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This paper introduces two types of goodness-of-fit statistics T
(m)
φ and T̃

(m)
φ based on

m-spacings which are appropriately scaled divergences (φ-divergences or φ-disparities) of
quantized hypothetical and empirical distributions. The goodness-of-fit statistics based
on m-spacings known from the literature are systemized into several distinct types of
statistics U

(m)
φ and compared with the two types of the divergence statistics T

(m)
φ and

T̃
(m)
φ . Mutual asymptotic equivalence between all these types of statistics is established.

This equivalence helps to understand why many ad hoc defined spacings-based statistics
exhibit desirable asymptotic properties. The results of the paper are applicable e.g. to
the class of power functions φ of arbitrary real orders leading to the power divergences
T

(m)
φ and T̃

(m)
φ of arbitrary orders.
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φ-divergences, Power divergences, φ-disparities, Robust disparities, Spacings-based
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1 Divergence statistics

We consider real-valued independent identically distributed observations X1, . . . , Xn with
a distribution function F (x) and the problem of testing the hypothesis H0 that F is a
given continuous increasing distribution function F0. As is well known, we can then
assume without loss of generality that the observation space is the interval X = (0, 1)
and F0(x) = x on X . Further, we can restrict ourselves to test statistics Tn which
are functions of sufficient statistics. Examples of sufficient statistics are the empirical
distribution function

Fn(x) =
1

n

n∑
i=1

I(x ≥ Xi), x ∈ X (1.1)

where I is the indicator function, and the order statistics

0 = Y0 ≤ Y1 = Xn:1 ≤ · · · ≤ Yn = Xn:n ≤ Yn+1 = 1 (1.2)
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where Y0 and Yn+1 are dummy variables and the inequalities are typically strict with
probability one.

It is natural to consider test statistics of the form T = Tn = cnD(F0, Fn) where cn

is an appropriate scaling constant and D(F, G) is a nonnegative measure of divergence
between two distribution functions F and G on X = (0, 1). We shall deal with the
divergence measures

D(F, G) = Dφ(p, q) =
k∑

j=1

qjφ

(
pj

qj

)
(1.3)

corresponding to quantizations p = (p1, p2, ..., pk), q = (q1, q2, ..., qk) of F, G by an interval
partition P of X = (0, 1) using certain cutpoints

0 = a0 < a1 · · · < ak−1 < ak = 1 for k > 1 (1.4)

and to φ from the class Φ of convex functions φ : (0,∞) 7→ R which are twice continuously
differentiable in a neighborhood of 1 with φ′′(1) > 0 and φ(1) = 0.

If φ ∈ Φ is convex then the divergences (1.3) are φ-divergences introduced for ar-
bitrary probability distributions by Csiszár (1963) (for details about the definition of
φ-divergences and their properties see Liese and Vajda (1987, 2006)). If φ ∈ Φ is differ-
entiable everywhere on (0,∞) and the derivative satisfies for all t > 0 the condition

φ′(t) sign(t− 1) > 0 (1.5)

then φ(t) is is said disparity function and the divergence (1.3) is said φ-disparity. For
differentiable convex φ ∈ Φ relation (1.5) automatically holds so that the concept of φ-
disparity in some sense generalizes the concept of φ-divergence. This generalization was
motivated in the papers of Lindsay (1994) and Menéndes et al. (1998) introducing the
concept of φ-disparity by the need to robustify the statistical estimation and testing based
on the minimum divergence between distributions resulting from the accepted statistical
model and the empirical distribution resulting from the observed statistical reality. It
was argued that differentiable convex functions φ ∈ Φ with unbounded derivatives lead
to the methods which are are non-robust (too sensitive to contaminations of statistical
observations). Since derivatives of typical convex functions are not bounded (see e.g. the
next example), the authors of those papers proposed to replace the convexity of φ by the
technically less appealing but practically often more desirable disparity property (1.5)
combined with the boundedness of the derivative,

sup
t > 0

|φ′(t)|, < ∞.

In other words, in robust statistics are applicable the divergences (1.3) for functions φ ∈ Φ
with the property

0 < φ′(t) sign(t− 1) < ∞. (1.6)
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Example 1.1. As examples of convex functions φ ∈ Φ leading to φ-divergences Dφ(p, q)
may serve the power functions {φα : α ∈ R} defined on (0,∞) by

φα(t) =
tα − α(t− 1)− 1

α(α− 1)
(1.7)

if α 6= 0, α 6= 1, and by the continuous extensions

φ1(t) = t ln t− t + 1 and φ0(t) = − ln t + t− 1 (1.8)

of these functions to α = 0, α = 1 in the opposite case. The corresponding divergences
Dφα(p, q) are called power divergences and denoted simply by Dα(p, q). The class of
power divergences Dα(p, q) contains the following classical divergences: the quadratic
divergence

D2(p, q) =
1

2
χ2(p, q) =

1

2

k∑
j=1

(pj − qj)
2

qj

(1.9)

where χ2(p, q) is also known as Pearson divergence, the harmonic divergence

D−1(p, q) = D2(q,p) =
1

2

k∑
j=1

(pj − qj)
2

qj

, (1.10)

the logarithmic divergences

D0(p, q) = D1(q,p) and D1(p, q) = I(p, q) =
k∑

j=1

pj ln
pj

qj

(1.11)

where I(p, q) is known as the information divergence (often denoted also as D(p ‖ q)),
and the square root divergence

D1/2(p, q) = 4H2(p, q) = 4
k∑

j=1

(√
pj −√qj

)2
(1.12)

where H(p, q) is known as Hellinger distance.

Example 1.2. Functions φ ∈ Φ with the disparity property (1.5) are obtained by the
shift

φ(t) = ρ(t− 1), t > 0 (1.13)

of typical ρ-functions used to define robust statistical M -estimators (see e.g. Hampel et
al. (1986) or Jurečková and Sen (1996)). The robustness means that the correspoding
sensitivity function ψ(t) = ρ′(t), t ∈ R is bounded. Classical example is the so-called
Huber class {ρα : α > 0} with the bounded sensitivity functions

ψα(t) = ρ′α(t) = I(| t | ≤ α)t + I(| t | > α)α, t ∈ R.
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Another example is the class {ρα : α > 0} of bounded functions

ρα(t) =
(
1− exp{−αt2�2})�α, t ∈ R (1.14)

with bounded (redescending) sensitivity functins ψα(t) = ρ′α(t) = t exp{−αt2}.
We admit that the size k = kn of the interval partition P = {(aj−1, aj] : 1 ≤ j ≤ k}

of X introduced in (1.4), and also the cutpoints a1, . . . , ak−1 themselves, may in general
depend on the sample size n, but this dependence is not always explicitly denoted in this
paper.

Quantizations of the special distributions F0 (hypothetical) and Fn (empirical) by
means of partitions defined by cutpoints (1.4) lead to discrete hypothetical and empirical
distributions

p0 = (p0j : 1 ≤ j ≤ k) and pn = (pnj : 1 ≤ j ≤ k) (1.15)

where

p0j = F0(aj)− F0(aj−1) = aj − aj−1 > 0 (1.16)

and

pnj = Fn(aj)− Fn(aj−1) > 0 a. s. (1.17)

These distributions can serve as arguments of the divergences Dφ in (1.3), yielding
Dφ(p0, pn), and of the corresponding divergence statistics

Tφ = Tφ,n = n Dφ(p0, pn) = n

k∑
j=1

pnjφ

(
p0j

pnj

)
. (1.18)

In this paper we restrict ourselves to the simplest divergence statistics Tφ, which are
obtained when one of the distributions p0,pn in (1.18) is uniform, that is, equal to

uk = (ukj = 1/k : 1 ≤ j ≤ k) . (1.19)

This takes place when the cutpoints aj of (1.16) or (1.17) are the quantiles

aj = G−1(j/k) = inf {x ∈ (0, 1] : G(x) ≥ j/k} (1.20)

of the distribution functions G = F0 or G = Fn , respectively. Proceeding this way we
obtain two versions of divergences Dφ(p0,pn) and divergence statistics Tφ.

Version I. Applying the rule (1.20) to G = F0 we get the hypothetical quantiles

aj = F−1
0 (j/k) = j/k, 1 ≤ j ≤ k − 1 (1.21)

leading, according to (1.16) and (1.18), to the uniform hypothetical distribution p0 = uk

and the frequency-based divergence statistics

Tφ := nDφ(uk,pn) = n

k∑
j=1

pnjφ

(
1

k pnj

)
(1.22)
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where the pnj ’s are given by (1.17) for the aj of (1.21) and a0 = 0, ak = 1. We denote

the corresponding partition by P(I). In other words

pnj =
1

n

n∑
i=1

I(aj−1,aj ](Yi) (1.23)

is the relative frequency of the observations Y1, . . . , Yn in the cell (aj−1, aj] = ((j −
1)/k, j/k)], j = 1, · · · , k, of the partition P(I).

Example 1.3. A well-known class of the frequency-based statistics (1.22) consists of
the power divergence statistics

Tα = nDα(uk,pn) = n

k∑
j=1

pnj φα

(
1

kpnj

)
, α ∈ R (1.24)

systematically studied in Read and Cressie (1988). Classical examples of such statistics are
the Neyman statistic T2 = nD2(uk,pn), the Pearson statistic T−1 = nD−1(uk,pn), the
log-likelihood ratio statistic T0 = nD0(uk, pn), the reversed log-likelihood ratio statistic
T1 = nD1(uk,pn) , and the Freeman–Tukey statistic T1/2 = nD1/2(uk, pn). In these
statistics it is admitted that the size k = kn of the interval partition P = {(aj−1, aj] : 1 ≤
j ≤ k} of X introduced in (1.4), and also the cutpoints a1, . . . , ak−1 themselves depend
on the sample size n. These statistics were extensively studied in the literature, see e.g.
Györfi and Vajda (2002) and references therein.

Version II. In this paper we study the disparity statistics Tφ obtained from (1.18)
when rule (1.20) is applied to the empirical distribution G = Fn, leading to the empirical
quantiles aj = F−1

n (j/k). For simplicity we restrict ourselves to the sample sizes n divisible
by k. Then, using the integers m = n/k ≥ 1, we get the k − 1 empirical quantiles

aj = F−1
n (j/k) = Ymj, 1 ≤ j ≤ k − 1 (1.25)

and the partition P(m) = P(m)
n consisting of the k cells

(aj−1, aj] = (Ym(j−1), Ymj], 1 ≤ j ≤ k − 1, (ak−1, ak] = (Ym(k−1), 1] (1.26)

where a0 = Ym0 = Y0 = 0 (cf (1.2) and (1.4)), leading to the hypothetical distribution
p0 = (p0j : 1 ≤ j ≤ k) with

p0j = Ymj − Ym(j−1) for 1 ≤ j ≤ k − 1, and p0k = 1− Ym(k−1). (1.27)

(Note that here and in the sequel mj, m(j − 1) and so forth denote the products of
integers and not the pairs of integers as in (1.15) – (1.18) and elsewhere. We believe that
the correct meaning of mj can always be recognized. Also note that the order statistic Ymk

does not occur as an endpoint in the definition (1.26) of the cells (aj−1, aj], 1 ≤ j ≤ k.)

Since all cells (aj−1, aj], 1 ≤ j ≤ k, in (1.26) contain exactly m of the observations
Y1, . . . , Yn, formulas (1.17) and (1.18) lead to the uniform empirical distribution pn = uk
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and to the spacings-nased divergence statistics

T
(m)
φ = n Dφ(p0, uk) = m

k∑
j=1

φ(kp0j) (1.28)

where the p0j ’s are given by (1.27) with Y0 = 0 . The use of the spacings terminology is
justified by the fact that, since k = n/m, formula (1.28) can be given the form

T
(m)
φ = m

k−1∑
j=1

φ
( n

m
(Ymj − Ym(j−1))

)
+ m φ

( n

m
(1− Ym(k−1))

)
(1.29)

where Ymj − Ym(j−1) are m-spacings. It differs from the simpler expression

m

k∑
j=1

φ
( n

m
(Ymj − Ym(j−1))

)

by the modification of the last term

mφ
( n

m
(Ymk − Ym(k−1))

)
7−→ mφ

( n

m
(1− Ym(k−1))

)

resulting from the definition of p0 in (1.27).

The first cell (a0, a1] = (Y0, Ym] of the partition (1.26) can be extended and the last
cell (ak−1, ak] = (Ym(k−1), 1] of this partition reduced as follows

(a0, a1] 7−→ (Y0, Ym] ∪ (Ymk, 1] and (ak−1, ak] 7−→ (Ym(k−1), Ymk] (1.30)

where

(Ymk, 1] = (Yn, Yn+1] and (Ym(k−1), Ymk] = (Yn−m, Yn]. (1.31)

This rearranging of cells leads to a modified partition P̃(m) and a modified hypothetical
distribution p̃0 with components

p̃0j = Ymj − Ym(j−1) for 2 ≤ j ≤ k, and p̃01 = Ym + 1− Ymk (cf. (1.27)). (1.32)

The corresponding divergence statistic T̃
(m)
φ = nDφ(p̃0,pk) is of the form

T̃
(m)
φ = m

k∑
j=2

φ
( n

m
(Ymj − Ym(j−1))

)
+ mφ

( n

m
(Ym + 1− Ym(k−1))

)
. (1.33)

In this paper we compare the spacings-based divergence statistics T
(m)
φ and T̃

(m)
φ with the

classical goodness-of-fit statistics based on m-spacings. The comparison is asymptotic,
carried out for m ≥ 1 fixed and n = km increasing to infinity.

For m = 1 the partition P(m) of (1.26) reduces to P(1) consisting of the intervals

(aj−1, aj] = (Yj−1, Yj], 1 ≤ j ≤ n− 1, (an−1, an] = (Yn−1, 1], (1.34)



On spacings-based divergence statistics and their asymptotic equivalence 7

where a0 = Y0 = 0 and an = 1 = Yn+1. Further, the components (1.27) of the distribution
p0 reduce to

p0j = Yj − Yj−1 for 1 ≤ j ≤ n− 1, and p0n = 1− Yn−1, (1.35)

and the m-spacings statistic T
(m)
φ of (1.29) reduces to the simple-spacings-formula

Tφ =
n−1∑
j=1

φ (n(Yj − Yj−1)) + φ (n(1− Yn−1)) . (1.36)

Similarly, the partition P̃(m) of (1.30) reduces to P̃(1) consisting of the intervals

(aj−1, aj] = (Yj−1, Yj], 2 ≤ j ≤ n, (a0, a1] = (Y0, Y1] ∪ (Yn, 1], (1.37)

the components (1.32) of the distribution p̃0 reduce to

p0j = Yj − Yj−1 for 2 ≤ j ≤ n, and p0n = Y1 + 1− Yn, (1.38)

and the m-spacings statistic T̃
(m)
φ of (1.33) reduces to the simple-spacings-formula

T̃φ =
n∑

j=2

φ (n(Yj − Yj−1)) + φ (n(Y1 + 1− Yn−1)) . (1.39)

Remark 1.1. The formulas above employ the dummy observations Y0 = 0 and Yn+1 = 1
introduced in (1.2). Unless otherwise explicitly stated, these dummy observations are also
assumed in the formulas below, notably in (1.40) and (1.42).

It seems that the first attempt to compare the frequency-based divergence statistics
(1.22) and (1.24) with the spacings-based statistics (1.36) and (1.39) was undertaken by
Morales et al. (2003), Vajda and van der Meulen (2006a, 2006b) and Vajda (2007). As
it was already observed there, the spacings-based statistics given in the previous litera-
ture lacked the motivation based on the notion of divergence between hypothetical and
empirical distributions p0 and pn. This contrasts with the goodness-of-fit statistics based
on deterministic partitions derived from the aj in (1.21) and the related frequency counts
(1.23), where the typical statistics, including the most classical Pearson statistic T1 and
likelihood ratio statistic T0, can easily be recognized as appropriately scaled power di-
vergences between p0 and pn. The classical spacings-based statistics, however, appear
to have been motivated rather by other considerations such as the analytic simplicity of
formulas and the possibility to achieve desired asymptotic properties. In fact, as pointed
out by Pyke (1965) in his landmark paper, most of the classical spacings-based statistics
were proposed within the context of testing the randomness of events in time, in which
differences between successive order statistics (spacings) were considered to play an im-
portant role. Also, in the period 1946-1953, when most of the classical tests based on
spacings were proposed, research focused mostly on studying the behavior of these tests
under the null-hypothesis, rather than under an alternative, making it unnecessary to
motivate the test statistic from the point of view of divergence or disparity. Although
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the concept of dispersion of spacings around the uniform distribution has been mentioned
as a motivation for a test statistic by some authors, no known spacings-based statistic
happens to be the divergence statistic T

(m)
φ of (1.29) or Tφ of (1.34) for some φ ∈ Φ. This

situation is illustrated in the next two examples for the simple-spacings statistics where
m = 1. Then

Tφ = Rφ + ∆φ for Rφ =
n+1∑
j=1

φ (n (Yj − Yj−1)) (1.40)

and

∆φ = φ (n(1− Yn−1))− φ (n(Yn − Yn−1)− φ (n(1− Yn)) , (1.41)

while the classical simple-spacings statistics are of the form

Sφ =
n+1∑
j=1

φ ((n + 1)) (Yj − Yj−1)) . (1.42)

With reference to the above discussion, we mention here that Pyke (1965) writes that it
is more convenient to weight the spacings by n+1 instead of n if one is concerned entirely
with uniform observations.

Example 1.4. A first statistic of the type (1.42) is

Sψ =
n+1∑
j=1

((n + 1) (Yj − Yj−1))
2 , (1.43)

which is (n+1)2 times the statistic G introduced by Greenwood (1946). Both statistics are
based on the function ψ(t) = t2, which is not in the class Φ, but the closely related function
φ2(t) of (1.7) is. Greenwood devised his test statistic in connection with the problem of
testing whether intervals between successive events in epidemiology were exponentially
distributed. Irwin, in the discussion of Greenwood (1946), and Kimball (1947) suggested
to use

K =
n+1∑
j=1

(
Yj − Yj−1 − 1

n + 1

)2

instead of G. It so happens that K equals (2/(n + 1))-times the quadratic divergence
Dφ2(p̂0, un+1) = D2(p̂0,un+1), defined as in (1.9) with k = n + 1, for the hypothetical
distribution

p̂0 = (p̂01 = Y1 − Y0, p̂02 = Y2 − Y1, . . . , p̂0,n+1 = Yn+1 − Yn) , (1.44)

obtained from (1.2) by using the cutpoints aj = Yj for 0 ≤ j ≤ n + 1 from the extended
sample (1.2), and the uniform empirical distribution un+1 obtained by putting k = n + 1
in (1.19). Clearly, p̂0 is an (n+1)-component distribution on the partition P̂(1) consisting
of the n + 1 cells
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(aj−1, aj] = (Yj−1, Yj], 1 ≤ j ≤ n + 1, (1.45)

and un+1 is the uniform distribution on P̂(1). But instead of using the divergence argu-
ment, Kimball argued that 1/(n + 1) is the common expectation of the random variables
Yj−Yj−1 under H0 : F = F0, so that H0 minimizes the expectation of K. Nevertheless, K
cannot be obtained from the class of spacings-type disparity statistics Tφ derived accord-

ing to Version II by quantizing F0 and Fn by means of the partition P̂(1) and putting
φ = φ2. Indeed, such quantization would yield the hypothetical distribution p̂0, and, since
the cell (an, an+1] = (Yn, 1] is empty, the empirical distribution p̂n = (1/n, . . . , 1/n, 0),
which is not the desired uniform distribution un+1. The corresponding φ-disparity statis-
tic Tφ (c.f. (1.18)) would be based on D2(p̂0, p̂n) 6= D2(p̂0,un+1). Nevertheless, we shall
prove in Section 3 an asymptotic equivalence between K and Tφ2 from (1.34).

Example 1.5. A second well-known statistic from the family (1.42) is

M = Sφ̃0
= −

n+1∑
j=1

ln ((n + 1) (Yj − Yj−1)) , (1.46)

which was introduced by Moran (1951) for the function φ̃0(t) = − ln t which belongs to
Φ. One can verify that M is (n + 1)-times the logarithmic divergence Dφ̃0

(p̂0,un+1) =
Dφ0(p̂0, un+1) = D0(p̂0,un+1), defined as in (1.11) with k = n + 1, for the same hypo-
thetical and empirical distributions p̂0 and un+1 as in Kimball’s statistic above. However,
for the same reason as given in Example 1.2, M cannot be derived from the class of our
spacings-type disparity statistics Tφ obtained through quantization of F0 and Fn by P̂1

and setting φ = φ0, which procedure would yield (n + 1)D0(p̂0, p̂n) 6= M. But in Section
3 we shall prove an asymptotic equivalence between M and Tφ0 of the form (1.34).

Let us now turn to comparing our m-spacings–based disparity statistics T
(m)
φ from

(1.28) - (1.29) and the m-spacings–based statistics known from the literature for general
m ≥ 1. We shall start with Del Pino’s (1979) class of statistics of the form

S
(m)
φ = m

k∑
j=1

φ

(
n + 1

m
(Ymj − Ym(j−1))

)
(1.47)

where it is assumed that n + 1 is divisible by k and that m = (n + 1)/k ≥ 1. Hence the
notation in our paper is consistent in the sense that (1.47) reduces for m = 1 to the formula
for Sφ in (1.42). Del Pino found φ(t) = t2 to be optimal among the functions φ considered
by him. The class (1.47) was later investigated by Jammalamadaka et al. (1989) and

many others. Jammalamadaka et al studied the asymptotics of S
(m)
φ for m tending slowly

to infinity as n →∞. In such case these asymptotics depend only on the local properties
of φ(t) in the neighborhood of t = 1 and a wide class of functions φ can be admitted
including those with φ′′(1) = 0. However, as we have seen in the examples above, even for
φ from the above introduced φ-divergence class Φ, the statistics (1.47) differ from those
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in (1.28) or (1.29). Other examples of well-known spacings-based statistics which differ
from our spacings-type φ-disparity statistics (1.28) and (1.29) will be given in the next
section. Therefore it is important to look at the problem whether the classical spacings-
based statistics and our spacings-type disparity statistics are asymptotically equivalent
for n →∞, and, if yes, then in what precise sense.

The objective of the present paper is to prove the mutual asymptotic equivalence of the
statistics of the two mentioned origins. This equivalence helps to understand why many
ad hoc defined spacings-based statistics exhibit desirable asymptotic properties. Let us
describe briefly how the paper is organized. Sofar we have defined for φ ∈ Φ and general

m ≥ 1 the class U (m)
φ =

{
T

(m)
φ , T̃

(m)
φ

}
of two spacings-based statistics and for m = 1 the

class Uφ =
{

Rφ, Sφ, Tφ, T̃φ

}
of four different spacings-based statistics. In Section 2 the

structure of the new spacings-type divergence statistic T
(m)
φ , T̃

(m)
φ or Tφ, T̃φ is compared

with that of the spacings-based statistics known from the literature, and the classes U (m)
φ

and Uφ are appropriately extended to cover all known types of spacings-based statistics.

Section 3 establishes asymptotic equivalence of the statistics in the extended classes U (m)
φ

and Uφ.

2 Spacings-based statistics

This section reviews various types of spacings-based goodness-of-fit statistics known from
the literature. As before, 0 ≤ Y1 ≤ · · · ≤ Yn ≤ 1 are the ordered observations. Unless
otherwise explicitly stated, we use also the dummy observations Y0 = 0 and Yn+1 = 1.

Let us start with our spacings-type divergence statistics T
(m)
φ and T̃

(m)
φ introduced in

(1.29) and (1.33). These statistics are not efficient if m > 1 because then they ignore the
observations Ymj+r for 1 ≤ j ≤ k − 1 and 1 ≤ r ≤ m − 1. Shifting the orders j/k of the
quantiles in (1.25) by a quantity depending on r, we obtain the additional quantiles

a
(r)
j = F−1

n

(
mj + r

n

)
= Ymj+r, 1 ≤ j ≤ k − 1, 1 ≤ r ≤ m− 1 (2.1)

and the corresponding shifted hypothetical probabilities p
(r)
0j = Ymj+r − Ym(j−1)+r as

alternatives to the previously considered quantiles aj = a
(0)
j and probabilities p0j =

Ymj − Ym(j−1) = p
(0)
0j . At the same time, this operation preserves the uniform shifted

empirical probabilities p
(r)
nj = 1/k = m/n on the cells (a

(r)
j−1, a

(r)
j ], 1 ≤ r ≤ m− 1. Replac-

ing each term φ( n
m

(Ymj − Ym(j−1))) in (1.29) by the average

1

m

m−1∑
r=0

φ
( n

m
p

(r)
0j

)
=

1

m

m−1∑
r=0

φ
( n

m
(Ymj+r − Ym(j−1)+r)

)
(2.2)

of all m alternatives get a more efficient versions of T
(m)
φ and T̃

(m)
φ , namely

T
(m)
φ =

n−m−1∑
j=0

φ
( n

m
(Yj+m − Yj)

)
+ mφ

( n

m
(1− Yn−m)

)
(2.3)
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and

T̃
(m)

φ =
n−m∑
j=1

φ
( n

m
(Yj+m − Yj)

)
+ mφ

( n

m
(Ym + 1− Yn−m)

)
. (2.4)

These statistics for m = 1 reduce to the Tφ and T̃φ of (1.34) and (1.39), so that the new
notation is consistent with the old.

The same procedure can be applied also to Del Pino’s statistic S
(m)
φ of (1.47) which,

similarly as T
(m)
φ , involves for j = 1, · · · , k the observations Ymj+r only for r = 0 and

ignores those for 1 ≤ r ≤ m − 1. Applying the averaging and substitution from the
previous paragraph, with the quantiles a

(r)
j of (2.1) replaced by

a
(r)
j = F−1

n

(
mj + r

n + 1

)

and excluding the undefined observations Yk for k > n + 1 , we get the more efficient
version

S
(m)
φ =

n−m+1∑
j=0

φ

(
n + 1

m
(Yj+m − Yj)

)
(2.5)

of S
(m)
φ of (1.47). Notice that if m = 1, then S

(m)
φ of (2.5) reduces to Sφ of (1.42) above,

so that our notation is in this sense still consistent.

The statistics (2.5) are formally well defined for all 1 ≤ m ≤ n, and not only for
m = (n + 1)/k ≥ 1 corresponding to the integers 1 < k ≤ n + 1. Cressie (1976, 1979),
Hall (1986), and Ekström (1999) are among the authors dealing with the statistics (2.5)
for fixed m ≥ 1 and eventually also for m slowly tending to ∞ when n →∞.

If m > 1, and in particular if m →∞, then the statistics (2.5) assign more weight to
central spacings than to those in the tails. To avoid this, Hall (1986) proposed to wrap
the observations Y1, Y2, ..., Yn around the circle of unit circumference and to define the
m-spacings Ym+j−Yj for arbitrary 1 ≤ m ≤ n and j as the distance between observations
Yj and Yj+m on this circle. This leads either to the extension of the ordered observations
Y1, . . . , Yn by the formula

Yn+j = 1 + Yj for j = 1, 2, ..., m (2.6)

where the previous dummy observation Y0 = 0 is suppressed and the other dummy ob-
servation Yn+1 = 1 is redefined in accordance with (2.6) by Yn+1 = 1 + Y1, leading to the
m-spacing Yj+m − Yj to be equal to 1 + Ym+j−n − Yj if n + 1 −m ≤ j ≤ n , or to the
extension by the alternative formula

Yn+j = 1 + Yj−1 for j = 1, 2, · · · ,m (2.7)

where the dummy observations Y0 = 0 and Yn+1 = 1 are placed on the circle as well,
resulting in the m-spacing Yj+m−Yj to be defined as 1+Ym+j−n−1−Yj for n+2−m ≤
j ≤ n. These extensions of the ordered observations Yj beyond j > n allow to add in
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(2.5) the tail evidence missing there, namely by adding to the substituted averages (2.2)
also the previously excluded terms. Depending on whether we use the extension (2.6) or
the alternative extension (2.7), we get in this manner two different extensions of (2.5),
namely

Ŝ
(m)

φ =
n∑

j=0

φ

(
n + 1

m
(Yj+m − Yj)

)
for Yn+j given by (2.6) (2.8)

and

S̃
(m)

φ =
n∑

j=1

φ

(
n + 1

m
(Yj+m − Yj)

)
for Yn+j given by (2.7). (2.9)

The statistics from the class (2.8) were studied for example by Cressie (1978), Rao and
Kuo (1984), Ekström (1999) and Misra and van der Meulen (2001), while those from the
class (2.9) were investigated among others by Hall (1986) and Morales et al. (2003).

Hall (1984) studied the statistics

R̃
(m)
φ =

n−m∑
j=1

h (n (Yj+m − Yj)) =
n−m∑
j=1

φ
( n

m
(Yj+m − Yj)

)
(2.10)

where h(t) = φ (t/m) for m ≥ 1 fixed and variable t > 0. These statistics neglect the tail
data Y1, Y2, ..., Ym−1 and Yn−1, Yn−2, ..., Yn−m+1.They are closely related to our divergence

statistics T̃
(m)

φ of (2.4),

R̃
(m)
φ = T̃

(m)

φ −mφ
( n

m
(Ym + 1− Yn−m)

)
. (2.11)

We consider also the extensions

R
(m)
φ =

n−m+1∑
j=0

φ
( n

m
(Yj+m − Yj)

)
(2.12)

of the Hall’s statistics R̃
(m)
φ ,

R
(m)
φ = R̃

(m)
φ + φ

( n

m
(Ym)

)
+ φ

( n

m
(Yn+1 − Yn−m+1)

)
. (2.13)

Thus we have introduced the collection

U (m)
φ =

{
T

(m)
φ , T̃

(m)

φ ,S
(m)
φ , Ŝ

(m)

φ , S̃
(m)

φ , R
(m)
φ , R̃

(m)
φ

}
(2.14)

of m-spacings-based statistics (c.f. (2.3), (2.4), (2.5), (2.8), (2.9), (2.12), (2.10)) where

T
(m)
φ , T̃

(m)

φ are spacings-based divergence statistics, R̃
(m)
φ ,S

(m)
φ ,S

(m)
0,φ , S

(m)
1,φ represent four

types of spacings-based goodness-of-fit statistics considered in the literature and R
(m)
φ is

an auxiliary statistic.
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If m = 1, then both T
(m)
φ and T̃

(m)

φ reduce to

Tφ =
n−2∑
j=0

φ (n (Yj+1 − Yj)) + φ (n (Yn+1 − Yn−1))

previously introduced in (1.36) and both S
(m)
φ and Ŝ

(m)

φ reduce to the statistic

Sφ =
n∑

j=0

φ ((n + 1) (Yj+1 − Yj)) (2.15)

previously introduced in (1.42). However, S̃
(m)

φ does so only if φ is linear. Indeed, if m = 1

then S̃
(m)

φ reduces to

S̃φ =
n−1∑
j=

φ ((n + 1) (Yj+1 − Yj)) + φ ((n + 1) (Y1 + 1− Yn)) (2.16)

which a.s. coincides with Sφ only if

φ ((n + 1) Y1) + φ ((n + 1) (1− Yn)) = φ ((n + 1) (Y1 + 1− Yn)) {a.s.

It is easy to see that this takes place only for linear φ. Finally, if m = 1, then R
(m)
φ reduces

to Rφ introduced previously in (1.40) and R̃
(m)
φ reduces to

R̃φ =
n−1∑
j=1

φ (n(Yj+1 − Yj)) = Rφ − φ(nY1)− φ (n(1− Yn)) . (2.17)

Hence in the case m = 1 the class of statistics (2.14) reduces to

Uφ =
{

Tφ, T̃φ, Sφ, S̃φ, Rφ, R̃φ

}
, (2.18)

(c.f. (1.36), (1.39), (1.42), (2.16), (1.40), (2.17)) where Tφ, T̃φ are spacings-based diver-
gence statistics, R̃φ, Sφ, S̃φ represent three types of simple-spacings-based goodness-of-fit
statistics considered in the literature and Rφ is an auxiliary statistic.

3 Asymptotic equivalence

In this section we consider the class of functions Φ introduced in Section 1 and its sub-
classes Φam ⊂ Φ and ΦL ⊂ Φ. The subclass Φam contains all functions φ ∈ Φ with an
additive-multiplicative structure, i.e. those for which there exist functions ξ, η : (0,∞) 7→
R satisfying for all s, t ∈ (0,∞) the functional equation

φ(st) = ξ(s) φ(t) + φ(s) + η(s) (t− 1). (3.1)

The subclass ΦL contains all functions φ ∈ Φ which are Lipschitz, i.e. those for which
there exit constants cφ > 0 such that for all s, t > 0

|φ(t)− φ(s)| ≤ cφ |t− s|. (3.2)
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Example 3.1. The function φ(t) = (1− t)2/t, t > 0 belongs to Φ and satisfies (3.1) for
ξ(t) = 1/t and η(t) = t− 1/t. Therefore it belongs to Φam. Further, all functions φ = φα,
α ∈ R of Example 1.1 belong to Φ as well and satisfy relation (3.1) with

ξ(t) = ξα(t) = tα and η(t) = ηα(t) =

{ tα−t
α−1

if α 6= 1

lim
α→1

tα−t
α−1

= t ln t if α = 1.
(3.3)

In other words, it holds

φα(st) = sαφα(t) + φα(s) + (t− 1) ·
{

sα−s
α−1

if α 6= 1

s ln s if α = 1
(3.4)

for all α ∈ R and s, t > 0. This means that the functions φ = φα belong to Φam.

Example 3.2. The family of smooth (analytic) functions defined for all α > 0 by the
formula

φα(t) =
(
1− exp{−α(t− 1)2�2})�α, t > 0 (3.5)

belongs to Φ. The derivatives φ′α are for every α > 0 bounded as follows

sup
t>0

|φ′α(t)| = sup
t>0

|t− 1| exp{−α(t− 1)2�2} = exp{−α/2}. (3.6)

Therefore the functions φα are Lipschitz with the Lipschitz constants cφα = exp{−α/2},
and thus they belong to the class ΦL. Further functions belonging to this class can be
found in Example 1.2.

The next two auxiliary statements analyze properties of the functions from Φam.

Lemma 3.1. The functions ξ and η appearing in (3.1) are continuous on (0,∞) and
satisfy the relations

ξ(1) = 1 and η(1) = 0. (3.7)

Proof. By assumption, φ(1) = 0. Since φ(t) is convex in the neighborhood of t = 1 and
strictly convex at t = 1, there exists a constant c > 0 such that

cφ
(
1 +

c

2

)
<

c

2
(φ (1) + φ (1 + c)) =

c

2
φ (1 + c) .

This implies that the continuous function

ψ(s) =
c

2
φ (t (1 + c))− cφ

(
t

(
1 +

c

2

))

satisfies the condition ψ(1) > 0. Define

δ(s, t) = φ(st)− φ(t) + φ(s) + η(s) (t− 1)
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for φ, ξ, η appearing in (3.1). By (3.1),

0 =
c

2
δ(s, 1 + c)− c δ

(
s, 1 +

c

2

)
= ψ(s)− ξ(s) ψ(1) +

c

2
φ(s).

Since both φ(s) and ψ(s) are continuous in s > 0, we see that ξ(s) must be continuous
too. Further, by putting t = 2 in (3.1) we see that η(s) must be continuous when ξ(s) is
continuous. Finally, if we put s = 1 in (3.1) and use the assumption φ(1) = 0, then we
obtain

(ξ(1)− 1) φ(t) + η(1) (t− 1) = 0 for all t > 0.

This contradicts the assumption φ′′(1) > 0, unless ξ(1) = 1 which implies also η(1) = 0.

Lemma 3.2. Every φ ∈ Φam is differentiable on the whole domain (0,∞), the corre-
sponding functions ξ and η are differentiable at 1 and

φ′(t) = ξ′(1)
φ(t)

t
+

φ′(1)

t
+ η′(1)

t− 1

t
for all t > 0. (3.8)

Proof. Putting s = 1 + ε and

ξ∗(ε) =
ξ(1 + ε)− ξ(1)

ε
, η∗(ε) =

η(1 + ε)− η(1)

ε

we obtain from (3.1) for every t > 0 and ε close to 0

t
φ(t + εt)− φ(t)

εt
= ξ∗(ε) φ(t) +

φ(1 + ε)− φ(1)

ε
+ η∗(ε) (t− 1). (3.9)

Since φ is differentiable in a neighborhood of 1, we have for t close to 1

ξ∗(ε) φ(t) + η∗(ε) (t− 1) = t φ′(t)− φ′(1) + o(ε) as ε → 0.

By assumptions, φ(t) is strictly convex at t = 1 and thus not linear in the neighborhood
of t = 1. Therefore the last relation implies that the limits of ξ∗(ε) and η∗(ε) for ε → 0
exist, that is,

ξ∗(ε) = ξ′(1) + o(ε) and η∗(ε) = η′(1) + o(ε) as ε → 0.

Now (3.8) follows from (3.9).

In the remainder of this section the observations of our statistical model are assumed
to be distributed on (0, 1] in two possible ways:

(i) under a fixed alternative,

(ii) under local alternatives.
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Case (i) means that the observations are distributed by a fixed distribution function
F ∼ f with f positive and continuous on [0, 1]. This means that in particular f(0) > 0.

Case (ii) means that the observations from samples of sizes n = 1, 2, . . . are distributed
by distribution functions

F (n)(x) = F0(x) +
Ln(x)

4
√

n
= x +

Ln(x)
4
√

n
(3.10)

on [0, 1], where the functions Ln : R 7→ R are continuously differentiable, with Ln(0) =
Ln(1) = 0, and with derivatives `n(x) = L′n(x) tending on [0, 1] to a continuously differ-
entiable function ` : R 7→ R uniformly in the sense that

sup
0≤x≤1

|`n(x)− `(x)| = o(1) as n →∞. (3.11)

The two cases (i) and (ii) are not mutually exclusive: their conjunction is “under the
hypothesis H0 ” where F (x) = F0(x), f(x) = f0(x) = I [0,1](x) and Ln(x) ≡ 0 on R for
all n. This means that the asymptotic results obtained under local alternatives for `(x)
of (3.11) being identically equal to 0 must coincide with the results obtained under the
fixed alternative for F (x) = F0(x).

Lemma 3.3. Let m ≥ 1 be fixed. Independently of whether the order statistics are
extended by the rule (2.6) or (2.7), the tails

∆
(m)
φ,n =

1

n

n∑
i=n−m+1

φ
( n

m
(Yi+m − Yi)

)
(3.12)

and

δ
(m)
φ,n =

1

n

m∑
i=0

φ
( n

m
(Yi+m − Yi)

)
(3.13)

of all disparity statistics under consideration are in both cases (i) and (ii) of the asymp-
totic order Op(1) as n →∞.

Proof. We shall prove ∆
(m)
φ,n = Op(1) in the case (i) under the extension rule (2.7).

Modification of this proof for the other case, and the other rule and/or tail, is easy. Since
m is fixed, it suffices to prove for every i = n−m + r with 1 ≤ r ≤ m

φ
( n

m
(Yi+m − Yi)

)
= Op(1). (3.14)

It is known that

Yi+m − Yi = Yr + 1− Yn−m+r = F−1(Wr) + 1− F−1(Wn−m+r) (3.15)

where

Ws =
Z1 + · · ·+ Zs

Z1 + · · ·+ Zn+1

, 1 ≤ s ≤ n
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and Zi are independent standard exponential random variables (see, e. g. Hall (1984),
p. 208). Since for all fixed integers r and s

Wr = op(1), Wn−s = 1 + op(1) and nWs = Op(1),

it follows from the assumption f(x) > 0 for all 0 ≤ x ≤ 1 and from the law of large
numbers for the standard exponential Zi

nF−1(Wr) = nWr
F−1(Wr)

Wr

= Op(1),

and similarly

n
(
1− F−1(Wn−m+r)

)
= Op(1).

Therefore (3.15) implies

n

m
(Yi+m − Yi) = Op(1)

and the desired relation (3.14) follows from here. ¤

The theorem below demonstrates that if φ ∈ Φ a convex or disparity function then in
spite of that the statistics Sφ, S̃φ, Rφ and R̃φ are not φ-divergences or φ-disparities of the
hypothetical and empirical distributions F0 and Fn, they still share the most important
statistical properties with the statistics Tφ and T̃φ, which are divergences or disparities.
Therefore this theorem provides a key argument for the thesis of the present paper for-
mulated in Section 2, that the spacings-based goodness-of-fit statistics considered in the
previous literature actually measure a disparity between the hypothetical and empiri-
cal distributions F0 and Fn, although this was possibly not so intended by the various
authors. In other words, this theorem demonstrates that the small modifications distin-
guishing these statistics from one another are asymptotically negligible, thus opening a
possibility to develop a unified asymptotic theory for the whole class of statistics U (m)

φ

defined in (2.14). Such a theory will presented in a subsequent paper.

Theorem 3.1. Consider the set of disparity statistics U (m)
φ defined in (2.14). If φ ∈ Φ

then under both fixed and local alternatives the statistics U
(m)
φ ∈ {R(m)

φ , T
(m)
φ , T̃

(m)

φ } ⊂
U (m)

φ satisfy the relation

U
(m)
φ − R̃

(m)
φ

an

= op(1) as n →∞. (3.16)

for any positive normalization sequence an increasing to infinity. If φ ∈ Φam ∪ ΦL then

this relation can be extended also to the statistics U
(m)
φ ∈ {S(m)

φ , Ŝ
(m)

φ , S̃
(m)

φ } ⊂ U (m)
φ .

Hence in this case all statistics from U (m)
φ are mutually asymptotically equivalent of the

order of op(an).
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Proof. (I) If φ ∈ Φ then, by inspecting the definitions of R
(m)
φ , T

(m)
φ and T̃

(m)

φ we see

that the difference between any U
(m)
φ ∈ {R(m)

φ , T
(m)
φ , T̃

(m)

φ } and R̃
(m)
φ is of the form of ∆

(m)
φ,n

or δ
(m)
φ,n considered in Lemma 3.3. Thus in this case the desired relation (3.16) follows from

Lemma 3.3.

(II) Let us now consider the second assertion for φ ∈ Φam. We shall prove for U
(m)
φ ∈

{S(m)
φ , Ŝ

(m)

φ } and S̃
(m)

φ the relations

U
(m)
φ −R

(m)
φ = εn R

(m)
φ + δn and S̃

(m)

φ − T̃
(m)

φ = εn T̃
(m)

φ + δn (3.17)

for some numerical sequences εn, δn with the asymptotic properties εn = o(1) and δn =
O(1) as n → ∞. Let us start with the additive-multiplicative decomposition (3.1) from
which we get for any p > 0

φ((n + 1) p) = ξ

(
n + 1

n

)
φ(np) + φ

(
n + 1

n

)
+ η

(
n + 1

n

)
(np− 1).

Hence

φ((n + 1) p)− φ(np) = εnφ(np) + φ

(
n + 1

n

)
+ η

(
n + 1

n

)
(np− 1) (3.18)

where εn = ξ((n + 1)/n) − 1 = o(1) as n → ∞ by Lemma 3.1. Replacing p by the

probabilities p0j = Yj+m − Yj figuring in the definitions of S
(m)
φ and R

(m)
φ in (2.5) and

(2.12), and summing over 1 ≤ j ≤ n−m + 1, we get from (3.18) the relation

S
(m)
φ −R

(m)
φ = εn R

(m)
φ + δn

for

δn = (n + 1) φ

(
n + 1

n

)
− η

(
n + 1

n

)

=
n + 1

n

φ
(
1 + 1

n

)− φ(1)
1
n

− η

(
n + 1

n

)
.

By Lemma 3.1,

δn = φ′(1) + o(1) as n →∞.

This completes the proof of the first relation in (3.17) with U
(m)
φ = S

(m)
φ . The proofs of

the same relation with U
(m)
φ = Ŝ

(m)

φ and of the second relation of (3.17) follow in a similar
manner from (3.18).

(III) As the last step, consider the second assertion for φ ∈ ΦL. Put

Dn =
n−m−1∑

i=0

[
φ

(
n + 1

m
(Yi+m − Yi)

)
− φ

( n

m
(Yi+m − Yi)

)]
(3.19)
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and let an be a positive sequence increasing to infinity. Then

S
(m)
φ − T

(m)
φ = Dn −W

(m)
n c.f. (??) and (??),

Ŝ
(m)

φ − T
(m)
φ = Dn + Z

(m)
n −W

(m)
n c.f. (??) and (2.8),

S̃
(m)

φ − T
(m)
φ = Dn + Z

(m)
n − W̃

(m)
n c.f. () and (),

where

W
(m)
n = mφ

(
n
m

(1− Yn−m)
)

Z
(m)
n =

∑n
j=n−m φ

(
n+1
m

(Yj+m − Yi)
)

W̃
(m)
n = W

(m)
n − φ

(
n+1
m

Ym

)

and the arguments Yn+j of Z
(m)
n in the formula for Ŝ

(m)

φ − T
(m)
φ are given by (2.6) while

in the formula for S̃
(m)

φ − T
(m)
φ they are given by (2.7). But one can deduce from Lemma

3.3 that W
(m)
n = Op(1), W̃

(m)
n = Op(1) and Z

(m)
n = Op(1) irrespectively of whether the

arguments Yn+j of Z
(m)
n are given by (2.6) or (2.7). Thus it suffices to prove

|Dn| = o(an). (3.20)

Since φ is by assumption Lipschitz function with a Lipschitz constatnt cφ > 0, (3.19)
implies

|Dn| ≤ cφ

m

n−m−1∑
i=0

| Yi+m − Yi | = cφ

m

n−m−1∑
i=0

(Yi+m − Yi)

where the equality follows from the monotonicity Yi+m ≥ Yi of the order statistics ap-
pearing in the last sum. Thus (3.20) follows from the obvious inequalities

n−m−1∑
i=0

(Yi+m − Yi) ≤ Yn−m−1 − Y0 ≤ 1.

Next we precise the result of Theorem 3.1 for the important special case of simple
spacings where, as was argued at the end of Section 2, U (m)

φ reduces to the class Uφ given
by (2.18).

Corollary 3.1. Consider the set of disparity statistics Uφ defined in (2.18). If φ ∈ Φ
then under both fixed and local alternatives the statistics Uφ ∈ {Rφ, Tφ, T̃φ} satisfy the
relation

Uφ − R̃φ = op(an) as n →∞. (3.21)

for any normalization sequence an increasing to infinity. If φ ∈ Φam∪ΦL then this relation
can also be extended to the statistics Uφ ∈ {Sφ, S̃φ}. Hence in this case all statistics from
Uφ are mutually asymptotically equivalent of the order of op(an).
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