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Abstract

The motivation for this research report is learning a Bayesian network (BN) struc-
ture by the method of maximizing a quality criterion. The aim is to summarize the
mathematical grounding for the Bayesian approach to learning a BN structure. At first,
some of basic statistical concepts are recapitulated. Then the classes of multinomial and
Dirichlet distributions are dealt with in more detail. A peculiar question what is, in fact,
the correct dominating measure for (the class of) Dirichlet distributions is answered.
After that basic Bayesian terminology is recalled and the (statistical) model of a discrete
BN is formally introduced. It is shown to be an exponential family. This allows one
to introduce a Bayesian model for (learning discrete) BN structures, including explicit
specification of the mathematical assumptions taken from the literature. This leads to
the formula for the (data vector of the) corresponding Bayesian quality criterion (= the
logarithm of the marginal likelihood).

Keywords: learning Bayesian network structure; statistical model; multinomial distribution;

Dirichlet distribution; exponential family; Bayesian quality criterion; data vector.

1 Introduction

The general motivation for this technical report is learning a Bayesian network (BN) struc-

ture by the method of maximizing a quality criterion, often named score metric, scoring

criterion or simply score by other authors [6, 22, 7]. More specifically, what is meant is

an algebraic approach to learning Bayesian networks, in which every BN structure is repre-

sented by a special integral vector, called the standard imset and the data(base) is encoded

in the form of a special real vector (of the same dimension), called the data vector. This

approach is described in more detail in Chapter 8 of [27].

A popular class of quality criteria (for learning a BN structure) is the class of Bayesian

criteria, also referred as the (logarithm of the) marginal likelihood in the literature [9]. A

correct mathematical definition of a quality criterion of this type is based on a series of
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special technical assumptions. In the literature on this topic (the author of this report

has an opportunity to consult) these assumptions are either not mentioned explicitly or

formulated in a vague way, not in clear mathematical terms.

Moreover, some natural mathematical questions have been omitted in those papers and

books, perhaps intentionally. The reasons could be different: experts in Bayesian statistics

may consider them to be evident from an intuitive point of view, while computer scien-

tists may simply wish to skip technical details that are not important from their point of

view. However, these questions are quite important from the point of view of a mathemati-

cian. One has to clarify these things in order to be able to deal with deeper subsequent

mathematical questions.

This technical report is a kind of a review directed towards special assumptions of

the Bayesian approach (to learning a BN structure). It is an attempt to re-formulate

these assumptions consistently in mathematical terms. Therefore, the report involves (some

of) the definitions of elementary statistical concepts, which are well-known in statistical

community (and, typically, omitted in common statistical papers).

The goal is to summarize basic concepts and assumptions of the Bayesian approach

to learning a (discrete) BN structure. These assumptions have to be clarified in order to

establish the basis for reliable research in deeper mathematical questions related to this

approach. For example, the future research can deal with:

• the asymptotic behavior of Bayesian quality criteria, which is related to the question

of their statistical consistency,

• the geometric aspects of the task to maximize a quality criterion of this kind.

2 Preliminaries

This is to review a few elementary statistical concepts, just for the purpose of this report.

The discrete case is only considered.

2.1 Sample space

In probability theory, by the sample space is usually meant the set of all possible outcomes

(= results) of an experiment or of a series of experiments. Thus, from the point of view

of statistics, the sample space is the set of possible values for the data. However, from the

mathematical point of view, there are three different levels of generality/understanding for

this concept.

A. Single outcome In this case, the elements of the sample space are possible outcomes

of one single experiment/measurement. Thus, the sample space coincides with the set

of all outcomes, called the outcome space (for a single experiment) in this report. Since

the discrete case is only considered here, the outcome space X will be a non-empty
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finite set throughout this report.1 In the case of the discrete BN model described

later in § 6, the outcome space X has a special form (= internal structure): it is

the Cartesian product
∏

i∈N Xi of certain (non-empty) finite sets Xi assigned to (=

indexed by) elements of the set N of variables in consideration.

The most appropriate name for the probability distribution on the outcome space X,

which is meant to have the crucial role in a “data-generating process”, is probably

the theoretical distribution.

B. Sample = database In this case, the elements of the sample space are ordered (fi-

nite) sequences of possible outcomes of successive experiments/measurements. This

corresponds to a series of experiments. If the sequence has the length d ≥ 1 then

an element of this space is called a sample of the size d. Note that some computer

scientists prefer the phrase a database of the length d instead.

Mathematically, the sample space is now the d-th power X{1,...,d} of the outcome

space, that is, the collection of all mappings from {1, . . . , d} to the outcome space X.

In this report, the probability distribution on this sample space will be named samp-

ling distribution, in order to distinguish it from the (theoretical) distribution on the

outcome space X.2

C. Table of counts = contingency table In this case, the elements of the sample space

are possible tables of counts (of particular outcomes in a sample). Of course, this ap-

proach has reasonable sense in the discrete case only. Formally, the table of counts

corresponding to a sample y1, . . . , yd of the size d ≥ 1 is a function c from the out-

come space X to {0, 1, . . . , d}, which ascribes to every x ∈ X the number c(x) of its

occurrences in the sample: c(x) = |{j; yj = x}| for x ∈ X. Some people also use the

phrase contingency table instead in the situation the outcome space X has the special

form
∏

i∈N Xi with a finite set N of variables. Mathematically, the sample space is

now the collection of all mappings c : X → {0, 1, . . . , d} such that
∑

x∈X c(x) = d.

The corresponding distribution on this space is then the multinomial distribution,

discussed in more detail in § 3.2.

In this report, the standard symbol for the sample space will be X. Depending on the

considered situation (= one of three cases mentioned above) one can have:

• X = X, where X is the outcome space, or

• X = X{1,...,d} for some d ∈ N, or

• X = { c ∈ {0, 1, . . . , d}X ;
∑

x∈X c(x) = d }.
1It is natural to assume that X has at least two elements, that is, at least two different outcomes of the

experiment are possible.
2Note that the phrase sampling distribution has often wider meaning. It is also used to name the distri-

bution of a statistic, that is, of a (measurable) function on X{1,...,d}.
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Since the (basic) outcome space X will be assumed to be finite throughout this report, the

corresponding sample space X will be finite as well, in all these three cases.

In general, however, statisticians may also consider an infinite sample space, typically (a

special subset of) the real Euclidean space R
n, n ≥ 1. Then the sample space X is, moreover,

endowed with a σ-algebra X of its subsets, typically the σ-algebra of Borel subsets (in the

corresponding Euclidean/metric space). Thus, the sample space becomes a measurable space

(X,X ), and this mental step allows one to use tools of measure theory.

Of course, in the case of a finite sample space X mentioned above, the σ-algebra X will

always be the collection of all subsets of X.3

2.2 Statistical model and exponential family

In statistics, the situation when the probability distribution on the sample space is only

partially known is in modelled by means of the concept of a statistical model.

Definition 1 (statistical model)

Let X be a sample space, endowed with a σ-algebra of subsets X . By a statistical model

will be meant a parameterized class of distributions on the measurable space (X,X ):

P = {Pθ; θ ∈ Θ} .

The set Θ will be called the parameter space then.

What is assumed quite often is that the parameter space Θ is endowed with a σ-algebra

A of its subsets and the class P is a Markov kernel from (Θ,A) to (X,X ), that is,

∀S ∈ X θ 7→ Pθ(S) is A-measurable mapping.

The parameter space Θ is typically an open connected subset in an (affine) Euclidean space

and A is the class of Borel sets in it then.

More specifically, very common assumption on the statistical model is that it is an

exponential family. The following definition can be found either in § 2.7 of [20] or in §XIV.3

of [1].

Definition 2 (exponential family)

Let (Θ,A) be a parameter space and (X,X ) a sample space. A class P = {Pθ; θ ∈ Θ}
will be called an exponential family (of distributions) if there exists a σ-finite measure µ on

(X,X ) such that

∀ θ ∈ Θ Pθ ≪ µ ,

3Later, in the connection with the Bayesian approach, we will also consider infinite sets in place of sample
spaces, but we will not denote them by X because of their different role in the joint global model - see § 4
and § 5 for details.
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that is, µ is a dominating measure for P, and, moreover, the densities of distributions can

be expressed in the form

dPθ

dµ
(x) ≡ pθ(x) = c(θ) · u(x) · exp (

m∑

s=1

qs(θ) · ts(x) ) for x ∈ X , θ ∈ Θ , (1)

where one has

• m ∈ N, q1, . . . , qm : Θ → R, t1, . . . , tm : X → R,

• u : X → [0,+∞), c : Θ → (0,+∞),

are all (correspondingly) measurable functions.

The value c(θ) for θ ∈ Θ is the normalizing constant (for pθ). The vector function

t(x) = [t1(x), . . . tm(x)] is then a sufficient statistic for the class P = {Pθ; θ ∈ Θ}. This

means the conditional distribution on X given the value of t does not depend on θ.4 As

mentioned in § 1.9 of [20] (see also §XV.5 of [1]), to verify that one can use the factorization

criterion of sufficiency, which requires pθ(x) can be written as follows:

pθ(x) = g(θ, t(x)) · h(x) for θ ∈ Θ, x ∈ X ,

where g and h are (correspondingly) measurable.

Indeed, we put g(θ, y) = c(θ) · exp (
∑m

s=1 qs(θ) · ys) for y ≡ [y1, . . . , ym] and h(x) ≡ u(x).

Remark Note that the terminology concerning exponential families is not completely uni-

fied. Some people understand by an exponential family a class of distributions of the form

(1), where Θ is a subset of R
m and q1, . . . , qm are coordinate functions.5 To name the

situation the actual dimension of the set of parameters Θ is smaller than the number m of

components of the vector statistic they use the phrase a “curved exponential family”.

3 Discrete statistical models

Basic discrete statistical model for a single outcome, that is, a model for discrete (strictly)

positive theoretical distributions, can be introduced as follows:

Fixed parameter: r ≥ 1.

The meaning of this constant parameter is the number of possible outcomes.

Sample space: X = {a1, . . . ar}.
This is a finite set of outcomes/results of a certain experiment/measurement (= the

outcome space). The k-th outcome is denoted by ak here.

4The intuitive meaning is that (all) the essential information about the value of the parameter θ ∈ Θ that
can be read from the value x in the sample space X is brought by the value t(x) of the sufficient statistic.

5Some of them then implicitly assume that Θ is convex or modify (= extend) Θ to get a convex set.
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Parameter space: Θ = { θ ≡ (θ1, . . . , θr) ; θk > 0,
∑r

k=1 θk = 1 }.
Having r fixed, the parameter space is the interior of so-called probability simplex in

R
r, that is, of {θ; θk ≥ 0,

∑r
k=1 θk = 1 }. Because of the functional dependence

∑r
k=1 θk = 1 between vector components (= single parameters) the actual number of

free parameters in Θ is r − 1; it is an open set in the corresponding affine space.

The formula for the density of Pθ (with respect to the arithmetic measure on X):

∀ θ ∈ Θ pθ(ak) = θk for k = 1, . . . , r .

The value of the density for the k-th outcome ak is the k-th component of the vector

parameter θ. Thus, in fact, the single parameters themselves are the theoretical

probabilities of particular outcomes.

It is straightforward that this defines an exponential family, c.f. (1):

• µ is the arithmetic measure on X, m = r, u ≡ 1, c ≡ 1,

• qs(θ) = ln θs for s = 1, . . . ,m,

• ts(x) = 1 if x = as, ts(x) = 0 otherwise.6

3.1 Sampling distribution

One of the central concepts in statistics is that of a random sample. Specifically, by a

random sample of the size d ≥ 1 from a (theoretical) distribution P is meant the sequence

ξ1, . . . , ξd of random variables that are independent and identically distributed, with shared

distribution P . The distribution P is usually unknown, but it is assumed to belong to

a statistical model (for theoretical distributions). Then, our knowledge about the (joint)

distribution of the random sample can also be described in this way.

In other words, the previously mentioned statistical model for a single (discrete) out-

come induces a statistical model for a sample of the size d ≥ 1. The parameter space is

the same, but the sample space is already the d-th power of the outcome space. The cor-

responding sampling distribution is the d-multiple product of the theoretical distribution.

More specifically, the statistical model is given as follows:

Fixed parameters: d, r ∈ Z, d, r ≥ 1.

The meaning of the parameter d is the size of the sample, r is again the number of

(possible) outcomes.

6This simple parameterization, which is a basis for later parameterization of the statistical model of a
BN structure in § 6, is “symmetric” relative to the outcomes (= elements of X). On the other hand, it has
the property that the actual dimension of Θ is less than m. One can provide an alternative parameterization
of the same statistical model for positive theoretical distributions in which m = r − 1 coincides with the
dimension of the corresponding parameter space. For example, θs ∼ ln p(as)

p(ar)
for s = 1, . . . , r − 1, but this

alternative parameterization is not “symmetric” because it has a distinguished outcome ar.
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Sample space: X = X{1,...,d}, where X = {a1, . . . ar}.
The set X is a finite set of outcomes/results of a certain experiment/measurement (=

the outcome space). The k-th outcome is denoted by ak. The sample space X is the

collection of samples of the size d, that is, of (ordered finite) sequences of outcomes

of the length d.

Parameter space: Θ = { θ ≡ (θ1, . . . , θr) ; θk > 0,
∑r

k=1 θk = 1 }.
The parameter space is again the interior of the probability simplex in R

r.

The formula for the density (with respect to the arithmetic measure on X):

∀ θ ∈ Θ ∀ y ≡ [y1, . . . , yd] ∈ X pθ(y) = θx1
1 · . . . · θxr

r , (2)

where xk denotes the number of occurrences of ak in y (for k = 1, . . . , r).

For each θ ∈ Θ, the sampling distribution on X is nothing but the d-multiple product

of the corresponding theoretical distribution on X.

The formula (2) for the density can be derived as follows:

The theoretical probability of ak is p∗θ(ak) = θk for k = 1, . . . , r. If ξ1(ω), . . . , ξd(ω) is a random
sample from this theoretical distribution, then the probability of occurrence of y ≡ [y1, . . . , yd] is

Prob ({ω; [ξ1(ω), . . . , ξd(ω)] = [y1, . . . , yd] }) =

d∏

ℓ=1

Prob ({ω; ξℓ(ω) = yℓ }) =

d∏

ℓ=1

p∗θ(y
ℓ) .

Now, by the definition of x1, the term p∗θ(a1) ≡ θ1 occurs x1-times in the last product. This gives

a contribution θx1
1 . Analogously, θ2 occurs x2-times, etc. Hence, the last product is nothing but

θx1
1 · . . . · θxr

r . Therefore, this is the value of the sampling density for y ≡ [y1, . . . , yd].

Again, it is easy to see that, having d, r ≥ 1 fixed, the above class of sampling distribu-
tions defines an exponential family:

• µ is the arithmetic measure on X ≡ X{1,...,d} with X = {a1, . . . ar},

• m = r,

• c(θ) ≡ 1 for θ ∈ Θ, u(y) ≡ 1 for y ∈ X,

• qs(θ) = ln θs for θ ∈ Θ and s = 1, . . . ,m,

• ts(y) = xs ≡ |{ℓ; 1 ≤ ℓ ≤ d, yℓ = as}| for y = [y1, . . . , yd] ∈ X.

More specifically, let us substitute to the formula (1):

pθ(y) = c(θ) · u(y) · exp (

m∑

s=1

ts(y) · qs(θ) ) = 1 · 1 · exp (

r∑

s=1

xs · ln θs )

= exp (
r∑

s=1

ln θxs
s ) =

r∏

s=1

exp (ln θxs
s ) =

r∏

s=1

θxs
s = θx1

1 · . . . · θxr
r ,

which is the expression in (2).
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In particular the vector function t : X ≡ {a1, . . . ar}{1,...,d} → R
r given by:

ts(y) = xs ≡ |{ℓ; 1 ≤ ℓ ≤ d, yℓ = as}| (3)

for s = 1, . . . , r and y ≡ [y1, . . . , yd] ∈ {a1, . . . ar}{1,...,d} ,

defines a sufficient statistic for this statistical model. Observe that t(y) = [t1(y), . . . , tr(y)]
is nothing but the table of counts corresponding to the sample y = [y1, . . . , yd].

Terminological remark Some authors in computer science [16, 17, 22] use a special
phrase “multinomial sample” to name (a sequence of random variables with the) distribution
on X ≡ X{1,...,d} given by (2). They were probably inspired by (a single sentence from a
book by) Good [14], who used this phrase when he tried to relate this sampling distribution
to the classic multinomial distribution for the corresponding tables of counts (see § 3.2).

In my view, using the adjective “multinomial” is inappropriate and misleading in con-
nection with distributions on X ≡ X{1,...,d}. Of course, this adjective perfectly fits the
distributions on (possible) tables of counts since the corresponding formula (4) below con-
tains the multinomial coefficient; but there is no good reason for using this adjective in the
context of the distributions for samples. That’s why I use the phrase “sampling distribu-
tion” in this report instead.

Actually, I have found out that some young researchers in computer science, probably
inspired by the above mentioned authors, have tried to use the phrase “multinomial distri-
bution” to name a (strictly positive) theoretical distribution on X = {a1, . . . ar}. Again,
there is no reason for the use of the adjective “multinomial” here, and, even worse, this
is in direct contrast with common statistical terminology! The reader can learn in any
basic (text)book on statistics that by a multinomial distribution is meant a special discrete
distribution for tables of counts – see below.

3.2 Multinomial distribution

The multinomial distribution is one of the most important discrete multidimensional dis-
tributions in statistics. It can be interpreted as the distribution on (the collection of all
possible) tables of counts corresponding to a random sample (from a strictly positive discrete
theoretical distribution).

In other words, the statistical model for a sample (of the size d ≥ 1) mentioned in § 3.1
induces a statistical model for tables of counts. The parameter space is the same, but the
sample space is now the collection of all possible tables of counts. More specifically, the
class of multinomial distributions can be introduced as follows (c.f. §XI.1. [1]):

Fixed parameters: d, r ∈ Z, d, r ≥ 1.
The meaning of the parameter d is the number of trials (= sample size), r is the
number of (possible) outcomes.

Sample space: X = { [x1, . . . , xr] ; xk ∈ {0, . . . , d} ∑r
k=1 xk = d } ⊆ R

r.
Thus, one deals with r-dimensional discrete distributions. The sample space can be
interpreted as the collection of tables of counts for the outcome space X = {1, . . . , r}
and the sample size d. Of course, it is only a formal difference if one has X =
{a1, . . . , ar} instead (as in the previous sections).

Parameter space: Θ = { θ ≡ (θ1, . . . , θr) ; θk > 0,
∑r

k=1 θr = 1 }.
The parameter space is again the interior of the probability simplex in R

r.
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The formula for the density (with respect to the arithmetic measure on X):

∀ θ ≡ (θ1, . . . , θr) ∈ Θ ∀x ≡ [x1, . . . , xr] ∈ X

pθ(x) =
d!

x1! · . . . · xr!
· θx1

1 · . . . · θxr
r , (4)

The formula follows from the above mentioned interpretation of multinomial distribu-
tion. The name of the distribution is clearly motivated by the multinomial coefficient
(

d
x1...xr

)
≡ d!

x1!·...·xr! which occurs in the formula (4).

More specifically, the formula (4) can be derived as follows:

Let X = {a1, . . . , ar} be the outcome space. If θ ≡ (θ1, . . . , θr) ∈ Θ defines the theoretical distribu-
tion p∗θ(ak) = θk for k = 1, . . . , r, then the formula (2) gives the probability of occurrence of a sample
(= database) y ≡ [y1, . . . , yd] ∈ X{1,...,d}. It suffices to find out which of these samples correspond
to the table of counts x ≡ [x1, . . . , xr] ∈ X and sum their occurrence probabilities. Nevertheless, by
(2), all these samples have the same probability θx1

1 · . . . · θxr
r . Thus, to get the formula (4) is suffices

to verify that the number of these samples (= databases) is d!
x1!·...·xr! .

Indeed, for the choice of the positions of the occurrence of a1 in [y1, . . . , yd] one has d!
x1!·(d−x1)!

options, because this is equivalent to the choice of an x1-element subset of {1, . . . , d}. Then an
(d− x1)-element subset remains and for the choice (of the positions) of a2 one has as many options

as the number of x2-element subsets of this (d − x1)-element set, that is, (d−x1)!
x2!·(d−x1−x2)!

options. By

multiplying we get the overall number of options for positions of both a1 and a2:

d!

x1! · (d − x1)!
· (d − x1)!

x2! · (d − x1 − x2)!
=

d!

x1! · x2! · (d − x1 − x2)!
.

We proceed by induction and, in the end, get the desired value d!
x1!·...·xr! .

Again, it is easy to observe that, having d, r ≥ 1 fixed, the class of multinomial distri-
butions is an exponential family:

• µ is the arithmetic measure on X ≡ { [x1, . . . , xr] ; xk ∈ {0, . . . , d} ∑r
k=1 xk = d},

• m = r,

• c(θ) ≡ 1 for θ ∈ Θ,

• u(x) =
d!

x1! · . . . · xr!
for x ≡ [x1, . . . , xr] ∈ X,

• qs(θ) = ln θs for θ ∈ Θ, s = 1, . . . , r,

• ts(x) = xs for x ∈ X, s = 1, . . . , r.

To check that let us substitute to the formula (1):

pθ(x) = c(θ) · u(x) · exp (

m∑

s=1

ts(x) · qs(θ) ) = 1 · d!

x1! · . . . · xr!
· exp (

r∑

s=1

xs · ln θs )

=
d!

x1! · . . . · xr!
· exp (

r∑

s=1

ln θxs
s ) =

d!

x1! · . . . · xr!
·

r∏

s=1

exp (ln θxs
s )

=
d!

x1! · . . . · xr!
·

r∏

s=1

θxs
s =

d!

x1! · . . . · xr!
· θx1

1 · . . . · θxr
r ,
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which is the expression in (4).

Well-known formulas for the expectation vector and the covariance matrix of a random
vector [ζ1, . . . , ζr] with multinomial distribution are as follows (see §XI.1, Theorem 2 in [1]):

E (ζk) = d · θk, var (ζk) = d · θk · (1 − θk) for k ∈ {1, . . . r},
cov (ζk, ζl) = −d · θk · θl for k 6= l, k, l ∈ {1, . . . r}.

4 Dirichlet distribution

Dirichlet distribution is a very important continuous multidimensional distribution. It is a
kind of standard distribution on the parameter space Θ for the discrete statistical models
from the previous section. The class of Dirichlet distributions on Θ can be viewed as a
statistical model, too.

4.1 Sample space and the correct dominating measure on it

Thus, the sample space for (the class of) Dirichlet distributions is nothing but the interior
of the probability simplex in R

r, r ≥ 2:

Θ = { θ ≡ (θ1, . . . , θr) ; θk > 0,

r∑

k=1

θk = 1 } ,

which is the parameter space in all three cases mentioned in § 3.
However, before giving the formula(s) for the densities of Dirichlet distributions one

should specify with respect to which dominating measure the densities are considered. The
affine hull of Θ is the set

aff (Θ) = { θ ≡ (θ1, . . . , θr) ;
r∑

k=1

θk = 1 } .

It is an affine (= shifted linear) subspace of R
r, of the dimension r − 1. Therefore, one

can define consistently the (concept of the proper) Lebesgue measure on aff (Θ) (see §B.3,
Definition 14 and Proposition 14, for details). However, the usual standard formula for the
density of the Dirichlet distribution given below is not meant with respect to the restriction
of this proper Lebesgue measure on aff (Θ) to Θ, but with respect to its 1√

r
-multiple!

That measure is the restriction (to Θ) of the image of the standard (r − 1)-dimensional
Lebesgue measure on R

{1,...,r}\{l} by the lifting mapping to aff(Θ) ⊆ R
{1,...,r}, for arbitrarily

chosen l ∈ {1, . . . , r}:

[θk]k∈{1,...,r}\{l} 7−→ ( [θk]k∈{1,...,r}\{l} , θl ≡ 1 −
r∑

k=1,k 6=l

θk ) (5)

It appears the image of the Lebesgue measure on R
{1,...,r}\{l} by this transformation does

not depend on the choice of l ∈ {1, . . . , r} and, moreover, it is nothing but the 1√
r
-multiple

of the proper Lebesgue measure on aff (Θ) - see Proposition 17 in §B.4.
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Definition 3 (dominating measure for Dirichlet distributions)
Given Θ ≡ { θ ≡ (θ1, . . . , θr) ; θk > 0,

∑r
k=1 θk = 1 }, r ≥ 2 the symbol µΘ will denote the

restriction (to Θ) of the image of the (r − 1)-dimensional Lebesgue measure by (5). It will
serve as a standard dominating measure for Dirichlet distributions.

Remark The specification of the dominating measure (for Dirichlet distributions) is ty-
pically omitted in the literature. Indeed, I was not able to find that particular piece of
information in any book dealing with Dirichlet distributions (I had a chance to consult).
Perhaps some of the authors consider it to be intuitively clear that the lifting transformation
(5) always leads to the same measure on aff (Θ). However, since this transformation is not
an isometry (neither a multiple of an isometry), the proof of this fact is not straightforward
and deserves some special geometric considerations – see §B.4.

4.2 Definition of Dirichlet distributions

The class of Dirichlet distributions can be introduced as follows.

Fixed parameter: r ≥ 2
This is the dimension of the Euclidean space in which the sample space for Dirichlet
distributions is placed. Alternatively, the meaning of r is the number of outcomes (of
the ascribed experiment). Formally, it could also be r = 1, but then the corresponding
Dirichlet distribution is a degenerate discrete distribution.

Sample space: Θ = { (θ1, . . . , θr) ; θk > 0,
∑r

k=1 θk = 1 }
As mentioned above, this is the interior of the probability simplex in R

r, which serves
as the parameter space for (the classes of) discrete distributions introduced in § 3.

Parameter space: Ξ = {α ≡ (α1, . . . , αr) ; αk > 0 }
This is the interior of the positive quadrant in R

r. To distinguish terminologically this
space Ξ from Θ, which usually plays the role of the parameter space, Ξ will be named
the hyper-parameter space and its elements (vector) hyper-parameters. Observe that
there is no functional dependence between hyper-parameter vector components (=
single hyper-parameters). Therefore, the actual dimension of Ξ is higher than the
dimension of Θ (by 1).

The formula for the density (with respect to µΘ from Definition 3):

∀α ≡ (α1, . . . , αr) ∈ Ξ ∀ θ ≡ (θ1, . . . , θr) ∈ Θ

dα([θ1, . . . , θr]) =
Γ(

∑r
k=1 αk)

∏r
k=1 Γ(αk)

·
r∏

k=1

(θk)
αk−1 . (6)

The normalizing constant in (6) is the correct one because
∫

Θ dα(θ) dµΘ(θ) = 1 for
each α ∈ Ξ. This follows from the formula (10) presented in the next section.

The Dirichlet distribution corresponding to the collection of hyper-parameters [αk]
r
k=1 will

be denoted by D([αk]
r
k=1).

4.3 Auxiliary formula

The following observation simplifies many computations concerning Dirichlet distributions.
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Proposition 1 ∀ r ≥ 2, ∀α1, . . . , αr > 0

∫

θ1,...,θr−1>0
∑r−1

k=1
θk<1

{
r−1∏

k=1

(θk)
αk−1} · {1 −

r−1∑

k=1

θk}αr−1 dθ1 . . . θr−1 =

∏r
k=1 Γ(αk)

Γ(
∑r

k=1 αk)
. (7)

Proof. This can be shown by induction on r ≥ 2. The induction hypothesis for r = 2
follows from well-known formulas for Beta and Gamma function (see §A):

∫

θ1>0
θ1<1

θα1−1
1 · {1 − θ1}α2−1 dθ1 =

∫ 1

0
θα1−1 · (1 − θ)α2−1 dθ

= B(α1, α2) =
Γ(α1) · Γ(α2)

Γ(α1 + α2)
=

∏2
k=1 Γ(αk)

Γ(
∑2

k=1 αk)
.

Now, we assume r ≥ 3 and try verify the induction step. First, we observe that the induction
premise implies the formula: ∀α1, . . . , αr−1 > 0

∫

θ1,...,θr−2>0
∑r−2

k=1
θk<1

{
r−2∏

k=1

(θk)
αk−1} · {1 −

r−2∑

k=1

θk}αr−1−1 dθ1 . . . θr−2 =

∏r−1
k=1 Γ(αk)

Γ(
∑r−1

k=1 αk)
. (8)

The next step is to verify that (8) implies a formally stronger version:
∀ 0 < γ ≤ 1, α1, . . . , αr−1 > 0

∫

η1,...,ηr−2>0
∑r−2

k=1
ηk<γ

{
r−2∏

k=1

(ηk)
αk−1} · {γ −

r−2∑

k=1

ηk}αr−1−1 dη1 . . . ηr−2

= γ(
∑r−1

k=1 αk)−1 ·
∏r−1

k=1 Γ(αk)

Γ(
∑r−1

k=1 αk)
. (9)

Indeed, to see (8)⇒(9) we apply the substitution
∫

y∈ϕ(X)
f(y) dµϕ−1(y) =

∫

x∈X
f ◦ ϕ(x) dµ(x),

where we specifically have x ≡ [θ1, . . . , θr−2], X is determined by inequalities θ1, . . . , θr−2 > 0,
∑r−2

k=1 θk < 1 and ϕ(x) = y ≡ [η1, . . . , ηr−2] is defined by the relation ηk = γ · θk for k = 1, . . . , r− 2.
Then ϕ(X) is the domain of the integral in (9). The measure µ is the restriction (to X) of the
product of γ-multiples of one-dimensional Lebesgue measures. Thus, µϕ−1 is the product of one-
dimensional Lebesgue measures, that is, the (r−2)-dimensional Lebesgue measure. The function f is

the argument of the integral in (9): f(y) = {∏r−2
k=1 (ηk)αk−1} ·{γ−∑r−2

k=1 ηk}αr−1−1. By substituting
ηk = γ · θk for k = 1, . . . , r − 2 to this we get the expression for f ◦ ϕ(x):

f ◦ ϕ(x) =
r−2∏

k=1

(γ · θk)αk−1 · {γ −
r−2∑

k=1

(γ · θk)}αr−1−1

=
r−2∏

k=1

γαk−1 ·
r−2∏

k=1

θαk−1
k · {γ − γ ·

r−2∑

k=1

θk}αr−1−1

=

r−2∏

k=1

γαk−1 ·
r−2∏

k=1

θαk−1
k · γαr−1−1 · {1 −

r−2∑

k=1

θk}αr−1−1

=

r−1∏

k=1

γαk−1 ·
r−2∏

k=1

θαk−1
k · {1 −

r−2∑

k=1

θk}αr−1−1 .
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Thus, by using the substitution we express the left-hand side of (9) in the following form:

∫

x∈X

f ◦ ϕ(x) dµ(x) =

∫

θ1,...,θr−2>0
∑r−2

k=1
θk<1

r−1∏

k=1

γαk−1 ·
r−2∏

k=1

θαk−1
k · {1 −

r−2∑

k=1

θk}αr−1−1 · γr−2 dθ1 . . . θr−2

= (
r−1∏

k=1

γαk−1) · γr−2 ·
∫

θ1,...,θr−2>0
∑r−2

k=1
θk<1

r−2∏

k=1

θαk−1
k · {1 −

r−2∑

k=1

θk}αr−1−1 dθ1 . . . θr−2

= γ(
∑r−1

k=1 αk)−(r−1)+(r−2) ·
∏r−1

k=1 Γ(αk)

Γ(
∑r−1

k=1 αk)
= γ(

∑r−1
k=1 αk)−1 ·

∏r−1
k=1 Γ(αk)

Γ(
∑r−1

k=1 αk)
.

Here, in the first line, we used the fact that µ is (r − 2)-multiple product of γ-multiples of the
(one-dimensional) Lebesgue measures; then (8) was used in the third line. This concludes the proof
of the implication (8)⇒(9).

Now, the formula (9) can be used to verify the induction step by means of the Fubini
theorem, where one has γ = 1 − θr−1:

∫

θ1,...,θr−1>0
∑r−1

k=1
θk<1

{
r−1∏

k=1

(θk)αk−1} · {1 −
r−1∑

k=1

θk}αr−1 dθ1 . . . θr−1

=

∫

0<θr−1<1

θ
αr−1−1
r−1 ·








∫

θ1,...,θr−2>0
∑r−2

k=1
θk<1−θr−1

{
r−2∏

k=1

(θk)αk−1} · {1 − θr−1 −
r−2∑

k=1

θk}αr−1 dθ1 . . . θr−2








dθr−1 .

The internal integral has, by (9), where we replace αr−1 by αr and put γ = 1 − θr−1, the
value

(1 − θr−1)
(
∑r

k=1,k 6=r−1 αk)−1 ·
∏r

k=1,k 6=r−1 Γ(αk)

Γ(
∑r

k=1,k 6=r−1 αk)
,

and one can write, using well-known formulas for Beta and Gamma function from §A:

∫

0<θr−1<1

θ
αr−1−1
r−1 · (1 − θr−1)

(
∑r

k=1,k 6=r−1 αk)−1 ·
∏r

k=1,k 6=r−1 Γ(αk)

Γ(
∑r

k=1,k 6=r−1 αk)
dθr−1

=

∏r
k=1,k 6=r−1 Γ(αk)

Γ(
∑r

k=1,k 6=r−1 αk)
·
∫ 1

0
θαr−1−1 · (1 − θ)(

∑r
k=1,k 6=r−1 αk)−1 dθ

=

∏r
k=1,k 6=r−1 Γ(αk)

Γ(
∑r

k=1,k 6=r−1 αk)
· B(αr−1,

r∑

k=1,k 6=r−1

αk)

=

∏r
k=1,k 6=r−1 Γ(αk)

Γ(
∑r

k=1,k 6=r−1 αk)
·
Γ(αr−1) · Γ(

∑r
k=1,k 6=r−1 αk)

Γ(
∑r

k=1 αk)
=

∏r
k=1 Γ(αk)

Γ(
∑r

k=1 αk)
,

which concludes the induction step. 2

The above formula has the following consequence
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Corollary 2 Given r ≥ 2, denote α+ ≡ ∑r
k=1 αk for any α1, . . . , αr > 0 . Then

∫

Θ

r∏

k=1

(θk)
αk−1 dµΘ(θ) =

∏r
k=1 Γ(αk)

Γ(α+)
. (10)

Proof. As explained in § 4.1, µΘ is the image of the Lebesgue measure on R
{1,...,r−1} by the

lifting mapping

L : [θk]
r−1
k=1 7−→ ([θk]

r−1
k=1, θr ≡ 1 −

r−1∑

k=1

θk) ,

which is the specification of (5) for l = r. Therefore, the integral after µΘ in the left-hand
side of (10) can be computed by the substitution L; this means one has to compute the
integral (7) from Proposition 1. 2

The above formula (10) implies easily the formulas for the expectation and covariance
of the Dirichlet distribution: (c.f. page 269 in [9] or page 47 in [6]):

E (θk) =
αk

α+
, var (θk) =

αk · (α+ − αk)

α2
+ · (α+ + 1)

for k ∈ {1, . . . r},

cov (θk, θl) =
−αk · αl

α2
+ · (α+ + 1)

for k 6= l, k, l ∈ {1, . . . r}.

Indeed, one can write using the formula (6):

E (θk) =

∫

Θ

θk · Γ(α+)
∏r

n=1 Γ(αn)
·

r∏

n=1

(θn)αn−1

︸ ︷︷ ︸

dα([θ1,...,θr])

dµΘ(θ) =
Γ(α+)

∏r
n=1 Γ(αn)

·
∫

Θ

r∏

n=1

(θn)βn−1 dµΘ(θ) ,

where βk = αk + 1 and βn = αn for n ∈ {1, . . . r} \ {k}. Thus, using the formula (10) for a different
system of hyper-parameters:

E (θk) =
Γ(α+)

∏r
n=1 Γ(αn)

·
∏r

n=1 Γ(βn)

Γ(β+)
=

Γ(α+)

Γ(αk)
· Γ(βk)

Γ(β+)
=

Γ(α+)

Γ(α+ + 1)
· Γ(αk + 1)

Γ(αk)

=
Γ(α+)

α+ · Γ(α+)
· αk · Γ(αk)

Γ(αk)
=

αk

α+
,

where we have used the well-known formula (32). Analogously, one can derive

E (θ2
k) =

Γ(α+)

Γ(α+ + 2)
· Γ(αk + 2)

Γ(αk)
=

(αk + 1) · αk

(α+ + 1) · α+
,

and then we use the well-known formula for the variance:

var (θk) = E (θ2
k) − E (θk)2 =

(αk + 1) · αk

(α+ + 1) · α+
− α2

k

α2
+

= . . . =
αk · (α+ − αk)

α2
+ · (α+ + 1)

.

By the same procedure

E (θk · θl) =
Γ(α+)

Γ(α+ + 2)
· Γ(αk + 1)

Γ(αk)
· Γ(αl + 1)

Γ(αl)
=

αk · αl

(α+ + 1) · α+
,

and by the well-known formula for the covariance:

cov (θk, θl) = E (θk · θl) − E (θk) · E (θl) =
αk · αl

(α+ + 1) · α+
− αk

α+
· αl

α+
= . . . =

−αk · αl

α2
+ · (α+ + 1)

.
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Remark The consequence of the formulas above is that, for r ≥ 2, the mapping
[αk]

r
k=1 7−→ D([αk]

r
k=1) is an injective mapping.

Indeed, let α = [αk]rk=1 and β = [βk]rk=1 be two strictly positive vectors and assume D([αk]rk=1) =

D([βk]rk=1). Then ∀ k one has αk

α+
= E (θk) = βk

β+
, which means βk = t · αk, where t ≡ β+

α+
> 0.

Hence, by the formula for the variance and the substitution β+ = t · α+, βk = t · αk:

αk · (α+ − αk)

α2
+ · (α+ + 1)

= var (θk) =
βk · (β+ − βk)

β2
+ · (β+ + 1)

=
t · αk · (t · α+ − t · αk)

t2 · α2
+ · (t · α+ + 1)

=
αk · (α+ − αk)

α2
+ · (t · α+ + 1)

.

Hence, by canceling, t · α+ + 1 = α+ + 1. Thus, t = 1 and βk = αk for every k.

Remark (the relation of the Dirichlet distribution and beta distribution)

A common distribution in statistics is beta distribution, defined as follows: the parameters
are a, b > 0, the sample space is the interval (0, 1) and the density (with respect to the
Lebesgue measure) is given by the formula

f(x) =
1

B(a, b)
· xa−1 · (1 − x)b−1 ,

where B(a, b) is the value of the Beta function. Note that 1
B(a,b) is the correct normalizing

constant (see §A) and a = b = 1 gives the uniform distribution on (0, 1).
Beta distribution is, in fact, one-dimensional marginal of the Dirichlet distribution.7

More specifically, if r = 2 the Dirichlet distribution is settled on a slantwise segment Θ =
{(θ1, θ2); θ1, θ2 > 0, θ1 + θ2 = 1}. For parameters α1, α2 > 0, its density is given by

dα(θ1, θ2) =
Γ(α1 + α2)

Γ(α1) · Γ(α2)
· (θ1)

α1−1 · (θ2)
α2−1 .

This is meant with respect to the image of the Lebesgue measure on (0, 1) by the lifting
mapping L1 : θ1 7→ (θ1, 1 − θ1), or alternatively, by the mapping L2 : θ2 7→ (1 − θ2, θ2).
Thus, D(α1, α2) can be interpreted as the beta distribution β(α1, α2) transformed by L1 to
Θ, or alternatively, as the beta distribution β(α2, α1) transformed by L2. It is evident, that
the marginal of D(α1, α2) for θ1 is β(α1, α2) and its marginal for θ2 is β(α2, α1).

Finally, it is easy to see that the class of Dirichlet distributions is also an exponential
family (for fixed r ≥ 2):

• µ is the dominating measure µΘ from Definition 3 (in § 4.1),

• m = r,

• c(α) ≡ Γ(
∑r

k=1 αk)
∏r

k=1 Γ(αk)
for α ∈ Ξ,

• u(θ) = 1 for θ ∈ Θ,

• qs(α) = αs − 1 for α ∈ Ξ, s = 1, . . . , r,

• ts(θ) = ln θs for θ ∈ Θ, s = 1, . . . , r.

7Note that the class of Dirichlet distributions is not closed under marginalization.
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To check that let us substitute to the formula (1):

dα(θ) = c(α) · u(θ) · exp (

m∑

s=1

qs(α) · ts(θ) ) =
Γ(

∑r
k=1 αk)

∏r
k=1 Γ(αk)

· 1 · exp (

r∑

s=1

(αs − 1) · ln θs )

=
Γ(

∑r
k=1 αk)

∏r
k=1 Γ(αk)

· exp (

r∑

s=1

ln(θs)
αs−1 ) =

Γ(
∑r

k=1 αk)
∏r

k=1 Γ(αk)
·

r∏

s=1

exp ln (θs)
αs−1

=
Γ(

∑r
k=1 αk)

∏r
k=1 Γ(αk)

·
r∏

s=1

(θs)
αs−1 =

Γ(
∑r

k=1 αk)
∏r

k=1 Γ(αk)
·

r∏

k=1

(θk)
αk−1

,

which is the expression in (6).

5 Bayesian approach

The aim of this section is recall the basic idea of the Bayesian approach. This approach
will be later applied, in § 7 and § 8, to the special case of a Bayesian network model.

5.1 Bayesian terminology

First, following the Preface of the book [12], we recapitulate the basic terminology in this
area. A so-called Bayesian experiment is specified by the following items:

• A measurable space (Θ,A), called the parameter space.

• A measurable space (X,X ), called the sample space.

• A system P = {Pθ; θ ∈ Θ} of probability distributions on (X,X ) which is a Markov
kernel from (Θ,A) to (X,X ) (see § 2.2). They are called sampling probabilities.

That means, the statistical model in the sense of Definition 1 is given.

Usually, P is specified by a system of densities p(x|θ), x ∈ X, θ ∈ Θ with respect to a
dominating measure on (X,X ).

Quite often, it is an exponential family in the sense of Definition 2.

• A probability distribution on (Θ,A), called the prior probability. It is usually defined
by means of the density π(θ), θ ∈ Θ with respect to a dominating measure on (Θ,A).
The density is then called the prior density.

The components above define a probability measure Π on the product measurable space
(Θ × X,A × X ). This measure is called a “Bayesian experiment ” by Florens, Mouchart
and Rolin [12]. Typically, there exists a dual decomposition of Π to its marginal on (X,X )
and the system probability distributions on (Θ,A) which is a Markov kernel from (X,X )
to (Θ,A).8 That means, the (joint) density Π(θ, x) of Π (with respect to the product of
“standard” dominating measures on (Θ,A) and (X,X )) and can be written as follows:

π(θ) · p(x|θ) ≡ Π(θ, x) = p(x) · π(θ|x) for θ ∈ Θ, x ∈ X .

This allows one to introduce two other important components of the Bayesian experiment:

8This is ensured, for example, if sampling probabilities are given by a system of densities with respect to
a dominating measure, or alternatively, by suitable topological assumptions on the parameter space (Θ,A).
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• The marginal measure of Π on (X,X ) is called the predictive probability. Its density
p(x) is obtained by integrating the joint density Π(θ, x) over the space (Θ,A) (with
respect to the corresponding dominating measure).

Some authors [9], in the case X is the collection of all samples of the size d (see § 3.1), call this

marginal measure the “marginal probability of data ”.

• The system of probability measures {πx; x ∈ X} will be called the system of posterior
probabilities. Their densities π(θ|x) can be obtained by dividing the joint density
Π(θ, x) by the density p(x) of the predictive probability.

The Bayesian approach consists in the interpretation of the above mentioned components.
For example, if x ∈ X is interpreted as the outcome of a series of measurements then the
posterior density πx(θ) ≡ π(θ|x) describes the adaptation of the original (probabilistic)
knowledge about the parameters expressed in the form of the prior density π(θ).

5.2 Conjugate family

Quite often, not just a single prior distribution, but a whole (parameterized) class of distri-
butions S on the parameter space (Θ,A) is considered.9 Prior distributions are then chosen
from this class S. The potential parameters of probability measures in S are then called
hyper-parameters. The usual technical requirement is as follows.

Definition 4 (conjugate family)
A class S of probability distributions on the parameter space (Θ,A) will be called conjugate
to a class T of probability distributions on the sample space (X,X ) if the following condition
is valid: whenever the prior probability belongs to S and the sampling probabilities to T
then every posterior probability belongs to S, that is,

π(θ) ∈ S, ∀ θ ∈ Θ p(x|θ) ∈ T ⇒ ∀x ∈ X π(θ|x) ∈ S .

The importance of the class of Dirichlet distributions (see § 4) consists in the fact it
is a conjugate family to (each of) the discrete statistical models from § 3. Below we show
this both for the class of sampling distributions from § 3.1 and the class of multinomial
distributions from § 3.2.10

5.2.1 Conjugacy of Dirichlet distributions to sampling distributions

Assume d, r ∈ Z, d ≥ 1, r ≥ 2 are fixed. Consider the following spaces (cf. § 4.2 and § 3.1) :

• Ξ = {α ≡ (α1, . . . , αr) ; αk > 0 } is the set of hyper-parameters,

• Θ = { θ ≡ (θ1, . . . , θr) ; θk > 0,
∑r

k=1 θk = 1 } is the parameter space endowed with
the dominating measure µΘ (see Definition 3 in § 4.1), and

• X = X{1,...,d}, where X = {a1, . . . ar}, is the sample space. The dominating measure
on X is the arithmetic measure.

9Again, it is often an exponential family in the sense of Definition 2.
10The statistical model for the theoretical distributions (= a single outcome) mentioned in the beginning

of § 3 is a special case of the model for sampling distributions from § 3.1: one has d = 1 in this case.
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Now, assuming α ∈ Ξ is fixed, (6) gives the formula for the respective prior density:

∀ θ ∈ Θ π(θ) ≡ dα(θ) =
Γ(

∑r
k=1 αk)

∏r
k=1 Γ(αk)

·
r∏

k=1

(θk)
αk−1 .

Analogously, (2) gives the formula for sampling densities:

∀ y ≡ [y1, . . . , yd] ∈ X{1,...,d}, ∀ θ ∈ Θ

p(y|θ) =
r∏

k=1

(θk)
xk where xk ≡ |{yℓ; 1 ≤ ℓ ≤ d, yℓ = ak }| for k = 1, . . . , r .

Therefore, the joint density has the form

Π(θ, y) = π(θ) · p(y|θ) =
Γ(

∑r
k=1 αk)

∏r
k=1 Γ(αk)

·
r∏

k=1

(θk)
αk−1 ·

r∏

k=1

(θk)xk =
Γ(

∑r
k=1 αk)

∏r
k=1 Γ(αk)

·
r∏

k=1

(θk)
αk+xk−1

.

Hence, one can get the predictive density by integrating: ∀ y ∈ X{1,...,d}

p(y) =

∫

Θ

Π(θ, y) dµΘ(θ) =

∫

Θ

Γ(
∑r

k=1 αk)
∏r

k=1 Γ(αk)
·

r∏

k=1

(θk)αk+xk−1 dµΘ(θ)

=
Γ(

∑r
k=1 αk)

∏r
k=1 Γ(αk)

·
∫

Θ

r∏

k=1

(θk)
αk+xk−1

dµΘ(θ) =
Γ(

∑r
k=1 αk)

∏r
k=1 Γ(αk)

·
∏r

k=1 Γ(αk + xk)

Γ(
∑r

k=1 αk + xk)
,

where in the second line we used the formula (10) from Corollary 2 in § 4.3.

Thus, the formula for the predictive density in terms of α ∈ Ξ is as follows:11

pα(y) =
Γ(

∑r
k=1 αk)

∏r
k=1 Γ(αk)

·
∏r

k=1 Γ(αk + xk)

Γ(
∑r

k=1 αk + xk)
where xk ≡ |{yℓ; 1 ≤ ℓ ≤ d, yℓ = ak }| . (11)

Having fixed y ∈ X{1,...,d} one can compute the posterior density by dividing:

π(θ|y) =
Π(θ, y)

p(y)
=

Γ(
∑

r
k=1 αk)

∏
r
k=1 Γ(αk) · ∏r

k=1 (θk)αk+xk−1

Γ(
∑

r
k=1 αk)

∏
r
k=1 Γ(αk) ·

∏
r
k=1 Γ(αk+xk)

Γ(
∑

r
k=1 αk+xk)

=
Γ(

∑r
k=1 αk + xk)

∏r
k=1 Γ(αk + xk)

·
r∏

k=1

(θk)
αk+xk−1

.

That means, the posterior distribution is again Dirichlet; more specifically

πα(θ|y) =
Γ(

∑r
k=1 αk + xk)

∏r
k=1 Γ(αk + xk)

·
r∏

k=1

(θk)
αk+xk−1 ≡ dα+x(θ) (12)

where the vector x ≡ [x1, . . . , xr] is given by xk ≡ |{yℓ; 1 ≤ ℓ ≤ d, yℓ = ak }| for k = 1, . . . , r.

5.2.2 Conjugacy of Dirichlet distributions to multinomial distributions

Again, having d, r ∈ Z, d ≥ 1, r ≥ 2 fixed, consider the spaces (cf. § 4.2 and § 3.2):

• the set of hyper-parameters Ξ = {α ≡ (α1, . . . , αr) ; αk > 0 },

• the parameter space Θ = { θ ≡ (θ1, . . . , θr) ; θk > 0,
∑r

k=1 θk = 1 } endowed with the
dominating measure µΘ from Definition 3 (see § 4.1), and

11Observe that pα(y) > 0 for any y ∈ X. Note also that (11) is nothing but the the formula (A.14) in [9].
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• the sample space X = { [x1, . . . , xr] ; xk ∈ {0, . . . , d} ∑r
k=1 xk = d} ⊆ R

r with the
arithmetic measure as the dominating measure.

Having α ∈ Ξ is fixed, the formula for the prior density (6) is the same as in § 5.2.1:

∀ θ ∈ Θ π(θ) ≡ dα(θ) =
Γ(

∑r
k=1 αk)

∏r
k=1 Γ(αk)

·
r∏

k=1

(θk)
αk−1 ,

but what is different is the formula for the sampling probabilities, now given by (4):

∀x ≡ [x1, . . . , xr] ∈ X, ∀ θ ≡ (θ1, . . . , θr) ∈ Θ p(x|θ) =
d!

∏r
k=1(xk!)

·
r∏

k=1

(θk)
xk .

The only substantial difference is the additional factor, namely the multinomial coefficient
d!∏r

k=1(xk !)
. Thus, one can, more or less, repeat the calculations from § 5.2.1 and obtain the

formula for the predictive density:

pα(x) =
d!

∏r
k=1(xk!)

· Γ(
∑r

k=1 αk)
∏r

k=1 Γ(αk)
·
∏r

k=1 Γ(αk + xk)

Γ(
∑r

k=1 αk + xk)
where x ≡ [x1, . . . , xr] . (13)

Since the joint density has the same additional factor, in the calculation of the posterior
density this additional factor cancels and the result will be the same formula as in § 5.2.1:

πα(θ|x) =
Γ(

∑r
k=1 αk + xk)

∏r
k=1 Γ(αk + xk)

·
r∏

k=1

(θk)
αk+xk−1 ≡ dα+x(θ) . (14)

Thus, in both cases the “move” from the prior probability to the posterior probability is
the change D([αk]

r
k=1) 7−→ D([αk + xk]

r
k=1).

Remark The relation of predictive probabilities in these two cases is as follows. In the case
of sampling distributions, the predictive probability (11) is the same for those samples (=
databases) which yield the same table of counts. That means, it is constant on respective
equivalence classes.12 The predictive probability in the multinomial case is obtained from
it by simple summing probabilities of samples yielding the same table of counts. Since
they are equiprobable this reduces to the multiplication by the number of samples in the
equivalence class, which is the corresponding multinomial coefficient, which gives (13).

6 Statistical model of a discrete Bayesian network

The theoretical basis of the procedures for learning a BN structure (by the method of
maximizing a quality criterion) is the interpretation of every BN structure as a statistical
model. This statistical model is specified in this section.

Throughout this section we fix an acyclic directed graph G over a finite non-empty set
of nodes (= variables) N . Moreover, for every variable i ∈ N , we fix the set Xi of possible
values for i.

12Here, two samples are considered to be equivalent if they yield the same table of counts.
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6.1 Sample space and notational convention

We assume |Xi| ≥ 2 to ensure that the random variable corresponding to i is not degenerate
and, therefore, at least one free parameter corresponds to i in the parameterization described
below.

Assumption: 1 ≤ |N | < ∞, ∀ i ∈ N 2 ≤ |Xi| < ∞

Sample space: The joint sample space will be the Cartesian product XN ≡ ∏

i∈N Xi.

The following series of notational conventions is desirable to have elegant formulas for
(Bayesian) quality criteria.

Conventions I
First, for every A ⊆ N , we denote by XA the set of all possible configurations for A, that
is, the set of lists [xi]i∈A such that xi ∈ Xi for i ∈ A.13

For every A ⊆ N we choose and fix an ordering of the set of configurations XA for A.

• The letter i will be used as a generic symbol for a node/variable: i ∈ N .
Then r(i) will denote the number of elements of Xi: r(i) ≡ |Xi| for i ∈ N .

• The letter k will be used as a generic symbol for (codes of) node configurations:

k ∈ {1, . . . , r(i)} .

More specifically, for any node/variable i ∈ N consider the chosen fixed ordering of

configurations for A = {i}: Xi = {y1
i , y

2
i , . . . , y

r(i)
i }. Then each k ∈ {1, . . . , r(i)} will

be the code for yk
i .14 Moreover, for every x ∈ XN , the symbol k(i, x) will denote the

code of its marginal node configuration for i, that is, it is the unique k ∈ {1, . . . , r(i)}
for which xi = yk

i .

Further conventions are related to the given acyclic directed graph G (over N). For
every node/variable i ∈ N let paG(i) denote the set of parents of i in G:

paG(i) = {h ∈ N ; h → i in G} .

Denote by q(i,G) the number of parent configurations for i, that is, the number of elements
of XpaG(i): q(i,G) ≡ |XpaG(i)| for i ∈ N .15

• The letter j will be used as a generic symbol for (codes of) parent configurations:

j ∈ {1, . . . , q(i,G)} .

More specifically, for any node/variable i ∈ N consider the fixed ordering of configu-

rations for A = paG(i): XpaG(i) = {z1
i , . . . , z

q(i,G)
i }. Then j ∈ {1, . . . , q(i,G)} will be

13Observe that this definition of a configuration has reasonable sense for A = ∅. The configuration for the
empty set is then the empty list. In particular, there exists (just one) configuration for the empty set, that
is, |X∅| = 1. On the other hand, if A 6= ∅ then XA is nothing but the Cartesian product

∏

i∈A Xi.
14In fact, a fully correct approach would be to consider for each i ∈ N a distinct generic symbol ki for

the codes of elements of Xi. However, this would unnecessarily complicate later notation by second order
indices. We can drop these superfluous indices because in the formulas we are going to write the generic
symbol k will always be used in the situation the variable i ∈ N is specified and there is no danger of
misunderstanding.

15Recall that if paG(i) = ∅ then, by our definition of a configuration, |XpaG(i)| = |X∅| = 1 and, therefore,
q(i, G) = 1 then.
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the code for zj
i , the j-th configuration in the ordering.16 Moreover, for every x ∈ XN ,

the symbol j(i, x) will denote the code of its marginal parent configuration for i, that
is, the unique j ∈ {1, . . . , q(i,G)} such that xpaG(i) = zj

i .

6.2 Parameter space

Now, it is possible to specify the parameter space. Single (one-dimensional) parameters
correspond to (ordered) triplets

[ node = variable, parent configuration, node configuration ] ,

where the configurations correspond to the variable. This is reflected by the notation for
these single parameters with three indices:

θijk where i ∈ N, j ∈ {1, . . . , q(i,G)}, k ∈ {1, . . . , r(i)} .

The statistical model we consider here is the class of strictly positive probability distributions
on XN that are Markovian with respect to G.

Parameter space is the Cartesian product of (interiors of) probability simplices:

ΘG =
∏

i∈N

q(i,G)
∏

j=1

Θ(ij) where Θ(ij) ≡ { [θijk]
r(i)
k=1 ; θijk > 0

r(i)
∑

k=1

θijk = 1 } .

In particular, every vector parameter θ ∈ ΘG decomposes into components:

θ = [θijk] i∈N, j∈{1,...,q(i,G)}, k∈{1,...,r(i)} .

Formula for the density (with respect to the arithmetic measure in XN ):

∀ θ ∈ ΘG pθ(x) =
∏

i∈N

θi j(i,x) k(i,x) for x ∈ XN . (15)

One can verify (see Lemma 8.1 and Remark 8.4 in [27]) the following observations:

Lemma 3 For every θ ∈ ΘG, pθ is the density of a strictly positive probability distribution
on XN . Moreover, the mapping θ 7→ pθ is a one-to-one mapping of ΘG onto the class
M+(G,XN ) of strictly positive distributions on XN that are Markovian with respect to G.

Interpretation Moreover, it is shown in Lemma 8.1 from [27] that

∀ i ∈ N ∀ j ∈ {1, . . . , q(i,G)} ∀ k ∈ {1, . . . , r(i)}
θijk is the conditional probability pθ

i|paG(i)(y
k
i |zj

i ) .

In other words, every single parameter θijk in the parameterization has the interpre-
tation of the value of the conditional probability of the (corresponding) node config-
uration given the (corresponding) parent configuration.

16Again, it would be more precise to use, for each i ∈ N , a distinct generic symbol ji for the codes of
elements of XpaG(i). Nevertheless, like in the case of node configurations, the generic symbol j for parent
configurations will only be used when the variable i ∈ N is specified.
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6.3 Exponential family

Having fixed the acyclic directed graph G (over N) and the sample space XN , the above
described parameterized class of Markovian distributions M+(G,XN ) defines a curved ex-
ponential family, which is a result reported already in [13]. To show this fact one needs to
re-write the density (15) in the form (1):

pθ(x) = c(θ) · u(x) · exp (
m∑

s=1

ts(x) · qs(θ) ) for any θ ∈ ΘG and x ∈ XN .

More specifically, one has

• m =
∑

i∈N

∑q(i,G)
j=1

∑r(i)
k=1 1 =

∑

i∈N r(i) · q(i,G),

• c(θ) ≡ 1 for any θ ∈ ΘG,

• u(x) = 1 for every x ∈ XN ,

• qs(θ) = ln θijk for s ∼ (i, j, k),

• ts(x) = δ(i, j, k|x) for s ∼ (i, j, k), where

δ(i, j, k|x) =

{

1 if xi = yk
i and xpaG(i) = zj

i ,

0 otherwise.

for any i ∈ N , j ∈ {1, . . . , q(i,G)}, k ∈ {1, . . . , r(i)} and x ∈ XN .17

To evidence that let us re-write the formula (15):

pθ(x) =
∏

i∈N

θi j(i,x) k(i,x) =
∏

i∈N

q(i,G)
∏

j=1

r(i)
∏

k=1

θ
δ(i,j,k|x)
ijk = exp ( ln (

∏

i

∏

j

∏

k

θ
δ(i,j,k|x)
ijk ) )

= exp (
∑

i

∑

j

∑

k

ln θ
δ(i,j,k|x)
ijk ) = 1 · 1 · exp (

∑

i∈N

q(i,G)
∑

j=1

r(i)
∑

k=1

δ(i, j, k|x)
︸ ︷︷ ︸

tijk(x)

· ln θijk
︸ ︷︷ ︸

qijk(θ)

)

= c(θ) · u(x) · exp (
m∑

s=1

ts(x) · qs(θ) ),

which is the required expression. Here, the second equality can be justified as follows: for fixed

i ∈ N the only θijk for which δ(i, j, k|x) 6= 0 is just θi j(i,x) k(i,x). Thus, if δ(i, j, k|x) = 1 then

θ
δ(i,j,k|x)
ijk = θi j(i,x) k(i,x), while if δ(i, j, k|x) = 0 then θ

δ(i,j,k|x)
ijk = 1.

The actual dimension of ΘG is
∑

i∈N [r(i)− 1] · q(i,G), which is less than the number m
above. That is why we only claim is a curved exponential family.

6.4 Likelihood function

The next step is to derive the formula for the likelihood function, that is, the density of
the sampling distribution. To write an elegant expression for it one needs another series of
conventions.

17By Conventions I, xpaG(i) = z
j
i and xi = yk

i is nothing but the requirement j = j(i, x) and k = k(i, x).
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Conventions II
Let D : x1, . . . , xd, d ≥ 1 be an ordered sequence of elements of the joint sample space XN ,
that is, a database over N of the length d (≡ a sample of the size d – see B in § 2.1).

If XN is fixed then the symbol DATA(N, d) will denote the collection of all such databases.

Given x ∈ XN and D ∈ DATA(N, d), d ≥ 1 the symbol d[x] will denote the number of
occurrences of x in the database:

d[x] = |{1 ≤ ℓ ≤ d; xℓ = x}| .

Moreover, for every triplet (i, j, k) where i ∈ N , j ∈ {1, . . . , q(i,G)} and k ∈ {1, . . . , r(i)} the
symbol dijk will denote the number of occurrences of the respective (marginal) configuration
in D, analogously for a pair (i, j) where i ∈ N , j ∈ {1, . . . , q(i,G)}:

dijk = |{1 ≤ ℓ ≤ d; xℓ
{i}∪paG(i) = (yk

i , zj
i ) }|,

dij = |{1 ≤ ℓ ≤ d; xℓ
paG(i) = zj

i }|.

Observe that it follows from the definition that dij =
∑r(i)

k=1 dijk for every i, j and that
∑q(i,G)

j=1 dij = d for every i ∈ N .

Likelihood function: the sampling distribution has the following density with respect to
the arithmetic measure on XN × . . . × XN

︸ ︷︷ ︸

d−times

≡ DATA(N, d):

∀ θ ∈ ΘG ∀D ∈ DATA(N, d) pθ (D) =
∏

i∈N

q(i,G)
∏

j=1

r(i)
∏

k=1

θ
dijk

ijk ≡ L(θ,D) . (16)

To verify the formula (16) one “assumes” that D is a random sample from the theoretical
distribution Pθ. In other words, one considers the d-multiple product of Pθ (with the density pθ)
on XN × . . . × XN . Thus, we write:

pθ(D) =
d∏

ℓ=1

pθ(xℓ) =
d∏

ℓ=1

∏

i∈N

q(i,G)
∏

j=1

r(i)
∏

k=1

θ
δ(i,j,k|xℓ)
ijk =

∏

i∈N

q(i,G)
∏

j=1

r(i)
∏

k=1

d∏

ℓ=1

θ
δ(i,j,k|xℓ)
ijk

=
∏

i∈N

q(i,G)
∏

j=1

r(i)
∏

k=1

θ
∑

d
ℓ=1 δ(i,j,k|xℓ)

ijk =
∏

i∈N

q(i,G)
∏

j=1

r(i)
∏

k=1

θ
dijk

ijk .

Here, the second equality can be justified by the same arguments as in (the proof from) § 6.3 and

the last equality follows from the definition of dijk .

Note that it follows from the formula (16) that the class of densities {pθ(D); θ ∈ ΘG}
is also an exponential family.18 The corresponding sufficient statistic for that class of
distributions is then the vector statistic

~d = [dijk] i∈N, j∈{1,...,q(i,G)}, k∈{1,...,r(i)} .

18One can use the similar arguments to those from § 6.3 in the case of the theoretical distribution; just
the sample space XN is replaced by XN × . . . × XN .
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In other words, ~d is the collection of marginal counts for all possible parent configurations:

∀ i ∈ N, ∀ j ∈ {1, . . . , q(i,G)} ~dij ≡ [dijk]
r(i)
k=1 is the respective marginal table of counts.

Remark One can also easily derive a formula for the distribution on possible (joint) con-
tingency tables d : XN → {0, . . . , d}, ∑

x∈XN
d(x) = d.19 In fact, the “probability” of a

particular contingency table d can be obtained as the sum of “probabilities” of (distinct)
databases D that lead to d. Since all these “probabilities” are the same20 it is enough to
multiply the shared “probability” by the number of these databases, which is a special type
of the multinomial coefficient:

pθ (d) =
d!

∏

x∈XN
d[x]!

·
∏

i∈N

q(i,G)
∏

j=1

r(i)
∏

k=1

θ
dijk

ijk ≡ Ľ(θ,d) .

7 Bayesian model for a Bayesian network structure

A further step is to enrich the statistical model of a BN structure by a prior probability on
the parameter space, that is, to introduce a Bayesian experiment in the sense of Bayesian
terminology from § 5.1. The aim of this section is to introduce a whole class of such prior
distributions, which appears to be a conjugate family to the considered statistical model.

Throughout this section we keep the conventions from § 6. Thus, we fix an acyclic
directed graph G over N and the sample space XN ≡ ∏

i∈N Xi with 2 ≤ |Xi| < ∞ for each

i ∈ N . Moreover, we consider the parameter space ΘG =
∏

i∈N

∏q(i,G)
j=1 Θ(ij) of the product

form and the system of (theoretical) distributions {pθ; θ ∈ ΘG} on XN given by (15).

7.1 Assumptions

We are going to formulate and comment three assumptions on the prior distribution on ΘG:

• parameter independence,

• local Dirichlet, and

• hyper-consistency.

1 Parameter independence assumption is that the prior probability is a product

measure on
∏

i∈N

∏q(i,G)
j=1 Θ(ij):

π =
∏

i∈N

q(i,G)
∏

j=1

π(ij) where π(ij) is a probability measure on Θ(ij).

2 Local Dirichlet assumption is that every component π(ij) in this product measure
is a Dirichlet distribution on the (open) probability simplex Θ(ij):

∀ i ∈ N, ∀ j ∈ {1, . . . , q(i,G)} π(ij) ∼ D([αijk]
r(i)
k=1) for some parameters αijk > 0.

19This is the analogue of the multinomial distribution – c.f. § 3.2.
20This follows from the formula (16).
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Both these assumptions were already introduced by Spiegelhalter and Lauritzen in [24],
where they presented their Bayesian scheme for learning parameters of the statistical model
of a discrete BN structure. The first assumption, called global and local independence in
[24],21 is quite natural because it allows one to decompose the “global” Bayesian experiment
into a system of “local” Bayesian experiments with parameter spaces Θ(ij). The second
assumption is also natural from this point of view because then every “local” statistical
model is a “classic” discrete statistical model for a single outcome with parameter space
Θ(ij) and the sample space Xi (see § 3). A conjugate family to this class of distributions
is the class of Dirichlet distributions on Θ(ij) (see § 5.2.1). These assumptions were later
taken over by other researchers, including Heckerman, Geiger and Chickering [17]. 22

To write elegant formulas for the predictive probability and the posterior probabilities
the following notational convention is suitable.

Convention III
Under the above-mentioned assumptions we will use the following shorthand notation:

∀ i ∈ N, ∀ j ∈ {1, . . . , q(i,G)} αij =

r(i)
∑

k=1

αijk.

Lemma 4 If the assumptions 1 and 2 be fulfilled and D ∈ DATA(N, d) is a database of
the length d ≥ 1 then the predictive probability of D is given by the formula

p(D) =
∏

i∈N

q(i,G)
∏

j=1

Γ(αij)
∏r(i)

k=1 Γ(αijk)
·
∏r(i)

k=1 Γ(αijk + dijk)

Γ(αij + dij)
, (17)

and the posterior probability is again the product of Dirichlet distributions, more specifically

π(∗|D) ∼
∏

i∈N

q(i,G)
∏

j=1

D([αijk + dijk]
r(i)
k=1) . (18)

The proof is, in fact, the modification of arguments from § 5.2.1, where, for every pair
(i, j), one considers a localized Bayesian experiment.

Proof. The dominating measure on ΘG ≡ ∏

i∈N

∏q(i,G)
j=1 Θ(ij) is the product of dominating

measures µΘ(ij)
for local Dirichlet distributions (see § 4.1), while the dominating measure

on DATA(N, d) ≡ (XN )d is the arithmetic measure. Then the joint density (with respect to
their product) is, by the assumptions 1 and 2 , and the formulas (6) and (16), as follows:

Π(θ,D) =




∏

i∈N

q(i,G)
∏

j=1

Γ(
∑r(i)

k=1 αijk)
∏r(i)

k=1 Γ(αijk)
·

r(i)
∏

k=1

θ
αijk−1
ijk



 ·




∏

i∈N

q(i,G)
∏

j=1

r(i)
∏

k=1

θ
dijk

ijk





=
∏

i∈N

q(i,G)
∏

j=1

Γ(αij)
∏r(i)

k=1 Γ(αijk)
·

r(i)
∏

k=1

θ
αijk+dijk−1
ijk .

21More specifically, by global independence was meant the assumption that π decomposes with respect to
variables i ∈ N and by local independence was meant the assumption that, for each i ∈ N , the respective
component further decomposes with respect to the parent configurations.

22For example, Assumption 2 in [17] is parameter independence and Assumption 4 in [17] is local Dirichlet.
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Now, for fixed D, the predictive probability p(D) is obtained from that by integrating with
respect to the corresponding dominating measure:

p(D) =

∫

ΘG

Π(θ, D) dµΘG
(θ) =

∏

i∈N

q(i,G)
∏

j=1

∫

Θ(ij)

Γ(αij)
∏r(i)

k=1 Γ(αijk)
·

r(i)
∏

k=1

θ
αijk+dijk−1
ijk dµΘ(ij)

(θijk)

=
∏

i∈N

q(i,G)
∏

j=1

Γ(αij)
∏r(i)

k=1 Γ(αijk)
·
∫

Θ(ij)

r(i)
∏

k=1

θ
αijk+dijk−1
ijk dµΘ(ij)

(θijk)

=
∏

i∈N

q(i,G)
∏

j=1

Γ(αij)
∏r(i)

k=1 Γ(αijk)
·

∏r(i)
k=1 Γ(αijk + dijk)

Γ(
∑r(i)

k=1 αijk + dijk)
, which is another form of (17).

Here, the second equality follows from the Fubini theorem and the last one from the formula
(10) in Corollary 2.

The formula for the posterior density can be obtained by dividing the joint density by
the density of the predictive probability:

π(θ|D) =
Π(θ,D)

p(D)
=

∏

i∈N

∏q(i,G)
j=1

Γ(αij)
∏r(i)

k=1 Γ(αijk)
· ∏r(i)

k=1 θ
αijk+dijk−1
ijk

∏

i∈N

∏q(i,G)
j=1

Γ(αij)
∏r(i)

k=1 Γ(αijk)
·

∏r(i)
k=1 Γ(αijk+dijk)

Γ(αij+dij)

=
∏

i∈N

q(i,G)
∏

j=1




Γ(αij)/

∏r(i)
k=1 Γ(αijk)

Γ(αij)/
∏r(i)

k=1 Γ(αijk)
·

r(i)
∏

k=1

θ
αijk+dijk−1
ijk · Γ(αij + dij)

∏r(i)
k=1 Γ(αijk + dijk)





=
∏

i∈N

q(i,G)
∏

j=1







Γ(αij + dij)
∏r(i)

k=1 Γ(αijk + dijk)
·

r(i)
∏

k=1

θ
αijk+dijk−1
ijk






,

which is, by (6), the density of the product
∏

i∈N

∏q(i,G)
j=1 D([αijk + dijk]

r(i)
k=1). 2

The third assumption concerns the parameters of local Dirichlet priors.

3 Hyperconsistency is the assumption that the parameters of (local) Dirichlet priors
can be obtained by marginalization from a (global) strictly positive function on XN :

∃α : XN → (0,∞) ∀ i ∈ N, ∀ j ∈ {1, . . . , q(i,G)}, ∀ k ∈ {1, . . . , r(i)}
αijk =

∑

{α(x); x ∈ XN & x{i}∪paG(i) = (yk
i , zj

i ) }.

Observe the assumption also implies an analogous relation for derived parameters αij :

∀ i ∈ N, ∀ j ∈ {1, . . . , q(i,G)} αij =
∑

{α(x); x ∈ XN & xpaG(i) = zj
i }.

It is a kind of mutual relation requirent to individual hyper-parameters αijk. To emphasize
that it concerns the hyper-parameters it is named hyperconsistency. This terminology was
inspired by Dawid and Lauritzen [10], who considered an analogous condition in the context
of discrete decomposable (undirected) graphical models.23 They formulated it in the form
of a condition on prior measures for components of their parameter space – see § 3.1 in [10].
There are at least two reasons to accept this assumption:

23Every such model can be interpreted as a statistical model of a BN structure.
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(i) The previous two assumptions 1 and 2 allowed in Lemma 4 to derive formulas for
the predictive probability and the posterior density. It follows from those formulas
that the corresponding hyper-parameters αijk can be interpreted as “prior” estimates
for the respective contingency tables, say, on the basis of previous measurements.24

However, the vector of counts ~d = [dijk] i∈N, j∈{1,...,q(i,G)}, k∈{1,...,r(i)} always satisfies
the following necessary condition:

∃d : XN → {0, . . . , d} ∀ i ∈ N, ∀ j ∈ {1, . . . , q(i,G)}, ∀ k ∈ {1, . . . , r(i)}
dijk =

∑

{d(x); x ∈ XN & x{i}∪paG(i) = (yk
i , zj

i ) },

where d : XN → {0, . . . , d} is the “joint” contingency table. Since the marginal table
counts dijk satisfy this condition and we would like to interpret the numbers αijk as
their prior estimates, it is natural require they satisfy that condition as well.25

(ii) The second reason for the acceptance of 3 is that it is closely related to the require-
ment compatibility of prior distributions for distinct (acyclic directed) graphs. This
looks like a natural assumption made to derive Bayesian criteria for learning a BN
structure – see later discussion in § 8.2. In fact, the compatibility condition is the
requirement that the function α from 3 is the same for all graphs.

7.2 Hyper-parameter space interpretation

The above-mentioned assumptions allow one to introduce a certain conjugate family of dis-
tributions to the statistical model {P θ; θ ∈ ΘG} from § 6. There are two ways to introduce
the corresponding hyper-parameter space. The one which is chosen here is seemingly not
related to the graph G and is more elegant, but it does not lead to a one-to-one correspon-
dence between elements of the space and distributions. Later we relate it to the other way,
which is more complicated, but leads to a one-to-one correspondence between elements of
the (alternative) space and distributions.

Hyper-parameter space is the set of strictly positive functions on XN :

Ξ ≡ {α ; α : XN → (0,∞) }.

Prior distributions: We introduce a class of probability distributions on ΘG:

πα
G =

∏

i∈N

q(i,G)
∏

j=1

D([αijk]
r(i)
k=1) for any α ∈ Ξ,

where the hyper-parameters αijk are obtained from α by “marginalizing”:

∀ i ∈ N, ∀ j ∈ {1, . . . , q(i,G)}, ∀ k ∈ {1, . . . , r(i)}
αijk ≡

∑

{α(x); x ∈ XN & x{i}∪paG(i) = (yk
i , zj

i ) }. (19)

24Actually, the philosophy of the Bayesian approach consists in the interpretation of the prior infor-

mation as the knowledge obtained by gathering information from previous measurements.
25Observe, that, by formula (18), the validity of the condition is kept if for “updated hyper-parameters”

αijk + dijk.
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Proposition 5 Given an acyclic directed graph G over N , the class of distributions

{πα
G; α ∈ Ξ }

is a conjugate family to the statistical model {P θ; θ ∈ ΘG} of a discrete BN network.
More specifically, for every α ∈ Ξ and D ∈ DATA(N, d), d ≥ 1 the formula for the

predictive probability is (17) and the posterior probability is πα+d, where d : XN → Z
+ is

the (joint) contingency table given by D.

Proof. This follows from Lemma 4 and the fact that the hyper-parameters αijk can be
computed from α : XN → (0,∞) by the same formula (19) as dijk from d : XN → Z

+. 2

However, the mapping α 7→ πα
G is not injective. One can easily observe this:

Lemma 6 Given α, β ∈ Ξ one has πα
G = πβ

G iff α and β have the same marginals for the
(maximal) sets from the system { {i} ∪ paG(i) ; i ∈ N}, that is:

∀ i ∈ N ∀ y ∈ X{i}∪paG(i)
∑

{α(x); x ∈ XN & x{i}∪paG(i) = y } =
∑

{β(x); x ∈ XN & x{i}∪paG(i) = y } .

Proof. First, realize that the condition above can be re-formulated in this form: αijk = βijk

for any i ∈ N , j ∈ {1, . . . , q(i,G)} and k ∈ {1, . . . , r(i)}. This is because, given i ∈ N , any
pair (j, k) encodes a parent-node configuration (yk

i , zj
i ) ∈ X{i}∪paG(i).

Moreover, πα
G = πβ

G iff, for any i and j, one has D([αijk]
r(i)
k=1) = D([βijk]

r(i)
k=1). Thus,

the sufficiency of the condition is evident and the necessity follows from the one-to-one
correspondence between parameters and distributions for the class of Dirichlet distributions
– see the remark following Corollary 2 (on page 15). 2

Thus, to have a one-to-one correspondence between the elements of the hyper-parameter
space and priors one should introduce the space as follows. Let A(G) denote the system of
maximal sets (with respect to inclusion) in the class { {i} ∪ paG(i) ; i ∈ N}. Then put:

ΞG =
{

[αA]A∈A(G) ; where αA : XA → (0,∞) are such that ∃α : XN → (0,∞)

with αA(y) =
∑

{α(x); x ∈ XN & x{i}∪paG(i) = y } for y ∈ XA, A ∈ A(G)
}

.

Given α ≡ [αA]A∈A(G) ∈ ΞG the corresponding hyper-parameters are computed by:

∀ i ∈ N, ∀ j ∈ {1, . . . , q(i,G)}, ∀ k ∈ {1, . . . , r(i)}
αijk ≡

∑

{αA(x); x ∈ XA & x{i}∪paG(i) = (yk
i , zj

i ) }
for some A ∈ A(G) such that {i} ∪ paG(i) ⊆ A.

Note that the assumption α ∈ ΞG implies that the values of αijk do not depend on the
choice of A ∈ A(G) satisfying {i}∪paG(i) ⊆ A. The respective class of (prior) distributions
on ΘG is defined analogously:

πα

G =
∏

i∈N

q(i,G)
∏

j=1

D([αijk]
r(i)
k=1) for any α ∈ ΞG .
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It follows from the construction that

{πα
G; α ∈ Ξ} ≡ {πα

G; α ∈ ΞG}, ,

which means ΞG can also be viewed as the hyper-parameter space for the conjugate family
to the statistical model {P θ; θ ∈ ΘG}.
Remark (warning) The reader may have the temptation to believe that one can perhaps
introduce a suitable hyper-parameter space for {P θ; θ ∈ ΘG} as follows:

Ξ∗
G = {α∗ : XN → (0,∞) ; α∗ is a (positive) multiple of a distribution in M+(G,XN ) }.

Indeed, this way would ensure, by Lemma 6, that the mapping α 7→ pα, α ∈ Ξ∗
G is an

injective mapping. On the other hand, the restriction to the class {pα; α ∈ Ξ∗
G} is not a

good idea, because it is not a conjugate family to {P θ; θ ∈ ΘG}!
This is an example. Let us put N = {a, b, c, d}, Xi = {0, 1} for every i ∈ N and consider

the following graph G over N :

d

d

d

d

�
��	

@
@@R

@
@@R

�
��	

a

b c

d

The basic idea is to construct a special a probability density q : XN → (0, 1), namely the
product q = qa × qbc × qd where qbc is not a product on Xb ×Xc. Then consider any α† ∈ Ξ
of the form α† = k · q, k > 0. The argument is that there is no β : XN → (0,∞) which is

a multiple of a Markovian distribution from M+(G,XN ) and satisfies πα†

G = πβ
G. Indeed,

by Lemma 6, one should have then α†
ab = βab, α†

ac = βac and α†
bcd = βbcd. In particular, for

the hypothetical p ∈ M+(G,XN ) with β = k · p, one must have pab = qab, pac = qac and
pbcd = qbcd. Since qab = qa × qb and qac = qa × qc one has a ⊥⊥ b | ∅ [p] and a ⊥⊥ c | ∅ [p]. The
Markov condition for p (with respect to G) implies b ⊥⊥ c | a [p]. Thus, by basic properties
of conditional independence, pabc = pa × pb × pc, which implies pbc is a product on Xb ×Xc.
Then pbc = qbc contradicts the original choice of q.

To show that {pα; α ∈ Ξ∗
G} is not a conjugate family to {P θ; θ ∈ ΘG} it suffices to

put α ≡ 1 (which belongs to Ξ∗
G) and to construct D ∈ DATA(N, d) such that, for the

corresponding contingency table d : XN → Z
+, the sum α + d has the form α† mentioned

above. In particular, the posterior probability πα+d does not belong to {pα; α ∈ Ξ∗
G}.

Remark (conjecture) This is a natural conjecture: for (independence) equivalent graphs
G and H over N and α ∈ Ξ, the prior distribution πα

G induces by the mapping θ 7→ pθ,
θ ∈ ΘG (see Lemma 3 in § 6.2) on M+(G,XN ) = M+(H,XN ) the same distribution as πα

H

by its respective mapping from ΘH to M+(H,XN ).26

26This is (maybe) a hint for a possible proof. Owing to transformational characterization of (independence)
equivalence one can consider without loss of generality that G, H ∈ DAGS(N) differing by legal arrow reversal

a → b. Then observe that the transformation θ 7→ ϑ from ΘG to ΘH given by pθ = pϑ is “local” for
the pair (a, b): it only concerns

∏

i∈{a,b}

∏

j Θ(ij). Finally, for given α : XN → (0,∞), observe that the

“local distribution”
∏

ja
D([αG

ajk])×
∏

jb
D([αG

bjk]) is transformed by that local transform to
∏

jb
D([αH

bjk ])×
∏

ja
D([αH

ajk]). This is perhaps relevant to Lemma 7.2 from [10].
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Remark If one considers, instead the sample space (XN )d ≡ DATA(N, d), the collection
of all possible joint contingency tables d : XN → {0, . . . , d}, ∑

x∈XN
d(x) = d, then the

formula for the predictive probability differs from (17) only by the multinomial coefficient:

pα(d) =
d!

∏

x∈XN
d[x]!

·
∏

i∈N

q(i,G)
∏

j=1

Γ(αij)
∏r(i)

k=1 Γ(αijk)
·
∏r(i)

k=1 Γ(αijk + dijk)

Γ(αij + dij)
.

8 Bayesian criteria for learning a Bayesian network structure

Bayesian approach leads to a class of quality criteria for learning a BN structure. In
this section, we first recapitulate what is meant by a quality criterion (for learning a BN
structure) and then formally introduce a class of Bayesian criteria defined as the logarithms
of predictive probabilities.27 Throughout the section we accept the following notational
convention:

Convention IV
Given a non-empty finite set of variables N , the symbol DAGS(N) will denote the collection
of all acyclic directed graphs over N (= having N as the set of nodes).

8.1 The concept of a quality criterion

The method for learning a BN structure by maximizing a quality criterion is based on the
following concept:

Definition 5 (score equivalent quality criterion)
By a quality criterion for learning a BN structure is meant a real function of two variables,
namely of an acyclic directed graph and a database:

Q : DAGS(N) × DATA(N, d) → R , d ≥ 1 .

A quality criterion will be named score equivalent if it does not distinguish between graphs
defining the same statistical model (= the same BN structure):

Q(G,D) = Q(H,D) whenever G,H ∈ DAGS(N) are independence equivalent.

Here, graphs are independence equivalent if they induce the same conditional independence
structure, that is, define the same collection of conditional independence restrictions through
the correspoding separation criterion, described for example in § 3.2.2 of [19].28

The interpretation of the value Q(G,D) for G ∈ DAGS(N) and D ∈ DATA(N, d), d ≥ 1
is that it should evaluate how the statistical model determined by G fits the database D.
Whether a particular criterion Q really meets such an intuitive requirement is a more subtle
question, closely related to the question of statistical consistency of Q – see [22] or [7] for

27These criteria are equivalent to what some other authors call either “marginal likelihood” or “marginal
probability of data” [9].

28Note one can show that if |Xi| ≥ 2 for any i ∈ N , which is our assumption from § 6.1, then Markov

equivalence of acyclic directed graphs (over N) coincides with their independence equivalence – c.f. § 6.1.1 in
[27]. More specifically, M+(G, XN ) = M+(H,XN ) for G, H ∈ DAGS(N), which means they define the same
statistical model in the sense of § 6, iff G and H are independence equivalent.
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(informal) definitions of this concept. The topic of statistical consistency of Bayesian quality
criteria is omitted in this report; the intention is to deal with it in detail later.

Thus, the learning procedure should consist in maximizing the function G 7→ Q(G,D),
where D ∈ DATA(N, d), d ≥ 1 is the observed database. The requirement that Q is
score equivalent is then quite natural from the point of view of the purpose of the learning
procedure: the aim is learn a BN structure! The term “score equivalent” was taken over
from [5]. Note that there are simple graphical characterizations of independence equivalence
of acyclic directed graphs – see § 3.2 in [27] for an overview.

The second important technical requirement on quality criteria was formulated in con-
nection with machine learning approach to the maximization problem. Since direct maxi-
mization of the function G 7→ Q(G,D) seems, at least at first sight, to be infeasible, various
local search methods have been proposed instead. These methods are applicable to criteria
which satisfy the following condition:

Definition 6 (decomposable quality criterion)
A quality criterion Q will be called (additively) decomposable if there is a collection of
functions qi|B : DATA({i} ∪ B, d) → R, where i ∈ N , B ⊆ N \ {i} and d ≥ 1, such that

Q(G,D) =
∑

i∈N

qi|paG(i)(D{i}∪paG(i)) for every G ∈ DAGS(N), D ∈ DATA(N, d). (20)

Here, the symbol DA for ∅ 6= A ⊆ N and D ∈ DATA(N, d) denotes the a projection of the
database D : x1, . . . , xd onto XA, that is, the sequence of respective marginal configurations
DA : x1

A, . . . , xd
A.

The criterion Q will be called strongly decomposable, if, moreover, the functions qi|B only
depend on the marginal table of counts d{i}∪paG(i) given by D{i}∪paG(i).

29

This definition was basically taken over from § 2.3 of [7]. However, in that paper,
Chickering was not completely clear what he means by “data” in his definition. His word
description indicates that he has probably in mind data represented in the form of a sample
(see item B in § 2.1). On the other hand, later (in § 4.1 of [7]), he restricts his attention
solely to the criteria that do not depend on the order of items in a database; this more
corresponds to “data” in the form of a contingency table (see item C in § 2.1). In this
context, the reader has natural implicit tendency to interpret Chickering’s definition in the
sense that the components qi|paG(i) in (20) also should not depend on the order of items
in the database. Since this requirement is indeed a stronger condition, but valid for most
criteria used in practice, I have distinguished that stronger condition terminologically.30

Another potential source of misunderstanding in connection with the concept of a de-
composable criterion is that some other authors [16, 9] consider “multiplicative” versions of
(decomposable) quality criteria. These are criteria Q̃ : DAGS(N) × DATA(N, d) → (0,∞),
d ≥ 1 that factorize relative to the graph, which means

Q̃(G,D) =
∏

i∈N

q̃i|paG(i)(D{i}∪paG(i)) for G ∈ DAGS(N), D ∈ DATA(N, d).31

29This essentially means the functions qi|B do not depend on the order of items in the database.
30One can show using the results of § 8.4.2 in [27] that if a criterion is decomposable and does not depend

on the order of items in a database then it is strongly decomposable.
31That means, the criterion decomposes multiplicatively, not additively.
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However, this is just a small technical difference, because on can switch between the additive
and multiplicative version of a decomposable criterion easily: Q(G,D) ≡ ln Q̃(G,D). Since
the logarithmic transformation is order-preserving the task to maximize G 7→ Q̃(G,D) is
equivalent to the task to maximize G 7→ Q(G,D).

The following auxiliary observation is useful – for the proof see Lemma 8.3 in [27].

Lemma 7 A quality criterion Q is score equivalent and strongly decomposable iff there
exists a collection of real functions { tA; A ⊆ N}, each tA depending on the respective
marginal contingency table dA : XA → {0, 1, . . . , d}, d ≥ 1 computed from DA, such that

Q(G,D) =
∑

i∈N

{
t{i}∪paG(i)(d{i}∪paG(i)) − tpaG(i)(dpaG(i))

}
(21)

for every G ∈ DAGS(N) and D ∈ DATA(N, d).32

8.2 Compatibility assumption

The predictive probability depends on the (choice of the) prior distribution, which is, how-
ever, defined on a specific parameter space ΘG (of the statistical model) given by an acyclic
directed graph G. However, since we are in the situation we are supposed to compare
different structural models (= corresponding to different graphs), we have to accept some
assumption of compatibility of prior distributions for distinct structural models. In our
context, it is the following assumption:

∃ α : XN → (0,∞) such that, for every G ∈ DAGS(N), the prior distribution πα
G

on the parameter space ΘG is specified as follows:

• the hyper-parameters of priors are given by (marginalization from) α:

∀ i ∈ N, ∀ j ∈ {1, . . . , q(i,G)}, ∀ k ∈ {1, . . . , r(i)}
αG

ijk ≡
∑

{α(x); x ∈ XN & x{i}∪paG(i) = (yk
i , zj

i ) },

• and the prior is the product of corresponding Dirichlet distributions:

πα
G =

∏

i∈N

q(i,G)
∏

j=1

D([αG
ijk]

r(i)
k=1) .

In particular, for every G ∈ DAGS(N), the assumptions 1 - 3 from § 7 are fulfilled. The
function α : XN → (0,∞) will be called the (shared) hyper-potential.

Having fixed a hyper-potential α : XN → (0,∞) the corresponding (Bayesian) quality
criterion, considered in this report, is given by

LMLα(G,D) = ln pα
G(D) for G ∈ DAGS(N), D ∈ DATA(N, d), (22)

where pα
G(D) denotes the predictive probability of D under the assumption the prior dis-

tribution on ΘG is πα
G.33 For the reasons that become evident later in § 8.3, we consider

32The marginal table of counts d∅ for A = ∅ is the function on one-element set X∅ having the value d.
Thus, the value t∅(d∅) is, in fact, a constant (= it only depends on d and the fixed joint sample space).

33The abbreviation LML stands for “logarithm of the marginal likehood”.
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an additive version of the criterion. Other authors [17] consider the multiplicative version
instead, which is just the predictive probability pα

G(D).

The question of the choice of prior distributions on spaces ΘG, G ∈ DAGS(N) was
discussed in detail by Heckerman, Geiger and Chickering [17]. The main result of that paper
is that the above-mentioned compatibility condition follows naturally from considerations
about what are reasonable requirements on (Bayesian) quality criteria. Those requirements
are formulated in [17] in the form of assumptions and the compatibility condition is derived
as their consequence. They also give a formula for the respective (multiplicative version
of the) quality criterion, called “BDe-metric”. Moreover, the compatibility condition is
formulated in [17] in slightly different form. More specifically, they require α = α+ · p,
where p : XN → (0, 1) is a probability density and α+ > 0 . This formulation leads to the
following interpretation. The number α+ is called “user’s equivalent sample size” and the
density p is named “prior network”.

The compatibility issue was also dealt with by Dawid and Lauritzen in § 6.2 of [10],
in the context of (undirected) decomposable graphical models. They basically suggest the
same procedure for the choice of prior distributions for different structural models.

The basic observation concerning the above-mentioned criterion is as follows.

Proposition 8 If the compatibility assumption is valid and α : XN → (0,∞) is the given
hyper-potential then the corresponding Bayesian criterion is given by the following formula:
for every G ∈ DAGS(N) and D ∈ DATA(N, d)

LMLα(G,D) =
∑

i∈N

q(i,G)
∑

j=1






ln

Γ(αG
ij)

Γ(αG
ij + dij)

−
r(i)
∑

r=1

ln
Γ(αG

ijk)

Γ(αG
ijk + dijk)






, (23)

where αG
ijk are corresponding hyper-parameters and dijk the corresponding marginal counts.

Moreover, the criterion is score equivalent and strongly decomposable. More specifically, if
we put, for A ⊆ N ,

t
α
A(dA) =

∑

y∈XA

ln
Γ(αA(y) + dA(y))

Γ(αA(y))
, (24)

where αA : XA → (0,∞) denotes the marginal hyper-potential and dA : XA → {0, 1, . . . , d}
the marginal contingency table, then one has

LMLα(G,D) =
∑

i∈N

{

t
α
{i}∪paG(i)(d{i}∪paG(i)) − t

α
paG(i)(dpaG(i))

}

(25)

for every G ∈ DAGS(N) and D ∈ DATA(N, d).

Proof. The formula for the predictive probability pα
G(D) is given by (17) in Lemma 4. By

taking its logarithm one gets

ln pα
G(D) =

∑

i∈N

q(i,G)
∑

j=1

ln




Γ(αG

ij)
∏r(i)

k=1 Γ(αG
ijk)

·
∏r(i)

k=1 Γ(αG
ijk + dijk)

Γ(αG
ij + dij)



 ,
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and then, by standard re-writing, the formula (23) is obtained. Morever, it can written as
follows (the superscript G with αijk’s is dropped):

LMLα(G,D) =
∑

i∈N

q(i,G)
∑

j=1







r(i)
∑

k=1

ln
Γ(αijk + dijk)

Γ(αijk)
− ln

Γ(αij + dij)

Γ(αij)







=
∑

i∈N







q(i,G)
∑

j=1

r(i)
∑

k=1

ln
Γ(αijk + dijk)

Γ(αijk)
−

q(i,G)
∑

j=1

ln
Γ(αij + dij)

Γ(αij)







=
∑

i∈N







∑

y∈X{i}∪paG(i)

ln
Γ(α{i}∪paG(i)(y) + d{i}∪paG(i)(y) )

Γ(α{i}∪paG(i)(y) )

−
∑

y∈XpaG(i)

ln
Γ(αpaG(i)(y) + dpaG(i)(y) )

Γ(αpaG(i)(y) )






.

Here, the third equality is valid because, for fixed i ∈ N , pairs (j, k) encode elements of
the corresponding marginal sample space X{i}∪paG(i), while j’s encode elements of XpaG(i).
By (24), the formula (25) is obtained. The fact that LMLα is score equivalent and strongly
decomposable then follows from Lemma 7. 2

Remark If one considers, alternatively, the predictive probability on the collection of
joint contingency tables, then the corresponding formula has one more term, namely the
logarithm of the multinomial coefficient (c.f. the remark concluding § 7):

ln pα(d) = ln
d!

∏

x∈XN
d[x]!

+
∑

i∈N

q(i,G)
∑

j=1






ln

Γ(αij)

Γ(αij + dij)
−

r(i)
∑

r=1

ln
Γ(αijk)

Γ(αijk + dijk)







︸ ︷︷ ︸

LMLα(G,D)

.

This modification, however, is not suitable, because the additional term “destroys” strong
decomposability of the criterion, which is quite desirable property. Indeed, if ln pα(d) had
been strongly decomposable then, because LMLα is strongly decomposable, their difference
(which, in fact, does not depend on G at all)

Q̆(G,D) = ln
d!

∏

x∈XN
d[x]!

= ln (d!) −
∑

x∈XN

ln (d[x]!)

would have been strongly decomposable.

This is a counter-example: put N = {a, b}, Xi = {0, 1} for every i ∈ N and consider the
empty graph G over N . Decomposability hypothesis for Q̆ leads to the requirement there
exist functions qa and qb (of the respective marginal contingency tables) that Q̆(G,D) =
qa(d{a}) + qb(d{b}). Let us consider two databases D1 and D2 of the length d = 4 with the
following joint contingency tables:

d
1 : (0, 0), (1, 1) 7→ 2

(0, 1), (1, 0) 7→ 0
d

2 : (0, 0), (1, 1), (0, 1), (1, 0) 7→ 1 .
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Clearly, d
1
{a} = d

2
{a} and d

1
{b} = d

2
{b}. Thus, if Q̆ had been strongly decomposable then it

would have been Q̆(G,D1) = Q̆(G,D2). But direct computation gives

Q̆(G,D1) = ln(4!) − 2 ln(2!) − 2 ln(0!) = 3 ln 2 + ln 3 − 2 ln 2 − 2 ln 1 = ln 2 + ln 3,

Q̆(G,D2) = ln(4!) − 4 ln(1!) = 3 ln 2 + ln 3 − 4 ln 1 = 3 ln 2 + ln 3.

Hence, Q̆(G,D1) 6= Q̆(G,D2), which is a contradiction.

8.3 Formula for the data vector

The basic idea of an algebraic approach to learning a BN structure presented in Chapter 8
of [27] is to represent both the BN structure and the database by a special real vector. The
algebraic representative of the BN structure is a certain integral (= integer-valued) vector.
These integral vectors are called imsets in [27]:

Definition 7 (standard imset)
An imset u over a (non-empty finite) set of variables N is a function u : P(N) 7→ Z, where
P(N) ≡ {A;A ⊆ N} denotes the power set of N . Given A ⊆ N , the symbol δA will denote
a special imset given by:

δA(B) =

{
1 if B = A,
0 if B 6= A,

for B ⊆ N.

Then, the standard imset for an acyclic directed graph G ∈ DAGS(N) is given by the formula

uG = δN − δ∅ +
∑

i∈N

{δpaG(i) − δ{i}∪paG(i)} . (26)

We will regard every imset as a vector whose components are integers and are indexed
by subsets of N . Note the standard imset is uniquely determined representative of the BN
structure: Corollary 7.1 in [27] says that, given G,H ∈ DAGS(N), one has uG = uH iff they
are independence equivalent.

Actually, any real function m : P(N) → R can be interpreted as a (real) vector in the
same way. The scalar product of two vectors of this type will be denoted as follows:

〈m,u〉 ≡
∑

A⊆N

m(A) · u(A) .

The point is that every database D ∈ DATA(N, d), d ≥ 1 can be represented by a real vector
of this type. The following observation is a simple consequence of Lemma 7:

Corollary 9 Let Q be a score equivalent and strongly decomposable criterion. Then there
exist a real function sQ : DATA(N, d) → R and a vector function tQ : DATA(N, d) → R

P(N)

such that

Q(G,D) = sQD − 〈tQD, uG〉 for every G ∈ DAGS(N), D ∈ DATA(N, d). (27)

Here, sQD and tQD denote the respective values of the above functions for D ∈ DATA(N, d)
and, for every A ⊆ N , tQD(A) only depends on the marginal contingency table dA.
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Proof. Let us consider the formula (21), where we put tQD(A) ≡ tA(dA) for any A ⊆ N :

Q(G,D) =
∑

i∈N

{〈tQD , δ{i}∪paG(i)〉 − 〈tQD , δpaG(i)〉} = 〈tQD ,
∑

i∈N

{δ{i}∪paG(i) − δpaG(i) } 〉

= 〈tQD , δN − δ∅ − [ δN − δ∅ +
∑

i∈N

{δpaG(i) − δ{i}∪paG(i) } ]

︸ ︷︷ ︸

uG

〉

= 〈tQD , δN − δ∅〉
︸ ︷︷ ︸

sQD

−〈tQD , uG〉 .

This gives the required formula and tQD(A) only depends on dA. 2

The obtained formula (27) basically says the criterion can be viewed as an affine function
(= a linear function plus a constant) of the standard imset.

Definition 8 (data vector)
Given a score equivalent and strongly decomposable criterion Q and D ∈ DATA(N, d),
d ≥ 1 by the data vector relative to Q will be named any vector tQD that satisfies (27). The
function sQD from (27) will be called the saturating function of Q.

Note that the saturating function is uniquely determined by the criterion: it is the value
of the criterion for (any) complete acyclic directed graph over N . On the other hand, the
data vector is not uniquely determined but it becomes unique if one requires the following
standardization condition:

tQD(A) = 0 for any A ⊆ N with |A| ≤ 1.

For the corresponding arguments see Lemma 8.7 in [27].

Now, Proposition 8 allows one to derive elegant formulas for the data vector:

Corollary 10 If the compatibility assumption is valid and α : XN → (0,∞) is the given
hyper-potential then the formula

ť LML,α
D (A) =

∑

y∈XA

ln
Γ(αA(y) + dA(y))

Γ(αA(y))
(28)

=
∑

y∈XA, dA(y)>0

dA(y)−1
∑

ℓ=0

ln (αA(y) + ℓ), (29)

for A ⊆ N , gives a (non-standardized) data vector relative to LMLα.

Proof. The first formula (28) follows from Proposition 8 by repeating the consideration in
the proof of Corollary 9. The formula (29) then follows from the basic facts about Gamma

functions from §A: if dA(y) = 0 then the ratio Γ(αA(y)+dA(y))
Γ(αA(y)) is 1 and ln 1 = 0, if dA(y) > 0

then formula (34) is applied. 2
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Now, the uniquely determined standardized data vector t LML,α
D can be obtained by

standardization (see Lemma 8.7 in [27]):

t LML,α
D (A) = ť LML,α

D (A) −
∑

i∈A

ť LML,α
D ({i}) + (|A| − 1) · ť LML,α

D (∅) for every A ⊆ N.

More specifically, by (28) we have for any A ⊆ N , |A| ≥ 2:

t LML,α
D (A) =

∑

y∈XA

ln
Γ(αA(y) + dA(y))

Γ(αA(y))
(30)

−
∑

i∈A

∑

z∈Xi

ln
Γ(α{i}(z) + d{i}(z))

Γ(α{i}(z))
+ (|A| − 1) · ln Γ(α+ + d)

Γ(α+)
,

where α+ ≡ ∑{α(x); x ∈ XN}. Of course, (28) can be replaced by (29) here.

Remark By an analogous consideration the saturating function can be expressed:

s LML,α
D = ť LML,α

D (N) − ť LML,α
D (∅) =

∑

x∈XN

ln
Γ(α(x) + d(x))

Γ(α(x))
− ln

Γ(α+ + d)

Γ(α+)

=
∑

x∈XN , d(x)>0

d(x)−1
∑

ℓ=0

ln (α(x) + ℓ) −
d−1∑

ℓ=0

ln(α+ + ℓ).

A Gamma function

The following facts can be found in several handbooks of mathematics, e.g. in [4].

Definition 9 Gamma function Γ is defined on the interval (0,+∞) by the formula:

∀α > 0 Γ(α) =

∫ +∞

0
e−t · tα−1 dt . (31)

In particular,

• Γ(α) > 0 for any α > 0,
because the function inside the integral in (31) is strictly positive on (0,∞),

• limα→0+ Γ(α) = +∞
because the limit is, in fact, the integral

∫ +∞

0
e−t · t−1 dt, but limt→0+ e−t = 1 and t−1 has

infinite integral at 0:
∫ 1

0
t−1 dt = +∞.

Two well-known values are

• Γ(1) = 1, and

• Γ(1
2) =

√
π.

The basic formula is as follows:

∀α > 0 Γ(α + 1) = α · Γ(α) . (32)
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It implies well-known relation of Gamma function to the factorial:

∀n ∈ N Γ(n + 1) = n! . (33)

Indeed, this follows by the induction from (32) and Γ(1) = 1.

Another well-known formula relates Gamma funtion to Beta function:

∀ p, q > 0 B(p, q) =
Γ(p) · Γ(q)

Γ(p + q)
,

where the Beta function B is defined by the formula B(p, q) =
∫ 1
0 xp−1 · (1 − x)q−1 dx.

The following formula is utilized in § 8 of this report:

Fact 1 ∀α > 0 ∀ d ∈ N

ln
Γ(α + d)

Γ(α)
=

d−1∑

ℓ=0

ln(α + ℓ) . (34)

Proof. By induction after d, for a fixed α. The induction hypothesis for d = 1 follows from
(32): ln Γ(α+1)

Γ(α) = ln α·Γ(α)
Γ(α) = ln α =

∑1−1
ℓ=0 ln(α + ℓ). Note that Γ(α) > 0 for α > 0 makes

this computation possible. The induction step for d ≥ 2:

ln
Γ(α + d)

Γ(α)
= ln

Γ(α + d)

Γ(α + d − 1)
· Γ(α + d − 1)

Γ(α)
= ln

Γ(α + d)

Γ(α + d − 1)
+ ln

Γ(α + d − 1)

Γ(α)

= ln
(α + d − 1) · Γ(α + d − 1)

Γ(α + d − 1)
+ ln

Γ(α + d − 1)

Γ(α)

= ln (α + d − 1) +
d−2∑

ℓ=0

ln(α + ℓ) =
d−1∑

ℓ=0

ln(α + ℓ) .

Indeed, since d ≥ 2 and α > 0 one has α + d − 1 > 0 and Γ(α + d − 1) > 0, which allows
one to make the step in the first line. Then (32) for α+ d− 1 is used in the second line and
both cancelling of Γ(α + d − 1) and the induction premise in the third line. 2

B Uniformly distributed measures

B.1 Volume of a ball in the Euclidean space

It is a well-known fact that the volume (= the n-dimensional Lebesgue measure) of every
ball in R

n with diameter s > 0 is κn · sn, where κn is a constant, only depending on the
dimension n.34 More specifically, the volume κn of every unit ball in R

n is given by:

κn =
π

n
2

Γ(n
2 + 1)

=
2 · π n

2

n · Γ(n
2 )

. (35)

See, for example, Exercise 15.10 on pages 431-432 of [2].

Example 1 The well-known formulas say κ1 = 2, κ2 = π and κ3 = 4
3 · π. However, one

has κ4 = 1
2 · π2. 2

34Nevertheless, the value of the constant κn is not substantial for the later considerations in this report.
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B.2 Isometries between affine spaces

Definition 10 (affine subspace of an Euclidean space)
Assume r ≥ 2, denote [r] ≡ {1, . . . r} and consider the Euclidean space R

[r]. By an affine
subspace of R

[r] of the dimension n, 1 ≤ n ≤ r is meant the set A of the form A = x + L,
where x ∈ R

[r] and L ⊆ R
[r] is a linear subspace of the dimension n.35

An example of an affine subspace was mentioned in § 4.1:

A = { (θ1, . . . , θr) ;

r∑

k=1

θk = 1 } .

Here, one can take x = (1, 0, . . . , 0) and L = { (θ1, . . . , θr) ;
∑r

k=1 θk = 0 }. Thus, its
dimension is r − 1. Every affine subspace can be viewed as a (separable) metric space
endowed with the restriction of the Euclidean metric from R

[r]:

ρ(x, y) =

√
√
√
√

r∑

k=1

(xk − yk)
2 for x, y ∈ A ⊆ R

[r] .

Note that the metric on A is, in fact, determined by the set A itself through its identification
as a subset of an Euclidean space; the dimension r of the Euclidean space in which A is
embedded only has an auxiliary role. Below we show that every affine subspace of the
dimension n is isometrical to R

[n] with n-dimensional Euclidean metric (Lemma 12).

Definition 11 (isometry)
Let (M,ρ) and (N, ς) be metric spaces. An isometry (between M and N) is a mapping
t : M → N onto N which transfers the metric:

∀x, y ∈ M ρ(x, y) = ς(t(x), t(y)) .

It is evident that an isometry is a one-to-one mapping (between M and N).36 Moreover,
the inverse mapping to an isometry is also an isometry. Every isometry naturally transfers
metrical concepts like separability. One can also observe that isometry transfers Borel sets
on M to Borel sets on N . Therefore, one can naturally transfer every Borel measure on M
to (a Borel measure on) N .

We will utilize three basic ways to establish/construct an isometry between affine sub-
spaces of the Euclidean space(s). These are:

A a shift (in R
[r]),

B an orthogonal transformation (in R
[r]),

C an embedding (of R
[r] into R

[r′], r′ > r).

35It is straightforward that the linear subspace L in A = x + L is uniquely determined by A. Therefore,
the dimension of A is uniquely defined, too.

36Indeed, ∀x, y ∈ M t(x) = t(y) ⇒ ς(t(x), t(y)) = 0 ⇒ ρ(x, y) = 0 ⇒ x = y.
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A Shift in the space R
[r]

This is a transformation
y ∈ R

[r] 7−→ y + z ∈ R
[r] ,

where z is a fixed vector in R
[r]. It transfers an affine space A = x + L to the affine space

A′ = (x+ z)+ L. If we restrict this mapping to A then it is an isometry between A and A′.

Example 2 The set A = { (θ1, . . . , θr) ;
∑r

k=1 θk = 1 } is an affine subspace. One can
choose the back shift with z = (−1, 0, . . . , 0) and trasform A by y 7→ y + z to the linear
subspace L = { (θ1, . . . , θr) ;

∑r
k=1 θk = 0 }. 2

B Orthogonal transformations in R
[r]

These are linear mappings/tranformations of R
[r] onto itself which preserve the angles bet-

ween vectors. To construct them one can utilize the concept of an orthonormal basis (for
R

[r]), which has the meaning of a coordinate system.

Definition 12 (orthonormal basis)
By an orthonormal basis of the Euclidean space R

[r], r ≥ 1 is understood a finite set of
vectors E ⊆ R

[r] such that two conditions hold:

• ∀u, v ∈ E 〈u, v〉 = δuv,

where 〈u, v〉 ≡ ∑r
k=1 uk · vk and δuv is the Dirac’s delta symbol: δuv ≡

{
1 if u = v,
0 if u 6= v,

• ∀x ∈ R
[r] ∃αu ∈ R, u ∈ E such that x =

∑

u∈E αu · u .

Note that the first condition can be formulated in this form: ∀u, v ∈ E , u 6= v one
has 〈u, v〉 = 0, which means the vectors are mutually orthogonal, and, ∀u ∈ E one has
‖u‖2 ≡ 〈u, u〉 = 1, which means each vector u ∈ E has the length ‖u‖ = 1. The condition
implies the elements of E are linearly independent.37 Owing to the second condition, E forms
a linear basis of R

[r], and, therefore, |E| = r. Since it is a linear basis, for any x ∈ R
[r], the

decomposition x =
∑

u∈E αu ·u has uniquely determined coefficients αu. In particular, they
can be regarded as the “coordinates” of x with respect to (a coordinate system) E .

Lemma 11 Given r ≥ 1, E : u1, . . . ur and F : v1, . . . vr two ordered orthonormal bases
of R

[r], there exists (just one) linear mapping O : R
[r] → R

[r] such that ∀ k = 1, . . . , r
O(uk) = vk. This mapping is an isometry of R

[r] onto itself.

Proof. The first step is to observe that, for the chosen orderings u1, . . . ur and v1, . . . vr,
there exists an r × r-matrix O such that ∀ k = 1, . . . , r O · uk = vk.

For example, consider an auxiliary concept of the standard orthonormal base e1, . . . , er, that is, co-

lumn vectors ek given by (ek)l = δkl for k, l = 1, . . . , r. There exists a matrix W with W · ek = vk

for k = 1, . . . , r: it suffices to put vk as the k-th column of W. Analogously, there exists a matrix V

with V · ek = uk for k = 1, . . . , r. Since its columns are linearly independent, the matrix V is regular

(= invertible). In particular, V−1 · uk = ek for k = 1, . . . , r and the matrix O ≡ W · V−1 satisfies

∀ k = 1, . . . , r O · uk = W · (V−1 · uk) = W · ek = vk.

37Indeed,
∑

u∈E αu · u = 0 implies ∀ v ∈ E 0 = 〈0, v〉 = 〈
∑

u∈E αu · u, v〉 =
∑

u∈E αu · 〈u, v〉 =
∑

u∈E αu ·
δuv = αv. Thus, ∀ v ∈ E αv = 0.
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The desired linear mapping O : R
[r] → R

[r] can be introduced as the multiplication by this
matrix: O(x) ≡ O · x for x ∈ R

[r]. The next observation is that the matrix O is unitary,
which implies, one has ‖O · x‖ = ‖x‖ for every x ∈ R

[r].

For example, this follows from Theorem 2.6 (on page 48) in the textbook [11]: one of equivalent defi-

nitions of the unitary matrix is the condition 5◦ from [11] requiring that there exists an orthonormal

basis u1, . . . , ur such that O · u1, . . . , O · ur is an orthonormal basis, too. Thus, another equivalent

definition of the unitary matrix the condition 2◦ implies ∀x ∈ R[r] ‖O · x‖ = ‖x‖.
Therefore, ∀x, y ∈ R

[r] one has by linearity of the mapping x 7→ O · x:

ρ(x, y) = ‖x − y‖ = ‖O · (x − y)‖ = ‖O · x − O · y‖ = ρ(O · x, O · y) ,

which means O is an isometry of R
[r] onto itself.38 The uniqueness of this linear mapping

follows from the uniqueness of the matrix O.

Indeed, if O1 and O2 are two matrices of that form then O1 − O2 satisfies (O1 − O2) · uk = 0 for

every k = 1, . . . , r, and this, since u1, . . . , ur is a linear basis of R[r], implies O1 − O2 is the zero

matrix. 2

An isometric linear mapping O of R
[r] onto itself transfers (every) linear subspace L

of R
[r] to a linear subspace of the same dimension. Therefore, it is an isometry of the

corresponding metric spaces (≡ of L and its image O(L)).

Example 3 The linear subspace L = { (θ1, . . . , θr) ;
∑r

k=1 θk = 0 } of R
[r] can be trans-

ferred by such an isometry to another linear subspace

K = { (θ1, . . . , θr) ; θr = 0 } .

To this end, it suffices to choose a suitable orthonormal basis E : u1, . . . , ur such that the
linear hull of u1, . . . , ur−1 is just L. For example, one can put

uk = (
1√

k ·
√

k + 1
, . . . ,

1√
k ·

√
k + 1

︸ ︷︷ ︸

k−times

,
−
√

k√
k + 1

, 0, . . . , 0) for k = 1, . . . , r − 1 ,

and ur = ( 1√
r
, . . . , 1√

r
). In the place of F one can choose the standard orthonormal basis

e1, . . . , er, which has the property that the linear hull of e1, . . . , er−1 is just K. Then Lemma
11 can be applied to get an isometric linear mapping O : R

[r] → R
[r]: it tranfers L to K. 2

C Embedding of R
[r] into R

[r′], r′ > r.

This is a mapping which identifies every vector of the lower dimension r with a vector of
the higher dimension r′ by “adding” zero components. More specifically:

(x1, . . . , xr) 7−→ (y1, . . . , yr′) where yk =

{
xk for k = 1, . . . , r,
0 for k = r + 1, . . . , r′.

It is straightforward from the definition of the metrics that it isometrically transfers R
[r] to

the linear subspace {(y1, . . . , yr′); yr+1 = . . . = yr′ = 0} of R
[r′].39

38Another equivalent definition of an unitary matrix is – see the condition 3◦ in Theorem 2.6 of [11] – is
that ∀ x, y ∈ R

[r] one has 〈O · x, O · y〉 = 〈x, y〉, which means the mapping x 7→ O · x preserves the scalar
products of vectors (= the angles between vectors).

39Indeed, the distance of two vectors u, v in both spaces is
√∑r

k=1(uk − vk)2.
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Example 4 The image of R
[r−1], r ≥ 2 by the embedding

ι : (θ1, . . . , θr−1) 7−→ (θ1, . . . , θr−1, 0)

is the (above-mentioned) linear subspace K = { (θ1, . . . , θr) ; θr = 0 } of R
[r]. The inverse

mapping to ι, therefore, transfers isometrically K onto R
[r−1]. 2

Lemma 12 Let A be an affine subspace of R
[r], r ≥ 2 of the dimension n ≥ 1. Then A is

isometrically isomorphic to the Euclidean space R
[n].

Proof. One can utilize the above mentioned constructions A - C of isometric mappings
between affine subspaces. The first step is that A = x + L is isometrically transferred by a
shift to the (uniquely determined) linear subspace L ⊆ R

[r] of the dimension n.
The second step is an orthogonal transformation in R

[r] which isometrically transfers L
to the linear subspace

K = { (θ1, . . . , θr) ; θn+1 = . . . = θr = 0 } .

This mapping can be constructed by Lemma 11.

Indeed, one first chooses a linear basis b1, . . . , bn of L and completes it to a linear basis b1, . . . , br of

the whole space R[r]. Then one can apply well-known Gram-Schmidt process (for orthogonalizing)

to it (see e.g. page 51 in [11]). The result is an (ordered) orthonormal base E : u1, . . . , ur such that

the linear hull of u1, . . . , un is just L. Then one can choose for F the standard orthonormal base

e1, . . . , er of R[r]. It has the property that the linear hull of e1, . . . , en is just K. Then Lemma 11 is

applied to get a linear mapping O with O(uk) = ek for k = 1, . . . , r, which is an isometry.

The third step is to observe that K is isometrically isomorphic to R
[n]: for this pur-

pose, one can use the inverse mapping to the embedding of R
[n] into R

[r]. Of course, the
composition of these three isometries is again an isometry. 2

B.3 Proper Lebesgue measure on an affine subspace

The above-mentioned Lemma 12 is the first step to introduce the concept of a proper
Lebesgue measure on an affine subspace of an Euclidean space. The second step is the next
definition.

Definition 13 (uniformly distributed measure)
Let (M,ρ) be a separable metric space. Given x ∈ M and s > 0, let us denote by

U(x, s) = {y ∈ M ; ρ(x, y) ≤ s}

the closed ball around x with diameter s. A Borel measure µ on (M,ρ) will be called locally
finite if ∀x ∈ M ∃ s > 0 with µ(U(x, s)) < ∞. A locally finite Borel measure µ on (M,ρ)
will be called uniformly distributed if

∀x, y ∈ M ∀ s > 0 µ(U(x, s)) = µ(U(y, s)) .

It is straightforward that an isometry between metric spaces M and N tranfers a uni-
formly distributed measure (on M) to a uniformly distributed measure (on N).40 The basic
observation concerning uniformly distributed measures is this:

40This is a trival consequence of the fact that an isometry transfers a ball with diameter s > 0 to a ball
with diameter s.
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Lemma 13 A non-zero uniformly distributed measure on a separable metric space M is
uniquely determined up to a positive multiple. In particular, if s > 0 is such a diameter
that measure of the ball with diameter s is non-zero and finite, then uniformly distributed
measure on M is determined uniquely by the measure of this ball.

Proof. Note that this uniqueness result was already given in [8], in the context of a locally
compact Hausdorff topological space with uniform structure. Lemma 13 follows from the
results of [26]:

Specifically, Consequence V2 on p. 61 in [26] says this: if there are two uniformly distributed measures

µ and ν on a separable metric space and µ 6= 0 then there exists t ≥ 0 such that ν = t · µ. Thus, if

ν 6= 0 then t > 0. This observation implies that whenever s > 0 exists such that µ(U(x, s)) < ∞ for

some x ∈ M (which means, since µ is uniformly distributed, for every x ∈ M) then ν(U(x, s)) < ∞
for any other non-zero uniformly distributed measure ν on M . Therefore, if 0 < µ(U(x, s)) < ∞
and µ(U(x, s)) = ν(U(x, s)) for some x ∈ M then the relation ν = t ·µ gives t = 1. Hence, ν = µ. 2

Now, one can introduce the concept of a proper Lebesgue measure on an affine subspace.

Definition 14 (proper Lebesgue measure on an affine subspace)
By a proper Lebesgue measure on an affine subspace A ⊆ R

[r], r ≥ 2 of the dimension n ≥ 1
will be meant (necessarily non-zero) uniformly distributed Borel measure λA on A such that
the measure of the unit ball in A is the same as in the Euclidean space R

[n], that means,

λA(UA(x, 1)) = κn for every x ∈ A ,

where UA(x, s) denotes the closed ball in A with diameter s.

Finally, the previous facts allow one to get the basic existence and uniqueness result:

Proposition 14 On every affine subspace A (of the Euclidean space) of the dimension
n ≥ 1 there exists a proper Lebesgue measure λA, and is determined uniquely. It satisfies
the following formula

λA(UA(x, s)) = κn · sn for every x ∈ A, s > 0 . (36)

Proof. By Lemma 12, A is isometrically isomorphic to R
[n] and the standard Lebesgue

measure on R
[n] satisfies the requirement that the measure of the ball with diameter s > 0

is κn · sn. This measure is transferred by the isometry to A and one gets in this way a
(locally finite) uniformly distributed measure on A such that the measure of the unit ball
is κn. Therefore, the proper Lebesgue measure on A exists and its uniqueness follows from
Lemma 13: for s = 1 the measure of the ball with diameter s is non-zero and finite. The
formula (36) for arbitrary s > 0 is transferred from R

[n] by the isometry. 2

It follows from the definition that an isometry between affine spaces transfers proper
Lebesgue measures on themselves.

B.3.1 Lebesgue measure of cuboids

The proper Lebesgue measure on a linear subspace L of an Euclidean space can equivalently
be introduced as the (uniformly distributed) measure on L which ascribes the value one to
every unit cube in L. Of course, the concept of a cube, respectively of a cuboid, in a linear
subspace is relative to a coordinate system.
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Definition 15 (cuboid in a linear subspace)
Given r ≥ 2 and a linear subspace L of R

[r] of the dimension n ≥ 1, let E be an orthonormal
basis of L. Then by the E-cuboid determined by the parameters au < bu, u ∈ E will be
meant the set of those vectors in L whose coordinates with respect to E fall within those
limits:

∏

u∈E
(au, bu] ≡ {x ∈ L; if x =

∑

u∈E
αu · u then au < αu ≤ bu for u ∈ E } .

Example 5 If L = R
[r] and E is the standard orthonormal basis e1, . . . , er of L then E-

cuboid is nothing but the usual classic cuboid, that is, the Cartesian product of correspoding
intervals:

∏

u∈E(au, bu] ≡ ∏r
i=1(ai, bi]. 2

To prove the desired formula for (proper) Lebesgue measure of a cuboid we need an
auxiliary concept, well-known from the textbooks on probability theory, e.g. [25]:

Definition 16 (σ-additive system)
Let S be a system of subsets of a non-empty set X. It will be named σ-additive if

• it is closed under disjoint finite union: ∀A, B ∈ S A ∩ B = ∅ ⇒ A ∪ B ∈ S,

• under proper difference: ∀A, B ∈ S A ⊆ B ⇒ B \ A ∈ S, and

• under monotone countable union: ∀ {An} ⊆ S An ⊆ An+1, n ∈ N ⇒ ⋃∞
n=1 An ∈ S.

It is evident that the collection of those (measurable) sets on which two finite non-
negative measures equal each other is a σ-additive system. Well-known fact (see e.g. State-
ment I.15 on page 35 of [25]) is that whenever L is a system of subsets of X closed under
finite intersection (≡ ∀A,B ∈ L A∩B ∈ L) and containing the basic set (≡ X ∈ L) then
the least σ-additive system containing L is the σ-algebra generated by L.

This implies that, for two (σ-finite) Borel measures µ and ν on a metric space M , to
show µ = ν it suffices to show that µ and ν are finite and equal on a system K of sets,

• which is closed under (finite) intersection,

• M is the monotone countable union of some elements in K, and

• the least σ-additive system containing K is the Borel σ-algebra on M .

Indeed, since M =
⋃

n∈N
Sn where Sn ∈ K, Sn ⊆ Sn+1 for n ∈ N, it suffices to verify for every n ∈ N

that µ = ν on Borel subsets of Sn. This is because µ(A) = limn→∞ µ(A∩Sn) = limn→∞ ν(A∩Sn) =

ν(A) for every Borel set A ⊆ M . One can consider the class L ≡ {K ∩ Sn; K ∈ K} ⊆ K. Then

µ = ν on L and ν(Sn) = µ(Sn) < ∞ by the assumption. Therefore, µ = ν on the least σ-additive

system containing L, that is, on the σ-algebra σ(L) by the above-mentioned fact applied to X = Sn.

However, σ(L) is the class of Borel sets in Sn.

Lemma 15 Given r ≥ 2, let L be a linear subspace of R
[r] of the dimension n ≥ 1 and E

an orthonormal basis of L. Then

(i) The class KE of all E-cuboids in L is closed under (finite) intersection. The least σ-
additive system of subsets of L containing KE is the Borel σ-algebra on L.
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(ii) The proper Lebesgue measure (on L) of E-cuboids is determined by the formula

λL (
∏

u∈E
(au, bu] ) =

∏

u∈E
(bu − au) whenever au < bu, u ∈ E . (37)

Proof. Let us order the elements of E into a sequence u1, . . . , un and then complete it to
an orthonormal basis u1, . . . , ur of the whole R

[r]. Then consider the standard orthonormal
basis e1, . . . , er in R

[r]. By Lemma 11 construct a linear isometric mapping O of R
[r] onto

itself such that O(uk) = ek for k = 1, . . . , r. This one-to-one mapping transfers L onto
K ≡ {(θ1, . . . , θr); θn+1 = . . . = θr = 0 }. The linear subspace K can be identified by the
inverse ι−1 (of the correspoding embedding) with R

[n]. It is clear that U ≡ ι−1 ◦ O is a
one-to-one mapping from L to R

[n], saves set operations and transfers E-cuboids to classic
cuboids in R

[n].

Indeed, if u =
∑r

k=1 αk · uk ∈ L for some αk ∈ R then αk = 0 for k = n + 1, . . . , r and O(u) =

O(
∑n

k=1 αk · uk) =
∑n

k=1 αk · O(uk) =
∑n

k=1 αk · ek and U(u) =
∑n

k=1 αk · êk, where ê1, . . . , ên is

the standard orthonormal basis for R[n].

Since the class of classic cuboids is closed under (finite) intersection, the same is true for the
class of E-cuboids. Because U saves set operations, it transfers the least σ-additive system
containing KE to the least σ-additive system containing classic cuboids. This is, however,
the Borel σ-algebra on R

[n], which, by measurability of U−1, is transferred to the Borel
σ-algebra on L. This implies the condition (i).

Since U is an isometry of L and R
[n], it transfers the (proper) Lebesgue measure on L to

the standard Lebesgue measure on R
[n]. Therefore, λL measure of the E-cuboid

∏

u∈E(au, bu]
is the n-dimensional Lebesgue measure of its image, that is, of

∏n
i=1(aui

, bui
]. This equals

to
∏n

i=1(bui
− aui

) =
∏

u∈E(bu − au). This gives the condition (ii). 2

The consequence of the formula (37) is that the proper Lebesgue measure of a unit cube,
that is, of a cuboid

∏

u∈E(au, bu] with bu − au = 1 for u ∈ E , is 1. Moreover, it follows from
the arguments above Lemma 15 that the unique Borel measure satisfying the formula (37)
is the proper Lebesgue measure on L.

B.4 Lifting less-dimensional Lebesgue measure

In this section, we introduce a special lifting transformation from the Euclidean space to
a certain affine subspace in a higher-dimensional space. Then we show it transforms the
Lebesgue measure to a multiple of the proper Lebesgue measure on the affine subspace.

Definition 17 (lifting transformation)
Assume r ≥ 2, denote [r] ≡ {1, . . . r} and consider l ∈ [r]. By a lifting mapping from R

[r]\{l}

to the affine space

A = { (θ1, . . . , θr) ;

r∑

k=1

θk = 1 }

will be meant the mapping Ll : R
[r]\{l} → A defined as follows:

Ll : [ηk]k∈[r]\{l} 7−→ [θk]k∈[r] where
θk = ηk for k ∈ [r] \ {l} ,
θl = 1 − ∑

k∈[r]\{l} ηk .
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The lifting mapping Ll from R
[r]\{l} to A is not (a multiple of) an isometry, but one can

imagine it as the composition of three mappings, two of which are isometries.

• The first one is the embedding of R
[r]\{l} into R

[r], whose image is the linear subspace
Kl = {(η1, . . . , ηr); ηl = 0} ⊆ R

[r] given by

ιl : [ηk]k∈[r]\{l} 7−→ [η̂k]k∈[r] where
η̂k = ηk for k ∈ [r] \ {l} ,
η̂l = 0 .

• The second in a linear transformation Tl : Kl → L, where
L = { (θ1, . . . , θr) ;

∑r
k=1 θk = 0 }, defined by the relation

Tl : [η̂k]k∈[r] 7−→ [θ̂k]k∈[r] where
θ̂k = η̂k for k ∈ [r] \ {l} ,

θ̂l = −∑

k∈[r]\{l} η̂k .

It transforms Kl onto L.

• The third mapping is a shift in R
[r] given by

Sl : [θ̂k]k∈[r] 7−→ [θ̂k]k∈[r] + [zl
k]k∈[r] ≡ [θk]k∈[r] where zl

k = δkl for k ∈ [r] .

It transforms L onto A.

The aim is to show that lifting transforms the Lebesgue measure to its certain multiple.
The basic step to show this is to verify an analogous fact for the linear transformation Tl.

Lemma 16 Let r ≥ 2, [r] ≡ {1, . . . r} and l ∈ [r]. Then the image of proper Lebesgue
measure on Kl by the linear transformation Tl is the 1√

r
-multiple of the proper Lebesgue

measure on L:

λKl
◦ (Tl)

−1 =
1√
r
· λL .

Proof. Let us consider a linear subspace K ≡ Kl ∩ L of R
[r], that is,

K = { [θk]k∈[r] ; θl = 0 &
∑

k∈[r]

θk = 0 }.

Then choose an orthonormal basis E of K and introduce two vectors u, v ∈ R
[r]:

vk =
1√

r − 1
for k ∈ [r] \ {l}, vl = 0

uk =
1√

r − 1 · √r
for k ∈ [r] \ {l}, ul = −

√
r − 1√

r
.

Clearly, v ∈ Kl, u ∈ L, ‖v‖ = ‖u‖ = 1. It is easy to see that E ∪ {v} is an orthonormal
basis of Kl and E ∪ {u} an orthonormal basis of L.

Indeed, both v and u are perpendicular to all elements of K.

Let us observe that the transformation Tl can equivalently be introduced as follows:

If x ∈ Kl with x =
∑

w∈E∪{v}
αw · w and Tl(x) =

∑

w∈E∪{u}
βw · w

then ∀w ∈ E βw = αw & βu =
√

r · αv .
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Indeed, since E ∪ {v} is an orthonormal basis of Kl the corresponding coefficients can be obtained
as the scalar products:

∀ w̄ ∈ E ∪ {v} 〈x, w̄〉 = 〈
∑

w

αw · w, w̄〉 =
∑

w

αw · 〈w, w̄〉 =
∑

w

αw · δww̄ = αw̄ .

Analogously, ∀ w̄ ∈ E ∪ {u} one has 〈Tl(x), w̄〉 = βw̄ because E ∪ {u} is an orthonormal basis of L
and Tl(x) ∈ L. Thus, for every w ∈ E we write

αw − βw = 〈x, w〉 − 〈Tl(x), w〉 = 〈x − Tl(x), w〉 = 0 ,

where the last equality follows from the definition of Tl: one has (Tl(x))k = xk for k ∈ [r] \ {l} and
wl = 0 for every w ∈ E ⊆ K. Then we write analogously, owing to the definition of v:

αv = 〈x, v〉 =
1√

r − 1
·

∑

k∈[r]\{l}

xk ,

and, owing to the definition Tl(x) and u:

βu = 〈Tl(x), u〉 =
1√

r − 1 · √r
·

∑

k∈[r]\{l}

xk + (
−
√

r − 1√
r

) · (−
∑

k∈[r]\{l}

xk)

= (
1√

r − 1 · √r
+

√
r − 1√

r
) ·

∑

k∈[r]\{l}

xk =

√
r√

r − 1
·

∑

k∈[r]\{l}

xk ,

and, therefore, βu =
√

r · αv.

Now, the observation above implies that each E ∪ {v}-cuboid of the form
∏

w∈E∪{v}(aw, bw]
is by the transformation Tl transferred to the E ∪{u}-cuboid of the form

∏

w∈E∪{u}(aw, bw],

where au =
√

r · av and bu =
√

r · bv. Thus, by Lemma 15(ii) the proper Lebesgue measure
of the former cuboid is

λKl
(

∏

w∈E∪{v}
(aw, bw]) = (bv − av) ·

∏

w∈E
(bw − aw) ,

and the proper Lebesgue measure of the latter one is

λL(
∏

w∈E∪{u}
(aw, bw]) = (bu − au) ·

∏

w∈E
(bw − aw) =

√
r · (bv − av) ·

∏

w∈E
(bw − aw) .

In particular, ∀A ∈ KE∪{v} one has λL(Tl(A)) =
√

r · λKl
(A), which means ∀B ∈ KE∪{u}

one has λL(B) =
√

r · λKl
((Tl)

−1(B)), that is, 1√
r
· λL(B) = λKl

◦ (Tl)
−1(B). Thus, the

equality 1√
r
· λL = λKl

◦ (Tl)
−1 holds for all E ∪ {u}-cuboids and both measures are finite

on those cuboids. By Lemma 15(i) the smallest σ-additive system containing KE∪{u} is the
Borel σ-algebra on L. That’s why the equality extends to all Borel set – see the arguments
above Lemma 15. 2

Now, the desired statement can easily be obtained.

Proposition 17 Assume r ≥ 2, put [r] ≡ {1, . . . r} and consider l ∈ [r]. Then the image
of the (standard) Lebesgue measure on the space R

[r]\{l} by the lifting mapping Ll is the 1√
r
-

multiple of the proper Lebesgue measure λA on A. In particular, the image of the Lebesgue
measure on R

[r]\{l} by Ll does not depend on the choice of l!

Proof. This follows directly from Lemma 16 and the fact that Ll is the compositions of
two isometries and the linear transformation Tl. Indeed, isometries between affine spaces
transfer proper Lebesgue measures onto themselves. 2
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