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Abstract

Expioitation of prior knowledge in parameter estimation is vital whenever data is not informative
enough. Elicitation and quantification of prior knowledge is a well-elaborated art in societal and medical
applications but not in the engineering ones. Frequently required involvement of a facilitator is mostly
unrealistic due to either facilitator’s high costs or the high comﬁlexity of modelled relationships that can-
not be grasped by the human. This paper provides a facilitator-free approach exploiting a methodology
of knowledge sharing.

The considered task assumes prospective models be indexed by an unknown finite-dimensional
parameter. The parameter is estimated using: (i) observed data; (ii) a prior probability density function
(pdf); and (iii) uncertain expert’s information on the modeiled data. The parameiric model specifies
pdf of the system’s output conditioned on realised data and parameter. Data is assumed to enter the
time-invariant model only via a finite-dimensional regression vector. The adopted méthodology deals
with expeﬁ’s knowledge expressed as a collection of pdfs on the space of data trajectories. Instead
of sampling from these pdfs and applying Bayes rule to the samples, the proposed approach uses the

asymptotic formulae arisen from gedanken experiment relevant to the knowledge considered.
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The paper specifies knowledge-expressing pdfs for commonly accessible types of knowledge, applies
the methodology to a2 normal controlled autoregressive model, and illustrates positive contributions of

this knowledge processing. -
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I. INTRODUCTION

Efficient use of prior knowledge influences quality of subsequent decision making (DM)
relying on estimated models. The considered Bayesian DM paradigm [1] combines data with
expert’s knowledge quantified by a prior probability density function (pdf). Its conmstruction
dominates the activity known as knowledge elicitation, e.g. [2]. It is addressed repeatedly and a
range of techniques has been developed, for review, see [3]. The majority of them, however, relies
on a facilitator, who guides an expert providing knowledge and quantifies knowledge gathered.
This way is expensive and can cope only with relatively éimple cases.

Adaptive controllers and predictors based on recursive éstimation [4], [6] are examples of im-
portant DM systems. Selection of their structure and their transient behavior depend, sometimes
critically, on the properly quantified prior knowledge. Limitations of the available knowledge
elicitation methodologies are even more strict for them, at least due to their assumed extensive
use. This state has motivated search for elicitation techniques weakly dependent on the facilitator.

The papers [7], [8], [9] elaborate the desired technique for models within the expoﬁential family
(EF), [17] which dominates in applied adaptive systems as it enables exact recursive estimation
on extending data sets. The referred technique transforms processed knowledge into so-called
fictitious data, i.e., data that could be observed on the modelled system, and uses this data for
estimation as real ones. Duality of some parts of this transformation has motivated attempts to
treat the automatic elicitation as an optimisation under knowledge-reflecting constraints [10],
[11]. This way is applicable only to specific cases, similarly as the other rare attempts [12].

Despite the increasing interest for the automatic knowledge elicitation, identiﬁcétion for control
purposes has not employed its great potential yet. For examples transients are (at most) handled

via specific control strategies, e.g. [13], [14}.



This paper provides a solution that suppresses drawbacks and inconsistencies of the discussed
predecessors, covers a wider range of types of knowledge and objectively determines relative
impact of respective knowledge pieces. The improvement uses results [15], [16] that justify
inclusion of probabilistically expressed knowledge about possible data into the parameter esti-
mation,

For readers, this paper may serve as: (i) a review of improved automatic knowledge elicitation
approach; and (ii) a justified methodology which allows a specific, case-dependent knowledge
be relatively straightforwardly utilised for parameter estimation. The elaborated cases of prior
knowledge are wide-spread in practice and thus may guide in active use of the proposed
methodology.

Section II recalls the basic result [16], we rely on, summarises Bayesian estimation of the
normal autoregressive model with exogenous inputs (ARX). Section I proposes processing of
prevalent types of prior knowledge, like information about data ranges, rise time, frequency
response, and simulated as well as obsolete data. Section IV proposes the way how to choose
weights controlling the overall impact of the processed knowledge. Section V provides illustrative

examples. Section VI summarises the results obtained.

IT. PRELIMINARIES

The following basic notation is adopted. X = {zy,2s,...} stands for a finite set. The
cardinality of the set X is denoted [X] and provides the number of elements of X. .

If z is a vector, z* dénotes number of vector elements. Lower and upper bounds on z € X
are z and Z, respectively. They are meant entry-wise for vectors. If z is a matrix, z > z if and
only if {z — £} is positive semi-definite. 7’ stands for the transpose of .

f is the pdf of a random variable, whose identifier is in its argument. # means a specific
value of the random variable z (typically, inserted into the condition). Subscript t € T labels
discrete time moments of observing/recording data d. d(t) means the sequence of data records
di,dg, ..., d,. Subscript 7 € T refers either to the 7th source/piece of prior knowledge or to
time index of "fictitious” data, i.e. data that could be observed on the modelled system”, The

concrete meaning of 7 is emphasised, if needed.



A. Probabilistic description of knowledge

A closed loop formed of system/process of interest and DM system is considered. The data
record observed at time £, d;, consists of the system output ¥, and input ut,. ie. dy = (ys, us)'.

The addressed parameter estimation task concerns the time-invariant parametric model of the
system. This model specifies the probability density function (pdf) of the scalar system output
conditioned by a finite-dimensional regression vector 1, = [u, d(t—1)]’ and a finite-dimensional

unknown parameter ©:

M(¥:,©) = fly| ue, dt — 1), 0) = f(u:[¢, ©). ey
L4
T
The predicted system output y; and the regression vector 3, form so-called data vector, ¥, =

w2, 3"

Knowledge about the unknown parameter © is initially described by proper prior pdf f(©).
Besides, available expert’s knowledge (possibly imprecise and incomplete) of some system’s
characteristic often indirectly inform about the parameter and as such should be used in the
parameter estimation. Each of the processed knowledge pieces is indexed by 7 € 7 where 7
is a finite set of all sources/pieces of prior knowledge available. To describe this knowledge in

order to exploit it, the following approach is considered.

« A gedanken experiment, reflecting the considered 7th expert’s knowledge, of the underlying
system’s characteristic, is assumed.
+ The possible ontcomes of this gedanken experiment are described by a pdf f.(¥), where
¥ is a data vector composed of so-called “fictitious data”, i.e. data would be observed on
the system if this experiment was performed in reality.
» The obtained knowledge-expressing pdf can be further used by the parameter estimation.
Note: 7 refers to the rth gedanken experiment, i.e. to the 7th source of the expert’s knowledge.

The expert’s knowledge provided by gedanken experiments is formally described by a set
of pdfs Fr = {f,(¥)},. on the space of data trajectories, where cardinality |77 of the set
T, equals the total number of gedanken experiments performed. The paper [16] proposes the
following definition of the prior pdf denoted by f(©|F+) which incorporates the knowledge
provided by F7: |



F(©) exp (IT] 27(0))
[ 1(®)exp (IT] Qr(0)) dO’

0r(0) = = 3 [ £:()nl(¥,6))av ®

T€T

f(O|Fr) = with (2)

The function £27-(0) in (3) can be interpreted as an expectation of the logarithm of the parametric
model with respect to the average pdf f(U) representing the set Fr = {f.(¥)}, .~

=7 S A) @

TET
The definition (2) extends an applicability of Bayes rule [18] to the processing of non-random

values of data vectors. Easy to see that, the data vectors \I!.r, 7 € T, define the set

Fr= { frt £(¥) = 8(F — ¥,) = Dirac delta on ¥ }TeT ®)

for which formula (2) reduces to the ordinary Bayes rule.

Note that use of the equation (2) avoids the artificial and costly processing via sampling of
the pdf f-(¥) and subsequent applying Bayes rule to the samples obtained. The evaluation of
(3) and mapping of available domain-specific knowledge pieces on the set F+ become the most
demanding tasks needed to be solved.

The function 27(©), (3), has a simple form when the parametric model (1) belongs to the
exponential family (EF) [17]

M(¥,0) = A(©)exp (B(¥),C(O)), . (6)

where A(©) is a non-negative scalar function of ©. B(¥) and C(©) are multivariate functions
of compatible dimensions and the functional (-, ) is linear in the first argument.

For the models in EF, the pdf (2) has the form
F(OFr) o f( YATI(©) exp (|TIV,C(8)), with @)
Z ‘., T, __/B(\Ii)ff(llf) dv, r € T.

lTI reT
The array V' is the expectation of B(¥) with respect to the average pdf f(®) (4).
The pdfs f-(¥), 7 € 7 which cause an identical modification of the prior pdf f(O), ie

provide the same increment T, in (7), are equivalent for the task concerned.



Selecting a specific representative of this equivalence class makes the mapping of domain-
specific knowledge pieces on the set F7- more transparent. Since the considered knowledge pieces
express information of the type: values of data vectors U, are highly expected to be in the set

W, the uniform pdf with a support on W, can be selected as such representative
() = L{q, (V) = uniform pdf on the set V., 7 € T. (8)

Restricting ourselves to parametric models in EF, it is natural to consider the conjugate prior

pdf

o) = HEIZELLCON,
(V) = / A*(©) exp (V, C(6)) d6, ©)

given by V = V¥ and v = y which guarantee properness, i.e., Z{V,»} < co. The posterior
pdf f(©ld(t),F7), obtained after processing the historical data observed up to time #, d(t) =
(cfl, ey Jt), preserves this form (¢ denotes discrete time moments of data recording). Arrays V;

and scalars v, determining the posterior pdf evolve recursively with V' given by (7)
Vi = Vi + B(¥), Vo=V + [TV, (10)
by = L’t_l—f-l, VOEZ_I'ITL t= 1,2,...

Thus, prior knowledge given by F is expressed via an average pdf f (T}, (4), and total number
of gedanken experiments |7|. The prior knowledge modifies initial conditions in (10) from V

and v to V4 and uy, respectively.

Remarks

1) The presentation convenience has motivated an arbitrary choice of the uniform pdf as a
representative of the equivalence class.

2) The choice of a nonuniform pdf f.(¥), which takes data vectors from a set V., 7 € T,
as highly expected, defines another equivalence class than the uniform pdf on V.. Thus,
the use of the uﬁifmm pdf (8) predetermines the mapping of domain-specific knowledge
pieces on the set F. Influence of this choice should be studied within the framework of

robust Bayesian estimation, [19].



3) Often, the 7th piece of knowledge concerns data vectors ¥ with a non-random part,

typically a part of the regression vector . Let us decompose
v = [T, M (11)

so that Y0 and M¥ contain uncertain and non-random entries, respectively. Applying the
chain rule to the pdf /,(V) = £, (U, MT), we get £,(T) = £, (V| Y0) § (pr - N\p)
where ", is the considered value of the non-random part of the data vector. This

factorisation implies
T, :/B (Ump, in;,,) f- (V9] N@T) dvg. (12)
4) Uncertain domain-specific knowledge can be practically provided in many forms which
require a specific mapping of a knowledge piece on pdfs f.(¥), 7 € T.
A number of mappings frequently met in practice is developed in Section II. However
they do not cover a full range of possibilities. The yet comunon cases not elaborated here
can be treated similarly as follows:

« Knowledge of the type “if the regression vector 1 yields the value Uy, then the ouipist
y € Y.” can be expressed by the pdf F(®) = U (Y)5(p — 4,).

~ 7
+ Knowledge of the type “if the regression vector vields the values [U¢’ ; N@[);_] with
Y € YW, then the output y € Y, can be expressed by Fr(¥) = Uy vy (Y-, Y0,) §(Nip—

M), ie., the uniform pdf is used for uncertain part of data vector, V¥ = [y, Uq,b’]'.

« Fuzzy rules can be treated in the same way as in the previous case. It is sufficient
to interpret the involved membership functions as conditional pdfs defining the pdf

f-(¥) via the chain rule. In general, this is possible after a suitable normalisation.

B. Bayesian estimation of normal ARX model

The developed processing of prior knowledge can be applied to the autoregressive model with
exogenous inputs (ARX model). Use of the chain rule for pdfs allows to consider the ARX model

with the single output only. Its Bayesian estimation, exploiting data records cf(t) = (dy,... ,dy)



observed up to the discrete time t, is recalled here. The normal ARX model belonging to EF

(6) reads

VT (y—afw)ﬁ]
M(l]:!,@)—./\fy(g Iw:r) = \/ﬁ%;exp [ o
S’
A(®)
(B(1).C(8))
_1.67[-1.0
=A(@)exp{—atr (111\11’[ 1’6127[_ ’ ]>}, (13)
e
B(¥%) c(o)

In (13) 4 is a (column) vector of regression coefficients, 9 is the corresponding regression vector,
r is noise variance, and tr denotes trace. This model is determined by the unknown parameter
© = (8,r). Tts conjugate prior pdf is a normal-inverse-gamma pdf, [10], (¢ denotes number of

elements of vector 1)

FO|V, 1) =NiGp (6, P, #,v) = Ny(0, rP)iG,. (7, v)
exp { D PMe-Dintrote |

2r

=TI, ) oS 1
[ (v—2) &P
V= v A)T _
pj  pt
2 % 0.5 v
I(V,v) = 2P (),
(Vo) ~(z/—z)f] 27 ] (2)

This pdf is determined by a symmetric positive definite extended information matrix V' — a direct
counterpart of the array V in (7) — and by the scalar » > 0 interpreted as the number of degrees
of freedom. The posterior pdf is also normal-inverse-gamma. The extended information matrix

V; and degree of freedom 14 determining it are updated according to the recursive version of (7)

VisVia+ 00, n=un4+1, (15)
N i
B(¥y)
where @, is a data vector available at time ¢.
It can be shown [18] that é, 7 and P are quantities well-known in connection with the
recursive least squares (RLS). The recursion (15) is algebraically equivalent to RLS with initial

values determining the prior pdf (14). The following correspondence holds (E and cov denote



conditional expectation and covariance, respectively):
, = E[#ld(t)] = RLS estimate of 6,
__ RLS remainder

7 = Elrld(t)] = s P, = cov[f|d()].

This correspondence explains the “standard™ choice of the prior pdf f (©), given by V and v
and specified by §=0P= diagonal matrix with a large diagonal, # and v are small positive
numbers, [5]. This choice quantifies the assumption that ¢ and r are finite but knowledge of
their values and relationships is very vague.

The technique developed here enriches this commonly acceptable practice by elaborating
available expert knowledge expressed via a set of pdfs F (5). Practically, the proposed approach

provides better initial conditions of (10), i.e., better initial conditions of RLS.

IIl. PROCESSING OF COMMON TYPES OF PRIOR KNOWLEDGE

The processing presented below deals with the commonly available types of domain-specific
knowledge. It constructs the mapping of knowledge piece on pdfs f,, 7 € 7. It demonstrates
typical ways of processing the knowledge and provides examples when equation (2) can be
applied. |

Section I-A deals with the prior knowledge of ranges of data trajectories, i.e., of ranges of
data sequences ordered according to the "fictitious” time of the gedanken experiment considered.
Knowledge of ranges of data trajectories is expressed via a uniform pdf on the set of highly
expected data vectors. Then, equation (2) is applied. |

Generally speaking a high number of commonly used types of prior knowledge about the
system can be expressed in the above-mentioned way. A specific example of the approach is
static gain quantification given in Section III-B. Section III-C describes a more complex example
of prior knowledge processing, which concerns rise time and dynamic time delay. An exploitation
of obsolete, analogous and simulated data is discussed in Section IM-D. It reveals the need to
prevent over-fitting of prior knowledge. The necessary balance between prior knowledge and
observed data can be reached by using just—ih-time-modelling methodology, Section II-DI.
Alternatively, the weight |7| of the function Q7(0) in the exponent of (2) can be modified to
w # {T|. This solution is prepared in Section ITI-D2 and finalised in Section 1V.



Quantification of response’s smoothness, Section III-E, provides an example of widely acces-
sible type of knowledge, whose processing requires Monte-Carlo-type evaluation.

The knowledge of cut-off frequency, Section TII-F, and a point on frequency response, Sec-
tion ITI-G, represent the cases allowing direct construction of the mapping of domain-specific

knowledge pieces to pdfs f., 7€ T.

A. Ranges of data trajectories

Often, ranges of data trajectories are known from: (i) the system design phase; (ii) series of
past experiments intended for estimation of particular system’s characteristics (for example, step
response) of the modelled system.

The ranges of data trajectories mean ordered sequence of knowledge pieces about data ranges.

The data ranges induce ranges of data vectors ¥,, 7 € 7 (7 labels “fictitious time” of the

gedanken experiment), with entries of data vector indexed by i = 1,..., ¥%,
U, eV, =0 .T] & U,;el¥,,T. (16)

The vectors’ ranges are determined by the lower ¥_ and upper U.,reT, boundary values as

follows:

e
I

T [-g'r;l? s 7—‘11—7;@5],1

E‘r = [@_1-;13 ne 96‘:’;\1‘3]!1

where the entries W_

5

and ”\'I!"m are finite. The knowledge of the ranges is expressed via the

uniform pdf on domain of ¥

v X&r;i’ﬁﬂi}(‘yi) — XWT(‘P)

f'r(lp) = UII' (wr) = == = ’
g 11;1";2' - E{T;i flU.,— d¥

1 ifze A,
0 ifzdA
For EF, the key quantity Y, (7) becomes

with the indicator function Y a(x) =

T, = / B(D)Ug (V,) d¥, 7€ T. | (17)



For the normal ARX model (13), the increment T, (17) of the extended information matrix

reads

T, = f VU Uy (V) 40 = = (T, + 1) (T, + T,

!
4
1. — _

yzding | (Trn = 20)", o (Trge — B) ] (18)

B. Static gain

Static gain, rise time and dynamic delay characterise a system’s response to a change from an
equilibrium. The static gain of a system is the difference between the former value of system’s
output and its terminal value when the system’s response reaches a new steady state after the
system’s input had been changed.

Static gain is typical information available in different application domains and its quantifi-
cation was repeatedly addressed [7], [8]. The knowledge of the static gain’s ranges g & @, y‘]
can be interpreted as a result of the following gedanken experiment: (i} let the inspected scalar
system’s output and system’s input be at their initial constant levels y; and uy, respectively; (ii)
a step change A is applied to the system’s input; (iii) when the system’s response reaches a
new steady state, the system’s output stabilises within the interval [y + g, 31 + 7], i.e., the static
gain g € g,ﬁ].

This knowledge can be expressed via ranges of data vectors as follows. The initial data vector
¥, expresses non-random knowledge of the initial constant value of the output y; and the
input u; corresponding to an equilibrium state. Values of the input u; + A together with values
of the stabilised output y € [yl +9g,0 + §] determine the range of the terminal data vector
U, € [¥,, Us]. The pdfs expressing this knowledge are

A(T) = 8(F — 0;) and fo() = Uy ([Ty, Ts]) .

The processing coincides with that of data ranges.

For example a single-input, single-output ARX model with the state in the phase form has
the regression vector

w; = [yt—l; cragYton, Ugy . ot :ut—m]s ' (19)

where n > 0and m > 0; n,m € Z.



For this case data vectors ¥y, ¥, and U, have the form
‘Ifl : [yl e 1 Uz "LL]_]’

Y, = [h+g ... nt+tg wm+A .. uy + A

Uy = pn+7 ... u+7 m+A ... w+4

o e

(n+1) times (m+1) times .
Equations (7), (18) give the following form of the extended information matrix reflecting the

processed prior knowledge of the static gain (|7 = 2 in (7))

V= %{@1@’1 + '}i (T + 2,) (To+ T,)’

1 . _ 9 . .
+Edtag[£9—g) ,-;,(Q”Q)J, 0,...,0 ]}
(n+1) times (m+1) tImes

C. Rise time and dynamic delay

Rise time, "1, refers to the time required for a system’s output to rise from a specified low
value to a specified high value of the final steady-state value of the desired system’s response.
Dynamic delay, °r, is the time required for a system’s response to change from zero to a small
non-zero value specified.

Uncertain knowledge of rise time and dynamic delay can be converted to knowledge of data
ranges in the following way.

» Both rise time and dynamic delay are gained on the system when deterministic step is
applied to its input. Thus, the input forms the non-random part of tiﬁe constructed data
vectors, cf. (11). The non-random values are used for the construction of the increment Y
in (7) according to (12).

« The absolute value of the system’s output is negligible until time 4. The negligibility means
the output is highly expected to be smaller than % times (k =2 0.1) the guess of the static

gain ¢ (for clarity § > 0), i.e.
y €[~k x §,kx g, forr< % | 20)
« The value of the output within a time interval characterised by system’s rise time "7 is

determined by

y€ly,7,), forre (%, 7], 1)



« For the time span 7 > "7, the output y, is expected to be in the ranges

y € [max((l — k)xg, gr), min((l + k) xg, gf)] . 22)

Expressions (20)-(22) (cf. (16)) specify the ranges of data trajectories and are determined by
the system’s properties known to an expert. This specification allows direct application of the

results obtained in Section III-A.

D. Data-base knowledge

Available realisations ¥, of data vectors U,, 7 € T (7 refers to the rth item in a data
base) can often serve as prior knowledge. The probabilistic description of this knowledge is
f-(¥) = 6(T—T,) and use of equation (2) reduces to ordinary Bayes estimation. This is a correct
solution, if the realisations are obtained on the modelled system and in ordinary operational mode.
The situation differs, if the realisations are: (i) obsolete; (ii) observed on a similar system; (iit)
observed under significantly different operation conditions; (iv) obtained via simulation. Then,
this knowledge has to be used carefully as the prior pdf may practically shrink at a wrong set,
and the real data observed will not be able to change the result.

The problem is not critical when the number of processed data vectors is small and real data
is informative [18]. Then, equation (2), reduced to the Bayes rule, can be directly applied. If
the conditions are violated, two approaches are considered here: i) real-time selection of the
informative past data, which are closely related to the current system’s state; and ii) real-time
weighting of the data processed to control the influence of the knowledge incbrporated. Detailed
description of both approaches is proposed below.

1) Real-time selection of representative data: The methodology called (among others) just-
in-time modelling, e.g. [20], [21] can counteract the dangerous shrinking. This methodology
assumes the ability to store and inspect a large number of data vectors in real time ¢ € T. With
them, the local model is built "just-in-time™ as follows.

« Current observations are put in the regression vector Tﬁt,t eT.

« A small number |77 of data vectors {¥,},c7 with the regression vectors {&:}rer “close”

to the observed one ”l,Zg are selected from a data base. Here the subscript 3 refefs to the real
time, while 7 to the 7th piece of data-base knowledge serving as prior knowledge at time

£



« A local model at time ¢ is fitted to the data vectors {@T},eq— corresponding to the regression
vectors {1, },er selected . By other words, (2) is applied with pdfs f, € Fr being Dirac
functions placed on the data vectors {¥, }.c7.

« The resulting model, delivered just-in-time, is used for predicting unknown value of the
output ¥, i.e., for computing characteristics of the predictive pdf :

Flyelds, Fr)y = [ M{[w, 9}, ©)f(O|F7) dO .
The outlined idea is quite powerful if the modelled relation is smooth. It may, however, be
sensitive to the definition of the closeness of regression vectors @Et and wNT. The advocated
probabilistic interpretation offers the following systematic approach.

The approach considers acceptance of the natural conditions of control, [18], which postulate

that knowledge of the regression vector without knowledge of the corresponding output does

not enrich knowledge about O, i.e.,

f(Olh) = f(Bl:) = £(8). 23

The regression vectors 7,5,, and ¢, can be assumed sufficiently close for the given task if the
joint pdf of unknown output ¢, and unknown finite-dimensional parameter ©, determined by the
vector ?;T selected from the data base, is close to that determined by the vector 1,5,5 observed at
time ¢, i.e.

Fu, O = fly, Olr). (24)

The joint pdf f (yt,@lﬂgbt) can be rewritten in the following way (the val1d1ty of the second
equality sign is lent by (23)): ’

o OY) = M(lye, B, 0) £(O1) = M([ui, $11,8) £(6).

Similarly, pdf conditioned by 1,57 reads:

(1, ©lr) = M([ye, ¥,]',0) £(O16,) = My, 4], ©) ().
Under weak conditions [22], the Kullback-Leibler divergence [23] and its affine modifications
having the same minimiser can serve as adequate measures of the inspected pfoximjty. Under
(23), the desired divergence takes the form

_ il M([’.Utﬂz;]’: ©) -
- [ M(@. 31, ©)70)n ( e @)) dyde. 25)




Thus, at time ¢, the desired data vectors W), = [, ;] in the data base are those having the
regression vectors 1?;,,, 7 € T, which yield small values of the divergence D, (25). For EF and

the conjugate prior pdf f(©), given by (9) with V =V and v = v, D,, becomes

Do =[G D e (4 Bl i), 00)

x (Bl 91]') - Bllun %)), C(6) ) dyd®.
For a single-output normal ARX model (13), D;, reads

Do [ LI i, (v, 1) apar 26)
3 | g~ 5P+ G- Sy - 3]
2 | (v—-2)F _
RLS quantities E, 7 and P are defined by (14) with V =V and » = p. The result (26) follows
from the basic properties of the normal and normal-inverse-gamma pdfs, see e.g. [10].

Let us consider (26). The first term in the square brackets is proportional to the normalised
squared difference of outputs’ predictions. Hence the values larger than one cannot be considered
sufficiently small for it. The second term in the square brackets, (26), is proportional to the
squared norm of (; — %) weighted by a mawix P. The equations (14) and (15) imply the
matrix P can be interpreted as an inversion of the second moment of regression vectors divided
by v. Hence, the values larger than +*/y, (with 4 is number of elements in 1) cannot be taken
as small. The discussion above indicates that a Justified threshold, deciding on whether D;, is
small enough, i.e. whether Iﬁ,. is sufficiently close to 11;:, can be found.

2) Weighting of knowledge-expressing data: Above, the regression vecto£ ¥y, around which
the local model is built, is determined by real-time observations gﬁt,t € T. In other cases, a
general rule for selecting “representative data” is missing and existing solutions, e.g. [24], are
case-dependent. The problem is that a huge amount of data vectors has to be processed without
a guide how to discard them individually. Cons‘e(juently, processed prior knowledge can be
“over-fitted” and influence of real observations can be diminished.

The problem applies to any data source, but it becomes especially important if the discussed
data sample is generated by simulation models. Despite these models accumulate a substantial
expert knowledge, their use in the subsequent choice of decision strategies is linﬁtecf. The reason
for that is required simplification of these models as the corresponding optimising design is often

unfeasi_ble.



Adaptive systems supported here rely on approximate models, too. They optimise decision
strategy in real time by using a recursively estimated model from a tractable class of models.
The approximation is constructed implicitly via Bayesian estimation, which guarantees that the
asymptotically best approximation of a modelled system [10]. The learning transient can be
substantially shortened, if the knowledge accumulated by the simulation model is projected onto
the prior pdf of unknown parameter ©. One possibility is to apply Bayes rule to simulated data
vectors that is equivalent to (2) with the average pdf (4) equal to their sample pdf. However the
result over-fits the projected knowledge and the data observed can hardly modify its inevitable
flaws.

Therefore 27(0) in (2) cannot be weighted by |7 - number of the processed simulated
samples. The gained prior pdf should be flatten appropriatety [10] and the weight should be
w < |T].

For EF, the incorporation of the knowledge reflected in simulated data vectors implies the
following processing,

« Collect the sample version of the normalised array

V= |—}r~|- > et Yo, see (7).
« Select the weight w € [0, |7]), and create prior values Vj and v according to (10) with w
replacing |71, ie.,
Ww=V+wV, nw=v+w. ' 27

This weighting diminishes an influence of the factor modifying f(©) in (2) and controls the
impact of the incorporated knowledge piece. An automatic choice of the weight w > 0 is

proposed in Section IV.

E. Smoothness of system’s response

Smoothness of the system’s response is frequently available type of knowledge about the
system. It can be expressed by a set of restrictions describing highly expected data trajectories

gained in gedanken experiment (7 € T is time index of the fictitious time in the experiment)

dr € drjpy = {d: + {yr — yraa| < gell0r — |} . (28)

The set (28) depends on ¥,_; and it is parameterised by a continnity module ¢, > 0 and the

considered norm || - ||.



Similarly to the previous cases, this type of knowledge can be expressed via uniform pdfs on
drj-—1 restricted by (16). The pdfs together with the known deterministic mapping (¥, _;,d,) —
U, determine the condirionaf pdfs f,|,,_1(lI'|@), describing the highly expected transitions ¥, _; —
@, for 7 > 2. The pdf fi(¥) describing the expected initial data vector can be chosen by using,
for instance, available knowledge of data ranges.

This construction represents cases when pdfs in the set F, = {f,(¥)},<7 are given implicitly

as solutions of the equations

A0 = [ fopa (B0 a0, 7 =2,

An explicit solution of these equations can hardly be obtained. The underlying conditional pdfs
are, however, simple and Monte Carlo methodology can be applied. It draws random independent
samples from f;(7) and simulates realisations ¥s, ..., ‘ilﬂ by drawing samples of data records
uniformly distributed on d,,_;. For EF, these realisations serve for evaluating the sample version
of Y, in (7).

The conceptual algorithm for EF is as follows.

Algorithm 1 (Evaluation of knowledge of the smoothness):
Initial phase

» Select the member of EF (6) determined by the functions A(©), C(©) and B(¥).

» Choose a conjugate prior pdf (9) given by ¥V and v,

o Set the array V =V.

» Specify ranges of data vectors W, (16) and the continuity modules qr. T € T as well as
|, see (28).

Select the number of runs |k| and set k = 0.

the norm || -

Iterative phase
1) Set k:=k+ 1.
2) Generate the sample U1 ~ f; ().
3) Increment V := 51V + 1B (\ifl)
4) Generate samples d, uniformly distributed on d|,_;, determine sample ¥, from ¥._; and
d, and increment V =V + B (@7) forr=2,....|7].
5) Stop, if £ > |k| or other stopping criterion is met. Otherwise, go to' the beginning of

Iterative phase.



6) Normalise the final V = Gl 1V and use it for the definition of the initial conditions in (10)

with |7 replaced by the weight w according to (27).

F. Cut-off frequency

This section deals with an important case, when the result of the gedanken experiment can be
evaluated analytically and the knowledge piece is expressed via directly constructed information
matrix V' (7). This case concerns, for example, knowledge of cut-off frequency w, € (0,2).
The term cut-off frequency refers to a boundary in a system’s frequency response and represents
the smallest frequency of the sinusoidal input at which the system’s output begins to be almost
zero. The presentation is made for the normal single-input, single-output ARX model with the
phase-form regression vector (19).

Knowledge of the cut-off frequency w, can be manifested in the gedanken experiment when
the system’s input is sinusoidal with frequency w. < w < 27 and the corresponding system’s
output is almost zero. Thus for the fixed frequency w € [w,, 27), the highly-expected fictitious

data vectors at time 7 € T are as follows (m > 0 and n > 0):
Byr = [Try-. s GrmsSinfwr), . .., sin(w(r —m))]. (29}

In (29) the involved outputs (%,,...,%,—n) have zero mean, negligible correlations and a small
variance r. Note the subscript w indicates the considered fixed frequency w € [w,, 27}, while 7

refers to the time index of fictitious data, i.e. data would be observed if the experiment conducted

in reality. .
Generally the extended information matrix can be split into blocks in the following way:
VR T
V= : (30)
T 8§

where R, T, S are matrices of dimensions {n + 1,n+1),(m+1,m+1) and (n + 1,m + 1),
respectively. Then the constructed extended information matrix V,,, computed as the sample mean

evaluated for the data vectors (29), can be written

I % G0, = | O G1)
w = l1m w, wr 3
[T] & "o 0 055, -

where I, is the unit matrix of the order n and S, is the corresponding (n+1, m+1)-block of the

decomposition (30) for the fixed frequency w. Using the complex form of goniometric functions



with 7 denoting imaginary unit, the (k,[)-element of the matrix S, with k,{ € {1,...,m+1}

can be written as follows

Su(k, 1) = 2{%512100 Tﬂ Zsm (w(r — k) sin(w(r — 1))

o1 . .
== Jim_ Tl TZ:; (exp(jw(T — k))— exp(~jw(r — k)))

x (exp(jw(r — 1)) — exp(~jw(r — 1))

= 3 lexp(jo(k ~ 1) + exp(~geo(k — )] -
_ TR ' .
lTlFIE}.OO 57 ;[exp(jw(% —k—1))+exp(—jw(2r—k—1))]
= cos{w(k —1)). (32)

The last limit is zero, as it represents a bounded sum of the geometric sequences divided by
7.

The expressed knowledge is valid for any fixed frequency w € [w,, 2). Easy to see that all
information matrices V,,, indexed by w € [w,, 27) provide complementary knowledge pieces
about the cut-off frequency w,.. Hence the formal correspondence 7 <+ w and T, + V,, applied
- to equation (7) implies that an average of V;,, w € [w,, 2m) can adequately represent all these

knowledge pieces. The desired extended information matrix V' computed by averaging reads

I, 0
V= / SUo([wey 27]) doo = | T , (33)
| 0 059

1 if k=1,
_singlwc|k—l| if & # I

]

S(k, )= kie{l,... m+1},

where Z{w([wc, 27]) is uniform pdf on [w,, 27].

G. A point on frequency response

Knowledge of cut-off frequency is a special case of a partial knowledge of the system’s
frequency response. This knowledge can be available at least in connection with auto-tuners
[25].

Recalling that the frequency response is the system’s reaction to the sinusoidal input, let us

assume a relevant gedanken experiment on the normal single-input, single-output ARX model



with the regression vector in the phase form (19). Then the corresponding stationary system’s
response at time 7 € T to the sinusoidal input with the frequency w provides the fictitious data

vectors (m > 0 and n > 0);

¥, Zasin(wr+ ¢)+ e, ..., asin(w(r—n)+d)+ er_n,

sin(wr),...,sin(w(r — m))], (34)

where the mutually uncorrelated noise elements e, have zero mean and the expert-specified
variance 7. In (34) the subscript w indicates the considered frequency, while 7 refers to the time
index of fictitious data, i.e. data would be observed if the experiment conducted in reality.

The amplitude a represents the basic prior knowledge supplied. The phase shift ¢ € [¢, @] C
[0, 27] is another, usually more vague, part of this knowledge. For a fixed frequency w and phase
shift ¢, the extended information matrix (7), denoted V4, coincides with the following sample

moment evaluated for the data vectors (34)
1 -
Vog = lim —> ¥, ¥
|Ti =1

{T|=oo

rl,1 +0.5a2R, 0.5aT,4 (35)

0.507, 0.55,,

where matrices R, S, and T,,4 are obtained via the decomposition (30). The entries of R,, and
S, are defined by (32) for the dimensions (n -+ 1,7 + 1) and (m + 1,m + 1), respectively.
The (k,I}th entry of (n -+ 1,m + 1)-matrix T, equals '

Tug(k, 1) = cos(wlk ~ 1] + ), (36)

with k€ {1,...,n+1}and i€ {1,...,m+ 1}.

Similarly to cut-off frequency (see Section I1I-F), the final extended information matrix can
be computed by averaging out V,,; over the possible phase shifts ¢ € [0,27). In the special,
most uncertain, case when no knowledge of the phase shift ¢» € [0, 27) is available, the extended

information matrix equals

1 [ Ini1 +0.5¢2R, 0
Ve — [ Vigdp=| "7 37
0 0 0.55,

2



IV. WEIGHTS OF THE KNOWLEDGE PIECES

The influence of prior knowledge depends on the weight w with which the normalised array
V,V representing the processed pdfs Fr = {f.(¥)} _,, is added to V, see (27). The choice of
w is critical issue for a balanced weighting of prior knowledge and information brought by
data observed. It becomes even more critical, when several knowledge pieces, given by the
collection of pdfs Fy, = { fr;p(llf)}TE% ,p € P={1,...,|P|}, are to be combined. These pieces
of knowledge may i) concern different aspects of the modelled system and be provided by one
expert, or ii) reflect the same system’s property but be provided by different experts. In order
to solve this problem and reach the balanced combination of different knowledge pieces, the
constructed functions (., (3) are weighted by wp = 0, p € P, ¢f. (27). The weights are chosen
under the following conditions.

» The parametric model belongs to EF, so that functions Q7. (3) are determined by arrays

Vo= A ZTE% Yrp p € P, see (7).
» The values of weights are chosen affer observing a sufficient number ts of real, informative
learning data, i.e. d(t,) = (d,,,...,ds,).
The term “sufficient number” formally means that at least one realisation ¥ of data vector W is
available. Practically d(t,) must counteract poor robustness of the maximum likelihood estimates,
see e.g. [26].
Under these weakly restrictive assumptions, the posterior pdf at any ¢ > ¢, gets the form, cf.

(6). (7, (27),

£¢

t |P|
X exp <z+ > B(¥,) +prvp,c*(e)>. (38)
o t=1 , p=1 :
~ |

Note, that unlike 7 refereing to either the 7th piecé of prior knowledge or time index of fictitious
data, ¢ refers to discrete time of real data observations.

In (38) the weight w, > 0,p € P determines the strength with which the pth knowledge item,
expressed by V,, is considered. ’

With the above notation, the addressed problem reduces to choice of the vector w = [w, .. ., wyp|}’

of non-negative numbers using the fixed knowledge v, V., v,, V., Vi,..., Vi, t > t5. For an



instance of w, the predictive pdf, evaluated for the observed data d(t), t > ¢, (¢, is a sufficient

number of informative learning data observed), becomes, cf. (9), (38),
f(&(t)h_/.:zaxfls tee :'V]'PE:(U))
P
1 (K* T Eﬂl WpVip, Ly + > wp) (39)
1 (K + Zli—l,l WpVp, ¥ + 2“21 wp)

This predictive pdf is a likelihood function with respect to the unknown vector w. Rigorous

Bayesian treatment would require assignment of a prior pdf over w and evaluation of the
posterior pdf over their possible values. The related computational complexity makes us search
for the maximum likelihood estimate of w for given v, V., u,, V,, Vi,..., Vp)s cf(t), t>t, ie.,
to maximise the predictive pdf (39) over w, > 0, p € P. This choice respects the mentioned
exceptional role of affine shifts of the Kullback-Leibler divergence [22]: the chosen maximum
likelihood estimate minimises the Kerridge inaccuracy [27] of the empirical pdf — concentrated
on the observed learning data d(t), ¢ > #, — on the optimised predictive pdf.

A rich set of optimisation procedures can be used for maximisation of the predictive pdf (39) as
it is a nicely behaving function of the optimised weight. For instance, Holder inequality implies
that the logarithm of this predictive pdf is a difference of convex functions of w. Moreover, it
has the ith derivative with respect to w, if the ith moment of In(A(©)) and C(©), defining EF

(6), exists for w = 0.

V. ILLUSTRATIVE EXAMPLES

The following normal ARX model (13) with scalar output y, is considered, see Section II-B,
yr = 1.81y;—1 — 0.818Ty;_o + 0.00468u; + 0.00438wu,_1 + e, (40)

with white noise e; ~ N, (0, 107*) and independent white exogenous scalar input u; ~ N, (0, 107%).
This is a discrete-time version of the continuous-time system with the transfer function (14 s2)~!
sampled with the period 0.1 sec,

The influence of incorporated prior knowledge is demonstrated by comparing the estimation
results gained with and without use of prior knowledge. Each example contains the following
steps:

o Data generation — a collection of |¢| learning data records are generated by model (40) for

N realisations of noise e and input u.



s Parameter estimation — estimation, see Section II-B, is run twice: with and without prior
knowledge. The runs without prior knowledge use the standard settings of the prior, Section
II-B with diagonal of P equals to 105, # = 10~4, y = 2,

» Evaluation of results — the results achieved are Jjudged according to time course of the
regression-coefficients estimates and the prediction quality quantified by

0= sample second moment of prediction errors
o variance of the noise e, in (40)

(41)

The quality is evaluated on validation data, generated after fixing ws in (27).

Example 1 illustrates influence of prior knowledge of a static gain 9 €lg,9] =10.9,1.1] on the
prediction. Processing steps:

» Data generation ~ a collection of |¢| = 200 learning data records was generated by (40) for
N =100 different noise and input realisations.

s Parameter estimation without prior knowledge — the estimation run with the standard prior,
see Section I1-B.

« Parameter estimation with prior knowledge — the posterior pdf obtained from the learning
data was combined with the prior knowledge of the static gain, represented by the second
sum under the exponent in (38). The numerically computed optimal weight maximises the
predictive pdf (39) evaluated for the learning data.

« Evaluation of results — an additional collection of 1000 validation data records was generated
and used for evaluating the prediction quality (41).

The results are in Figure 1. The left subplot presents the optimal weights w Eomputed for each
of N =100 noise and input realisations. The higher value of the weight, the more informative
contribution and stronger influence of knowledge processed.

The right subplot of Figure 1 presents a histogram of the prediction quality differences(41)
for the estimation with prior knowledge and without it. Therefore, the prediction with prior
knowledge is worse if the difference presented is pésitive. The histogram confirms mainly positive
influence of processed prior knowledge. Quantitatively, it is seen on a sample statistics of the

prediction quality differences

mean median minimum maximum

-0.363 ~-0.240 -1.664 0.180
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Fig. 1. Influence of prior knowledge of static gain: weights (27) (left) and histogram of differences of the prediction quality

over realisations {right).

Example 2 illustrates influence of prior knowledge of a static gain g € [g,g] =[0.9,1.1] on
point estimates of the regression coefficients in (40). Processing steps:

« Data generation - a collection of || = 20 learning input-output data was generated by (40)
to initialise the estimation and to find the optimal weights. An additional collection of 150
validation data records was generated and used in the parameter estimation.

o Parameter estimation without prior knowledge — estimation run on 150 validation data
records using the standard prior and learning data, see Section II-B.

« Parameter estimation with prior knowledge — estimation run on 150 validation data records
using the prior pdf enriched by the knowledge of a static gain. The numerically computed
optimal weight maximises the predictive pdf (39) evaluated for the learning data.

« Evaluation of results — the obtained time courses of the point estimates of the coefficient
by = 0.00468 at u; (40) were recorded and compared for estimation: with and without prior

knowledge. |
The obtained results are in Figure 2. The left-hand subplot depicts the logarithm of the

predictive pdf in learning data as a function of the optimised weight. The curve illustrates
that the maximum can be simply found. The right-hand subplot, Figure 2, shows evolution of
the by-estimates for both cases. The trajectory of by-estimates is smoother and closer to the true

value of the regression coefficient with prior knowledge.

Example 3 illustrates incorporation of prior knowledge of data ranges and combination of several
pieces of knowledge.
To select ranges properly, two independent data sets, of the length |7,| = 50, p = 1,2 were
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Fig. 2. Influence of prior knowledge of static gain: the logarithm of predictive pdf (39) as a function of the weight w (left) and
time courses of by estimate (right). The time course without prior knowledge is marked by circles. The straight line corresponds

to the simulated value of the coefficient bo.

generated by (40) for twenty noise and input realisations. The realistic ranges of data vectors
[ET;p,TIl"T;p], 7 € T p = 1,2, were determined as envelopes of these simulated data sets. The

respective arrays V, were evaluated according to (7) and (18). Processing steps:

s Data generation — a collection of |¢| = 300 learning data records was generated by (40) for
N = 100 different noise and input realisations.

+ Parameter estimation without prior knowledge — estimation run using the standard prior,
see Section II-B.

o Parameter estimation with prior knowledge ~ estimation run using the standard prior com-
bined with processed knowledge items and learning data. The numerically found optimal
weights [wy, wy], maximising (39), fix the impact of these knowledge pieces in (38).

« Evaluation of results — an additional collection of 1000 validation data rec;ords was generated
and used for evaluating the prediction quality (41) .

The left subplot of Figure 3 shows the logarithm of the predictive pdf in a two-dimensional
space of the weights (wq,ws)". The maximum is marked by circle. The plot corresponds to
the last noise and input realisations. The right subplot presents histogram of the differences
of the prediction quality (41) for the estimation with prior knowledge and without it. Positive
difference indicates the processed prior knowledge has worsened the prediction, The histogram
confirms predominantly positive influence of the prior knowledge processed. Sample statistics

of differences of the prediction quality is

mean median minimum maximum
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-0.188 -0.121 -1.138 0.047

VI. CONCLUDING REMARKS

The paper concerns elicitation and quantification of prior knowledge frequently met in engi-
neering domain. The adopted methodology works with prior knowledge expressed as a collection
of pdfs on the space of data trajectories. Illustrative examples indicate a strong improvement of
the estimation and prediction results implied by the proposed approach. The experiments confirm
that it improves estimation of model structure as well as quality of adaptive control.

The presented methodology presents a further step towards the ultimate aim: facilitator-free
incorporation of domain-specific knowledge into the prior pdf utilised by Bayesian estimation. A
unified elicitation methodology, based on incorporating knowledge of data ranges, and objective
way of mixing various knowledge pieces represent main progress.

The paper provides an approach, which i) covers a wide range of various knowledge types; ii)
removes drawbacks and inconsistencies of the predecessors; iii) objectively determines a relative
impact of the knowledge piece processed. Specifically, the treatment of data ranges does not rely
on artificial models mimic to the estimated one so that the arbitrariness connected with them is
removed. This applies to smoothness [7], rise time and dynamic delay [8]. '

An explicit introduction of the initial-level-fixing data vector ¥, in knowledge quantification
allows us to respect at least partially non-linear nature of the modelled system.

Quantification of the knowledge of the gain respects uncertainty of outputs in the regression

vector unlike the old solution [8].



Treatment of cut-off frequency respects that the output diminishes for all frequencies behind
it, unlike {8]. Concerning frequency response, uncertainty about the phase characteristic was not
covered before. Moreover, if amplitudes are highly expected to be a given interval for a range
of frequencies, it suffices to average V, (37) over this frequency range.

The foreseen open problems include: (i) the elicitation of knowledge provided by (possibly
fuzzy) production rules; (ii) relaxation of the restrictive assumption on the uniform pdfs used;
(iii) robustness analysis; and (iv) extensive real-life testing.

These technical steps will enhance the achieved conceptual and algorithmic improvements. The
major progress expected is however in facilitator-free quantification of domain-specific control
aims. It is achievable by applying the presented methodology to so-called ideal pdf, ie pdf

expressing control aims within the fully probabilistic design of control strategies [28].
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