface in the form:

void mexFunction(int no, mxArray **out, int ni, const mxArray **in)

where no is the number of outputs, out is the array of pointers to outputs, ni is the number of input
arguments, in is the array of pointers to input arguments.

The type mxArray is the only one for all MATLAB objects. The instances of this type cannot be
create directly, only with help of special constructors, which returns pointer to the place in memory,

1We mean the dynamical linked library, these extension has the library just under Windows.

43

44 CHAPTER 8. SOFTWARE ASPECTS

where the mxArray was created. So that the type mxArray is never used single but as the pointer to the
structure only. Structure of an MEX-file can be generally described as follows:

1. parsing inputs i.e. converting the MATLAB data structures to programming structures;

2. algorithm implementation;

3. outputs building

1. Parsing inputs

Processing of the 3 basic types is described. When we have an mxArray * we can recognize whether
this object2 is a matrix or cell array or a struct using the following functions.

bool mxIsNumeric(mxArray *a) returns true if the object is a matrix
bool mxIsCell(mxArray *a) returns true if the object is a cell array
bool mxIsStruct(mxArray *a) returns true if the object is a struct

matrix

By this basic type, we can use functions

• int mxGetN(mxArray *matr) returns the number of columns

• int mxGetM(mxArray *matr) returns the number of rows

• double * mxGetPr(mxArray *matr) returns the pointer to the first element of the matrix. The
elements are folded up in one memory block along columns and they are of the type double.

By using these functions, we can acces the matrix element by element. Each element can be changed,
of course. The example shows using these functions, in which each element of matrix matr is multiplied
by 2.

mxArray *matr;

double *p;

.....

n=mxGetN(matr);

m=mxGetM(matr);

p=mxGetPr(matr)

for(i=0;i<m*n;i++) p[i]*=2;

struct

Struct is handled by

• int mxGetNumberOfFields(mxArray *str) returns number of fields

• double * mxGetFieldN(mxArray *str,int fieldnumber)3 returns the mxArray *pointer to the
field given by the fieldnumber. First field has index 0. In header file mexlib.h there are defined
useful macros for accessing specific fields of the used structures. It should be noted that the
returning pointer points to the same place as the pointer inside the struct. No data are copied.

2It is not object as in Object Oriented Programming
3This function is not standard matlab function it is defined in mexlib.h as follows

#define mxGetFieldN(X,i) mxGetFieldByNumber(X,0,i)

8.1. MEX FILES 45

cell array

Working with cell array is almost the same as with the struct. The corresponding functions are

• int mxGetNumberOfElements(mxArray *cell) returns number of elements

• double * mxGetCell(mxArray *cell,int index) returns the mxArray *pointer to the element
given by the index. First element has index 0. The other behavior is the same as shown for struct.

The following figures show accessing methods and simplified placing of matrix and cell array to
memory. The struct is not shown because of its similarity to cell array.

accesing methods

MATRIX

Process

M

M*N doubles

elements of matrix by columns

mxGetM

mxGetN

mxGetPr

adress

mxArray * A

matrix in memory

N

pointer on the matrix

CELL ARRAY

Process

N mxArray *

pointers on elements

mxGetNumberOfElements

mxGetCell
mxArray * A

any mxArray object, matrix,

cell array or struct

N

pointer on the cell array

object

 mxArray

object

 mxArray

object

 mxArray

cell array in memory

matrix and function for accesing it cell array and function for accesing it

2. algorithm implementation

We can either convert all data to classical data structures (described in the previous paragraf), or we
can directly use the mxArray structure. Using the second variant, the third step need not be partially
done. But if we have some earlier implemented algorithms, it is better to convert data and use these
algorithms. The aims to create the stand alone application will be easy in all variants. There is no reason
not to use mxArray structs in it. Without it, we wont be able to write universals codes for both aims
and this requirement is very important. Two versions of each procedure would lead to confusion.

3. output create

Using the constructors, we will create the outputs structures, fill them with data and assign pointers on
them in array out. The mxArray can be created by constructor or by copying another mxArray.
mxArray *mxDuplicateArray(mxArray *array) will copy entire mxArray with all fields and returns
pointer on new structure. The description of the constructors for used mxArrays is:

matrix

mxArray *mxCreateDoubleMatrix(int m,int n,0) creates matrix m×n with zero elements. The zero
in definition does not introduce the zero values. It just means that we want to create double matrix.
Accesing of elements is described above.

46 CHAPTER 8. SOFTWARE ASPECTS

cell array

mxArray *mxCreateCellMatrix(1,int n) creates cell array, with n pointers on elements. After creation,
the pointers have value NULL. The elements must be specified by calling
mxSetCell(mxArray *array,int i,mxArray *othermxArray), where array means pointer to our Cell
array, i means index of the element we are setting, and othermxArray is pointer to structure we want
to assign to our cell array. This structure will not be copied. We must avoid the situation with assigned
pointers of one mxArray into two other mxArrays.

Example 1:

mxArray *C=mxCreateCellMatrix(1,5);

mxArray *pom;

pom=mxCreateDoubleMatrix(5,5,0); {first figure}

mxSetCell(C,0,pom);

mxSetCell(C,1,pom); {second figure}

ilustrative example

C

pom

5

matrix in memory

0
 0
 0
 0
 0

5

25 zeros

5

cell array in memory

NULL
 NULL
 NULL
 NULL
 NULL

C

pom

5

matrix in memory

0
 0
 0
 0
 0

5

25 zeros

5

cell array in memory

NULL
 NULL
 NULL

first figure second figure

The example contains serious error. Two pointers in one cell array points to one data structure. If
we want all cells to be the same we must create copies of assigned data structures.

Example 2:

mxArray *C=mxCreateCellMatrix(1,5);

mxArray *pom,*pom2;

pom=mxCreateDoubleMatrix(5,5,0);

for(i=0;i<5;i++)

{

pom2=mxDuplicateArray(pom);

mxSetCell(C,i,pom2);

}

When we have all elements pointers assigned to a value, and we against call mxSetCell, we can loose
pointer to some data structures. Correctly, we must destroy the structure before loosing its pointer.

Example 3; We have the cell array from previous example and want to assign to the third cell bigger
matrix.

mxArray *p=mxGetCell(C,2);

mxArray *bigger=mxCreateDoubleMatrix(10,10,0);

8.2. LIBRARY, CALLING FUNCTIONS 47

mxSetCell(C,2,bigger);

mxDestroyArray(p);

Struct

The function mxArray *mxCreateStructMatrix(1,1,int n, const char **names) creates a struct
with n fields. The names of the fields must be specified in names , which is array of char*. The
simplest way to create the names is:

const char r[n][maxlen+1]={"name1","name2",,"namen"};

const char **names;

names=mxCalloc(n,sizeof(*names));

for(i=0;i<n;i++) names[i]=r[i];

maxlen is length of the longest name.
After creating the struct, we must assign the fields pointers. It is functional in the same way as by the

cell array. the function here is mxSetFieldN(mxArray *array,int field,mxArray *othermxarray)4

It reads also all notes from cell arrays.

WARNING!!!!

The mex function must not change its inputs!!!!!! It means, that the array in[] can be used just for
reading. When we change something of this, it can leads to unpredictable results.

The producers now says: Note Inputs to a MEX-file are constant read-only mxArrays and should not
be modified. Using mxSetCell* or mxSetField* to modify the cells or fields of an argument passed from
MATLAB causes unpredictable results.

But, in Matlab versions 3 and 4, the producers adviced changing the inputs. It brings more computting
speed. Let us have a very large structure, and we want to change one element. By changing the inputs, we
change just this element. Otherwise, the whole structure must be copied. In Matlab 5, the producers said
nothing about changing inputs. But it worked. The most part of this project was created on MATLAB 5.
By releasing MATLAB 6, the toolbox stopped to work. The results were really unpredictable. Standard
MATLAB function any did not work. The way to find the error was very hard. We discovered a small
mex-file, which changed its inputs. The producers notice did we find out after that on their web site.

compiling

When we have written a MEX - file , we must compile it so that the matlab can use it. It is simply done
by calling mex func.c on the matlab command prompt. Before this, we must specify to the matlab,
which compiler should it use. It is done by mex -setup

8.2 Library, calling functions

We have a lot of m-files disposable, which calls each other. For each file func.m we create file func.c,
which has to allow compiling of the considered mex firstly, and calling this function from other c-files
secondly.

Writing a mex file is described in previous section. Solving of the second task is done by creating a
library of functions prodact.lib All used functions must be compiled and linked into this library. The
format of functions, which makes the same computing as the m-file, must be uniform. When another
programer want to use my c-file, he must not be forced to find out the declaration of the function. Easy
and usefull solution is to to declare these functions formally in the same form as the mexFunction, just
the name of the function corresponds to name of the m-file. It means

void func(int no, mxArray **out, int ni, const mxArray **in). The format of auxiliary func-
tions depends just on the programer. The programmers is not forces to use these functions.

4This function is not standard matlab function it is defined in mexlib.h as follows

#define mxSetFieldN(X,i,X1) (mxSetFieldByNumber(X,0,i,X1))

48 CHAPTER 8. SOFTWARE ASPECTS

To allow to a file to solve two different task, we must to specify the task by compiling. If we want
to compile the c-file into the library, we define macro LIBRARY. In the file, of course we must use this
information. Concretely, each c-file should contain:

#include <math.h>

#include "mex.h" /*header file, which must contained all mex*/

#include "mexlib.h" /*header file with defined macros, which are often used*/

/*===

function r = func(params) header of original m-file

%

%help of the m-file

programmed: name of the programmer

==*/

declarations of auxiliary functions

declarations of extern functions

#ifndef LIBRARY

void mexFunction(int no, mxArray **out, int ni, const mxArray **in)

#else

void func(int no, mxArray **out, int ni, const mxArray **in)

#endif

{

body of the main function

}

#ifdef LIBRARY

definition of auxiliary functions

#endif

When a dll is compiled and linked for MATLAB, the programmer must tell to the compiler to use
the library product.lib and, of course, all auxiliary functions used must be included in the library. The
compile command than looks as follows. mex func.c prodact.lib

8.3 stand-alone application and memory management

When all m-files are converted to c-files like in prev. section, there should be no problem to link a
stand-alone application from the library. But in the history, there were problems with classical memory
management realized by malloc. It is slow and programmers errors occur frequently by wrong deallocation
of the memory.

Because of this a stack based model was selected. The application allocates a large block of mem-
ory called WORKSPACE and sets a workspace pointer WP to point to the begining of this block. All
memory allocations are stack-wise defined, so that they returns WP and then move WP forwards in the
corresponding length. A next allocation becomes another piece of the WORKSPACE. All destructors
are overdefined to do nothing. A deallocation can free just the memory, which was allocated as last one.

8.3. STAND-ALONE APPLICATION AND MEMORY MANAGEMENT 49

It is done simply by moving WP back to the value, which he has before the allocation. The mecha-
nism of allocation and deallocation must be considered when the algorithm is designed. Some functions
are called iteratively and could soon use all WORKSPACE, if the memory was not cleared. There is
a simple solution, which was designed and implemented in this work. An extra auxiliary workspace is
used. Before calling the dangerous function, the application switch all allocations to be from the auxil-
iary WORKSPACE. Then, after finishing the function, the result is coppied to WORKSPACE and the
auxiliary one is deallocated (ie. WP2 is set to the beginning.) Disadvantage of this approach is, that the
nesting of this memory switching has no equivalent in normal memory management.

50 CHAPTER 8. SOFTWARE ASPECTS

Chapter 9

Conclusions

In this chapter, results achieved are summarized. Generally, it contributed to a conversion of an ex-
perimental version of mixinit into real working tool. Moreover, reasonable set of default values of the
optional parameters was modified according to results achieved. A critical one (xcove) was also singled
out. Specific achievements worth of naming are.

• A conversion of the Mixtools functions for use with MATLAB ver. 6 (see section 8.1).

• The detailed description of algorithm for initialization of mixture estimation has been elaborated
(see section 5.2) and the particular processing options were discussed (see section 5.1).

• In chapter 7 the behaviour of the algorithm in dependency of these parameters was studied. A
particular attention was paid to the time requirements of the individual options. The best selection
of options was outlined.

• During experiments, some errors were found in the current version of the mixinit algorithm. These
were corrected.

• Many Mixtools m-function, has been implemented in language C as MEX-functions. It has led to
a higher efficiency of the toolbox. Particularly, all functions, which are used in function mixinit,
were transferred to MEX files.

• The first version of mixinit in C was created and tested.

• The chapter 8 can serve as a manual in programming of Mixtools functions in C. It can be used
as a reference manual for the toolbox designers, too. The programmers conventions for working in
Mixtols were described.

• In the section 8.3 the new memory model for stand-alone application was designed and implemented.

What remains to be done!

The algorithm mixinit is very time-consuming. The computing should be parallelized, so that the
time for running it on a more-processors-computer will decrease. The toolbox should be tried on multi
dimensional real data. One run of mixinit with great data last more than one day. It is reasonable to
develop a mean, so that we can interrupt the computing, if we want to do with the computer something
else. The mysterious parameter xcove should be studied more in detail than in this paper.

51

Index

batch quasi-Bayes estimation, 11

constructor, 45

data channels, 15
DATA., 15
discrete time, 9
dynamic factors, 16

EM estimation , 11

factor offset, 15
factor splitting, 13
flattening mapping, 12

horizon, 9

KL distance, 9
Kullback-Leibler distance, 9

mxArray, 43
mxCreateCellMatrix, 46
mxCreateDoubleMatrix, 45
mxCreateStructMatrix, 47
mxDuplicateArray, 45
mxGetCell, 45
mxGetFieldN, 44
mxGetM, 44
mxGetN, 44
mxGetNumberOfElements, 45
mxGetNumberOfFields, 44
mxGetPr, 44
mxIsCell, 44
mxIsNumeric, 44
mxIsStruct, 44
mxSetCell, 46
mxSetFieldN, 47

niter, 17

posterior estimate, 12
prior pdf, 12

quasi-Bayes estimation, 11

static factor, 16

TIME, 15

xcove, 17

52

Bibliography

[1] James O. Berger. STATISTICAL DECISION THEORY AND BAYESIAN ANALYSIS. Springer-
Verlag, New York, 1985.

[2] MathWorks col. MATLAB THE LANGUAGE OF TECHNICAL COMPUTING. The MathWorks,
Inc., Natick, 1998.

[3] M. Kárný, J. Böhm, T.V. Guy, L. Jirsa, A. Kanouras, I. Nagy, P. Nedoma, A. Quinn, L. Tesař, D.
Parry, M. Tichý, and M. Valečková. PRODACTOOL BACKGROUND – THEORY, ALGORITHMS
AND SOFTWARE. 2001. Draft of the report, 260 pp.

[4] Ivan Nagy Miroslav Kárný. DYNAMIC BAYESIAN DECISION-MAKING. UTIA AV, 1999.

[5] P. Nedoma, M. Kárný, I. Nagy, and M. Valečková. MIXTOOLS. MATLAB TOOLBOX FOR MIX-
TURES. Number 1995. Prague, 2000.

[6] Karel Pala. ÚVOD DO SYSTEMU LATEX. Edičńı středisko ČVUT, Praha, 1990.

[7] V. Peterka. BAYESIAN SYSTEM IDENTIFICATION. Pergamon Press, Oxford, 1981.

[8] B. Stroustrup. THE C++ PROGRAMMING LANGUAGE. Addison-Wesley, New York, Bonn, Tokyo,
1991.

53

