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Abstract: The mutual information is useful measure of a random vector
component dependence. It is important in many technical applications. The
estimation methods are often based on the well known relation between the
mutual information and the appropriate entropies. In 1999 Darbellay and
Vajda [3] proposed a direct estimation methods. In this paper we compare
some available estimation methods using different 2-D random distributions.

Abstrakt: Vzájemná informace je hojně už́ıvanou mı́rou vzájemné závislosti
jednotlivých složek v́ıcerozměrných náhodných vektor̊u. Časté uplatněńı na-
cháźı předevš́ım v inženýrských aplikaćıch. Metody odhadu vzájemné infor-
mace většinou vycháźı ze známého vztahu mezi vzájemnou informaćı a entro-
piemi př́ıslušných rozděleńı, ale vzájemnou informaci je možné odhadnout
také př́ımo. Na př́ıkladech r̊uzných typ̊u dvojrozměrných rozděleńı srovnáme
některé dostupné metody odhadu vzájemné informace.

1 Introduction

The mutual information is a very important tool in many engineering appli-
cations. Assuming 2-D random vector (X,Y )T with the joint density function
fX,Y and marginal density functions fX , fY , the mutual information I(X,Y )
is given as

I(X,Y ) =

∫
R2

fX,Y (x, y) log
fX,Y (x, y)

fX(x)fY (y)
dx dy.

Traditional estimation methods are based on the well known relation be-
tween the mutual information and the appropriate entropies

I(X,Y ) = H(X) + H(Y ) − H(X,Y ),

= H(X) − H(X|Y ),

= H(Y ) − H(Y |X).

In this paper we compare the available algorithms for direct computation
of the mutual information with the estimate based on the maximum likelihood
introduced by Miller [5]. In addition to the Miller-Madow’s method we employ
three methods described in the next section. All these methods of the direct
computation of the mutual information are based on the 2-D histogram. The
computer simulations bellow show the advantage of algorithms based on an
adaptive histogram.
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2 Methods and algorithms

2.1 Adaptive histogram methods

The adaptive histogram methods introduced by Darbellay [2] reach good
efficiency. In this paper we use the algorithm published by Darbellay and
Vajda [3]. The histogram generating process is based on the partitioning of the
observation space into a finite number of nonoverlapping rectangular cells Ck,
1 ≤ k ≤ m. The cells are generated by the recursive process described bellow.

Algorithm Mutin A

(i) The initial (the largest) cell is the smallest rectangular cell containing
all data pairs (X,Y )T .

(ii) Any cell containing less than two observations (data pairs) will not be
partitioned.

(iii) Every cell containing at least two observations is tentatively partitioned
by dividing each one of its edges into two equiprobable halves. It means
four new cells are tentatively generated instead given ’mother’ cell.

(iv) Assume that the partitioned ’mother’ cell contains N ≤ 2 observations.
The new generated cells contain N1, N2, N3 and N4 observations. The
partitioning is accepted if

T =
4

N

4∑
i=1

(
Ni − N

4

)2

> χ2
3(0.95) = 7.81, (1)

where T is the goodness of fit statistic T intuitively testing the local
independence of marginals at this ’mother’ cell. If T < 7.81 then the
tentative partition is refused and the ’mother’ cell is admitted to the
final computation.

(v) After stopping all (local) partitioning processes we denote generated
cells Ck, 1 ≤ k ≤ m and the corresponding numbers of observations Nk.
The estimate of the unknown mutual information I(X,Y ) we define as

ÎN (X,Y ) =
m∑

k=1

Nk

N
log

Nk/N

(Nx,k/N)(Ny,k/N)
, (2)

where Nx,k is the number of observations that have the same x coordi-
nate as observations in the cell Ck (analogically the Ny,k).

The computer simulation studies, e.g. Franěk [4], show that true ex-
pectation of the goodness of fit variable T defined in (1) is not constant
but ET ≤ 3. Keeping notation of algorithm Mutin A, it approximately holds

ET ≈ 3 − Nx,k

Nk
− Ny,k

Nk
.
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It follows that we should adjust the critical value of the goodness-of-fit test
via (1). This adjustment decreases absolute value of the negative part of esti-
mation bias, because the hypothesis of local independence is rejected in more
cases and the partitioning process generates more cells with some positive
contribution to the mutual information estimate (2). On the other hand the
positive part of estimation bias slightly increases because of increasing the
first type error probability in the test (1) which is not 0.05, but is lower in
the algorithm Mutin A. The algorithm with adjusted critical values of the
goodness-of-fit test will be called Mutin B.

2.2 Fixed histogram method

First we consider estimates using histograms based on a fixed partition of the
observation space. There are two basic approaches to the partition making -
the equidistant and the equiquantile partitioning of marginals, both followed
by the 2-D product partition construction. The number of cells choice is the
common problem of these methods. Generally, it is known that the optimal
number of cells depends not only on the observation number but also on
its 2-D distribution. This dependence is much stronger for estimators using
equidistant cells.

In this paper, we denote DirectD K ×K an algorithm based on the equi-
distantly generated partition containing K2 rectangular cells. The cells are
the Cartesian product of K equidistant intervals between maximal and mini-
mal values on both marginals. The DirectQ K ×K will denote an algorithm
based on the partition also containing K2 rectangular cells, but the cells are
the Cartesian products of K intervals between maximal and minimal values
on both marginals, which were chosen to contain approximately N/K ob-
servations. The estimates are calculated in the same way as in the case of the
adaptive histogram methods, i.e. using the equation (2), where m = K2.

2.3 Entropy method

The estimation of entropy is a well developed problem. There are many avai-
lable methods in the literature. Consider independent identically distribu-
ted random vectors X1, . . . ,XN ∈ Rp and a partition B1, . . . , Bm of the
space Rp. Let us define a natural estimation of the entropy of X’s distribu-
tion as

ĤN (pN ) = −
m∑

i=1

pN,i log pN,i, (3)

where pN = (pN,i)
m
i=1 are relative frequencies of the sets Bi. This estimate is

also called maximum likelihood, plug-in (see Antos and Kontoyiannis [1]) or

naive (see Strong [7]). The asymptotical properties of ĤN (pN ) are summari-
zed e.g. in Paninski [6]. Let the partition B1, . . . , Bm, be fixed, H(p) be the
entropy of discrete distribution p = (pi)

m
i=1 such that for any 1 ≤ i ≤ m holds
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pN,i → pi if N → ∞, and pi > 0. The known results about the asymptotic
bias and variance are

E
(
ĤN (pN ) − H(p)

)
= −m − 1

2N
+ O(N−1), (4)

Var ĤN (pN ) ≤ (log N)2

N
. (5)

For the complete proof of (5) see Antos and Kontoyiannis [1]. The
equation (4) is proved also by Miller [5].

At first we fix equidistant partition of marginals and the corresponding
product 2-D partition of the observation space. Using the maximum likelihood
entropy estimation with the Miller-Madow’s bias correction

ĤN (pN ) = −
m∑

i=1

pN,i log pN,i +
m̂ − 1

2N
, (6)

where m̂ is number of nonempty cells in used partition, we calculate the
entropy estimates ĤN (X), ĤN (Y ) and ĤN (X,Y ). The Miller’s estimate of

the mutual information can be defined as ĤN (X) + ĤN (Y ) − ĤN (X,Y ).
The equidistant (DirectD 5× 5) construction of partition is used for entropy
estimation in the next section.

3 Simulation results

The computer simulations show the estimation results for 2-D data with
various true mutual information using methods described in the previous
section. The two types of data were generated. At first, the observations
were linear dependent data pairs (X,Y )T with

Y = bX + Z,

where X ∼ U(0, 1), b is linear dependence parameter and Z is random noise
variable independent on X. The subplots in the right column of the figure 1
show comparable values of the standard deviations of all used methods wi-
thout any strong dependence on the noise variable distribution. The left co-
lumn subplots compare the mean values of the estimators. In the case of the
Gaussian noise (a) the adaptive histogram methods are negligibly biased, the
method Mutin B gives slightly higher values. The other methods have an ob-
servable negative bias. The dependence on the noise distribution is apparent
in comparison of the Gaussian case (a), the uniform case (b) and the Cauchy
case (c). The methods Mutin A and Mutin B have an observable negative
bias in the uniform case, but a moderate positive bias in the Cauchy case.
Both the other methods are much more biased. The Miller’s estimator is ina-
ppropriate in the case of the Cauchy noise because of the partition problems
during estimation of the needed entropies.
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Figure 1: Results of 1000 simulated experiments with N random vectors
(X,Y )T with uniformly distributed variable X ∼ U(0, 1) and Y = 5X + Z,
where Z is random variable independent to X.
Figure (a): Z ∼ N(0, 1), I(X,Y ) = 0.5518;
Figure (b): Z ∼ U(0, 1), I(X,Y ) = 1.7094;
Figure (c): Z ∼ C(0, 1), I(X,Y ) = 0.2645. The Miller’s estimator is not
displayed because of it’s extreme bias in the Cauchy distribution case.

The figure 2 shows results obtained in the case of data that have zero linear
correlation. The data are uniformly distributed on the annulus with the center
in the origin and the various width. The observed standard deviations of all
used methods are similar as in the previous case. The methods Mutin A and
Mutin B have a lower bias than both other ones again, but it is seen that
absolute bias decreases if the true mutual information increases. It means
that the ratio MSE/I(X,Y ) of both Mutin estimates is notably lower in the
case of higher true mutual information.

4 Conclusions

The computer simulation shows that the estimation methods based on the
adaptive partition of observation space are more efficient than conservative
methods based on a fixed partition. Especially the bias part of the MSE is
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Figure 2: Results of 1000 simulated experiments with N random vectors
(X,Y )T which are uniformly distributed on the annulus with center in the
origin. The inner radius of this annulus is rL and the outer radius is rU .
Figure (a): rU = 1.1 and rL = 0.9, I(X,Y ) = 1.2081;
Figure (b): rU = 1.5 and rL = 0.5, I(X,Y ) = 0.2809;
Figure (c): rU = 1.9 and rL = 0.1, I(X,Y ) = 0.1485.

seriously reduced. This reduction is stronger if the true mutual information
is high and the methods work reasonably well also for data with heavy tai-
led distributions. The adaptive partitioning also removes the problem with
the choice of the fixed partition. It is well known that the number of his-
togram cells has strong influence on the bias and the standard deviation
of corresponding entropy estimators. Generally, the bias decreases and the
standard deviation increases with increasing number of cells, see e.g. Panin-
ski [6]. There are many methods optimizing the cells number with regard
to the MSE in the literature. A different way to decrease MSE is to employ
more accurate methods of density estimation as kernel estimates. We did not
deal with this topic for a lack of space. Finally, it is seen that the methods
employing the adaptive partitioning of the observation space are very user
friendly regarding the implementation and the computation time.
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