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Abstract

Pearson’s χ2 test, and more generally, divergence-based tests of goodness-of-fit are asymptotically χ2-distributed with m − 1
degrees of freedom if the numbers of cells m is fixed, the observations are i.i.d and the cell probabilities and model parameters
are completely specified. Jiang [Jiang, J., 2001. A nonstandard χ2-test with application to generalized linear model diagnostics.
Statistics and Probability Letters 53, 101–109] proposed a nonstandard χ2 test to check distributional assumptions for the case of
observations not identically distributed. Under the same setup, in this paper a family of divergence-based tests are introduced and
their asymptotic distributions are derived. In addition bootstrap tests based on the given divergence test statistics are considered.
Applications to generalized linear models diagnostic are proposed. A simulation study is carried out to investigate performance of
several power-divergence tests.
c© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The problem of goodness-of-fit to a distribution in the real line, H0 : F = F0, is frequently treated by partitioning
the range of data in disjoint intervals and by testing the hypothesis H0 : p = p0 of a multinomial distribution.

Let Y1, . . . , Yn be i.i.d. random variables with c.d.f. F . Let E1, . . . , Em be a partition of R = (−∞,∞) in m
intervals. Let p = (p1, . . . , pm) and p0 = (p01, . . . , p0m) be the true and hypothetical probabilities of the intervals
Ek , i.e.

p0k =

∫
Ek

dF0, pk =

∫
Ek

dF, k = 1, . . . ,m.

Define the observed cell counts

Nk =

n∑
j=1

1(Y j ∈Ek ) = #(1 ≤ j ≤ n : Y j ∈ Ek), k = 1, . . . ,m,
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and the estimated cell probabilities p̂ = ( p̂1, . . . , p̂m) with p̂k = Nk/n, k = 1, . . . ,m. To test H0 : p = p0 the most
commonly used test statistic is Pearson’s χ2 statistic

χ2
n P ( p̂, p0) = n

m∑
k=1

( p̂k − p0k)
2

p0k
, (1)

which is a particular case of the family of power-divergence statistics introduced by Cressie and Read (1984) and
given by

T r
n (̂p, p0) =

2n

r(r + 1)

m∑
k=1

p̂k

[(
p̂k

p0k

)r

− 1
]
, −∞ < r < ∞. (2)

The test statistics T 0
n (̂p, p0) and T −1

n (̂p, p0) are defined by continuity. Well-known test statistics are obtained from
particular values of r in (2). Some examples are r = 1 for Pearson’s test statistic, r = 0 for the log-likelihood-ratio
statistic, r = −1/2 for the Freeman–Tukey test statistic, r = −2 for the Neyman-modified test statistic and r = 2/3
for the Cressie–Read statistic.

More generally, T r
n (̂p, p0) is a particular case of the φ-divergence test statistic

T φn (̂p, p0) =
2n

φ′′(1)
Dφ (̂p, p0) =

2n

φ′′(1)

m∑
k=1

p0kφ

(
p̂k

p0k

)
, (3)

where Dφ(·, ·) denotes the φ-divergence of two probability distributions introduced by Csiszár (1963) and Ali and
Silvey (1966) for every φ in the set Φ of real convex functions defined on [0,∞), continuously differentiable in
the neighborhood of 1 and satisfying φ(1) = φ′(1) = 0, φ′′(1) > 0. In formula (3) if either p0k or p0k and p̂k
are zero, expressions 0φ(x/0) and 0φ(0/0) are defined as x · limu→∞ φ(u)/u and 0 respectively. Properties of φ-
divergences have been extensively studied by Liese and Vajda (1987) and Vajda (1989). Zografos et al. (1990) proved

that T φn (̂p, p0)
L

−→ χ2
m−1 as n → ∞ under H0 : p = p0, where

L
−→ stands for convergence in law.

It is common to deal with the problem of testing the composite hypothesis that the c.d.f. F is a member of a
parametric family {Fθ }θ∈Θ for a given open subset Θ ⊂ Rd . In such cases cell probabilities depend on the unknown
parameter θ , i.e.

pk(θ) =

∫
Ek

dFθ , k = 1, . . . ,m,

so they may be estimated with minimum φ-divergence estimators satisfying

θ̂φ = arg inf
θ∈Θ

Dφ (̂p, p(θ)),

which contains as a particular case the maximum likelihood estimator (MLE) based on the quantized data. Morales
et al. (1996) proved that if regularity conditions given by Birch (1964) hold, then

T φ1
n (̂p, p(θ̂φ2))

L
−→
n→∞

χ2
m−d−1

under H0 : F = Fθ for any φ1, φ2 ∈ Φ. However, if MLE estimator θ̂ is based on the original data, then the asymptotic
distribution of T φn (̂p, p(θ̂)) under H0 : F = Fθ is a linear combination of independent χ2

1 variables. This result was
originally proved by Chernoff and Lehmann (1954) and extended to any φ ∈ Φ by Morales et al. (1996).

If original variables are independent with c.d.f.s F1, . . . , Fn , depending on an unknown parameter θ ∈ Θ ⊂ Rd

open, the hypothesis of interest is

H0 : Y1 ∼ F1, . . . , Yn ∼ Fn . (4)

Let us define pk(θ) = Eθ [Nk]/n, with Eθ [Nk] =
∑n

j=1 Pθ (Y j ∈ Ek). Jiang (2001) proposed to test H0 with

χ2
n J (̂p, p(θ̂)) = n

m∑
k=1

( p̂k − pk(θ̂))
2, (5)
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where θ̂ is a consistent estimator of θ , and gave regularity conditions under which asymptotic distribution of
χ2

n J (̂p, p(θ̂)) is a linear combination of independent χ2
1 variables.

The targets of this paper are to extend Jiang’s result to the class of test statistics T φn (̂p, p(θ̂)), to introduce their
bootstrap versions and finally to give some recommendations on the choice of φ based on the results obtained from
Monte Carlo simulation experiments. The rest of the paper is organized as follows: In Section 2 the asymptotic
distribution of T φn (̂p, p(θ̂)) is derived. In Section 3 the corresponding bootstrap tests are introduced. In Section 4
applications to GLM diagnostics are suggested, a simulation experiment is carried out to investigate the finite sample
performance of the introduced test statistics and some conclusions are given.

2. Asymptotic distribution of Tφ
n statistics

In this section we derive the asymptotic distribution of the T φn statistics

T φn = T φn (̂p, p(θ̂)) =
2n

φ′′(1)

m∑
k=1

pk(θ̂)φ

(
p̂k

pk(θ̂)

)
(6)

for the class of functions φ ∈ Φ under the null hypotheses (4). This leads to a goodness-of-fit test, which can be used
to check the distributional assumptions in the model involving independent but not identically distributed random
variables. Essential for us will be the result of Jiang (2001) where asymptotic distribution of the statistics χ2

n J (̂p, p(θ̂))
was given. Let us start with introducing some notation and regularity conditions used in Jiang (2001).

It is known that the choice of θ̂ has an impact on the asymptotic distribution of T φn . Throughout this paper it is
assumed that θ̂ is a consistent estimator of θ and has an asymptotic expansion

√
n(θ̂ − θ) = An

(
1

√
n

n∑
j=1

ψ j (Y j , θ)

)
+ oP (1). (7)

For example, under some regularity conditions, the MLE of θ has the expansion (7), where ψ j is the score function
corresponding to the j th observation and An is equal to n times the inverse of the Fisher information matrix (based on
all data).

Let further ξn = (ξnk)1≤k≤m , where ξnk = Nk − Eθ̂Nk ; p j (θ) = (p jk(θ))1≤k≤m and p jk(θ) = Pθ (Y j ∈ Ek).
Define

hnj = (1(Y j ∈Ek ) − p jk(θ))1≤k≤m −

(
1
n

n∑
j=1

∂

∂θ
p j (θ)

)
Anψ j (Y j , θ)

and Σn = Σn(θ) = n−1∑n
j=1 Var(hnj ). Let Qn be an orthogonal matrix such that

Qt
nΣn Qn = Dn = diag(λn1, . . . , λnm),

where λn1 ≥ · · · ≥ λnm are the eigenvalues of Σn .
The following set of assumptions is supposed: (i) Y1, . . . , Yn are independent, (ii) Σn −→ Σ as n → ∞, (iii) (7)

holds with Eψ j (Y j , θ) = 0, 1 ≤ j ≤ n, and (iv) it holds

1
n

max
1≤ j≤n

E|Anψ j (Y j , θ)|
4

−→ 0, max
1≤ j≤n

∣∣∣∣ ∂∂θ p j (θ)

∣∣∣∣ = O(1),

and there exists δ > 0 such that

1
n

n∑
j=1

sup
|θ̃−θ |≤δ

∥∥∥∥ ∂2

∂θ2 p jk(θ̃)

∥∥∥∥ = O(1), 1 ≤ k ≤ m.

Under the assumptions (i)–(iv) Jiang proved that the asymptotic distribution of χ2
n J is the same as that of∑m

k=1 λk Z2
k where Z1, . . . , Zm are i.i.d. N (0, 1) random variables and λ1, . . . , λm are the eigenvalues of Σ .
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First we extend Jiang’s result to the Pearson statistics χ2
n P (̂p, p(θ̂)) defined in (1). To achieve this aim we need to

put an additional assumption about the partition and the probability model:

p(θ) =
1
n

n∑
j=1

p j (θ) −→
n→∞

q, where qk > 0 for all k ∈ {1, . . . ,m}. (8)

The above-mentioned extension is stated in the following lemma.

Lemma 1. If the assumptions (i)–(iv) and (8) are fulfilled then the statistic

T 1
n = χ2

n P (̂p, p(θ̂))

has, under the null hypothesis (4), the same asymptotic distribution as
∑m

k=1(λk/qk)Z2
k , where Z1, . . . , Zm are i.i.d.

N (0, 1) random variables, and λ1 ≥ · · · ≥ λm are the eigenvalues of Σ .

Proof. In the proof of his Theorem 1, Jiang (2001) showed that under the assumptions (i)–(iv) it holds

Xn , n−1/2 Qt
nξn

L
−→ X ∼ Nm(0, D), (9)

where D = diag(λ1, . . . , λm). Let us define the random vector

X̃n , diag (p(θ))−1/2
· Xn = Bn Xn,

where matrix Bn has diagonal elements (Bn)kk = pk(θ)
−1/2

= (EθNk/n)−1/2, k = 1, . . . ,m. Then, (8) imply

Bn −→ B = diag(q−1/2
1 , . . . , q−1/2

m )

for n → ∞ and using the Slutsky theorem we get

X̃n
L

−→ B X ∼ Nm(0, B DBt ).

From this it already follows that the asymptotic distribution of X̃ t
n X̃n is the same as that of

∑m
k=1(λk/qk)Z2

k . To finish
the proof we will show that T 1

n = X̃ t
n X̃n + oP (1). Let us start with a partial problem. For k = 1, . . . ,m we can write

pk(θ̂) =
Eθ̂Nk

n
=

1
n

n∑
j=1

p jk(θ̂) =
1
n

n∑
j=1

p jk(θ)+
1
n

n∑
j=1

(p jk(θ̂)− p jk(θ)). (10)

Using the Taylor expansion

p jk(θ̂) = p jk(θ)+

(
∂

∂θ
p jk(θ)

)
(θ̂ − θ)+

1
2
(θ̂ − θ)t

(
∂2

∂θ2 p jk(θ
( j,k))

)
(θ̂ − θ),

where θ ( j,k) lies in the line between θ and θ̂ , we get

1
n

n∑
j=1

(p jk(θ̂)− p jk(θ))

= n−1/2

[(
1
n

n∑
i=1

∂

∂θ
pik(θ)

)
√

n(θ̂ − θ)+
1
2

√
n(θ̂ − θ)t

(
1
n

n∑
i=1

∂2

∂θ2 pik(θ
(i,k))

)
(θ̂ − θ)

]
= oP (1),

as follows from the assumptions of the lemma. Substituting this results into (10) for all k we finally get the asymptotic
relation

p(θ̂) = p(θ)+ oP (1). (11)

For the statistic of interest we have

T 1
n = n

m∑
k=1

( p̂k − pk(θ̂))
2

pk(θ̂)
= n−1

m∑
k=1

(Nk − Eθ̂Nk)
2

Eθ̂Nk/n
= n−1ξ t

n diag
(
p(θ̂)

)−1
ξn

= n−1ξ t
n Qn diag

(
p(θ̂)

)−1
Qt

nξn = X t
n diag

(
p(θ̂)

)−1
Xn
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and thus

T 1
n = X̃ t

n X̃n + X t
n

(
diag

(
p(θ̂)

)−1
− diag (p(θ))−1

)
Xn = X̃ t

n X̃n + oP (1)

as can be seen from (8), (9) and (11). �

The main result of this section stating the asymptotic distribution of T φn is presented in the following theorem.

Theorem 1. If the assumptions (i)–(iv) and (8) are fulfilled then for all φ ∈ Φ the statistics

T φn = T φn (̂p, p(θ̂))

defined in (6) has, under the null hypothesis (4), the same asymptotic distribution as
∑m

k=1(λk/qk)Z2
k , where

Z1, . . . , Zm are i.i.d. N (0, 1) random variables, and λ1 ≥ · · · ≥ λm are the eigenvalues of Σ .

Proof. The proof is based on the Lemma 4.1 of Menéndez et al. (1998) which states that for any random stochastic
m-vectors sn, tn and all functions φ ∈ Φ it holds

T φn (sn, tn) = χ2
n P (sn, tn)+ oP (1)

provided that the conditions

‖sn − tn‖ = OP (n
−1/2)

and

Π (tn`) = oP (1) for no subsequence tn` of tn, (12)

where Π (tn) =
∏m

k=1 tnk , are satisfied.
Since the validity of (12) for tn = p(θ̂) follows directly from (8) and (11), to prove the assertion we need to check

the condition

‖̂p − p(θ̂)‖ = OP (n
−1/2)

and apply Lemma 4.1 of Menéndez et al. (1998) and Lemma 1 of the present paper. From the definition of ξn, p̂ and
p(θ̂) it follows that p̂k − pk(θ̂) = ξnk/n, k = 1, . . . ,m, and thus

√
n‖̂p − p(θ̂)‖ =

(
n

m∑
k=1

( p̂k − pk(θ̂))
2

) 1
2

=

(
1
n

m∑
k=1

ξ2
nk

) 1
2

=

(
1
n
ξ t

nξn

) 1
2

.

As (1/n)ξ t
nξn = χ2

n J (̂p, p(θ̂)) is the Jiang statistics which has under the assumed conditions the asymptotic
distribution stated in Theorem 1 of Jiang (2001) and is thus OP (1), the proof is finished. �

Let us note that to use the class of statistics T φn for testing, the eigenvalues λ1, . . . , λm as well as the stochastic
vector q = (q1, . . . , qm) have to be replaced by their estimators. From (11) it follows that p(θ̂) = (1/n)

∑n
j=1 p j (θ̂)

is a consistent estimator of the vector q. If we denote λ̂n1, . . . , λ̂nm the eigenvalues of Σ̂n = Σn(θ̂) then, by Weyl’s
eigenvalue perturbation theorem (e.g. Bhatia (1997)), |̂λnk − λnk | ≤ ‖Σn(θ̂)−Σn(θ)‖ which can be expected to go to
0 since θ̂ is consistent. By the same theorem it can be seen also that λnk → λk and so λ̂nk is a consistent estimator of
λk , k = 1, . . . ,m. The following testing procedure can be thus proposed: Reject H0 if T φn exceeds the critical value
of
∑m

k=1(̂λnk/pk(θ̂)) Z2
k .

3. Bootstrap goodness-of-fit tests

The application of the Jiang statistic (5) and the T φn statistics (6) to test the hypothesis (4) requires the use of
their asymptotic distribution given in Theorem 1 of Jiang (2001) and Theorem 1 of the present paper respectively.
Practitioners will find the following difficulties in applying this approach: (1) in most cases, derivation of Σn is not
straightforward and numerical computations may be needed, and (2) Σn is estimated with Σ̂n = Σn(θ̂) and Σn(θ̂) is
assumed to be close to Σn(θ). Therefore sample size should be large enough to fulfil the desired test size. Bootstrap
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tests avoid the mentioned difficulties because they only require the calculation of the test statistics in independent
bootstrap samples and they approximate the required distribution under H0.

Let Y1, . . . , Yn be random variables and let F1θ , . . . , Fnθ be c.d.f. depending on a common parameter θ ∈ Θ ⊂ Rd

open. The hypothesis (4) under consideration is of the form

H0 : Y1 ∼ F1θ , . . . , Yn ∼ Fnθ independent, θ ∈ Θ .

Let Tn = Tn(Y1, . . . , Yn) be a given test statistic for this problem and assume that H0 is rejected if Tn > cn for a given
critical value cn > 0. Let FTnθ (x) = Pn

θ (Tn ≤ x) be the distribution of Tn under H0, where Pn
θ is the probability

corresponding to the joint distribution
∏n

j=1 F jθ . Suppose that we have an estimator θ̂ of θ such that θ̂ is consistent
under H0 in the sense that

Pn
θ

(
‖θ̂ − θ‖ > ε

)
−→
n→∞

0, for any ε > 0.

Assuming that FTnθ is continuous a bootstrap estimator of cn is

ĉn = F−1
Tn θ̂
(1 − α),

where α ∈ (0, 1) is the size of the test. The computation of ĉn can be done by Monte Carlo simulation in the following
way. Generate B independent bootstrap samples {Y ∗

1b, . . . , Y ∗

nb} from the joint distribution
∏n

j=1 F j θ̂ . Then ĉn is
approximated by the {[(1 − α)B] + 1}th order statistic of Tn(Y ∗

1b, . . . , Y ∗

nb), b = 1, . . . , B.
Alternatively bootstrap estimated p-value can be used to decide if H0 is rejected or not. Let Y1 = y1, . . . , Yn = yn

be the observed values. For the test of the form Tn > c, its p-value is defined by

pn = Pn
θ (Tn(Y1, . . . , Yn) > Tn(y1, . . . , yn)),

and hypothesis is rejected if pn < α. A bootstrap estimator of pn is

p̂n = P∗(Tn(Y
∗

1 , . . . , Y ∗
n ) > Tn(y1, . . . , yn))

where Y ∗

1 ∼ F1θ̂ , . . . , Y ∗
n ∼ Fnθ̂ are the bootstrap independent data. The computation of p̂n can be done by Monte

Carlo simulation in the following way. Generate B independent bootstrap samples {Y ∗

1b, . . . , Y ∗

nb} from the joint
distribution

∏n
j=1 F j θ̂ . Then p̂n is approximated by

p̂n =
#
(
Tn(y∗

1 , . . . , y∗
n ) > Tn(y1, . . . , yn)

)
B

.

This approach is also used in Section 4 to calculate the p-value

pn = P

(
m∑

k=1

(̂λnk/pk(θ̂))Z
2
k > t

)

when T φn = t has been observed.

4. Example and simulation

This section contains an example that illustrates results and proposals of Sections 2 and 3, as well as a simulation
study designed to investigate the performance of several test statistics. Let us consider the linear model

H0 : y j = βx j + e j , j = 1, . . . , n, (13)

with e j i.i.d. N (0, σ 2). Let θ = (β, σ 2) be the unknown parameter and let

β̂ =

n∑
j=1

y j x j

n∑
j=1

x2
j

, σ̂ 2
=

1
n − 1

n∑
j=1

(y j − x j β̂)
2.
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be the corresponding maximum likelihood estimators. Consider the interval partition defined by the cut points

c1 = 1 + F−1
N (0,1)(1/m), . . . , cm−1 = 1 + F−1

N (0,1)((m − 1)/m),

i.e. E1 = (−∞, c1], Em = (cm−1,∞] and Ek = (ck−1, ck], k = 2, . . . ,m − 1.
Let Eθk = Eθ [Nk] =

∑n
j=1 p jk and define

Σkk =
1
n

n∑
j=1

var(hnjk), Σk1k2 =
1
n

n∑
j=1

cov(hnjk1 , hnjk2), k1 6= k2,Σ =
(
Σk1k2

)
k1,k2=1,...,m ,

for the hnjk’s introduced in Section 2. Let λ1, . . . , λm be the eigenvalues of A = n diag(E−1
θ̂1
, . . . , E−1

θ̂m
)Σ̂ , then

T r
n (̂p, p(θ̂)) ∼

m∑
k=1

λk Z2
k ,

where Z1, . . . , Zm are i.i.d. N (0, 1).
Regarding the introduced example a simulation experiment has been implemented to analyze the performance of

Jiang and Cressie–Read statistics

χ2
n J = n

m∑
k=1

( p̂k − pk(θ̂))
2, T r

n =
2n

r(r + 1)

m∑
k=1

p̂k

[(
p̂k

pk(θ̂)

)r

− 1
]
, r = −1/2, 0, 2/3, 1.

For every considered test statistics, Tn , the simulation follows the next steps.

1. Repeat I = 10000 times (i = 1, . . . , I )
1.1. Generate a sample (y(i)j , x (i)j ), j = 1, . . . , n, from model (13) with β = 1, σ 2

= 1 and x (i)j i.i.d. Unif(0, 2).

Calculate β̂(i), σ̂ 2(i), λ̂1, . . . , λ̂m and T (i)n .
1.2. Simulate v1, . . . , vA from

∑m
i=1 λ̂i Z2

i , with Z1, . . . , Zm i.i.d N (0, 1) and A = 5000. Calculate

p(i)n =
#{v` : v` ≥ T (i)n }

A
and ξ (i)n =

{
1 if p(i)n < 0.05
0 otherwise.

1.3. Repeat B = 1000 times (b = 1, . . . , B)
1.3.1. Generate e∗(ib)

j ∼ N (0, σ̂ 2(i)), j = 1, . . . , n. Generate a bootstrap sample (y∗(ib)
j , x (i)j ), j = 1, . . . , n,

from model y∗(ib)
j = β̂(i)x (i)j + e∗(ib)

j .

1.3.2. Calculate β̂∗(ib), σ̂ 2∗(ib) and T ∗(ib)
n .

1.4. Calculate

α∗(i)
n =

#(T ∗(ib)
n, ≥ T (i)n, )

B
and ξ∗(i)

n =

{
1 if α∗(i)

n, < 0.05
0 otherwise.

2. Output:

ξn =
1
I

I∑
i=1

ξ (i)n , ξ∗
n =

1
I

I∑
i=1

ξ∗(i)
n .

It should occur that both ξn and ξ∗
n are close to 0.05. In Table 1 test sizes of bootstrap and asymptotic tests are given.

We observe that bootstrap tests attain the desired size even for small sample sizes (n = 40), where some asymptotic
tests fails. To be sure that asymptotic distribution works properly under the null hypothesis, sample size should not
be much lower than 100. At this point it is worthwhile to emphasize that the asymptotic distribution is in fact also
approximated in some sense because eigenvalues are calculated from the estimated matrix Σ̂n and not from Σ .

Powers are calculated, and presented in Tables 2–4, for the following alternatives to (13):

1. y j = ga(βx j )+ e j , with ga(x) = xa and a varying from 0 to 2.5,
2. e j ∼ (1 − p)N (0, σ 2

1 )+ p Gumbel(0, σ 2
2 ), with σ 2

1 = σ 2
2 = 1 and p = 0, 0.2, 0.5, 0.8, 1,

3. y j =
∑κ

i=1 βi x i
j + e j , with β1 = . . . , β5 = 1 and κ = 1, . . . , 5.
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Table 1
Test sizes for α = 0.05 (asymptotic | bootstrap)

n −1/2 0 2/3 1 Jiang −1/2 0 2/3 1 Jiang

40 .1000 .0683 .0457 .0462 .0440 .0512 .0537 .0548 .0547 .0547
100 .0571 .0500 .0444 .0445 .0458 .0539 .0534 .0524 .0527 .0533
200 .0584 .0545 .0511 .0521 .0518 .0498 .0498 .0493 .0495 .0507
500 .0563 .0543 .0530 .0531 .0533 .0525 .0525 .0523 .0524 .0528

1000 .0537 .0517 .0515 .0516 .0509 .0512 .0506 .0503 .0502 .0510

Table 2
Powers for case 1, α = 0.05 and n = 200 (asymptotic | bootstrap)

a −1/2 0 2/3 1 Jiang −1/2 0 2/3 1 Jiang

.0 .9408 .9349 .9278 .9242 .9822 .9397 .9397 .9359 .9326 .9844

.2 .6188 .6063 .5919 .5895 .7629 .6079 .6097 .6068 .6029 .7714

.4 .2765 .2672 .2657 .2664 .3824 .2646 .2724 .2802 .2818 .3937

.6 .1234 .1212 .1224 .1266 .1588 .1100 .1152 .1213 .1243 .1587

.8 .0705 .0674 .0685 .0694 .0749 .0640 .0680 .0702 .0722 .0759
1.0 .0584 .0545 .0511 .0521 .0518 .0498 .0498 .0493 .0495 .0507
1.2 .0725 .0654 .0603 .0592 .0602 .0624 .0617 .0608 .0602 .0635
1.4 .1075 .1007 .0944 .0937 .1035 .1052 .1053 .1011 .1006 .1130
1.6 .1985 .1912 .1881 .1887 .2182 .1889 .1945 .1970 .1998 .2314
1.8 .3652 .3634 .3712 .3796 .4470 .3375 .3562 .3768 .3855 .4521
2.0 .5822 .5918 .6119 .6282 .7557 .5413 .5773 .6120 .6253 .7627
2.5 .9848 .9873 .9904 .9921 .9998 .9779 .9852 .9896 .9910 .9999

Table 3
Powers for case 2, α = 0.05 and n = 100 (asymptotic | bootstrap)

p −1/2 0 2/3 1 Jiang −1/2 0 2/3 1 Jiang

.0 .0571 .0500 .0444 .0445 .0458 .0539 .0534 .0524 .0527 .0533

.2 .0777 .0650 .0579 .0559 .0618 .0647 .0636 .0612 .0598 .0633

.5 .1622 .1313 .1160 .1134 .1630 .1255 .1337 .1358 .1336 .1656

.8 .3265 .1967 .1200 .1018 .1709 .2860 .2110 .1470 .1304 .1737
1 .4518 .3140 .1852 .1543 .1667 .3936 .3057 .2058 .1718 .1701

Table 4
Powers for case 3, α = 0.05 and n = 40 (asymptotic | bootstrap)

κ −1/2 0 2/3 1 Jiang −1/2 0 2/3 1 Jiang

1 .1000 .0683 .0457 .0462 .0440 .0512 .0537 .0548 .0547 .0547
2 .2610 .1249 .1239 .1479 .2516 .0425 .0800 .1371 .1522 .2588
3 .4659 .4799 .6483 .7290 .9529 .0989 .4996 .6941 .7142 .9554
4 .7746 .8600 .9525 .9740 .9868 .7030 .9312 .9577 .9582 .9835
5 .9004 .9622 .9928 .9967 .9764 .9713 .9916 .9931 .9915 .9746

One can conclude that Jiang’s test statistic has an excellent performance in relation with the more classical power-
divergence statistics. Comparing the Cressie–Read statistics no dramatic differences were observed. Just in the case
2 the Freeman–Tukey statistic (r = −1/2) seems to have the best behavior in the sense of powers, in this case even
better than Jiang’s statistic.
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