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Abstract— Any MV-algebra M can be embedded as a lattice in
the Boolean algebra B(M) that is R-generated by M . We relate the
study of states on an MV-algebra M to the study of finitely additive
probabilities on B(M). In particular, we show that each state on M

can be uniquely extended to a finitely additive probability on B(M).
In case that M is a PMV-algebra, the conditional state s(a|b) defined
for a, b ∈ M with s(b) 6= 0 is extended to the classical conditional
probability p(a · b|b) on B(M) of the a-proportion of the event b,
given the event b.
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1 Introduction

States on MV-algebras were investigated by Mundici in [1]
as [0, 1]-valued additive functionals on (equivalence classes
of) formulas in Łukasiewicz propositional logic with the in-
tention to capture the notion of “average” truth degree of a
formula. In [2] a probability theory on MV-algebras is sys-
tematically developed. The study of states is frequently en-
hanced by looking directly at certain probabilities induced by
the states: there is a one-to-one correspondence between the
states on an MV-algebra and the Borel probability measures
on the maximal spectrum of the MV-algebra [3, 4], where the
bijection is the Lebesgue integral of a continuous function on
the maximal spectrum with respect to a uniquely determined
Borel probability measure. In this paper we introduce another
way of representing a state within a Boolean probability the-
ory. By Jenča’s result [5], each MV-algebra M is embedded
as a lattice in a uniquely determined Boolean algebra B(M)
that is said to be R-generated by M (see [6], [5]). We will
show how to relate the study of states over M to the study of
certain finitely additive probabilities on B(M). In particular,
our approach sheds a new light on the definition of conditional
state appearing in [7].

In Section 2 we repeat the basic notion concerning MV-
algebras and R-generated Boolean algebras. Section 3 con-
tains the main results: Proposition 3, in which we show that
there is only one probability on B(M) extending a state on
M , and Proposition 4, which gives a geometrical and topolog-
ical description of such extensions in case M is a semisimple
MV-algebra. In Section 4 we relate conditional states onM to
conditional probabilities on B(M) (Proposition 5).

2 Preliminary Notions
2.1 MV-algebras

MV-algebras [8] were introduced by Chang in 1958 as the al-
gebraic counterpart of propositional Łukasiewicz logic.

Definition 1. An MV-algebra is a structure 〈A,⊕,¬, 0〉 with
a binary operation ⊕, a unary operation ¬ and a constant 0
such that 〈A,⊕, 0〉 is an abelian monoid and the following
equations hold for every x, y ∈ A:

¬¬x = x

x⊕ ¬0 = ¬0
¬ (¬x⊕ y)⊕ y = ¬ (¬y ⊕ x)⊕ x

The most important example of an MV-algebra is the real unit
interval [0, 1] equipped with operations x⊕y = min(1, x+y)
and ¬x = 1 − x. Indeed, the class of MV-algebras form a
variety that is generated by [0, 1].
On each MV-algebra A we define 1 = ¬0, x � y =
¬ (¬x⊕ ¬y), x 	 y = x � ¬y. Note that in the MV-algebra
[0, 1] we have x � y = max (0, x+ y − 1) and x 	 y =
max(0, x− y).

Let A be an MV-algebra. For any two elements x and y of
A we write x ≤ y if and only if ¬x⊕ y = 1. It follows that ≤
is a partial order that in the case of the algebra [0, 1] coincides
with the natural order. Further, defined connectives

x ∨ y = ¬ (¬x⊕ y)⊕ y (1)
x ∧ y = ¬ (¬x ∨ ¬y) (2)

are such that the structure 〈A,∧,∨, 0, 1〉 is a distributive lat-
tice with bottom element 0 and top element 1. An MV-chain
is an MV-algebra in which the order relation ≤ is total.

For any MV-algebra M , the set {x ∈ M | x ⊕ x = x} is
the largest Boolean algebra contained in M .

Given an MV-algebraA and a setX, the setAX of all func-
tions f : X → A becomes an MV-algebra if the operations ⊕
and ¬ and the element 0 are defined pointwise. MV-algebras
of functions taking values in [0, 1] can be characterized by
means of their ideals.

An ideal of an MV-algebra A is a subset I of A such that
0 ∈ I , if x, y ∈ I then x ⊕ y ∈ I , and if x ∈ I , y ∈ A and
y ≤ x then y ∈ I . An ideal is maximal if it is not contained in
any proper ideal. An MV-algebra A is said to be semisimple if



and only if A is non trivial and the intersection of all maximal
ideals of A is {0}. By the maximal spectrum we mean the
(nonempty) set of all maximal ideals of A. This set can be
made into a compact Hausdorff space.

It can be shown that an MV-algebra A is semisimple if
and only if A is isomorphic to a separating MV-algebra of
[0, 1]-valued continuous functions on some nonempty com-
pact Hausdorff space (actually the maximal spectrum of A),
with pointwise operations. For other notions related to MV-
algebras we refer the reader to [9].

A product MV-algebra (or PMV-algebra, for short, see [10],
[11]) is a structure 〈A,⊕,¬, ·, 0〉, where 〈A,⊕,¬, 0〉 is an
MV-algebra and · is a binary associative and commutative op-
eration on A such that for any x, y, z ∈ A, x · 1 = x and
x · (y 	 z) = (x · y)	 (x · z).

Note that [0, 1] is a PMV-algebra where the operation · is the
usual multiplication of real numbers. Further, a semisimple
MV-algebraA is a PMV-algebra if and only ifA is closed with
respect to the pointwise real product of functions and, in this
case, the unique product on A is the pointwise real product of
functions.

2.2 Boolean algebra R-generated by an MV-algebra

Let M be an MV-algebra. There exists a unique (up to a
Boolean isomorphism) Boolean algebra B(M) such that the
lattice reduct of M

(i) is a sublattice of B(M) containing both the elements 0
and 1 of M ,

(ii) generates B(M) as a Boolean algebra.
The Boolean algebra B(M) is called an R-generated Boolean
algebra. See [6, Chapter II.4] for details. For every a ∈
B(M) there exists n ∈ N and a finite chain a1 ≤ · · · ≤ a2n

in M such that

a =
n∨
i=1

(a2i \ a2i−1) (3)

holds true in B(M) and (a2i \ a2i−1) ∧ (a2j \ a2j−1) = 0
for each i, j ∈ {1, . . . , n} with i 6= j, where \ denote the
symmetric difference in the Boolean algebra B(M).

Theorem 1 (Jenča [5], Theorem 2). LetM be an MV-algebra.
Then there exists a surjective mapping ϕM : B(M) → M
such that

ϕM (a) =
n⊕
i=1

(a2i 	 a2i−1), a ∈ B(M), (4)

where a1, . . . , a2n ∈ M are as in (3) and the value of ϕM (a)
is independent on the choice of the representation (3). More-
over, the mapping ϕM satisfies

(i) ϕM (1) = 1,
(ii) ϕ(a) = a, for every a ∈M ,

(iii) if a, b ∈ B(M) are such that a ∧ b = 0, then
ϕM (a)� ϕM (b) = 0 and ϕM (a ∨ b) = ϕ(a)⊕ ϕ(b).

The following two examples appear in [5].

Example 1. Let M be an MV-chain. Given two elements
a, b ∈ M , put [a, b) = {x ∈ M | a ≤ x < b}. By [6],
B(M) is isomorphic to the Boolean algebra of all subsets of
M having the form

[a1, b1) ∪ · · · ∪ [an, bn)

where ai, bi ∈ M and [ai, bi) ∩ [aj , bj) = ∅, for every i, j ∈
{1, . . . , n}with i 6= j. Note that each a ∈M can be identified
with [0, a) ∈ B(M). Then

ϕM ([a1, b1)∪ · · · ∪ [an, bn)) = (b1 	 a1)⊕ · · · ⊕ (bn 	 an).

Example 2. Suppose now M is a semisimple MV-algebra,
then M can be viewed as an MV-algebra of continuous func-
tions from the maximal spectrum X of M to the unit interval
[0, 1]. Let B = B([0, 1]) be the Boolean algebra of all subsets
of [0, 1] of the form [a1, b1) ∪ · · · ∪ [an, bn) for some n ∈ N,
where [ai, bi) ∩ [aj , bj) = ∅ with i, j ∈ {1, . . . , n} and i 6= j.
Just as in Example 1, each element a of the MV-algebra [0, 1]
can be identified with the interval [0, a) of B.

Since lattice operations in [0, 1]X (and hence in M ) are
componentwise, then B(M) is a Boolean subalgebra of BX .
Each element f ∈ M ⊆ [0, 1]X can be identified with the
function f∗ ∈ B(M) such that f∗ : x ∈ X 7→ [0, f(x)) ∈ B.
Then, according to (3), for every g ∈ B(M) there is n ∈ N
and a1 ≤ b1 ≤ . . . ≤ an ≤ bn ∈M such that

g =
n∨
i=1

b∗i \ a∗i . (5)

The mapping ϕM is defined as follows. For every g ∈
B(M) and any x ∈ X , we have, by (5):

g(x) =
n∨
i=1

[0, bi(x)) \ [0, ai(x)).

It suffices to let ϕM (g) : x ∈ X 7→ (b1(x) 	 a1(x)) ⊕ · · · ⊕
(bn(x)	 an(x)) ∈ [0, 1].

Observe that the length n of the chain representing g does
not depend on the coordinate (maximal ideal) x.

3 States and Probabilities
A state on an MV-algebra M is a mapping s : M → [0, 1]
such that s(1) = 1 and s(a ⊕ b) = s(a) + s(b), for every
a, b ∈ M with a � b = 0. In case that M is a Boolean al-
gebra, then we denote a state on it by p and call p a (finitely
additive) probability. Let S (M) be the state space of M ,
that is, the (nonempty) set of all states on M . Analogously,
by S (B(M)) we denote the set of all probabilities on the
R-generated Boolean algebra B(M). In the sequel we will
introduce and study the relation between the two state spaces.

Proposition 1. If s is a state on an MV-algebra M , then there
is a probability p on B(M) such that p(a) = s(a) for every
a ∈M .

Proof. Put

p(a) = s(ϕM (a)), a ∈ B(M), (6)

where ϕM is the mapping from Theorem 1, and observe that
this definition is correct since, by the same Theorem 1, it does
not depend on the representation of a given in (3). Then
p(1) = s(ϕM (1)) = s(1) = 1. Let a, b ∈ B(M) be such
that a ∧ b = 0. Then Theorem 1(iii) yields

p(a ∨ b) = s(ϕM (a ∨ b)) = s(ϕM (a)⊕ ϕM (b))
= s(ϕM (a)) + s(ϕM (b)) = p(a) + p(b).

Since every a ∈ M is a fixed point of ϕM due to Theo-
rem 1(ii), we get that p coincides with s over M .



The next proposition shows that every probability on B(M)
is uniquely determined already on the embedded MV-
algebra M .

Proposition 2. If p and p′ are two probabilities onB(M) and
p(b) = p′(b) for every b ∈M , then p = p′.

Proof. Let a ∈ B(M). By equation (3), there exists a finite
chain a1 ≤ · · · ≤ a2n in M such that

a =
n∨
i=1

(a2i \ a2i−1) (7)

in B(M) and (a2i \ a2i−1) ∧ (a2j \ a2j−1) = 0, for each
i, j ∈ {1, . . . , n} with i 6= j. Hence

p(a) = p
( n∨
i=1

(a2i \ a2i−1)
)

=
n∑
i=1

p(a2i \ a2i−1)

=
n∑
i=1

(p(a2i)− p(a2i−1)) =
n∑
i=1

(p′(a2i)− p′(a2i−1))

=
n∑
i=1

p′(a2i \ a2i−1) = p′
( n∨
i=1

(a2i \ a2i−1)
)

= p′(a).

Putting together Proposition 1 with (6) and Proposition 2, we
get the following uniqueness result.

Proposition 3. If s is a state on an MV-algebra M , then the
probability p = s ◦ϕM on B(M) is the unique probability on
B(M) such that p(a) = s(a) for every a ∈M.

The above introduced correspondence between the states
in S (M) and the probabilities in S (B(M)) works in gen-
eral only in one direction. Define a mapping Φ : S (M) →
S (B(M)) by

Φ(s)(a) = s(ϕM (a)), (8)

for every s ∈ S (M) and every a ∈ B(M). Since every MV-
algebra M is embedded into B(M), it is natural to expect that
the state space of the Boolean algebra B(M) is much larger
than that of M . Indeed, already in case that M is the standard
MV-algebra [0, 1], the set S ([0, 1]) contains only one element
(the state s defined by s(x) = x, for every x ∈ [0, 1]). So
the image of Φ(S ([0, 1])) is a singleton, but S (B([0, 1]))
contains infinitely-many probabilities: for every x ∈ [0, 1],
the mapping

a ∈ B([0, 1]) 7→

{
1, x ∈ a,
0, otherwise,

is a two-valued probability and hence it belongs to
S (B([0, 1])).

Properties of the operator Φ are summarized below. In
particular, we will show that Φ preserves the geometrical-
topological structure of S (M). In order to show this, the
convex sets S (M) and S (B(M)) are endowed with the sub-
space topology of the product spaces [0, 1]M and [0, 1]B(M),
respectively, so that both S (M) and S (B(M)) became com-
pact spaces (see [1]).

Proposition 4. Let M be a semisimple MV-algebra. Then:
(i) Φ(s)(a) = s(a), for every s ∈ S (M) and every

a ∈ M ;
(ii) the mapping Φ is an affine homeomorphism of S (M)

onto the compact convex set Φ(S (M));
(iii) the set Φ(S (M)) is affinely homeomorphic to the set of

all Borel probability measures on the maximal spectrum
X of M ;

(iv) if M is not a Boolean algebra, then Φ(S (M)) (
S (B(M)).

Proof. (i) This follows directly from the definition (8) and
Proposition 3.
(ii) First, we will show that the mapping Φ is affine, that is, for
every s, s′ ∈ S (M) and α ∈ [0, 1], we have

Φ(αs+ (1− α)s′) = αΦ(s) + (1− α)Φ(s′).

For every a ∈ B(M), the definition (8) yields:

Φ(αs+ (1− α)s′)(a) = (αs+ (1− α)s′)(ϕM (a))
= αs(ϕM (a)) + (1− α)s′(ϕM (a))
= αΦ(s)(a) + (1− α)Φ(s′)(a).

The mapping Φ is injective. Given s, s′ ∈ S (M) with s 6= s′,
find a ∈ M such that s(a) 6= s′(a). Hence it follows from
(i) that Φ(s) 6= Φ(s′). The mapping Φ is continuous: take
a net sγ of elements of S (M) such that sγ → s for some
s ∈ S (M). This means that sγ(b) → s(b) for every b ∈ M .
Thus for every a ∈ B(M), we get

Φ(sγ)(a) = sγ(ϕM (a))→ s(ϕM (a)) = Φ(s)(a).

The set Φ(S (M)) is compact convex as an affine contin-
uous image of S (M). Since Φ is a continuous bijection
S (M) → Φ(S (M)), it is actually a homeomorphism by
compactness.
(iii) The set B(X) of all Borel (σ-additive) probability mea-
sures on the maximal spectrum X of M is compact and con-
vex [12, Proposition 5.22]. In the topology of B(X) a net
µγ converges to µ in B(X) if for every continuous function
f : X → R we have

∫
f dµγ →

∫
f dµ. By Corollary 29

in [3] or [4, Proposition 1.1], there exists a unique mapping
Ψ : S (M)→ B(X) such that

s(a) =
∫
X

â dΨ(s) (9)

for every s ∈ S (M) and every a ∈ M, where â is the
image of a via the isomorphism identifying the elements of
M with the separating MV-algebra of continuous functions
X → [0, 1]. We claim that the mapping Ψ is an affine home-
omorphism. It is onto since every integral (9) with respect
to some Borel probability measure from B(X) determines a
state. It is also injective as every two states s, s′ ∈ S (M)
coincide whenever Ψ(s) = Ψ(s′) by the representation (9).
The mapping Ψ is affine since the functional µ ∈ B(X) 7→∫
X
f dµ is linear for every continuous function f : X →

[0, 1]. Finally, we will show that Ψ−1 is continuous. Take
a net µγ and µ with µγ → µ in B(X). It results directly
from the definition of convergence in B(X) and in S (M)
that Ψ−1(µγ) → Ψ−1(µ) in S (M), so Ψ−1 is continu-
ous. Since S (M) is compact, the mapping Ψ is a homeo-
morphism. As an inverse of an affine homeomorphism is an



affine homeomorphism and a composition of affine homeo-
morphisms is again an affine homeomorphism, take the map-
ping Ψ ◦ Φ−1 : Φ(S (M))→ B(X) to finish the proof.
(iv) The MV-algebra M is not a Boolean algebra, so there ex-
ists an element f ∈ M and x ∈ X with 0 < f(x) < 1.
Put β = min(f(x),1−f(x))

2 and define a mapping p : B(M) →
[0, 1] by

p(g) =

{
1, β ∈ g(x),
0, otherwise,

g ∈ B(M).

A routine check shows that p is a probability on B(M). We
will show that there is no state s ∈ S (M) such that Φ(s) = p.
By way of contradiction, assume that such a state s exists.
Then Proposition 3 together with (8) imply that s(g) = p(g)
for every g ∈ M . Since s(f) = p(f) = 1 and s(¬f) =
p(¬f) = 1, we get

s(f ⊕ ¬f) = s(1) = 1 6= 2 = s(f) + s(¬f),

which is a contradiction and thus p ∈ S (B(M))\Φ(S (M)).

On the one hand, every state on a semisimple MV-algebra can
be viewed as the integral (9) with respect to a uniquely deter-
mined Borel probability measure that is defined on the max-
imal spectrum X of M . On the other hand, the operator Φ
maps a state to a finitely additive probability on a Boolean
subalgebra of the direct sum BX (see Example 2). While
the transformation Φ enables only to embed S (M) into a
(huge) state space S (B(M)), we will show below that and
how probabilities on direct sums of Boolean algebras appear
naturally already in classical Kolmogorov model of probabil-
ity.

Let B1, . . . , Bk be Boolean algebras. Let pi be a probabil-
ity on Bi for i = 1, . . . , k. By B we denote a Boolean algebra
that is the direct sum of B1, . . . , Bk (see [13, §16]). Every el-
ement of b ∈ B can be identified with an n-tuple (b1, . . . , bk)
such that bi ∈ Bi for each i = 1, . . . , k. The elements b of
B are random events whose meaning is “precisely one of all
the events b1, . . . , bk occurs”. These classes of random events
capture two-stage random experiments, such as the random
selection of a ball from a randomly selected box. In this in-
terpretation, each number i = 1, . . . , k denotes a box and the
corresponding Boolean algebra Bi models all outcomes of a
random selection of a ball from the box i. Precisely, for some
nonnegative α1, . . . , αk with

∑k
i=1 αi = 1, the procedure can

be described as follows:
(i) select Bi with a probability αi;

(ii) if Bj was selected in the previous stage, then perform
the random experiment with outcomes in Bj and proba-
bilities described by pj .

A probability p onB should then express the above introduced
meaning of the two-stage experiment. This means that for
every b ∈ B, we get

p(b) =
k∑
i=1

αip(bi). (10)

The interrelationship between states on MV-algebras and
probabilities on direct sums as defined above is made possi-
ble by the mappings Φ and ϕM .

Example 3. LetM be the direct product of two standard MV-
algebras, that is, M = [0, 1]2. According to (9) every state s
on M is of the form

s(a) = s((a1, a2)) = αa1 + (1−α)a2, a = (a1, a2) ∈M,
(11)

for some α ∈ [0, 1]. The Boolean algebra B(M) is pre-
cisely the direct sum of the two Boolean algebras B, where
B is as in Example 2. The MV-algebra M embeds into
B(M) by sending each a = (a1, a2) ∈ M to the function
a∗(i) = [0, ai), i = 1, 2. Let λ denotes the restriction of
Lebesgue measure to B. Then it follows from (11) that

Φ(s)(g) = αλ(g(1)) + (1− α)λ(g(2)), g ∈ B(M). (12)

Indeed, as in Example 2, for every g ∈ B(M) and i = 1, 2
find the representation ai1, b

i
1, . . . , a

i
n, b

i
n ∈ [0, 1] such that

g(i) = [ai1, b
i
1) ∪ · · · ∪ [ain, b

i
n) with all the intervals disjoint.

Then

ϕM (g)(i) = (bi1 	 ai1)⊕ · · · ⊕ (bin 	 ain)

and (ϕM (g)(1), ϕM (g)(2)) ∈M. As a consequence,

Φ(s)(g) = s(ϕM (g)) = αϕM (g)(1) + (1− α)ϕM (g)(2)

= α(b11 	 a1
1)⊕ · · · ⊕ (b1n 	 a1

n)

+ (1− α)(b21 	 a2
1)⊕ · · · ⊕ (b2n 	 a2

n)
= αλ(g(1)) + (1− α)λ(g(2)),

which proves (12).
The model from Example 3 can be given a straightforward

probabilistic interpretation. Suppose that some underground
platform is accessible from a street either via a stairway or via
an escalator. Mr. Smiley chooses the stairway with a prob-
ability α ∈ [0, 1] and the escalator with a probability 1 − α.
Train arrivals are uniformly distributed over the interval [0, 1].
What is a probability that Mr. Smiley’s waiting time for the
train will be smaller or equal to a1 ∈ [0, 1] (in case he uses
the stairway) or smaller or equal to a2 ∈ [0, 1] (in case he uses
the escalator)? The investigated event a = ([0, a1), [0, a2))
belongs to B(M), while the many-valued event a = (a1, a2)
is an element of M . If p(a) denotes the probability of a, then
(10) together with uniformity of the waiting times yield

p(a) = αλ([0, a1]) + (1− α)λ([0, a2]) = αa1 + (1− α)a2

= s(a).

4 Conditional Probability
In this section we use the probabilistic operator Φ to study
conditioning in the framework of MV-algebras and states.
Conditional probability on MV-algebras was studied from a
variety of perspectives. In [7] the conditional probability on
MV-algebras is defined in a way that mimicks the classical
(Boolean) approach of conditioning “an event by an event” or
“an event by a subalgebra”. This approach makes use of an
additional operation (product) on an MV-algebra and it was
employed by Montagna in order to prove de Finetti-style co-
herence theorem for conditional bets in many-valued logic
[14]. A completely different definition of conditional prob-
ability (so-called “conditional”) was proposed by Mundici in
[15].



The following approach to conditioning is taken from [7,
Definition 5]. Let s be a state on a PMV-algebra M . Given
a many-valued event b ∈M with s(b) > 0, put

s(a|b) =
s(a · b)
s(b)

, a ∈M. (13)

The number s(a|b) is called a conditional state of a given b. If
s(b) vanishes, then we leave s(a|b) undetermined. This makes
the function a ∈M 7→ s(a|b) defined for “almost all” b ∈M .
Since (a1 ⊕ a2) · b = (a1 · b)⊕ (a2 · b) for every a1, a2 ∈M
such that a1�a2 = 0, it can be easily verified that the mapping
s(.|b) : M → [0, 1] is a state (so-called conditional state) on
M whenever b ∈ M is such that s(b) is nonzero. If p is a
probability on a Boolean algebra B, then a product operation
· on B becomes ∧ and the formula (13) for p(b) > 0 reduces
to

p(a|b) =
p(a ∧ b)
p(b)

, a ∈ B. (14)

Analogously, the function p(.|b) : B → [0, 1] is a probability
on B whenever p(b) > 0. In this case we call p(.|b) a con-
ditional probability. The major difference between (13) and
(14) is the consequence of non-idempotence of the product
operation on M . For every b ∈ M with s(b) 6= 0, we have in
general only

s(b|b) ≤ 1 and s(¬b|b) ≥ 0. (15)

In contrast to this, in classical probability p(b|b) = 1 and
p(¬b|b) = 0 holds true for any b ∈ B with p(b) 6= 0. Surpris-
ingly, this concept of conditioning found a natural application
in Montagna’s framework [14]: conditional bets are updated
in proportion to the truth value of the event in the condition.
In that follows we make an effort to justify the definition (13)
with the probabilistic interpretation of states via Φ andB(M).

Proposition 5. Let M be an MV-algebra with product and
s(.|b) be a conditional state on it for b ∈ M with s(b) 6= 0.
Then there exists a probability p on B(M) such that

Φ(s(.|b))(a) = p(a · b|b), a ∈M. (16)

Proof. Put p = Φ(s). For every a ∈M , we obtain

Φ(s(.|b))(a) = s(a|b) =
s(a · b)
s(b)

=
Φ(s)(a · b)

Φ(s)(b)

=
p(a · b)
p(b)

=
p((a · b) ∧ b)

p(b)
= p(a · b|b),

since (a · b) ∧ b = a · b.

It is worth emphasizing that the probability Φ(s(.|b)) is not
a conditional probability on M since Φ(s(.|b))(b) = p(b · b|b)
fails to be equal to 1 in general. So the operator Φ does
not map conditional states to conditional probabilities. The
formula (16) nevertheless connects the values of conditional
states of a given b on M to the values of the classical condi-
tional probability of a · b given b on B(M). Conditioning a
by a many-valued event b means in terms of classical condi-
tional probability this: given b, what is a probability p(a · b|b)
that an observation of the a-proportion of the many-valued

event b will be made? Thus the conditional state defined by
the formula (13) leads in accordance with (16) to the con-
ditional probability of a · b given b on the Boolean algebra
B(M), which focuses only on the event which is included in
b. The use of product in place of infimum makes the differ-
ence: the equality p(a ∧ b|b) = p(a|b) holds true in contrast
to p(a · b|b) 6= p(a|b). Taking into account the proposed in-
terpretation, the inequalities in (15) look no longer unnatural.
The “probabilistic” meaning of s(b|b) is the value of p(b · b|b)
that corresponds to the occurrence of the event b · b (given b)
rather than b alone as the notation s(b|b) suggests.

Example 4. Consider the situation from Example 3. Assume
now that we know the actual waiting time does not exceed b =
(b1, b2) ∈ M = [0, 1]2. Then the value s(a|b) is according
to Proposition 5 the same as p(a · b|b). This probability is
precisely the conditional probability that the waiting time will
be at most the a-proportion of b given our knowledge that it is
at most b.
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