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ABSTRACT

The paper presents a scheme for estimation of spatio–temporal evo-
lution of groundshine dose from radionuclides deposited on terrain
in long–time horizon. Groundshine dose mitigation is modeled via
semi–empirical formulas taking into account environmental and de-
cay processes. We are aware of the fact that the model is imperfect
and special attention is paid to accounting for model error, which is
estimated. Methods of Bayesian filtering are applied to the problem.
Because of high dimensionality of the problem a parametrization of
model error covariance structure has to be introduced. The aim of
this paper is to demonstrate utilization of marginalized particle filter
for estimating of covariance–model parameters and distribution of
groundshine dose.

Index Terms— Data assimilation, marginalized particle filter,
covariance parametrization, groundshine dose

1. INTRODUCTION

Due to global climate changes and growing price of oil we can
observe upcoming renaissance of nuclear energy. Along with this
trend, demands of responsible authorities on systems for modeling
of eventual consequences of possible nuclear accidents increase
[1]. Research team from UTIA participated on customization of
the RODOS (Rael–time On–line DecisiOn support System) [2] on
the Czech conditions. Upon the experience gained in RODOS Data
Assimilation working group, we started development of system
HARP (HAzard Realistic Predictions system) [3], which is designed
for PC-Windows environment. Emphasis is laid on integration of
advanced statistical methods developed in UTIA [4] into the assimi-
lation sub–sytem [5]. One of the scenarios being solved is prediction
of spatial and temporal evolution of grounshine dose, which occurs
due to radioactive material deposited on the ground. The knowl-
edge how fast will radioactivity vanish due to radioactive decay and
environmental processes is crucial in planning of countermeasures.

This paper deals with modeling of groundshine evolution in
long–time horizon of months or years [6]. As the problem is com-
plex, the groudshine dose evolution model is idealized approxima-
tion of the true physical process. The only connection with physical
reality are measurements with errors (sparse both in time and in
space). In our work, we attempt to make model predictions more
reliable in a way of adjusting them toward measurements incoming
from terrain and accounting for model error. This process is called
data assimilation [7]. Its principle consists in combining of the
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information provided by the model with the measured data. Exploit-
ing information on sources of uncertainty, we are able to produce
improved estimate of the true situation on terrain.

The general problem of statistical assimilation methods is ad-
equate representation of model error. It has fundamental influence
on assimilation performance. We attempt to estimate model error
covariance in each time step upon actual measurements. It is rep-
resented by an error covariance matrix. As the total number of its
parameters is much higher the number of measurements we can’t
estimate all of them. Simplified covariance model based on ide-
alized assumptions has to be introduced. Model error is formally
partitioned into components representing different sources of uncer-
tainty. This is exploited in parametrization of model error covariance
via few parameters, which can be easily estimated. For finding the
most plausible values of these parameters the similar approach as
proposed in [8] or [9] based on modeled–minus–observed residuals
is used. Instead of maximum likelihood estimates, we use marginal-
ized particle filter [10] for estimation of both the model error covari-
ance parameters and groundshine dose distribution.

The organization of the paper is as follows. In Section 2, the
assimilation scenario is described. Section 3 introduces grounshine
dose mitigation model and Section 4 briefly discusses Bayesian fil-
tering. In Section 5, the model error covariance parametrization
is presented and the proposed assimilation procedure is explained.
In Section 6, experimental results with simulated measurements are
presented and the conclusion is given.

2. ASSIMILATION SCENARIO

In case of an accidental aerial release of radioactive pollutants into
the living environment, the radioactive plume is depleted during
passing over the terrain. This phase is called the plume phase. Due
to the deposition processes the plume leaves a radioactive trace on
the ground.

After the plume phase (when the radioactive cloud exits the area
of interest) post–emergency phase follows. It covers latter stages of
accident consequence evolution. Post–emergency phase may extend
over a prolonged period of several weeks or many years depending
on the source of radiation and local conditions. It ends when en-
vironmental radiation levels resume to normal. The main exposure
pathways in this phase are groundshine and ingestion. The deposited
material cause irradiation and through the root system migrates to
the edible parts of crops consumed by people and livestock. Among
many radionuclides released during emergency situations we focus
only on 137Cs since it is one of the most important nuclides in long–
time perspective. Its half–time of decay is long (30 years) and also
analysis after the Chernobyl accident had shown that it is one of the
most significant nuclides in these types of accidents having detri-



mental long–term effect on population health.
Our assimilation scenario covers the post–emergency phase.

The source of pollution is placed into the centre of polar network.
We perform our calculations on subset of this network in successive
time steps t ∈ {1, . . . , tMAX}. Groundshine dose in ordered set
of analyzed spatial points forms our state vector x. Let x̂0 be an
initial estimate of groundshine dose and P 0 its corresponding error
covariance matrix. This background field is given by probabilistic
version of Atmospheric Dispersion Model (ADM) and constitutes
the prior characterization of the problem. It is based on segmented
Gaussian plume model and it is part of the HARP system, more in
[5]. We assume sparse measurements yt of actual gamma dose–rate
are available in each time step. These measurements are assumed to
be conditionally independent with known error. Assimilation proce-
dure consists of two iteratively repeated steps: In time update step
(6) current state estimate together with its error covariance matrix
are propagated forward in time. The model error is estimated and
accounted for. Following data update step (7) produces so called
analysis – adjusts the model prediction to be in accordance with
actual measurements.

3. THE MODEL

Groundshine dose evolution is modeled according to semi–empirical
formulas from Japan model OSCAAR. This abbreviation stands for
Off–Site Consequence Analysis code for Atmospheric Releases in
reactor accidents. It has been developed within the research activi-
ties on probabilistic safety assessment at the Japan Atomic Research
Institute [11].

Let s be a spatial coordinate. Relation between SD(s) – the
initial 137Cs deposition [Bq×m−2] andDg(t, s) – the groundshine
dose–rate [Sv × s−1] at time t is given by

Dg(t, s) = SD(s)× SF (s)× L×DFg ×R(t)× E(t), (1)

where SF (s) is the integrated shielding factor for groundshine at lo-
cation s, L is geometric factor andDFg = 5.86E–16 Sv×s−1/Bq×
m−2 is the integrated dose–rate conversion factor for groundshine.
R(t) is a unit–less factor taking into account the radioactive decay
of the deposited radionuclude with half–time of decay Ty (2).

R(t) = exp

(
− t

Ty
ln 2

)
(2)

Term E(t) is a unit–less factor taking into account the decrease of
groundshine due to environmental processes, such as radionuclide
migration deeper into the soil, weathering, leaching etc. The experi-
ments had shown that the mitigation of groundshine due to environ-
mental removal mechanisms follows relation given by superposition
of two exponentials – fast and slow component (3).

E(t) = df exp

(
− t

Tf
ln 2

)
+ ds exp

(
− t

Ts
ln 2

)
(3)

Non–negative parameters df and ds are weights of decay effect for
fast and slow component, respectively. It must hold true that df +
ds = 1. Tf and Ts are half–times of fast and slow decay terms for
groundshine.

Ground deposition model formulas are semi–empirical, it means
that some of equation parameters are determined empirically on ba-
sis of measurements and the parameter values depend on the local
conditions in the area of model application – soil type etc. The dose
conversion factor was calculated by the method of Kocher (1980)

in which the exposed individual was assumed to stand on a smooth,
infinite plane surface with uniform concentration of source of ra-
dioactivity.

Some parameters used in ground exposure model are treated as
random variables with a given probability distribution. The parame-
ter distribution types were determined for 137Cs from the Chernobyl
disaster and they are listed in [11]. The appropriate data for other ra-
dionuclides are not available but it is assumed that the long–term in-
fluence of the most of them is not significant. For elements with high
half–time of decay and similar fixation rates as 137Cs are assumed
the same equations of groundshine mitigation. The uncertainty of
model parameters plays role in the whole model error and has to be
accounted for.

4. BAYESIAN FILTERING

Bayesian approach to filtering is applicable to all linear or nonlinear
stochastic systems [4], [12]. Let the stochastic system be defined
by discrete–time state–space transition equation (4) and observation
equation (5)

xt = f(xt−1) + bt (4)

yt = h(xt) + εt, (5)

where t is time index, xt is unobservable system state vector, bt is
the dynamic noise vector, yt is the measurement vector and εt its
noise. Generally non–linear operators f and h constitute the transi-
tion from prior state to the current one and relation of the measure-
ments to the current state, respectively.

The goal is to acquire posterior density p(xt|Y t) where Y t =
{y1, . . . ,yt} are available measurements. Bayesian estimation pro-
cedure consists of two iteratively repeated step. The first step transits
the state estimate to the next time step according to the probability
density function (PDF) p(xt|xt−1) – time update (6). In the sec-
ond step, the information provided by actual measurements yt is
included into the current estimate given by the PDF p(xt|Y t−1) –
data update (7).

p(xt|Y t−1) =

∫
p(xt|xt−1)p(xt−1|Y t−1)dxt−1 (6)

p(xt|Y t) =
p(yt|xt)p(xt|Y t−1)∫

p(yt|xt−1)p(xt|Y t−1)dxt
(7)

PDF p(x0) is called a background field or first guess and its choice
is important in terms of estimation performance, this is discussed in
detail for example in [7].

4.1. Kalman filter

Kalman filter (KF) is simple implementation of the Bayesian fil-
ter and is widely employed in many fields. Its usage is limited
to the case of linear estimation with the Gaussian noise where
p(xt|xt−1) = N(Mxt,Qt) and p(yt|xt) = N(Hxt,Rt) where
N(µ,Q) is Gaussian PDF with mean µ and covariance Q. M
andH are matrices of linear (linearized) operators f and h, respec-
tively. Under thess assumptions (6, 7) lead to KF equations for time
update and data update steps [13]. The equations perform recursive
update of the first two moments of estimated Gaussian distribution
p(x|Y t) = N(x̂,P ) – the mean value x̂ and its covariance matrix
P .



4.2. Marginalized particle filter

Particle filter (PF) is more general implementation of Bayesian fil-
ter which is applicable to non–linear and non–Gaussian problems
[12]. It is based on recursive estimation of the PDF p(xt|Y t) which
is represented as a set of so called particles x(i)

t and its associated
normalized weights q̃(i)t as {q̃(i)t , x

(i)
t }|i=1...M . The posterior PDF

p(xt|Yt) can be approximated with their help as

p(xt|Yt) ≈
1

M

M∑
i=1

δ(xt − x(i)
t ), (8)

where δ is Dirac δ-function, x(i)
t are samples from approximated

PDF. In case that we are not able to sample from p(xt|Yt) we can
draw samples x(i)

t from a chosen proposal distribution (importance
function) q(xt|Yt) and relate them as follows

p(xt|Yt) =
p(xt|Yt)
q(xt|Yt)

q(xt|Yt) ≈
p(xt|Yt)
q(xt|Yt)

1

M

M∑
i=1

δ(xt − x(i)
t )

(9)
Approximation of p(xt|Yt) can be then rewritten as

p(xt|Yt) ≈
M∑
i=1

q
(i)
t δ(xt − x(i)

t ), q
(i)
t ∝

p(x
(i)
t |Y t)

q(x
(i)
t |Y t)

(10)

Distribution function given by (10) has to be normalized (the
weights) via constant c =

∑M
i=1 q

(i)
t . If we choose the poste-

rior PDF from the previous step as proposal distribution in each
step, we can via recursive generating samples and evaluating their
normalized weights perform Bayesian filtering.

Disadvantage of this method is that we have to be able to gen-
erate random samples from complicated distributions and this is for
high dimensional problems computationally prohibitive. When the
structure of the model (4, 5) allows analytical marginalization over a
subset of xt we can reduce the computational burden. Let’s consider
factorization of the state vector xt =

[
xlt xnt

]T where xlt is a sub-
set of analytically tractable states and xnt is the rest. Substitution of
the factorization into (8) and application of the chain rule gives

p(xlt,x
n
t |Y t) = p(xlt|xnt ,Y t)p(x

n
t |Y t), (11)

where p(xlt|xnt ,Y t) is analytically tractable and xnt is given by the
particle filter. Assuming that xl0 ∼ N(x̂0,P 0) and to be governed
by a linear model implies that p(xlt|xnt , Yt) is conditionally linear–
Gaussian and can be computed via Kalman filter [14]. Substitution
of (8) into (11) for xnt leads to

p(xt|Y t) ≈
M∑
i=1

q̃
(i)
t δ(xnt − x

n,(i)
t )N(x̂

l,(i)
t ,P

(i)
t ) (12)

We estimate joint PDF as a mixture of a parametric distribution of
Gaussian type and of a nonparametric one. The estimated PDF is
represented by a weighted sum of Gaussians, where each particle
has a Gaussian distribution attached to it. This modification of PF
is called marginalized particle filter (MPF) and details on its imple-
mentation are for example in [10], [14].

5. ASSIMILATION PROCEDURE BASED ON MPF

The unavoidable condition for application of advanced assimilation
methods is knowledge of model error covariance structure repre-
sented in each step by its covariance matrix Q. The value of Q

should reflect total (unknown) model error, it is contribution to the
forecast error due to differences between the model and the true pro-
cess. In KF [13] forecast error covariance matrix P evolves as

P t = M tP t−1M
T
t +Qt, (13)

whereM is matrix of linear (linearized) operator for the state transi-
tion from t−1 to t. It is obvious that ifQ is neglected, the predicted
forecast error will be underestimated.

We attempt to estimate Q in each assimilation step. As the to-
tal number of model error covariance parameters to be estimated is
much higher than the number of measurements we can’t estimate all
of them. Simplified covariance model based on idealized assump-
tions has to be introduced. The idealized model of Q chosen by us
has only three parameters θ = (α, β, L)| α,β,L≥0, which can be in
each time step estimated upon actual measurements,

Qt = αt ×
[
Q

(1)
t + βt ×Q(2)

t (Lt)
]

(14)

The model error is partitioned into two components representing dif-
ferent sources of uncertainty. The partitioning has physical back-
ground. Q(1) concerns the uncertainty of forecast model parameters
introduced in Section 3. This component is found as a covariance
of sample obtained via Monte–Carlo simulation with many differ-
ent model settings. Component Q(2), scaled with β, is structured,
homogeneous and isotropic error. All other sources of uncertainty
are accommodated by introduction ofQ(2). This component is gen-
erated by means of second order autoregressive function ρL(r) of
length–scale parameter L and Euclidean distance between two spa-
tial locations r in meters [15]

ρL(r) =
(
1 +

r

L

)
exp

(
− r
L

)
(15)

The value of length–scale parameter L controls how fast the cor-
relation between two points decreases with their growing distance.
The overall covariance is scaled with α. This parametrization al-
lows mutual scaling of unstructured noise component Q(1) given
upon numerical simulation and “additional” structured noise given
byQ(2).

For finding the most plausible values of θ similar approach as
proposed in [8] or [9] based on modeled–minus–observed residuals
is used. Instead of maximum likelihood estimates we use MPF in-
troduced in Section 4.2.

When the measurements are available, we can evaluate residuals
vt = yt −Hx̂t. Covariance of v derived in [8] has the form

E[vtv
T
t ] = HtP tH

T
t +Rt = St (16)

We assume vt ∼ N(0,St). If we substitute (13) into (16) for P t

and use covariance parametrization (14) ofQt we obtain

St(θ) = Ht[M tP t−1M
T
t +Qt(θ)]Ht +Rt (17)

Parametrization of model error covariance leads to parametrization
of forecast error covariance P . The most plausible value of param-
eters are found in each time step via PF from likelihood p(vt|θt) =

N(0,S(θ)) for random parameter vectors θ(1)
t , . . . ,θ

(M)
t and ac-

tual residual vector vt. These parameters are then used in (13, 14)
for forecast error propagation. Incorporation of this algorithm into
KF assimilation scheme results in MPF for estimation of joint PDF
p(xt,θt|Y t) which is the mixture of Gaussian and nonparametric
distributions.

p(xt,θt|Y t)︸ ︷︷ ︸
MPF

= p(xt|θt,Y t)︸ ︷︷ ︸
KF

p(θt|Y t)︸ ︷︷ ︸
PF

(18)



6. EXPERIMENTAL RESULTS AND CONCLUSION

For our research experiments artificial scenario with local rain dur-
ing the fifth hour of the plume phase was chosen. The rain increases
depletion of the plume due the wet deposition. The area of interest
is subset of polar network comprising of N = 91 analyzed points.
The measurements were simulated from the measurement equation
(5) with linear forward observation operator H where the true ini-
tial deposition x0 was chosen to be two times higher than the prior
estimate x̂0. Initial forecast error covariance was set as

P 0 = 2P̄ 0 ◦Ω (19)

where Ω is covariance matrix generated from (15) and the ◦ stands
for element–wise matrix product (Schur product) [9]. Matrix P̄ 0

was modeled as sample covariance from multiple calls of ADM
where the rain intensity was treated as a random variable. Un-
certainty of the precipitation intensity is incorporated in P 0. The
element–by–element product with Ω reduces the strong covariances
between distant points.

Initialization of particles in the very first step was following:
α ∼ Gamma(1, 1), β ∼ N(102, 104) and L ∼ N(103, 106).
The prediction was evaluated for six months ahead after the post–
emergency phase beginning. Measurements were assumed to be
available each month, so we performed six successive prediction
steps. We also assumed that the measurements were available at
time t = 0 and data update step for improving of prior estimate was
performed. At each time step we simulated 10 irregularly spaced
measurements. Multinomial resampling described in [16] was used
as a resampling algorithm in MPF and particles were resampled each
step. Measurement error was set according to expert judgment based
on the fact that the smaller measured values have higher relative er-
ror than higher values due to the measurement methodology. In each
step, first two moments of groundshine dose distribution approxi-
mating the truth were predicted and updated .

In the Figure 1, we can see assimilation results in time steps 0, 2,
4 and 6. The results are in compliance with our expectations for this
special scenario – the dose is mitigated and model predictions were
successfully adjusted in accordance with the measurements. More
general conclusion could not be done until additional tests with var-
ious settings are performed. Applicability of the method on higher
dimension is still open. Only after cautious and wide verifications
the method can be included into the assimilation sub–system.

More comments on experimental results will be given in oral
presentation.
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